| line | stmt | bran | cond | sub | pod | time | code | 
| 1 |  |  |  |  |  |  | package AI::FANN::Evolving; | 
| 2 | 3 |  |  | 3 |  | 53582 | use strict; | 
|  | 3 |  |  |  |  | 9 |  | 
|  | 3 |  |  |  |  | 108 |  | 
| 3 | 3 |  |  | 3 |  | 13 | use warnings; | 
|  | 3 |  |  |  |  | 8 |  | 
|  | 3 |  |  |  |  | 98 |  | 
| 4 | 3 |  |  | 3 |  | 2332 | use AI::FANN ':all'; | 
|  | 0 |  |  |  |  |  |  | 
|  | 0 |  |  |  |  |  |  | 
| 5 |  |  |  |  |  |  | use List::Util 'shuffle'; | 
| 6 |  |  |  |  |  |  | use File::Temp 'tempfile'; | 
| 7 |  |  |  |  |  |  | use AI::FANN::Evolving::Gene; | 
| 8 |  |  |  |  |  |  | use AI::FANN::Evolving::Chromosome; | 
| 9 |  |  |  |  |  |  | use AI::FANN::Evolving::Experiment; | 
| 10 |  |  |  |  |  |  | use AI::FANN::Evolving::Factory; | 
| 11 |  |  |  |  |  |  | use Algorithm::Genetic::Diploid; | 
| 12 |  |  |  |  |  |  | use base qw'Algorithm::Genetic::Diploid::Base'; | 
| 13 |  |  |  |  |  |  |  | 
| 14 |  |  |  |  |  |  | our $VERSION = '0.4'; | 
| 15 |  |  |  |  |  |  | our $AUTOLOAD; | 
| 16 |  |  |  |  |  |  | my $log = __PACKAGE__->logger; | 
| 17 |  |  |  |  |  |  |  | 
| 18 |  |  |  |  |  |  | my %enum = ( | 
| 19 |  |  |  |  |  |  | 'train' => { | 
| 20 |  |  |  |  |  |  | #		'FANN_TRAIN_INCREMENTAL' => FANN_TRAIN_INCREMENTAL, # only want batch training | 
| 21 |  |  |  |  |  |  | 'FANN_TRAIN_BATCH'       => FANN_TRAIN_BATCH, | 
| 22 |  |  |  |  |  |  | 'FANN_TRAIN_RPROP'       => FANN_TRAIN_RPROP, | 
| 23 |  |  |  |  |  |  | 'FANN_TRAIN_QUICKPROP'   => FANN_TRAIN_QUICKPROP, | 
| 24 |  |  |  |  |  |  | }, | 
| 25 |  |  |  |  |  |  | 'activationfunc' => { | 
| 26 |  |  |  |  |  |  | 'FANN_LINEAR'                     => FANN_LINEAR, | 
| 27 |  |  |  |  |  |  | #		'FANN_THRESHOLD'                  => FANN_THRESHOLD, # can not be used during training | 
| 28 |  |  |  |  |  |  | #		'FANN_THRESHOLD_SYMMETRIC'        => FANN_THRESHOLD_SYMMETRIC, # can not be used during training | 
| 29 |  |  |  |  |  |  | #		'FANN_SIGMOID'                    => FANN_SIGMOID, # range is between 0 and 1 | 
| 30 |  |  |  |  |  |  | #		'FANN_SIGMOID_STEPWISE'           => FANN_SIGMOID_STEPWISE, # range is between 0 and 1 | 
| 31 |  |  |  |  |  |  | 'FANN_SIGMOID_SYMMETRIC'          => FANN_SIGMOID_SYMMETRIC, | 
| 32 |  |  |  |  |  |  | 'FANN_SIGMOID_SYMMETRIC_STEPWISE' => FANN_SIGMOID_SYMMETRIC_STEPWISE, | 
| 33 |  |  |  |  |  |  | #		'FANN_GAUSSIAN'                   => FANN_GAUSSIAN, # range is between 0 and 1 | 
| 34 |  |  |  |  |  |  | 'FANN_GAUSSIAN_SYMMETRIC'         => FANN_GAUSSIAN_SYMMETRIC, | 
| 35 |  |  |  |  |  |  | 'FANN_GAUSSIAN_STEPWISE'          => FANN_GAUSSIAN_STEPWISE, | 
| 36 |  |  |  |  |  |  | #		'FANN_ELLIOT'                     => FANN_ELLIOT, # range is between 0 and 1 | 
| 37 |  |  |  |  |  |  | 'FANN_ELLIOT_SYMMETRIC'           => FANN_ELLIOT_SYMMETRIC, | 
| 38 |  |  |  |  |  |  | #		'FANN_LINEAR_PIECE'               => FANN_LINEAR_PIECE, # range is between 0 and 1 | 
| 39 |  |  |  |  |  |  | 'FANN_LINEAR_PIECE_SYMMETRIC'     => FANN_LINEAR_PIECE_SYMMETRIC, | 
| 40 |  |  |  |  |  |  | 'FANN_SIN_SYMMETRIC'              => FANN_SIN_SYMMETRIC, | 
| 41 |  |  |  |  |  |  | 'FANN_COS_SYMMETRIC'              => FANN_COS_SYMMETRIC, | 
| 42 |  |  |  |  |  |  | #		'FANN_SIN'                        => FANN_SIN, # range is between 0 and 1 | 
| 43 |  |  |  |  |  |  | #		'FANN_COS'                        => FANN_COS, # range is between 0 and 1 | 
| 44 |  |  |  |  |  |  | }, | 
| 45 |  |  |  |  |  |  | 'errorfunc' => { | 
| 46 |  |  |  |  |  |  | 'FANN_ERRORFUNC_LINEAR' => FANN_ERRORFUNC_LINEAR, | 
| 47 |  |  |  |  |  |  | 'FANN_ERRORFUNC_TANH'   => FANN_ERRORFUNC_TANH, | 
| 48 |  |  |  |  |  |  | }, | 
| 49 |  |  |  |  |  |  | 'stopfunc' => { | 
| 50 |  |  |  |  |  |  | 'FANN_STOPFUNC_MSE' => FANN_STOPFUNC_MSE, | 
| 51 |  |  |  |  |  |  | #		'FANN_STOPFUNC_BIT' => FANN_STOPFUNC_BIT, | 
| 52 |  |  |  |  |  |  | } | 
| 53 |  |  |  |  |  |  | ); | 
| 54 |  |  |  |  |  |  |  | 
| 55 |  |  |  |  |  |  | my %constant; | 
| 56 |  |  |  |  |  |  | for my $hashref ( values %enum ) { | 
| 57 |  |  |  |  |  |  | while( my ( $k, $v ) = each %{ $hashref } ) { | 
| 58 |  |  |  |  |  |  | $constant{$k} = $v; | 
| 59 |  |  |  |  |  |  | } | 
| 60 |  |  |  |  |  |  | } | 
| 61 |  |  |  |  |  |  |  | 
| 62 |  |  |  |  |  |  | my %default = ( | 
| 63 |  |  |  |  |  |  | 'error'               => 0.0001, | 
| 64 |  |  |  |  |  |  | 'epochs'              => 5000, | 
| 65 |  |  |  |  |  |  | 'train_type'          => 'ordinary', | 
| 66 |  |  |  |  |  |  | 'epoch_printfreq'     => 100, | 
| 67 |  |  |  |  |  |  | 'neuron_printfreq'    => 0, | 
| 68 |  |  |  |  |  |  | 'neurons'             => 15, | 
| 69 |  |  |  |  |  |  | 'activation_function' => FANN_SIGMOID_SYMMETRIC, | 
| 70 |  |  |  |  |  |  | ); | 
| 71 |  |  |  |  |  |  |  | 
| 72 |  |  |  |  |  |  | =head1 NAME | 
| 73 |  |  |  |  |  |  |  | 
| 74 |  |  |  |  |  |  | AI::FANN::Evolving - artificial neural network that evolves | 
| 75 |  |  |  |  |  |  |  | 
| 76 |  |  |  |  |  |  | =head1 METHODS | 
| 77 |  |  |  |  |  |  |  | 
| 78 |  |  |  |  |  |  | =over | 
| 79 |  |  |  |  |  |  |  | 
| 80 |  |  |  |  |  |  | =item new | 
| 81 |  |  |  |  |  |  |  | 
| 82 |  |  |  |  |  |  | Constructor requires 'file', or 'data' and 'neurons' arguments. Optionally takes | 
| 83 |  |  |  |  |  |  | 'connection_rate' argument for sparse topologies. Returns a wrapper around L. | 
| 84 |  |  |  |  |  |  |  | 
| 85 |  |  |  |  |  |  | =cut | 
| 86 |  |  |  |  |  |  |  | 
| 87 |  |  |  |  |  |  | sub new { | 
| 88 |  |  |  |  |  |  | my $class = shift; | 
| 89 |  |  |  |  |  |  | my %args  = @_; | 
| 90 |  |  |  |  |  |  | my $self  = {}; | 
| 91 |  |  |  |  |  |  | bless $self, $class; | 
| 92 |  |  |  |  |  |  | $self->_init(%args); | 
| 93 |  |  |  |  |  |  |  | 
| 94 |  |  |  |  |  |  | # de-serialize from a file | 
| 95 |  |  |  |  |  |  | if ( my $file = $args{'file'} ) { | 
| 96 |  |  |  |  |  |  | $self->{'ann'} = AI::FANN->new_from_file($file); | 
| 97 |  |  |  |  |  |  | $log->debug("instantiating from file $file"); | 
| 98 |  |  |  |  |  |  | return $self; | 
| 99 |  |  |  |  |  |  | } | 
| 100 |  |  |  |  |  |  |  | 
| 101 |  |  |  |  |  |  | # build new topology from input data | 
| 102 |  |  |  |  |  |  | elsif ( my $data = $args{'data'} ) { | 
| 103 |  |  |  |  |  |  | $log->debug("instantiating from data $data"); | 
| 104 |  |  |  |  |  |  | $data = $data->to_fann if $data->isa('AI::FANN::Evolving::TrainData'); | 
| 105 |  |  |  |  |  |  |  | 
| 106 |  |  |  |  |  |  | # prepare arguments | 
| 107 |  |  |  |  |  |  | my $neurons = $args{'neurons'} || ( $data->num_inputs + 1 ); | 
| 108 |  |  |  |  |  |  | my @sizes = ( | 
| 109 |  |  |  |  |  |  | $data->num_inputs, | 
| 110 |  |  |  |  |  |  | $neurons, | 
| 111 |  |  |  |  |  |  | $data->num_outputs | 
| 112 |  |  |  |  |  |  | ); | 
| 113 |  |  |  |  |  |  |  | 
| 114 |  |  |  |  |  |  | # build topology | 
| 115 |  |  |  |  |  |  | if ( $args{'connection_rate'} ) { | 
| 116 |  |  |  |  |  |  | $self->{'ann'} = AI::FANN->new_sparse( $args{'connection_rate'}, @sizes ); | 
| 117 |  |  |  |  |  |  | } | 
| 118 |  |  |  |  |  |  | else { | 
| 119 |  |  |  |  |  |  | $self->{'ann'} = AI::FANN->new_standard( @sizes ); | 
| 120 |  |  |  |  |  |  | } | 
| 121 |  |  |  |  |  |  |  | 
| 122 |  |  |  |  |  |  | # finalize the instance | 
| 123 |  |  |  |  |  |  | return $self; | 
| 124 |  |  |  |  |  |  | } | 
| 125 |  |  |  |  |  |  |  | 
| 126 |  |  |  |  |  |  | # build new ANN using argument as a template | 
| 127 |  |  |  |  |  |  | elsif ( my $ann = $args{'ann'} ) { | 
| 128 |  |  |  |  |  |  | $log->debug("instantiating from template $ann"); | 
| 129 |  |  |  |  |  |  |  | 
| 130 |  |  |  |  |  |  | # copy the wrapper properties | 
| 131 |  |  |  |  |  |  | %{ $self } = %{ $ann }; | 
| 132 |  |  |  |  |  |  |  | 
| 133 |  |  |  |  |  |  | # instantiate the network dimensions | 
| 134 |  |  |  |  |  |  | $self->{'ann'} = AI::FANN->new_standard( | 
| 135 |  |  |  |  |  |  | $ann->num_inputs, | 
| 136 |  |  |  |  |  |  | $ann->num_inputs + 1, | 
| 137 |  |  |  |  |  |  | $ann->num_outputs, | 
| 138 |  |  |  |  |  |  | ); | 
| 139 |  |  |  |  |  |  |  | 
| 140 |  |  |  |  |  |  | # copy the AI::FANN properties | 
| 141 |  |  |  |  |  |  | $ann->template($self->{'ann'}); | 
| 142 |  |  |  |  |  |  | return $self; | 
| 143 |  |  |  |  |  |  | } | 
| 144 |  |  |  |  |  |  | else { | 
| 145 |  |  |  |  |  |  | die "Need 'file', 'data' or 'ann' argument!"; | 
| 146 |  |  |  |  |  |  | } | 
| 147 |  |  |  |  |  |  | } | 
| 148 |  |  |  |  |  |  |  | 
| 149 |  |  |  |  |  |  | =item template | 
| 150 |  |  |  |  |  |  |  | 
| 151 |  |  |  |  |  |  | Uses the object as a template for the properties of the argument, e.g. | 
| 152 |  |  |  |  |  |  | $ann1->template($ann2) applies the properties of $ann1 to $ann2 | 
| 153 |  |  |  |  |  |  |  | 
| 154 |  |  |  |  |  |  | =cut | 
| 155 |  |  |  |  |  |  |  | 
| 156 |  |  |  |  |  |  | sub template { | 
| 157 |  |  |  |  |  |  | my ( $self, $other ) = @_; | 
| 158 |  |  |  |  |  |  |  | 
| 159 |  |  |  |  |  |  | # copy over the simple properties | 
| 160 |  |  |  |  |  |  | $log->debug("copying over simple properties"); | 
| 161 |  |  |  |  |  |  | my %scalar_properties = __PACKAGE__->_scalar_properties; | 
| 162 |  |  |  |  |  |  | for my $prop ( keys %scalar_properties ) { | 
| 163 |  |  |  |  |  |  | my $val = $self->$prop; | 
| 164 |  |  |  |  |  |  | $other->$prop($val); | 
| 165 |  |  |  |  |  |  | } | 
| 166 |  |  |  |  |  |  |  | 
| 167 |  |  |  |  |  |  | # copy over the list properties | 
| 168 |  |  |  |  |  |  | $log->debug("copying over list properties"); | 
| 169 |  |  |  |  |  |  | my %list_properties = __PACKAGE__->_list_properties; | 
| 170 |  |  |  |  |  |  | for my $prop ( keys %list_properties ) { | 
| 171 |  |  |  |  |  |  | my @values = $self->$prop; | 
| 172 |  |  |  |  |  |  | $other->$prop(@values); | 
| 173 |  |  |  |  |  |  | } | 
| 174 |  |  |  |  |  |  |  | 
| 175 |  |  |  |  |  |  | # copy over the layer properties | 
| 176 |  |  |  |  |  |  | $log->debug("copying over layer properties"); | 
| 177 |  |  |  |  |  |  | my %layer_properties = __PACKAGE__->_layer_properties; | 
| 178 |  |  |  |  |  |  | for my $prop ( keys %layer_properties ) { | 
| 179 |  |  |  |  |  |  | for my $i ( 0 .. $self->num_layers - 1 ) { | 
| 180 |  |  |  |  |  |  | for my $j ( 0 .. $self->layer_num_neurons($i) - 1 ) { | 
| 181 |  |  |  |  |  |  | my $val = $self->$prop($i,$j); | 
| 182 |  |  |  |  |  |  | $other->$prop($i,$j,$val); | 
| 183 |  |  |  |  |  |  | } | 
| 184 |  |  |  |  |  |  | } | 
| 185 |  |  |  |  |  |  | } | 
| 186 |  |  |  |  |  |  | return $self; | 
| 187 |  |  |  |  |  |  | } | 
| 188 |  |  |  |  |  |  |  | 
| 189 |  |  |  |  |  |  | =item recombine | 
| 190 |  |  |  |  |  |  |  | 
| 191 |  |  |  |  |  |  | Recombines (exchanges) properties between the two objects at the provided rate, e.g. | 
| 192 |  |  |  |  |  |  | $ann1->recombine($ann2,0.5) means that on average half of the object properties are | 
| 193 |  |  |  |  |  |  | exchanged between $ann1 and $ann2 | 
| 194 |  |  |  |  |  |  |  | 
| 195 |  |  |  |  |  |  | =cut | 
| 196 |  |  |  |  |  |  |  | 
| 197 |  |  |  |  |  |  | sub recombine { | 
| 198 |  |  |  |  |  |  | my ( $self, $other, $rr ) = @_; | 
| 199 |  |  |  |  |  |  |  | 
| 200 |  |  |  |  |  |  | # recombine the simple properties | 
| 201 |  |  |  |  |  |  | my %scalar_properties = __PACKAGE__->_scalar_properties; | 
| 202 |  |  |  |  |  |  | for my $prop ( keys %scalar_properties ) { | 
| 203 |  |  |  |  |  |  | if ( rand(1) < $rr ) { | 
| 204 |  |  |  |  |  |  | my $vals = $self->$prop; | 
| 205 |  |  |  |  |  |  | my $valo = $other->$prop; | 
| 206 |  |  |  |  |  |  | $other->$prop($vals); | 
| 207 |  |  |  |  |  |  | $self->$prop($valo); | 
| 208 |  |  |  |  |  |  | } | 
| 209 |  |  |  |  |  |  | } | 
| 210 |  |  |  |  |  |  |  | 
| 211 |  |  |  |  |  |  | # copy over the list properties | 
| 212 |  |  |  |  |  |  | my %list_properties = __PACKAGE__->_list_properties; | 
| 213 |  |  |  |  |  |  | for my $prop ( keys %list_properties ) { | 
| 214 |  |  |  |  |  |  | if ( rand(1) < $rr ) { | 
| 215 |  |  |  |  |  |  | my @values = $self->$prop; | 
| 216 |  |  |  |  |  |  | my @valueo = $other->$prop; | 
| 217 |  |  |  |  |  |  | $other->$prop(@values); | 
| 218 |  |  |  |  |  |  | $self->$prop(@valueo); | 
| 219 |  |  |  |  |  |  | } | 
| 220 |  |  |  |  |  |  | } | 
| 221 |  |  |  |  |  |  |  | 
| 222 |  |  |  |  |  |  | # copy over the layer properties | 
| 223 |  |  |  |  |  |  | my %layer_properties = __PACKAGE__->_layer_properties; | 
| 224 |  |  |  |  |  |  | for my $prop ( keys %layer_properties ) { | 
| 225 |  |  |  |  |  |  | for my $i ( 0 .. $self->num_layers - 1 ) { | 
| 226 |  |  |  |  |  |  | for my $j ( 0 .. $self->layer_num_neurons($i) - 1 ) { | 
| 227 |  |  |  |  |  |  | my $val = $self->$prop($i,$j); | 
| 228 |  |  |  |  |  |  | $other->$prop($i,$j,$val); | 
| 229 |  |  |  |  |  |  | } | 
| 230 |  |  |  |  |  |  | } | 
| 231 |  |  |  |  |  |  | } | 
| 232 |  |  |  |  |  |  | return $self; | 
| 233 |  |  |  |  |  |  | } | 
| 234 |  |  |  |  |  |  |  | 
| 235 |  |  |  |  |  |  | =item mutate | 
| 236 |  |  |  |  |  |  |  | 
| 237 |  |  |  |  |  |  | Mutates the object by the provided mutation rate | 
| 238 |  |  |  |  |  |  |  | 
| 239 |  |  |  |  |  |  | =cut | 
| 240 |  |  |  |  |  |  |  | 
| 241 |  |  |  |  |  |  | sub mutate { | 
| 242 |  |  |  |  |  |  | my ( $self, $mu ) = @_; | 
| 243 |  |  |  |  |  |  | $log->debug("going to mutate at rate $mu"); | 
| 244 |  |  |  |  |  |  |  | 
| 245 |  |  |  |  |  |  | # mutate the simple properties | 
| 246 |  |  |  |  |  |  | $log->debug("mutating scalar properties"); | 
| 247 |  |  |  |  |  |  | my %scalar_properties = __PACKAGE__->_scalar_properties; | 
| 248 |  |  |  |  |  |  | for my $prop ( keys %scalar_properties ) { | 
| 249 |  |  |  |  |  |  | my $handler = $scalar_properties{$prop}; | 
| 250 |  |  |  |  |  |  | my $val = $self->$prop; | 
| 251 |  |  |  |  |  |  | if ( ref $handler ) { | 
| 252 |  |  |  |  |  |  | $self->$prop( $handler->($val,$mu) ); | 
| 253 |  |  |  |  |  |  | } | 
| 254 |  |  |  |  |  |  | else { | 
| 255 |  |  |  |  |  |  | $self->$prop( _mutate_enum($handler,$val,$mu) ); | 
| 256 |  |  |  |  |  |  | } | 
| 257 |  |  |  |  |  |  | } | 
| 258 |  |  |  |  |  |  |  | 
| 259 |  |  |  |  |  |  | # mutate the list properties | 
| 260 |  |  |  |  |  |  | $log->debug("mutating list properties"); | 
| 261 |  |  |  |  |  |  | my %list_properties = __PACKAGE__->_list_properties; | 
| 262 |  |  |  |  |  |  | for my $prop ( keys %list_properties ) { | 
| 263 |  |  |  |  |  |  | my $handler = $list_properties{$prop}; | 
| 264 |  |  |  |  |  |  | my @values = $self->$prop; | 
| 265 |  |  |  |  |  |  | if ( ref $handler ) { | 
| 266 |  |  |  |  |  |  | $self->$prop( map { $handler->($_,$mu) } @values ); | 
| 267 |  |  |  |  |  |  | } | 
| 268 |  |  |  |  |  |  | else { | 
| 269 |  |  |  |  |  |  | $self->$prop( map { _mutate_enum($handler,$_,$mu) } @values ); | 
| 270 |  |  |  |  |  |  | } | 
| 271 |  |  |  |  |  |  | } | 
| 272 |  |  |  |  |  |  |  | 
| 273 |  |  |  |  |  |  | # mutate the layer properties | 
| 274 |  |  |  |  |  |  | $log->debug("mutating layer properties"); | 
| 275 |  |  |  |  |  |  | my %layer_properties = __PACKAGE__->_layer_properties; | 
| 276 |  |  |  |  |  |  | for my $prop ( keys %layer_properties ) { | 
| 277 |  |  |  |  |  |  | my $handler = $layer_properties{$prop}; | 
| 278 |  |  |  |  |  |  | for my $i ( 1 .. $self->num_layers ) { | 
| 279 |  |  |  |  |  |  | for my $j ( 1 .. $self->layer_num_neurons($i) ) { | 
| 280 |  |  |  |  |  |  | my $val = $self->$prop($i,$j); | 
| 281 |  |  |  |  |  |  | if ( ref $handler ) { | 
| 282 |  |  |  |  |  |  | $self->$prop( $handler->($val,$mu) ); | 
| 283 |  |  |  |  |  |  | } | 
| 284 |  |  |  |  |  |  | else { | 
| 285 |  |  |  |  |  |  | $self->$prop( _mutate_enum($handler,$val,$mu) ); | 
| 286 |  |  |  |  |  |  | } | 
| 287 |  |  |  |  |  |  | } | 
| 288 |  |  |  |  |  |  | } | 
| 289 |  |  |  |  |  |  | } | 
| 290 |  |  |  |  |  |  | return $self; | 
| 291 |  |  |  |  |  |  | } | 
| 292 |  |  |  |  |  |  |  | 
| 293 |  |  |  |  |  |  | sub _mutate_double { | 
| 294 |  |  |  |  |  |  | my ( $value, $mu ) = @_; | 
| 295 |  |  |  |  |  |  | my $scale = 1 + ( rand( 2 * $mu ) - $mu ); | 
| 296 |  |  |  |  |  |  | return $value * $scale; | 
| 297 |  |  |  |  |  |  | } | 
| 298 |  |  |  |  |  |  |  | 
| 299 |  |  |  |  |  |  | sub _mutate_int { | 
| 300 |  |  |  |  |  |  | my ( $value, $mu ) = @_; | 
| 301 |  |  |  |  |  |  | if ( rand(1) < $mu ) { | 
| 302 |  |  |  |  |  |  | my $inc = ( int(rand(2)) * 2 ) - 1; | 
| 303 |  |  |  |  |  |  | while( ( $value < 0 ) xor ( ( $value + $inc ) < 0 ) ) { | 
| 304 |  |  |  |  |  |  | $inc = ( int(rand(2)) * 2 ) - 1; | 
| 305 |  |  |  |  |  |  | } | 
| 306 |  |  |  |  |  |  | return $value + $inc; | 
| 307 |  |  |  |  |  |  | } | 
| 308 |  |  |  |  |  |  | return $value; | 
| 309 |  |  |  |  |  |  | } | 
| 310 |  |  |  |  |  |  |  | 
| 311 |  |  |  |  |  |  | sub _mutate_enum { | 
| 312 |  |  |  |  |  |  | my ( $enum_name, $value, $mu ) = @_; | 
| 313 |  |  |  |  |  |  | if ( rand(1) < $mu ) { | 
| 314 |  |  |  |  |  |  | my ($newval) = shuffle grep { $_ != $value } values %{ $enum{$enum_name} }; | 
| 315 |  |  |  |  |  |  | $value = $newval if defined $newval; | 
| 316 |  |  |  |  |  |  | } | 
| 317 |  |  |  |  |  |  | return $value; | 
| 318 |  |  |  |  |  |  | } | 
| 319 |  |  |  |  |  |  |  | 
| 320 |  |  |  |  |  |  | sub _list_properties { | 
| 321 |  |  |  |  |  |  | ( | 
| 322 |  |  |  |  |  |  | #		cascade_activation_functions   => 'activationfunc', | 
| 323 |  |  |  |  |  |  | cascade_activation_steepnesses => \&_mutate_double, | 
| 324 |  |  |  |  |  |  | ) | 
| 325 |  |  |  |  |  |  | } | 
| 326 |  |  |  |  |  |  |  | 
| 327 |  |  |  |  |  |  | sub _layer_properties { | 
| 328 |  |  |  |  |  |  | ( | 
| 329 |  |  |  |  |  |  | #		neuron_activation_function  => 'activationfunc', | 
| 330 |  |  |  |  |  |  | #		neuron_activation_steepness => \&_mutate_double, | 
| 331 |  |  |  |  |  |  | ) | 
| 332 |  |  |  |  |  |  | } | 
| 333 |  |  |  |  |  |  |  | 
| 334 |  |  |  |  |  |  | sub _scalar_properties { | 
| 335 |  |  |  |  |  |  | ( | 
| 336 |  |  |  |  |  |  | training_algorithm                   => 'train', | 
| 337 |  |  |  |  |  |  | train_error_function                 => 'errorfunc', | 
| 338 |  |  |  |  |  |  | train_stop_function                  => 'stopfunc', | 
| 339 |  |  |  |  |  |  | learning_rate                        => \&_mutate_double, | 
| 340 |  |  |  |  |  |  | learning_momentum                    => \&_mutate_double, | 
| 341 |  |  |  |  |  |  | quickprop_decay                      => \&_mutate_double, | 
| 342 |  |  |  |  |  |  | quickprop_mu                         => \&_mutate_double, | 
| 343 |  |  |  |  |  |  | rprop_increase_factor                => \&_mutate_double, | 
| 344 |  |  |  |  |  |  | rprop_decrease_factor                => \&_mutate_double, | 
| 345 |  |  |  |  |  |  | rprop_delta_min                      => \&_mutate_double, | 
| 346 |  |  |  |  |  |  | rprop_delta_max                      => \&_mutate_double, | 
| 347 |  |  |  |  |  |  | cascade_output_change_fraction       => \&_mutate_double, | 
| 348 |  |  |  |  |  |  | cascade_candidate_change_fraction    => \&_mutate_double, | 
| 349 |  |  |  |  |  |  | cascade_output_stagnation_epochs     => \&_mutate_int, | 
| 350 |  |  |  |  |  |  | cascade_candidate_stagnation_epochs  => \&_mutate_int, | 
| 351 |  |  |  |  |  |  | cascade_max_out_epochs               => \&_mutate_int, | 
| 352 |  |  |  |  |  |  | cascade_max_cand_epochs              => \&_mutate_int, | 
| 353 |  |  |  |  |  |  | cascade_num_candidate_groups         => \&_mutate_int, | 
| 354 |  |  |  |  |  |  | bit_fail_limit                       => \&_mutate_double, # 'fann_type', | 
| 355 |  |  |  |  |  |  | cascade_weight_multiplier            => \&_mutate_double, # 'fann_type', | 
| 356 |  |  |  |  |  |  | cascade_candidate_limit              => \&_mutate_double, # 'fann_type', | 
| 357 |  |  |  |  |  |  | ) | 
| 358 |  |  |  |  |  |  | } | 
| 359 |  |  |  |  |  |  |  | 
| 360 |  |  |  |  |  |  | =item defaults | 
| 361 |  |  |  |  |  |  |  | 
| 362 |  |  |  |  |  |  | Getter/setter to influence default ANN configuration | 
| 363 |  |  |  |  |  |  |  | 
| 364 |  |  |  |  |  |  | =cut | 
| 365 |  |  |  |  |  |  |  | 
| 366 |  |  |  |  |  |  | sub defaults { | 
| 367 |  |  |  |  |  |  | my $self = shift; | 
| 368 |  |  |  |  |  |  | my %args = @_; | 
| 369 |  |  |  |  |  |  | for my $key ( keys %args ) { | 
| 370 |  |  |  |  |  |  | $log->info("setting $key to $args{$key}"); | 
| 371 |  |  |  |  |  |  | if ( $key eq 'activation_function' ) { | 
| 372 |  |  |  |  |  |  | $args{$key} = $constant{$args{$key}}; | 
| 373 |  |  |  |  |  |  | } | 
| 374 |  |  |  |  |  |  | $default{$key} = $args{$key}; | 
| 375 |  |  |  |  |  |  | } | 
| 376 |  |  |  |  |  |  | return %default; | 
| 377 |  |  |  |  |  |  | } | 
| 378 |  |  |  |  |  |  |  | 
| 379 |  |  |  |  |  |  | sub _init { | 
| 380 |  |  |  |  |  |  | my $self = shift; | 
| 381 |  |  |  |  |  |  | my %args = @_; | 
| 382 |  |  |  |  |  |  | for ( qw(error epochs train_type epoch_printfreq neuron_printfreq neurons activation_function) ) { | 
| 383 |  |  |  |  |  |  | $self->{$_} = $args{$_} // $default{$_}; | 
| 384 |  |  |  |  |  |  | } | 
| 385 |  |  |  |  |  |  | return $self; | 
| 386 |  |  |  |  |  |  | } | 
| 387 |  |  |  |  |  |  |  | 
| 388 |  |  |  |  |  |  | =item clone | 
| 389 |  |  |  |  |  |  |  | 
| 390 |  |  |  |  |  |  | Clones the object | 
| 391 |  |  |  |  |  |  |  | 
| 392 |  |  |  |  |  |  | =cut | 
| 393 |  |  |  |  |  |  |  | 
| 394 |  |  |  |  |  |  | sub clone { | 
| 395 |  |  |  |  |  |  | my $self = shift; | 
| 396 |  |  |  |  |  |  | $log->debug("cloning..."); | 
| 397 |  |  |  |  |  |  |  | 
| 398 |  |  |  |  |  |  | # we delete the reference here so we can use | 
| 399 |  |  |  |  |  |  | # Algorithm::Genetic::Diploid::Base's cloning method, which | 
| 400 |  |  |  |  |  |  | # dumps and loads from YAML. This wouldn't work if the | 
| 401 |  |  |  |  |  |  | # reference is still attached because it cannot be | 
| 402 |  |  |  |  |  |  | # stringified, being an XS data structure | 
| 403 |  |  |  |  |  |  | my $ann = delete $self->{'ann'}; | 
| 404 |  |  |  |  |  |  | my $clone = $self->SUPER::clone; | 
| 405 |  |  |  |  |  |  |  | 
| 406 |  |  |  |  |  |  | # clone the ANN by writing it to a temp file in "FANN/FLO" | 
| 407 |  |  |  |  |  |  | # format and reading that back in, then delete the file | 
| 408 |  |  |  |  |  |  | my ( $fh, $file ) = tempfile(); | 
| 409 |  |  |  |  |  |  | close $fh; | 
| 410 |  |  |  |  |  |  | $ann->save($file); | 
| 411 |  |  |  |  |  |  | $clone->{'ann'} = __PACKAGE__->new_from_file($file); | 
| 412 |  |  |  |  |  |  | unlink $file; | 
| 413 |  |  |  |  |  |  |  | 
| 414 |  |  |  |  |  |  | # now re-attach the original ANN to the invocant | 
| 415 |  |  |  |  |  |  | $self->{'ann'} = $ann; | 
| 416 |  |  |  |  |  |  |  | 
| 417 |  |  |  |  |  |  | return $clone; | 
| 418 |  |  |  |  |  |  | } | 
| 419 |  |  |  |  |  |  |  | 
| 420 |  |  |  |  |  |  | =item train | 
| 421 |  |  |  |  |  |  |  | 
| 422 |  |  |  |  |  |  | Trains the AI on the provided data object | 
| 423 |  |  |  |  |  |  |  | 
| 424 |  |  |  |  |  |  | =cut | 
| 425 |  |  |  |  |  |  |  | 
| 426 |  |  |  |  |  |  | sub train { | 
| 427 |  |  |  |  |  |  | my ( $self, $data ) = @_; | 
| 428 |  |  |  |  |  |  | if ( $self->train_type eq 'cascade' ) { | 
| 429 |  |  |  |  |  |  | $log->debug("cascade training"); | 
| 430 |  |  |  |  |  |  |  | 
| 431 |  |  |  |  |  |  | # set learning curve | 
| 432 |  |  |  |  |  |  | $self->cascade_activation_functions( $self->activation_function ); | 
| 433 |  |  |  |  |  |  |  | 
| 434 |  |  |  |  |  |  | # train | 
| 435 |  |  |  |  |  |  | $self->{'ann'}->cascadetrain_on_data( | 
| 436 |  |  |  |  |  |  | $data, | 
| 437 |  |  |  |  |  |  | $self->neurons, | 
| 438 |  |  |  |  |  |  | $self->neuron_printfreq, | 
| 439 |  |  |  |  |  |  | $self->error, | 
| 440 |  |  |  |  |  |  | ); | 
| 441 |  |  |  |  |  |  | } | 
| 442 |  |  |  |  |  |  | else { | 
| 443 |  |  |  |  |  |  | $log->debug("normal training"); | 
| 444 |  |  |  |  |  |  |  | 
| 445 |  |  |  |  |  |  | # set learning curves | 
| 446 |  |  |  |  |  |  | $self->hidden_activation_function( $self->activation_function ); | 
| 447 |  |  |  |  |  |  | $self->output_activation_function( $self->activation_function ); | 
| 448 |  |  |  |  |  |  |  | 
| 449 |  |  |  |  |  |  | # train | 
| 450 |  |  |  |  |  |  | $self->{'ann'}->train_on_data( | 
| 451 |  |  |  |  |  |  | $data, | 
| 452 |  |  |  |  |  |  | $self->epochs, | 
| 453 |  |  |  |  |  |  | $self->epoch_printfreq, | 
| 454 |  |  |  |  |  |  | $self->error, | 
| 455 |  |  |  |  |  |  | ); | 
| 456 |  |  |  |  |  |  | } | 
| 457 |  |  |  |  |  |  | } | 
| 458 |  |  |  |  |  |  |  | 
| 459 |  |  |  |  |  |  | =item enum_properties | 
| 460 |  |  |  |  |  |  |  | 
| 461 |  |  |  |  |  |  | Returns a hash whose keys are names of enums and values the possible states for the | 
| 462 |  |  |  |  |  |  | enum | 
| 463 |  |  |  |  |  |  |  | 
| 464 |  |  |  |  |  |  | =cut | 
| 465 |  |  |  |  |  |  |  | 
| 466 |  |  |  |  |  |  | =item error | 
| 467 |  |  |  |  |  |  |  | 
| 468 |  |  |  |  |  |  | Getter/setter for the error rate. Default is 0.0001 | 
| 469 |  |  |  |  |  |  |  | 
| 470 |  |  |  |  |  |  | =cut | 
| 471 |  |  |  |  |  |  |  | 
| 472 |  |  |  |  |  |  | sub error { | 
| 473 |  |  |  |  |  |  | my $self = shift; | 
| 474 |  |  |  |  |  |  | if ( @_ ) { | 
| 475 |  |  |  |  |  |  | my $value = shift; | 
| 476 |  |  |  |  |  |  | $log->debug("setting error threshold to $value"); | 
| 477 |  |  |  |  |  |  | return $self->{'error'} = $value; | 
| 478 |  |  |  |  |  |  | } | 
| 479 |  |  |  |  |  |  | else { | 
| 480 |  |  |  |  |  |  | $log->debug("getting error threshold"); | 
| 481 |  |  |  |  |  |  | return $self->{'error'}; | 
| 482 |  |  |  |  |  |  | } | 
| 483 |  |  |  |  |  |  | } | 
| 484 |  |  |  |  |  |  |  | 
| 485 |  |  |  |  |  |  | =item epochs | 
| 486 |  |  |  |  |  |  |  | 
| 487 |  |  |  |  |  |  | Getter/setter for the number of training epochs, default is 500000 | 
| 488 |  |  |  |  |  |  |  | 
| 489 |  |  |  |  |  |  | =cut | 
| 490 |  |  |  |  |  |  |  | 
| 491 |  |  |  |  |  |  | sub epochs { | 
| 492 |  |  |  |  |  |  | my $self = shift; | 
| 493 |  |  |  |  |  |  | if ( @_ ) { | 
| 494 |  |  |  |  |  |  | my $value = shift; | 
| 495 |  |  |  |  |  |  | $log->debug("setting training epochs to $value"); | 
| 496 |  |  |  |  |  |  | return $self->{'epochs'} = $value; | 
| 497 |  |  |  |  |  |  | } | 
| 498 |  |  |  |  |  |  | else { | 
| 499 |  |  |  |  |  |  | $log->debug("getting training epochs"); | 
| 500 |  |  |  |  |  |  | return $self->{'epochs'}; | 
| 501 |  |  |  |  |  |  | } | 
| 502 |  |  |  |  |  |  | } | 
| 503 |  |  |  |  |  |  |  | 
| 504 |  |  |  |  |  |  | =item epoch_printfreq | 
| 505 |  |  |  |  |  |  |  | 
| 506 |  |  |  |  |  |  | Getter/setter for the number of epochs after which progress is printed. default is 1000 | 
| 507 |  |  |  |  |  |  |  | 
| 508 |  |  |  |  |  |  | =cut | 
| 509 |  |  |  |  |  |  |  | 
| 510 |  |  |  |  |  |  | sub epoch_printfreq { | 
| 511 |  |  |  |  |  |  | my $self = shift; | 
| 512 |  |  |  |  |  |  | if ( @_ ) { | 
| 513 |  |  |  |  |  |  | my $value = shift; | 
| 514 |  |  |  |  |  |  | $log->debug("setting epoch printfreq to $value"); | 
| 515 |  |  |  |  |  |  | return $self->{'epoch_printfreq'} = $value; | 
| 516 |  |  |  |  |  |  | } | 
| 517 |  |  |  |  |  |  | else { | 
| 518 |  |  |  |  |  |  | $log->debug("getting epoch printfreq"); | 
| 519 |  |  |  |  |  |  | return $self->{'epoch_printfreq'} | 
| 520 |  |  |  |  |  |  | } | 
| 521 |  |  |  |  |  |  | } | 
| 522 |  |  |  |  |  |  |  | 
| 523 |  |  |  |  |  |  | =item neurons | 
| 524 |  |  |  |  |  |  |  | 
| 525 |  |  |  |  |  |  | Getter/setter for the number of neurons. Default is 15 | 
| 526 |  |  |  |  |  |  |  | 
| 527 |  |  |  |  |  |  | =cut | 
| 528 |  |  |  |  |  |  |  | 
| 529 |  |  |  |  |  |  | sub neurons { | 
| 530 |  |  |  |  |  |  | my $self = shift; | 
| 531 |  |  |  |  |  |  | if ( @_ ) { | 
| 532 |  |  |  |  |  |  | my $value = shift; | 
| 533 |  |  |  |  |  |  | $log->debug("setting neurons to $value"); | 
| 534 |  |  |  |  |  |  | return $self->{'neurons'} = $value; | 
| 535 |  |  |  |  |  |  | } | 
| 536 |  |  |  |  |  |  | else { | 
| 537 |  |  |  |  |  |  | $log->debug("getting neurons"); | 
| 538 |  |  |  |  |  |  | return $self->{'neurons'}; | 
| 539 |  |  |  |  |  |  | } | 
| 540 |  |  |  |  |  |  | } | 
| 541 |  |  |  |  |  |  |  | 
| 542 |  |  |  |  |  |  | =item neuron_printfreq | 
| 543 |  |  |  |  |  |  |  | 
| 544 |  |  |  |  |  |  | Getter/setter for the number of cascading neurons after which progress is printed. | 
| 545 |  |  |  |  |  |  | default is 10 | 
| 546 |  |  |  |  |  |  |  | 
| 547 |  |  |  |  |  |  | =cut | 
| 548 |  |  |  |  |  |  |  | 
| 549 |  |  |  |  |  |  | sub neuron_printfreq { | 
| 550 |  |  |  |  |  |  | my $self = shift; | 
| 551 |  |  |  |  |  |  | if ( @_ ) { | 
| 552 |  |  |  |  |  |  | my $value = shift; | 
| 553 |  |  |  |  |  |  | $log->debug("setting neuron printfreq to $value"); | 
| 554 |  |  |  |  |  |  | return $self->{'neuron_printfreq'} = $value; | 
| 555 |  |  |  |  |  |  | } | 
| 556 |  |  |  |  |  |  | else { | 
| 557 |  |  |  |  |  |  | $log->debug("getting neuron printfreq"); | 
| 558 |  |  |  |  |  |  | return $self->{'neuron_printfreq'}; | 
| 559 |  |  |  |  |  |  | } | 
| 560 |  |  |  |  |  |  | } | 
| 561 |  |  |  |  |  |  |  | 
| 562 |  |  |  |  |  |  | =item train_type | 
| 563 |  |  |  |  |  |  |  | 
| 564 |  |  |  |  |  |  | Getter/setter for the training type: 'cascade' or 'ordinary'. Default is ordinary | 
| 565 |  |  |  |  |  |  |  | 
| 566 |  |  |  |  |  |  | =cut | 
| 567 |  |  |  |  |  |  |  | 
| 568 |  |  |  |  |  |  | sub train_type { | 
| 569 |  |  |  |  |  |  | my $self = shift; | 
| 570 |  |  |  |  |  |  | if ( @_ ) { | 
| 571 |  |  |  |  |  |  | my $value = lc shift; | 
| 572 |  |  |  |  |  |  | $log->debug("setting train type to $value"); | 
| 573 |  |  |  |  |  |  | return $self->{'train_type'} = $value; | 
| 574 |  |  |  |  |  |  | } | 
| 575 |  |  |  |  |  |  | else { | 
| 576 |  |  |  |  |  |  | $log->debug("getting train type"); | 
| 577 |  |  |  |  |  |  | return $self->{'train_type'}; | 
| 578 |  |  |  |  |  |  | } | 
| 579 |  |  |  |  |  |  | } | 
| 580 |  |  |  |  |  |  |  | 
| 581 |  |  |  |  |  |  | =item activation_function | 
| 582 |  |  |  |  |  |  |  | 
| 583 |  |  |  |  |  |  | Getter/setter for the function that maps inputs to outputs. default is | 
| 584 |  |  |  |  |  |  | FANN_SIGMOID_SYMMETRIC | 
| 585 |  |  |  |  |  |  |  | 
| 586 |  |  |  |  |  |  | =back | 
| 587 |  |  |  |  |  |  |  | 
| 588 |  |  |  |  |  |  | =cut | 
| 589 |  |  |  |  |  |  |  | 
| 590 |  |  |  |  |  |  | sub activation_function { | 
| 591 |  |  |  |  |  |  | my $self = shift; | 
| 592 |  |  |  |  |  |  | if ( @_ ) { | 
| 593 |  |  |  |  |  |  | my $value = shift; | 
| 594 |  |  |  |  |  |  | $log->debug("setting activation function to $value"); | 
| 595 |  |  |  |  |  |  | return $self->{'activation_function'} = $value; | 
| 596 |  |  |  |  |  |  | } | 
| 597 |  |  |  |  |  |  | else { | 
| 598 |  |  |  |  |  |  | $log->debug("getting activation function"); | 
| 599 |  |  |  |  |  |  | return $self->{'activation_function'}; | 
| 600 |  |  |  |  |  |  | } | 
| 601 |  |  |  |  |  |  | } | 
| 602 |  |  |  |  |  |  |  | 
| 603 |  |  |  |  |  |  | # this is here so that we can trap method calls that need to be | 
| 604 |  |  |  |  |  |  | # delegated to the FANN object. at this point we're not even | 
| 605 |  |  |  |  |  |  | # going to care whether the FANN object implements these methods: | 
| 606 |  |  |  |  |  |  | # if it doesn't we get the normal error for unknown methods, which | 
| 607 |  |  |  |  |  |  | # the user then will have to resolve. | 
| 608 |  |  |  |  |  |  | sub AUTOLOAD { | 
| 609 |  |  |  |  |  |  | my $self = shift; | 
| 610 |  |  |  |  |  |  | my $method = $AUTOLOAD; | 
| 611 |  |  |  |  |  |  | $method =~ s/.+://; | 
| 612 |  |  |  |  |  |  |  | 
| 613 |  |  |  |  |  |  | # ignore all caps methods | 
| 614 |  |  |  |  |  |  | if ( $method !~ /^[A-Z]+$/ ) { | 
| 615 |  |  |  |  |  |  |  | 
| 616 |  |  |  |  |  |  | # determine whether to invoke on an object or a package | 
| 617 |  |  |  |  |  |  | my $invocant; | 
| 618 |  |  |  |  |  |  | if ( ref $self ) { | 
| 619 |  |  |  |  |  |  | $invocant = $self->{'ann'}; | 
| 620 |  |  |  |  |  |  | } | 
| 621 |  |  |  |  |  |  | else { | 
| 622 |  |  |  |  |  |  | $invocant = 'AI::FANN'; | 
| 623 |  |  |  |  |  |  | } | 
| 624 |  |  |  |  |  |  |  | 
| 625 |  |  |  |  |  |  | # determine whether to pass in arguments | 
| 626 |  |  |  |  |  |  | if ( @_ ) { | 
| 627 |  |  |  |  |  |  | my $arg = shift; | 
| 628 |  |  |  |  |  |  | $arg = $constant{$arg} if exists $constant{$arg}; | 
| 629 |  |  |  |  |  |  | return $invocant->$method($arg); | 
| 630 |  |  |  |  |  |  | } | 
| 631 |  |  |  |  |  |  | else { | 
| 632 |  |  |  |  |  |  | return $invocant->$method; | 
| 633 |  |  |  |  |  |  | } | 
| 634 |  |  |  |  |  |  | } | 
| 635 |  |  |  |  |  |  |  | 
| 636 |  |  |  |  |  |  | } | 
| 637 |  |  |  |  |  |  |  | 
| 638 |  |  |  |  |  |  | 1; |