line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
1
|
|
|
|
|
|
|
package AI::FuzzyEngine;
|
2
|
|
|
|
|
|
|
|
3
|
3
|
|
|
3
|
|
25463
|
use 5.008009;
|
|
3
|
|
|
|
|
10
|
|
|
3
|
|
|
|
|
126
|
|
4
|
3
|
|
|
3
|
|
849
|
use version 0.77; our $VERSION = version->declare('v0.2.2');
|
|
3
|
|
|
|
|
2419
|
|
|
3
|
|
|
|
|
22
|
|
5
|
|
|
|
|
|
|
|
6
|
3
|
|
|
3
|
|
254
|
use strict;
|
|
3
|
|
|
|
|
9
|
|
|
3
|
|
|
|
|
93
|
|
7
|
3
|
|
|
3
|
|
13
|
use warnings;
|
|
3
|
|
|
|
|
10
|
|
|
3
|
|
|
|
|
86
|
|
8
|
3
|
|
|
3
|
|
18
|
use Carp;
|
|
3
|
|
|
|
|
5
|
|
|
3
|
|
|
|
|
223
|
|
9
|
3
|
|
|
3
|
|
15
|
use Scalar::Util;
|
|
3
|
|
|
|
|
6
|
|
|
3
|
|
|
|
|
109
|
|
10
|
3
|
|
|
3
|
|
14
|
use List::Util;
|
|
3
|
|
|
|
|
5
|
|
|
3
|
|
|
|
|
195
|
|
11
|
3
|
|
|
3
|
|
1496
|
use List::MoreUtils;
|
|
3
|
|
|
|
|
1329
|
|
|
3
|
|
|
|
|
119
|
|
12
|
|
|
|
|
|
|
|
13
|
3
|
|
|
3
|
|
694
|
use AI::FuzzyEngine::Variable;
|
|
3
|
|
|
|
|
7
|
|
|
3
|
|
|
|
|
2523
|
|
14
|
|
|
|
|
|
|
|
15
|
|
|
|
|
|
|
sub new {
|
16
|
5
|
|
|
5
|
0
|
8882
|
my ($class) = @_;
|
17
|
5
|
|
|
|
|
18
|
my $self = bless {}, $class;
|
18
|
|
|
|
|
|
|
|
19
|
5
|
|
|
|
|
21
|
$self->{_variables} = [];
|
20
|
5
|
|
|
|
|
22
|
return $self;
|
21
|
|
|
|
|
|
|
}
|
22
|
|
|
|
|
|
|
|
23
|
3
|
|
|
3
|
0
|
7
|
sub variables { @{ shift->{_variables} } };
|
|
3
|
|
|
|
|
17
|
|
24
|
|
|
|
|
|
|
|
25
|
|
|
|
|
|
|
sub and {
|
26
|
25
|
|
|
25
|
1
|
695
|
my ($self, @vals) = @_;
|
27
|
|
|
|
|
|
|
|
28
|
|
|
|
|
|
|
# PDL awareness: any element is a piddle?
|
29
|
25
|
50
|
|
|
|
61
|
return List::Util::min(@vals) if _non_is_a_piddle(@vals);
|
30
|
|
|
|
|
|
|
|
31
|
0
|
|
|
|
|
0
|
_check_for_PDL();
|
32
|
0
|
|
|
|
|
0
|
my $vals = $self->_cat_array_of_piddles(@vals);
|
33
|
0
|
|
|
|
|
0
|
return $vals->mv(-1, 0)->minimum;
|
34
|
|
|
|
|
|
|
}
|
35
|
|
|
|
|
|
|
|
36
|
|
|
|
|
|
|
sub or {
|
37
|
24
|
|
|
24
|
1
|
57
|
my ($self, @vals) = @_;
|
38
|
|
|
|
|
|
|
|
39
|
|
|
|
|
|
|
# PDL awareness: any element is a piddle?
|
40
|
24
|
50
|
|
|
|
52
|
return List::Util::max(@vals) if _non_is_a_piddle(@vals);
|
41
|
|
|
|
|
|
|
|
42
|
0
|
|
|
|
|
0
|
_check_for_PDL();
|
43
|
0
|
|
|
|
|
0
|
my $vals = $self->_cat_array_of_piddles(@vals);
|
44
|
0
|
|
|
|
|
0
|
return $vals->mv(-1, 0)->maximum;
|
45
|
|
|
|
|
|
|
}
|
46
|
|
|
|
|
|
|
|
47
|
|
|
|
|
|
|
sub not {
|
48
|
5
|
|
|
5
|
1
|
544
|
my ($self, $val) = @_;
|
49
|
5
|
|
|
|
|
21
|
return 1-$val;
|
50
|
|
|
|
|
|
|
}
|
51
|
|
|
|
|
|
|
|
52
|
2
|
|
|
2
|
1
|
554
|
sub true { return 1 }
|
53
|
|
|
|
|
|
|
|
54
|
2
|
|
|
2
|
1
|
527
|
sub false { return 0 }
|
55
|
|
|
|
|
|
|
|
56
|
|
|
|
|
|
|
sub new_variable {
|
57
|
6
|
|
|
6
|
0
|
734
|
my ($self, @pars) = @_;
|
58
|
|
|
|
|
|
|
|
59
|
6
|
|
|
|
|
16
|
my $variable_class = $self->_class_of_variable();
|
60
|
6
|
|
|
|
|
28
|
my $var = $variable_class->new($self, @pars);
|
61
|
6
|
|
|
|
|
9
|
push @{$self->{_variables}}, $var;
|
|
6
|
|
|
|
|
106
|
|
62
|
6
|
|
|
|
|
18
|
Scalar::Util::weaken $self->{_variables}->[-1];
|
63
|
6
|
|
|
|
|
17
|
return $var;
|
64
|
|
|
|
|
|
|
}
|
65
|
|
|
|
|
|
|
|
66
|
|
|
|
|
|
|
sub reset {
|
67
|
2
|
|
|
2
|
0
|
9
|
my ($self) = @_;
|
68
|
2
|
|
|
|
|
7
|
$_->reset() for $self->variables();
|
69
|
2
|
|
|
|
|
6
|
return $self;
|
70
|
|
|
|
|
|
|
}
|
71
|
|
|
|
|
|
|
|
72
|
6
|
|
|
6
|
|
10
|
sub _class_of_variable { 'AI::FuzzyEngine::Variable' }
|
73
|
|
|
|
|
|
|
|
74
|
|
|
|
|
|
|
sub _non_is_a_piddle {
|
75
|
95
|
|
|
95
|
|
409
|
return List::MoreUtils::none {ref $_ eq 'PDL'} @_;
|
|
49
|
|
|
49
|
|
226
|
|
76
|
|
|
|
|
|
|
}
|
77
|
|
|
|
|
|
|
|
78
|
|
|
|
|
|
|
my $_PDL_is_imported;
|
79
|
|
|
|
|
|
|
sub _check_for_PDL {
|
80
|
0
|
0
|
|
0
|
|
|
return if $_PDL_is_imported;
|
81
|
0
|
0
|
|
|
|
|
die "PDL not loaded" unless $INC{'PDL.pm'};
|
82
|
0
|
0
|
|
|
|
|
die "PDL::Core not loaded" unless $INC{'PDL/Core.pm'};
|
83
|
0
|
|
|
|
|
|
$_PDL_is_imported = 1;
|
84
|
|
|
|
|
|
|
}
|
85
|
|
|
|
|
|
|
|
86
|
|
|
|
|
|
|
sub _cat_array_of_piddles {
|
87
|
0
|
|
|
0
|
|
|
my ($class, @vals) = @_;
|
88
|
|
|
|
|
|
|
|
89
|
|
|
|
|
|
|
# TODO: Rapid return if @_ == 1 (isa piddle)
|
90
|
|
|
|
|
|
|
# TODO: join "-", ndims -> Schnellcheck auf gleiche Dim.
|
91
|
|
|
|
|
|
|
|
92
|
|
|
|
|
|
|
# All elements must get piddles
|
93
|
0
|
|
|
|
|
|
my @pdls = map { PDL::Core::topdl($_) } @vals;
|
|
0
|
|
|
|
|
|
|
94
|
|
|
|
|
|
|
|
95
|
|
|
|
|
|
|
# Get size of wrapping piddle (using a trick)
|
96
|
|
|
|
|
|
|
# applying valid expansion rules for element wise operations
|
97
|
0
|
|
|
|
|
|
my $zeros = PDL->pdl(0);
|
98
|
|
|
|
|
|
|
# v-- does not work due to threading mechanisms :-((
|
99
|
|
|
|
|
|
|
# $zeros += $_ for @pdls;
|
100
|
|
|
|
|
|
|
# Avoid threading!
|
101
|
0
|
|
|
|
|
|
for my $p (@pdls) {
|
102
|
0
|
0
|
|
|
|
|
croak "Empty piddles are not allowed" if $p->isempty();
|
103
|
0
|
0
|
|
|
|
|
eval { $zeros = $zeros + $p->zeros(); 1
|
|
0
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
104
|
|
|
|
|
|
|
} or croak q{Can't expand piddles to same size};
|
105
|
|
|
|
|
|
|
}
|
106
|
|
|
|
|
|
|
|
107
|
|
|
|
|
|
|
# Now, cat 'em by expanding them on the fly
|
108
|
0
|
|
|
|
|
|
my $vals = PDL::cat( map {$_ + $zeros} @pdls );
|
|
0
|
|
|
|
|
|
|
109
|
0
|
|
|
|
|
|
return $vals;
|
110
|
|
|
|
|
|
|
};
|
111
|
|
|
|
|
|
|
|
112
|
|
|
|
|
|
|
1;
|
113
|
|
|
|
|
|
|
|
114
|
|
|
|
|
|
|
=pod
|
115
|
|
|
|
|
|
|
|
116
|
|
|
|
|
|
|
=head1 NAME
|
117
|
|
|
|
|
|
|
|
118
|
|
|
|
|
|
|
AI::FuzzyEngine - A Fuzzy Engine, PDL aware
|
119
|
|
|
|
|
|
|
|
120
|
|
|
|
|
|
|
=head1 SYNOPSIS
|
121
|
|
|
|
|
|
|
|
122
|
|
|
|
|
|
|
=head2 Regular Perl - without PDL
|
123
|
|
|
|
|
|
|
|
124
|
|
|
|
|
|
|
use AI::FuzzyEngine;
|
125
|
|
|
|
|
|
|
|
126
|
|
|
|
|
|
|
# Engine (or factory) provides fuzzy logical arithmetic
|
127
|
|
|
|
|
|
|
my $fe = AI::FuzzyEngine->new();
|
128
|
|
|
|
|
|
|
|
129
|
|
|
|
|
|
|
# Disjunction:
|
130
|
|
|
|
|
|
|
my $a = $fe->or ( 0.2, 0.5, 0.8, 0.7 ); # 0.8
|
131
|
|
|
|
|
|
|
# Conjunction:
|
132
|
|
|
|
|
|
|
my $b = $fe->and( 0.2, 0.5, 0.8, 0.7 ); # 0.2
|
133
|
|
|
|
|
|
|
# Negation:
|
134
|
|
|
|
|
|
|
my $c = $fe->not( 0.4 ); # 0.6
|
135
|
|
|
|
|
|
|
# Always true:
|
136
|
|
|
|
|
|
|
my $t = $fe->true(); # 1.0
|
137
|
|
|
|
|
|
|
# Always false:
|
138
|
|
|
|
|
|
|
my $f = $fe->false(); # 0.0
|
139
|
|
|
|
|
|
|
|
140
|
|
|
|
|
|
|
# These functions are constitutive for the operations
|
141
|
|
|
|
|
|
|
# on the fuzzy sets of the fuzzy variables:
|
142
|
|
|
|
|
|
|
|
143
|
|
|
|
|
|
|
# VARIABLES (AI::FuzzyEngine::Variable)
|
144
|
|
|
|
|
|
|
|
145
|
|
|
|
|
|
|
# input variables need definition of membership functions of their sets
|
146
|
|
|
|
|
|
|
my $flow = $fe->new_variable( 0 => 2000,
|
147
|
|
|
|
|
|
|
small => [0, 1, 500, 1, 1000, 0 ],
|
148
|
|
|
|
|
|
|
med => [ 400, 0, 1000, 1, 1500, 0 ],
|
149
|
|
|
|
|
|
|
huge => [ 1000, 0, 1500, 1, 2000, 1],
|
150
|
|
|
|
|
|
|
);
|
151
|
|
|
|
|
|
|
my $cap = $fe->new_variable( 0 => 1800,
|
152
|
|
|
|
|
|
|
avg => [0, 1, 1500, 1, 1700, 0 ],
|
153
|
|
|
|
|
|
|
high => [ 1500, 0, 1700, 1, 1800, 1],
|
154
|
|
|
|
|
|
|
);
|
155
|
|
|
|
|
|
|
# internal variables need sets, but no membership functions
|
156
|
|
|
|
|
|
|
my $saturation = $fe->new_variable( # from => to may be ommitted
|
157
|
|
|
|
|
|
|
low => [],
|
158
|
|
|
|
|
|
|
crit => [],
|
159
|
|
|
|
|
|
|
over => [],
|
160
|
|
|
|
|
|
|
);
|
161
|
|
|
|
|
|
|
# But output variables need membership functions for their sets:
|
162
|
|
|
|
|
|
|
my $green = $fe->new_variable( -5 => 5,
|
163
|
|
|
|
|
|
|
decrease => [-5, 1, -2, 1, 0, 0 ],
|
164
|
|
|
|
|
|
|
ok => [ -2, 0 0, 1, 2, 0 ],
|
165
|
|
|
|
|
|
|
increase => [ 0, 0, 2, 1, 5, 1],
|
166
|
|
|
|
|
|
|
);
|
167
|
|
|
|
|
|
|
|
168
|
|
|
|
|
|
|
# Reset FuzzyEngine (resets all variables)
|
169
|
|
|
|
|
|
|
$fe->reset();
|
170
|
|
|
|
|
|
|
|
171
|
|
|
|
|
|
|
# Reset a fuzzy variable directly
|
172
|
|
|
|
|
|
|
$flow->reset;
|
173
|
|
|
|
|
|
|
|
174
|
|
|
|
|
|
|
# Membership functions can be changed via the set's variable.
|
175
|
|
|
|
|
|
|
# This might be useful during parameter identification algorithms
|
176
|
|
|
|
|
|
|
# Changing a function resets the respective variable.
|
177
|
|
|
|
|
|
|
$flow->change_set( med => [500, 0, 1000, 1, 1500, 0] );
|
178
|
|
|
|
|
|
|
|
179
|
|
|
|
|
|
|
# Fuzzification of input variables
|
180
|
|
|
|
|
|
|
$flow->fuzzify( 600 );
|
181
|
|
|
|
|
|
|
$cap->fuzzify( 1000 );
|
182
|
|
|
|
|
|
|
|
183
|
|
|
|
|
|
|
# Membership degrees of the respective sets are now available:
|
184
|
|
|
|
|
|
|
my $flow_is_small = $flow->small(); # 0.8
|
185
|
|
|
|
|
|
|
my $flow_is_med = $flow->med(); # 0.2
|
186
|
|
|
|
|
|
|
my $flow_is_huge = $flow->huge(); # 0.0
|
187
|
|
|
|
|
|
|
|
188
|
|
|
|
|
|
|
# RULES and their application
|
189
|
|
|
|
|
|
|
|
190
|
|
|
|
|
|
|
# a) If necessary, calculate some internal variables first.
|
191
|
|
|
|
|
|
|
# They will not be defuzzified (in fact, $saturation can't)
|
192
|
|
|
|
|
|
|
# Implicit application of 'and'
|
193
|
|
|
|
|
|
|
# Multiple calls to a membership function
|
194
|
|
|
|
|
|
|
# are similar to 'or' operations:
|
195
|
|
|
|
|
|
|
$saturation->low( $flow->small(), $cap->avg() );
|
196
|
|
|
|
|
|
|
$saturation->low( $flow->small(), $cap->high() );
|
197
|
|
|
|
|
|
|
$saturation->low( $flow->med(), $cap->high() );
|
198
|
|
|
|
|
|
|
|
199
|
|
|
|
|
|
|
# Explicite 'or', 'and' or 'not' possible:
|
200
|
|
|
|
|
|
|
$saturation->crit( $fe->or( $fe->and( $flow->med(), $cap->avg() ),
|
201
|
|
|
|
|
|
|
$fe->and( $flow->huge(), $cap->high() ),
|
202
|
|
|
|
|
|
|
),
|
203
|
|
|
|
|
|
|
);
|
204
|
|
|
|
|
|
|
$saturation->over( $fe->not( $flow->small() ),
|
205
|
|
|
|
|
|
|
$fe->not( $flow->med() ),
|
206
|
|
|
|
|
|
|
$flow->huge(),
|
207
|
|
|
|
|
|
|
$cap->high(),
|
208
|
|
|
|
|
|
|
);
|
209
|
|
|
|
|
|
|
$saturation->over( $flow->huge(), $fe->not( $cap->high() ) );
|
210
|
|
|
|
|
|
|
|
211
|
|
|
|
|
|
|
# b) deduce output variable(s) (here: from internal variable $saturation)
|
212
|
|
|
|
|
|
|
$green->decrease( $saturation->low() );
|
213
|
|
|
|
|
|
|
$green->ok( $saturation->crit() );
|
214
|
|
|
|
|
|
|
$green->increase( $saturation->over() );
|
215
|
|
|
|
|
|
|
|
216
|
|
|
|
|
|
|
# All sets provide their respective membership degrees:
|
217
|
|
|
|
|
|
|
my $saturation_is_over = $saturation->over(); # This is no defuzzification!
|
218
|
|
|
|
|
|
|
my $green_is_ok = $green->ok();
|
219
|
|
|
|
|
|
|
|
220
|
|
|
|
|
|
|
# Defuzzification ( is a matter of the fuzzy variable )
|
221
|
|
|
|
|
|
|
my $delta_green = $green->defuzzify(); # -5 ... 5
|
222
|
|
|
|
|
|
|
|
223
|
|
|
|
|
|
|
=head2 Using PDL and its threading capability
|
224
|
|
|
|
|
|
|
|
225
|
|
|
|
|
|
|
use PDL;
|
226
|
|
|
|
|
|
|
use AI::FuzzyEngine;
|
227
|
|
|
|
|
|
|
|
228
|
|
|
|
|
|
|
# (Probably a stupide example)
|
229
|
|
|
|
|
|
|
my $fe = AI::FuzzyEngine->new();
|
230
|
|
|
|
|
|
|
|
231
|
|
|
|
|
|
|
# Declare variables as usual
|
232
|
|
|
|
|
|
|
my $severity = $fe->new_variable( 0 => 10,
|
233
|
|
|
|
|
|
|
low => [0, 1, 3, 1, 5, 0 ],
|
234
|
|
|
|
|
|
|
high => [ 3, 0, 5, 1, 10, 1],
|
235
|
|
|
|
|
|
|
);
|
236
|
|
|
|
|
|
|
|
237
|
|
|
|
|
|
|
my $threshold = $fe->new_variable( 0 => 1,
|
238
|
|
|
|
|
|
|
low => [0, 1, 0.2, 1, 0.8, 0, ],
|
239
|
|
|
|
|
|
|
high => [ 0.2, 0, 0.8, 1, 1, 1],
|
240
|
|
|
|
|
|
|
);
|
241
|
|
|
|
|
|
|
|
242
|
|
|
|
|
|
|
my $problem = $fe->new_variable( -0.5 => 2,
|
243
|
|
|
|
|
|
|
no => [-0.5, 0, 0, 1, 0.5, 0, 1, 0],
|
244
|
|
|
|
|
|
|
yes => [ 0, 0, 0.5, 1, 1, 1, 1.5, 1, 2, 0],
|
245
|
|
|
|
|
|
|
);
|
246
|
|
|
|
|
|
|
|
247
|
|
|
|
|
|
|
# Input data is a pdl of arbitrary dimension
|
248
|
|
|
|
|
|
|
my $data = pdl( [0, 4, 6, 10] );
|
249
|
|
|
|
|
|
|
$severity->fuzzify( $data );
|
250
|
|
|
|
|
|
|
|
251
|
|
|
|
|
|
|
# Membership degrees are piddles now:
|
252
|
|
|
|
|
|
|
print 'Severity is high: ', $severity->high, "\n";
|
253
|
|
|
|
|
|
|
# [0 0.5 1 1]
|
254
|
|
|
|
|
|
|
|
255
|
|
|
|
|
|
|
# Other variables might be piddles of other dimensions,
|
256
|
|
|
|
|
|
|
# but all variables must be expandible to a common 'wrapping' piddle
|
257
|
|
|
|
|
|
|
# ( in this case a 4x2 matrix with 4 colums and 2 rows)
|
258
|
|
|
|
|
|
|
my $level = pdl( [0.6],
|
259
|
|
|
|
|
|
|
[0.2],
|
260
|
|
|
|
|
|
|
);
|
261
|
|
|
|
|
|
|
$threshold->fuzzify( $level );
|
262
|
|
|
|
|
|
|
|
263
|
|
|
|
|
|
|
print 'Threshold is low: ', $threshold->low(), "\n";
|
264
|
|
|
|
|
|
|
# [
|
265
|
|
|
|
|
|
|
# [0.33333333]
|
266
|
|
|
|
|
|
|
# [ 1]
|
267
|
|
|
|
|
|
|
# ]
|
268
|
|
|
|
|
|
|
|
269
|
|
|
|
|
|
|
# Apply some rules
|
270
|
|
|
|
|
|
|
$problem->yes( $severity->high, $threshold->low );
|
271
|
|
|
|
|
|
|
$problem->no( $fe->not( $problem->yes ) );
|
272
|
|
|
|
|
|
|
|
273
|
|
|
|
|
|
|
# Fuzzy results are represented by the membership degrees of sets
|
274
|
|
|
|
|
|
|
print 'Problem yes: ', $problem->yes, "\n";
|
275
|
|
|
|
|
|
|
# [
|
276
|
|
|
|
|
|
|
# [ 0 0.33333333 0.33333333 0.33333333]
|
277
|
|
|
|
|
|
|
# [ 0 0.5 1 1]
|
278
|
|
|
|
|
|
|
# ]
|
279
|
|
|
|
|
|
|
|
280
|
|
|
|
|
|
|
# Defuzzify the output variables
|
281
|
|
|
|
|
|
|
# Caveat: This includes some non-threadable operations up to now
|
282
|
|
|
|
|
|
|
my $problem_ratings = $problem->defuzzify();
|
283
|
|
|
|
|
|
|
print 'Problems rated: ', $problem_ratings;
|
284
|
|
|
|
|
|
|
# [
|
285
|
|
|
|
|
|
|
# [ 0 0.60952381 0.60952381 0.60952381]
|
286
|
|
|
|
|
|
|
# [ 0 0.75 1 1]
|
287
|
|
|
|
|
|
|
# ]
|
288
|
|
|
|
|
|
|
|
289
|
|
|
|
|
|
|
=head1 EXPORT
|
290
|
|
|
|
|
|
|
|
291
|
|
|
|
|
|
|
Nothing is exported or exportable.
|
292
|
|
|
|
|
|
|
|
293
|
|
|
|
|
|
|
=head1 DESCRIPTION
|
294
|
|
|
|
|
|
|
|
295
|
|
|
|
|
|
|
This module is yet another implementation of a fuzzy inference system.
|
296
|
|
|
|
|
|
|
The aim was to be able to code rules (no string parsing),
|
297
|
|
|
|
|
|
|
but avoid operator overloading,
|
298
|
|
|
|
|
|
|
and make it possible to split calculation into multiple steps.
|
299
|
|
|
|
|
|
|
All intermediate results (memberships of sets of variables)
|
300
|
|
|
|
|
|
|
should be available.
|
301
|
|
|
|
|
|
|
|
302
|
|
|
|
|
|
|
Beginning with v0.2.0 it is PDL aware,
|
303
|
|
|
|
|
|
|
meaning that it can handle piddles (PDL objects)
|
304
|
|
|
|
|
|
|
when running the fuzzy operations.
|
305
|
|
|
|
|
|
|
More information on PDL can be found at L.
|
306
|
|
|
|
|
|
|
|
307
|
|
|
|
|
|
|
Credits to Ala Qumsieh and his L,
|
308
|
|
|
|
|
|
|
that showed me that fuzzy is no magic.
|
309
|
|
|
|
|
|
|
I learned a lot by analyzing his code,
|
310
|
|
|
|
|
|
|
and he provides good information and links to learn more about Fuzzy Logics.
|
311
|
|
|
|
|
|
|
|
312
|
|
|
|
|
|
|
=head2 Fuzzy stuff
|
313
|
|
|
|
|
|
|
|
314
|
|
|
|
|
|
|
The L object defines and provides
|
315
|
|
|
|
|
|
|
the elementary operations for fuzzy sets.
|
316
|
|
|
|
|
|
|
All membership degrees of sets are values from 0 to 1.
|
317
|
|
|
|
|
|
|
Up to now there is no choice with regard to how to operate on sets:
|
318
|
|
|
|
|
|
|
|
319
|
|
|
|
|
|
|
=over 2
|
320
|
|
|
|
|
|
|
|
321
|
|
|
|
|
|
|
=item C<< $fe->or( ... ) >> (Disjunction)
|
322
|
|
|
|
|
|
|
|
323
|
|
|
|
|
|
|
is I of membership degrees
|
324
|
|
|
|
|
|
|
|
325
|
|
|
|
|
|
|
=item C<< $fe->and( ... ) >> (Conjunction)
|
326
|
|
|
|
|
|
|
|
327
|
|
|
|
|
|
|
is I of membership degrees
|
328
|
|
|
|
|
|
|
|
329
|
|
|
|
|
|
|
=item C<< $fe->not( $var->$set ) >> (Negation)
|
330
|
|
|
|
|
|
|
|
331
|
|
|
|
|
|
|
is I<1-degree> of membership degree
|
332
|
|
|
|
|
|
|
|
333
|
|
|
|
|
|
|
=item Aggregation of rules (Disjunction)
|
334
|
|
|
|
|
|
|
|
335
|
|
|
|
|
|
|
is I
|
336
|
|
|
|
|
|
|
|
337
|
|
|
|
|
|
|
=item True C<< $fe->true() >> and false C<< $fe->false() >>
|
338
|
|
|
|
|
|
|
|
339
|
|
|
|
|
|
|
are provided for convenience.
|
340
|
|
|
|
|
|
|
|
341
|
|
|
|
|
|
|
=back
|
342
|
|
|
|
|
|
|
|
343
|
|
|
|
|
|
|
Defuzzification is based on
|
344
|
|
|
|
|
|
|
|
345
|
|
|
|
|
|
|
=over 2
|
346
|
|
|
|
|
|
|
|
347
|
|
|
|
|
|
|
=item Implication
|
348
|
|
|
|
|
|
|
|
349
|
|
|
|
|
|
|
I membership function of a set according to membership degree,
|
350
|
|
|
|
|
|
|
before the implicated memberships of all sets of a variable are taken for defuzzification:
|
351
|
|
|
|
|
|
|
|
352
|
|
|
|
|
|
|
=item Defuzzification
|
353
|
|
|
|
|
|
|
|
354
|
|
|
|
|
|
|
I of aggregated (and clipped) membership functions
|
355
|
|
|
|
|
|
|
|
356
|
|
|
|
|
|
|
=back
|
357
|
|
|
|
|
|
|
|
358
|
|
|
|
|
|
|
=head2 Public functions
|
359
|
|
|
|
|
|
|
|
360
|
|
|
|
|
|
|
Creation of an C object by
|
361
|
|
|
|
|
|
|
|
362
|
|
|
|
|
|
|
my $fe = AI::FuzzyEngine->new();
|
363
|
|
|
|
|
|
|
|
364
|
|
|
|
|
|
|
This function has no parameters. It provides the fuzzy methods
|
365
|
|
|
|
|
|
|
C, C and C, as listed above.
|
366
|
|
|
|
|
|
|
If needed, I will introduce alternative fuzzy operations,
|
367
|
|
|
|
|
|
|
they will be configured as arguments to C.
|
368
|
|
|
|
|
|
|
|
369
|
|
|
|
|
|
|
Once built, the engine can create fuzzy variables by C:
|
370
|
|
|
|
|
|
|
|
371
|
|
|
|
|
|
|
my $var = $fe->new_variable( $from => $to,
|
372
|
|
|
|
|
|
|
$name_of_set1 => [$x11, $y11, $x12, $y12, ... ],
|
373
|
|
|
|
|
|
|
$name_of_set2 => [$x21, $y21, $x22, $y22, ... ],
|
374
|
|
|
|
|
|
|
...
|
375
|
|
|
|
|
|
|
);
|
376
|
|
|
|
|
|
|
|
377
|
|
|
|
|
|
|
Result is an L.
|
378
|
|
|
|
|
|
|
The name_of_set strings are taken to assign corresponding methods
|
379
|
|
|
|
|
|
|
for the respective fuzzy variables.
|
380
|
|
|
|
|
|
|
They must be valid function identifiers.
|
381
|
|
|
|
|
|
|
Same name_of_set can used for different variables without conflict.
|
382
|
|
|
|
|
|
|
Take care:
|
383
|
|
|
|
|
|
|
There is no check for conflicts with predefined class methods.
|
384
|
|
|
|
|
|
|
|
385
|
|
|
|
|
|
|
Fuzzy variables provide a method to fuzzify input values:
|
386
|
|
|
|
|
|
|
|
387
|
|
|
|
|
|
|
$var->fuzzify( $val );
|
388
|
|
|
|
|
|
|
|
389
|
|
|
|
|
|
|
according to the defined sets and their membership functions.
|
390
|
|
|
|
|
|
|
|
391
|
|
|
|
|
|
|
The memberships of the sets of C<$var> are accessible
|
392
|
|
|
|
|
|
|
by the respective functions:
|
393
|
|
|
|
|
|
|
|
394
|
|
|
|
|
|
|
my $membership_degree = $var->$name_of_set();
|
395
|
|
|
|
|
|
|
|
396
|
|
|
|
|
|
|
Membership degrees can be assigned directly (within rules for example):
|
397
|
|
|
|
|
|
|
|
398
|
|
|
|
|
|
|
$var->$name_of_set( $membership_degree );
|
399
|
|
|
|
|
|
|
|
400
|
|
|
|
|
|
|
If multiple membership_degrees are given, they are "anded":
|
401
|
|
|
|
|
|
|
|
402
|
|
|
|
|
|
|
$var->$name_of_set( $degree1, $degree2, ... ); # "and"
|
403
|
|
|
|
|
|
|
|
404
|
|
|
|
|
|
|
By this, simple rules can be coded directly:
|
405
|
|
|
|
|
|
|
|
406
|
|
|
|
|
|
|
my $var_3->zzz( $var_1->xxx, $var_2->yyy, ... ); # "and"
|
407
|
|
|
|
|
|
|
|
408
|
|
|
|
|
|
|
this implements the fuzzy implication
|
409
|
|
|
|
|
|
|
|
410
|
|
|
|
|
|
|
if $var_1->xxx and $var_2->yyy and ... then $var_3->zzz
|
411
|
|
|
|
|
|
|
|
412
|
|
|
|
|
|
|
The membership degrees of a variable's sets can be reset to undef:
|
413
|
|
|
|
|
|
|
|
414
|
|
|
|
|
|
|
$var->reset(); # resets a variable
|
415
|
|
|
|
|
|
|
$fe->reset(); # resets all variables
|
416
|
|
|
|
|
|
|
|
417
|
|
|
|
|
|
|
The fuzzy engine C<$fe> has all variables registered
|
418
|
|
|
|
|
|
|
that have been created by its C method.
|
419
|
|
|
|
|
|
|
|
420
|
|
|
|
|
|
|
A variable can be defuzzified:
|
421
|
|
|
|
|
|
|
|
422
|
|
|
|
|
|
|
my $out_value = $var->defuzzify();
|
423
|
|
|
|
|
|
|
|
424
|
|
|
|
|
|
|
Membership functions can be replaced via a set's variable:
|
425
|
|
|
|
|
|
|
|
426
|
|
|
|
|
|
|
$var->change_set( $name_of_set => [$x11n, $y11n, $x12n, $y12n, ... ] );
|
427
|
|
|
|
|
|
|
|
428
|
|
|
|
|
|
|
The variable will be reset when replacing a membership function
|
429
|
|
|
|
|
|
|
of any of its sets.
|
430
|
|
|
|
|
|
|
Interdependencies with other variables are not checked
|
431
|
|
|
|
|
|
|
(it might happen that the results of any rules are no longer valid,
|
432
|
|
|
|
|
|
|
so it needs some recalculations).
|
433
|
|
|
|
|
|
|
|
434
|
|
|
|
|
|
|
Sometimes internal variables are used that need neither fuzzification
|
435
|
|
|
|
|
|
|
nor defuzzification.
|
436
|
|
|
|
|
|
|
They can be created by a simplified call to C:
|
437
|
|
|
|
|
|
|
|
438
|
|
|
|
|
|
|
my $var_int = $fe->new_variable( $name_of_set1 => [],
|
439
|
|
|
|
|
|
|
$name_of_set2 => [],
|
440
|
|
|
|
|
|
|
...
|
441
|
|
|
|
|
|
|
);
|
442
|
|
|
|
|
|
|
|
443
|
|
|
|
|
|
|
Hence, they can not use the methods C or C.
|
444
|
|
|
|
|
|
|
|
445
|
|
|
|
|
|
|
Fuzzy operations are simple operations on floating values between 0 and 1:
|
446
|
|
|
|
|
|
|
|
447
|
|
|
|
|
|
|
my $conjunction = $fe->and( $var1->xxx, $var2->yyy, ... );
|
448
|
|
|
|
|
|
|
my $disjunction = $fe->or( $var1->xxx, $var2->yyy, ... );
|
449
|
|
|
|
|
|
|
my $negated = $fe->not( $var1->zzz );
|
450
|
|
|
|
|
|
|
|
451
|
|
|
|
|
|
|
There is no magic.
|
452
|
|
|
|
|
|
|
|
453
|
|
|
|
|
|
|
A sequence of rules for the same set can be implemented as follows:
|
454
|
|
|
|
|
|
|
|
455
|
|
|
|
|
|
|
$var_3->zzz( $var_1->xxx, $var_2->yyy, ... );
|
456
|
|
|
|
|
|
|
$var_3->zzz( $var_4->aaa, $var_5->bbb, ... );
|
457
|
|
|
|
|
|
|
|
458
|
|
|
|
|
|
|
The subsequent application of C<< $var_3->zzz(...) >>
|
459
|
|
|
|
|
|
|
corresponds to "or" operations (aggregation of rules).
|
460
|
|
|
|
|
|
|
|
461
|
|
|
|
|
|
|
Only a reset can reset C<$var_3>.
|
462
|
|
|
|
|
|
|
|
463
|
|
|
|
|
|
|
=head2 PDL awareness
|
464
|
|
|
|
|
|
|
|
465
|
|
|
|
|
|
|
Membership degrees of sets might be either scalars or piddles now.
|
466
|
|
|
|
|
|
|
|
467
|
|
|
|
|
|
|
$var_a->memb_fun_a( 5 ); # degree of memb_fun_a is a scalar
|
468
|
|
|
|
|
|
|
$var_a->memb_fun_b( pdl(7, 8) ); # degree of memb_fun_b is a piddle
|
469
|
|
|
|
|
|
|
|
470
|
|
|
|
|
|
|
Empty piddles are not allowed, behaviour with bad values is not tested.
|
471
|
|
|
|
|
|
|
|
472
|
|
|
|
|
|
|
Fuzzification (hence calculating degrees) accepts piddles:
|
473
|
|
|
|
|
|
|
|
474
|
|
|
|
|
|
|
$var_b->fuzzify( pdl([1, 2], [3, 4]) );
|
475
|
|
|
|
|
|
|
|
476
|
|
|
|
|
|
|
Defuzzification returns a piddle if any of the membership
|
477
|
|
|
|
|
|
|
degrees of the function's sets is a piddle:
|
478
|
|
|
|
|
|
|
|
479
|
|
|
|
|
|
|
my $val = $var_a->defuzzify(); # $var_a returns a 1dim piddle with two elements
|
480
|
|
|
|
|
|
|
|
481
|
|
|
|
|
|
|
So do the fuzzy operations as provided by the fuzzy engine C<$fe> itself.
|
482
|
|
|
|
|
|
|
|
483
|
|
|
|
|
|
|
Any operation on more then one piddle expands those to common
|
484
|
|
|
|
|
|
|
dimensions, if possible, or throws a PDL error otherwise.
|
485
|
|
|
|
|
|
|
|
486
|
|
|
|
|
|
|
The way expansion is done is best explained by code
|
487
|
|
|
|
|
|
|
(see C<< AI::FuzzyEngine->_cat_array_of_piddles(@pdls) >>).
|
488
|
|
|
|
|
|
|
Assuming all piddles are in C<@pdls>,
|
489
|
|
|
|
|
|
|
calculation goes as follows:
|
490
|
|
|
|
|
|
|
|
491
|
|
|
|
|
|
|
# Get the common dimensions
|
492
|
|
|
|
|
|
|
my $zeros = PDL->pdl(0);
|
493
|
|
|
|
|
|
|
# Note: $zeros += $_->zeros() for @pdls does not work here
|
494
|
|
|
|
|
|
|
$zeros = $zeros + $_->zeros() for @pdls;
|
495
|
|
|
|
|
|
|
|
496
|
|
|
|
|
|
|
# Expand all piddles
|
497
|
|
|
|
|
|
|
@pdls = map {$_ + $zeros} @pdls;
|
498
|
|
|
|
|
|
|
|
499
|
|
|
|
|
|
|
Defuzzification uses some heavy non-threading code,
|
500
|
|
|
|
|
|
|
so there might be a performance penalty for big piddles.
|
501
|
|
|
|
|
|
|
|
502
|
|
|
|
|
|
|
=head2 Todos
|
503
|
|
|
|
|
|
|
|
504
|
|
|
|
|
|
|
=over 2
|
505
|
|
|
|
|
|
|
|
506
|
|
|
|
|
|
|
=item Add optional alternative implementations of fuzzy operations
|
507
|
|
|
|
|
|
|
|
508
|
|
|
|
|
|
|
=item More checks on input arguments and allowed method calls
|
509
|
|
|
|
|
|
|
|
510
|
|
|
|
|
|
|
=item PDL awareness: Use threading in C<< $variable->defuzzify >>
|
511
|
|
|
|
|
|
|
|
512
|
|
|
|
|
|
|
=item Divide tests into API tests and test of internal functions
|
513
|
|
|
|
|
|
|
|
514
|
|
|
|
|
|
|
=back
|
515
|
|
|
|
|
|
|
|
516
|
|
|
|
|
|
|
=head1 CAVEATS / BUGS
|
517
|
|
|
|
|
|
|
|
518
|
|
|
|
|
|
|
This is my first module.
|
519
|
|
|
|
|
|
|
I'm happy about feedback that helps me to learn
|
520
|
|
|
|
|
|
|
and improve my contributions to the Perl ecosystem.
|
521
|
|
|
|
|
|
|
|
522
|
|
|
|
|
|
|
Please report any bugs or feature requests to
|
523
|
|
|
|
|
|
|
C, or through
|
524
|
|
|
|
|
|
|
the web interface at
|
525
|
|
|
|
|
|
|
L.
|
526
|
|
|
|
|
|
|
I will be notified, and then you'll
|
527
|
|
|
|
|
|
|
automatically be notified of progress on your bug as I make changes.
|
528
|
|
|
|
|
|
|
|
529
|
|
|
|
|
|
|
=head1 SUPPORT
|
530
|
|
|
|
|
|
|
|
531
|
|
|
|
|
|
|
You can find documentation for this module with the perldoc command.
|
532
|
|
|
|
|
|
|
|
533
|
|
|
|
|
|
|
perldoc AI::FuzzyEngine
|
534
|
|
|
|
|
|
|
|
535
|
|
|
|
|
|
|
=head1 AUTHOR
|
536
|
|
|
|
|
|
|
|
537
|
|
|
|
|
|
|
Juergen Mueck, jmueck@cpan.org
|
538
|
|
|
|
|
|
|
|
539
|
|
|
|
|
|
|
=head1 COPYRIGHT
|
540
|
|
|
|
|
|
|
|
541
|
|
|
|
|
|
|
Copyright (c) Juergen Mueck 2013. All rights reserved.
|
542
|
|
|
|
|
|
|
|
543
|
|
|
|
|
|
|
This library is free software; you can redistribute it and/or
|
544
|
|
|
|
|
|
|
modify it under the same terms as Perl itself.
|
545
|
|
|
|
|
|
|
|
546
|
|
|
|
|
|
|
=cut
|