| line | stmt | bran | cond | sub | pod | time | code | 
| 1 |  |  |  |  |  |  | package AI::ConfusionMatrix; | 
| 2 |  |  |  |  |  |  | $AI::ConfusionMatrix::VERSION = '0.007'; | 
| 3 | 1 |  |  | 1 |  | 53525 | use strict; | 
|  | 1 |  |  |  |  | 3 |  | 
|  | 1 |  |  |  |  | 23 |  | 
| 4 | 1 |  |  | 1 |  | 4 | use warnings; | 
|  | 1 |  |  |  |  | 2 |  | 
|  | 1 |  |  |  |  | 19 |  | 
| 5 | 1 |  |  | 1 |  | 4 | use Carp; | 
|  | 1 |  |  |  |  | 1 |  | 
|  | 1 |  |  |  |  | 52 |  | 
| 6 | 1 |  |  | 1 |  | 5 | use Exporter 'import'; | 
|  | 1 |  |  |  |  | 2 |  | 
|  | 1 |  |  |  |  | 86 |  | 
| 7 |  |  |  |  |  |  | our @EXPORT= qw (makeConfusionMatrix); | 
| 8 | 1 |  |  | 1 |  | 6 | use strict; | 
|  | 1 |  |  |  |  | 8 |  | 
|  | 1 |  |  |  |  | 60 |  | 
| 9 | 1 |  |  | 1 |  | 664 | use Tie::File; | 
|  | 1 |  |  |  |  | 15783 |  | 
|  | 1 |  |  |  |  | 607 |  | 
| 10 |  |  |  |  |  |  |  | 
| 11 |  |  |  |  |  |  | # ABSTRACT: Make a confusion matrix | 
| 12 |  |  |  |  |  |  |  | 
| 13 |  |  |  |  |  |  | sub makeConfusionMatrix { | 
| 14 | 2 |  |  | 2 | 1 | 3620 | my ($matrix, $file, $delem) = @_; | 
| 15 | 2 | 100 |  |  |  | 7 | unless(defined $delem) { | 
| 16 | 1 |  |  |  |  | 3 | $delem = ','; | 
| 17 |  |  |  |  |  |  | } | 
| 18 |  |  |  |  |  |  |  | 
| 19 | 2 | 50 |  |  |  | 6 | carp ('First argument must be a hash reference') if ref($matrix) ne 'HASH'; | 
| 20 | 2 | 50 |  |  |  | 12 | tie my @array, 'Tie::File', $file or carp "$!"; | 
| 21 | 2 |  |  |  |  | 229 | my $n = 1; | 
| 22 | 2 |  |  |  |  | 2 | my @columns; | 
| 23 | 2 |  |  |  |  | 3 | my @expected = sort keys %{$matrix}; | 
|  | 2 |  |  |  |  | 9 |  | 
| 24 | 2 |  |  |  |  | 5 | my %stats; | 
| 25 |  |  |  |  |  |  | my %totals; | 
| 26 | 2 |  |  |  |  | 4 | for my $expected (@expected) { | 
| 27 | 6 |  |  |  |  | 25 | $array[$n] = $expected; | 
| 28 | 6 |  |  |  |  | 1834 | ++$n; | 
| 29 | 6 |  |  |  |  | 11 | $stats{$expected}{'fn'} = 0; | 
| 30 | 6 |  |  |  |  | 10 | $stats{$expected}{'tp'} = 0; | 
| 31 |  |  |  |  |  |  | # Ensure that the False Positive counter is defined to be able to compute the total later | 
| 32 | 6 | 100 |  |  |  | 13 | unless(defined $stats{$expected}{'fp'}) { | 
| 33 | 4 |  |  |  |  | 6 | $stats{$expected}{'fp'} = 0; | 
| 34 |  |  |  |  |  |  | } | 
| 35 | 6 |  |  |  |  | 6 | for my $predicted (keys %{$matrix->{$expected}}) { | 
|  | 6 |  |  |  |  | 40 |  | 
| 36 | 14 |  |  |  |  | 22 | $stats{$expected}{'total'} += $matrix->{$expected}->{$predicted}; | 
| 37 | 14 | 100 |  |  |  | 32 | $stats{$expected}{'tp'} += $matrix->{$expected}->{$predicted} if $expected == $predicted; | 
| 38 | 14 | 100 |  |  |  | 21 | if ($expected != $predicted) { | 
| 39 | 8 |  |  |  |  | 9 | $stats{$expected}{'fn'} += $matrix->{$expected}->{$predicted}; | 
| 40 | 8 |  |  |  |  | 13 | $stats{$predicted}{'fp'} += $matrix->{$expected}->{$predicted}; | 
| 41 |  |  |  |  |  |  | } | 
| 42 | 14 |  |  |  |  | 27 | $totals{$predicted} += $matrix->{$expected}->{$predicted}; | 
| 43 |  |  |  |  |  |  | # Add the label to the array of columns if it does not contain it already | 
| 44 | 14 | 100 |  |  |  | 27 | push @columns, $predicted unless _findIndex($predicted, \@columns); | 
| 45 |  |  |  |  |  |  | } | 
| 46 |  |  |  |  |  |  |  | 
| 47 | 6 |  |  |  |  | 44 | $stats{$expected}{'acc'} = sprintf("%.2f%%", ($stats{$expected}{'tp'} * 100) / $stats{$expected}{'total'}); | 
| 48 |  |  |  |  |  |  | } | 
| 49 |  |  |  |  |  |  |  | 
| 50 | 2 |  |  |  |  | 4 | for my $expected (@expected) { | 
| 51 | 6 |  |  |  |  | 9 | $totals{'total'} += $stats{$expected}{'total'}; | 
| 52 | 6 |  |  |  |  | 6 | $totals{'tp'}    += $stats{$expected}{'tp'}; | 
| 53 | 6 |  |  |  |  | 9 | $totals{'fn'}    += $stats{$expected}{'fn'}; | 
| 54 | 6 |  |  |  |  | 7 | $totals{'fp'}    += $stats{$expected}{'fp'}; | 
| 55 | 6 |  |  |  |  | 21 | $stats{$expected}{'sensitivity'} = sprintf("%.2f%%", (($stats{$expected}{'tp'} * 100) / ($stats{$expected}{'tp'} + $stats{$expected}{'fp'}))); | 
| 56 |  |  |  |  |  |  | } | 
| 57 |  |  |  |  |  |  |  | 
| 58 | 2 |  |  |  |  | 8 | $totals{'acc'} = sprintf("%.2f%%", ($totals{'tp'} * 100) / $totals{'total'}); | 
| 59 | 2 |  |  |  |  | 16 | $totals{'sensitivity'} = sprintf("%.2f%%", ($totals{'tp'} * 100) / ($totals{'tp'} + $totals{'fp'})); | 
| 60 | 2 |  |  |  |  | 7 | @columns = sort @columns; | 
| 61 | 2 |  |  |  |  | 8 | map {$array[0] .= $delem . $_} join $delem, (@columns, 'TOTAL', 'TP', 'FP', 'FN', 'SENS', 'ACC'); | 
|  | 2 |  |  |  |  | 9 |  | 
| 62 | 2 |  |  |  |  | 680 | $n = 1; | 
| 63 | 2 |  |  |  |  | 5 | for my $expected (@expected) { | 
| 64 | 6 |  |  |  |  | 8 | my $lastIndex = 0; | 
| 65 | 6 |  |  |  |  | 7 | my $index; | 
| 66 | 6 |  |  |  |  | 7 | for my $predicted (sort keys %{$matrix->{$expected}}) { | 
|  | 6 |  |  |  |  | 20 |  | 
| 67 |  |  |  |  |  |  | # Calculate the index of the label in the array of columns | 
| 68 | 14 |  |  |  |  | 29 | $index = _findIndex($predicted, \@columns); | 
| 69 |  |  |  |  |  |  | # Print some of the delimiter to get to the column of the next value predicted | 
| 70 | 14 |  |  |  |  | 54 | $array[$n] .= $delem x ($index - $lastIndex) . $matrix->{$expected}{$predicted}; | 
| 71 | 14 |  |  |  |  | 3453 | $lastIndex = $index; | 
| 72 |  |  |  |  |  |  | } | 
| 73 |  |  |  |  |  |  |  | 
| 74 |  |  |  |  |  |  | # Get to the columns of the stats | 
| 75 | 6 |  |  |  |  | 24 | $array[$n] .= $delem x (scalar(@columns) - $lastIndex + 1); | 
| 76 |  |  |  |  |  |  | $array[$n] .= join $delem, ( | 
| 77 |  |  |  |  |  |  | $stats{$expected}{'total'}, | 
| 78 |  |  |  |  |  |  | $stats{$expected}{'tp'}, | 
| 79 |  |  |  |  |  |  | $stats{$expected}{'fp'}, | 
| 80 |  |  |  |  |  |  | $stats{$expected}{'fn'}, | 
| 81 |  |  |  |  |  |  | $stats{$expected}{'sensitivity'}, | 
| 82 | 6 |  |  |  |  | 1395 | $stats{$expected}{'acc'} | 
| 83 |  |  |  |  |  |  | ); | 
| 84 | 6 |  |  |  |  | 1401 | ++$n; | 
| 85 |  |  |  |  |  |  | } | 
| 86 |  |  |  |  |  |  | # Print the TOTAL row to the csv file | 
| 87 | 2 |  |  |  |  | 8 | $array[$n] = 'TOTAL' . $delem; | 
| 88 | 2 |  |  |  |  | 536 | map {$array[$n] .= $totals{$_} . $delem} (sort keys %totals)[0 .. $#columns]; | 
|  | 10 |  |  |  |  | 2086 |  | 
| 89 | 2 |  |  |  |  | 517 | $array[$n] .= join $delem, ($totals{'total'}, $totals{'tp'}, $totals{'fp'}, $totals{'fn'}, $totals{'sensitivity'}, $totals{'acc'}); | 
| 90 |  |  |  |  |  |  |  | 
| 91 | 2 |  |  |  |  | 466 | untie @array; | 
| 92 |  |  |  |  |  |  | } | 
| 93 |  |  |  |  |  |  |  | 
| 94 |  |  |  |  |  |  | sub _findIndex { | 
| 95 | 28 |  |  | 28 |  | 41 | my ($string, $array) = @_; | 
| 96 | 28 |  |  |  |  | 51 | for (0 .. @$array - 1) { | 
| 97 | 76 | 100 |  |  |  | 77 | return $_ + 1 if ($string eq @{$array}[$_]); | 
|  | 76 |  |  |  |  | 143 |  | 
| 98 |  |  |  |  |  |  | } | 
| 99 |  |  |  |  |  |  | } | 
| 100 |  |  |  |  |  |  |  | 
| 101 |  |  |  |  |  |  | =head1 NAME | 
| 102 |  |  |  |  |  |  |  | 
| 103 |  |  |  |  |  |  | AI::ConfusionMatrix - make a confusion matrix | 
| 104 |  |  |  |  |  |  |  | 
| 105 |  |  |  |  |  |  | =head1 SYNOPSIS | 
| 106 |  |  |  |  |  |  |  | 
| 107 |  |  |  |  |  |  | my %matrix; | 
| 108 |  |  |  |  |  |  |  | 
| 109 |  |  |  |  |  |  | Loop over your tests | 
| 110 |  |  |  |  |  |  |  | 
| 111 |  |  |  |  |  |  | --- | 
| 112 |  |  |  |  |  |  |  | 
| 113 |  |  |  |  |  |  | $matrix{$expected}{$predicted} += 1; | 
| 114 |  |  |  |  |  |  |  | 
| 115 |  |  |  |  |  |  | --- | 
| 116 |  |  |  |  |  |  |  | 
| 117 |  |  |  |  |  |  | makeConfusionMatrix(\%matrix, 'output.csv'); | 
| 118 |  |  |  |  |  |  |  | 
| 119 |  |  |  |  |  |  |  | 
| 120 |  |  |  |  |  |  | =head1 DESCRIPTION | 
| 121 |  |  |  |  |  |  |  | 
| 122 |  |  |  |  |  |  | This module prints a L from a hash reference. This module tries to be generic enough to be used within a lot of machine learning projects. | 
| 123 |  |  |  |  |  |  |  | 
| 124 |  |  |  |  |  |  | =head3 Function | 
| 125 |  |  |  |  |  |  |  | 
| 126 |  |  |  |  |  |  | =head4 C | 
| 127 |  |  |  |  |  |  |  | 
| 128 |  |  |  |  |  |  | This function makes a confusion matrix from C<$hash_ref> and writes it to C<$file>. C<$file> can be a filename or a file handle opened with the C mode. If C<$delimiter> is present, it is used as a custom separator for the fields in the confusion matrix. | 
| 129 |  |  |  |  |  |  |  | 
| 130 |  |  |  |  |  |  | Examples: | 
| 131 |  |  |  |  |  |  |  | 
| 132 |  |  |  |  |  |  | makeConfusionMatrix(\%matrix, 'output.csv'); | 
| 133 |  |  |  |  |  |  | makeConfusionMatrix(\%matrix, 'output.csv', ';'); | 
| 134 |  |  |  |  |  |  | makeConfusionMatrix(\%matrix, *$fh); | 
| 135 |  |  |  |  |  |  |  | 
| 136 |  |  |  |  |  |  | The hash reference must look like this : | 
| 137 |  |  |  |  |  |  |  | 
| 138 |  |  |  |  |  |  | $VAR1 = { | 
| 139 |  |  |  |  |  |  |  | 
| 140 |  |  |  |  |  |  |  | 
| 141 |  |  |  |  |  |  | 'value_expected1' => { | 
| 142 |  |  |  |  |  |  | 'value_predicted1' => value | 
| 143 |  |  |  |  |  |  | }, | 
| 144 |  |  |  |  |  |  | 'value_expected2' => { | 
| 145 |  |  |  |  |  |  | 'value_predicted1' => value, | 
| 146 |  |  |  |  |  |  | 'value_predicted2' => value | 
| 147 |  |  |  |  |  |  | }, | 
| 148 |  |  |  |  |  |  | 'value_expected3' => { | 
| 149 |  |  |  |  |  |  | 'value_predicted3' => value | 
| 150 |  |  |  |  |  |  | } | 
| 151 |  |  |  |  |  |  |  | 
| 152 |  |  |  |  |  |  | }; | 
| 153 |  |  |  |  |  |  |  | 
| 154 |  |  |  |  |  |  | The output will be in CSV. Here is an example: | 
| 155 |  |  |  |  |  |  |  | 
| 156 |  |  |  |  |  |  | ,1974,1978,2002,2003,2005,TOTAL,TP,FP,FN,SENS,ACC | 
| 157 |  |  |  |  |  |  | 1974,3,1,,,2,6,3,4,3,42.86%,50.00% | 
| 158 |  |  |  |  |  |  | 1978,1,5,,,,6,5,4,1,55.56%,83.33% | 
| 159 |  |  |  |  |  |  | 2002,2,2,8,,,12,8,1,4,88.89%,66.67% | 
| 160 |  |  |  |  |  |  | 2003,1,,,7,2,10,7,0,3,100.00%,70.00% | 
| 161 |  |  |  |  |  |  | 2005,,1,1,,6,8,6,4,2,60.00%,75.00% | 
| 162 |  |  |  |  |  |  | TOTAL,7,9,9,7,10,42,29,13,13,69.05%,69.05% | 
| 163 |  |  |  |  |  |  |  | 
| 164 |  |  |  |  |  |  | Prettified: | 
| 165 |  |  |  |  |  |  |  | 
| 166 |  |  |  |  |  |  | |       | 1974 | 1978 | 2002 | 2003 | 2005 | TOTAL | TP | FP | FN | SENS    | ACC    | | 
| 167 |  |  |  |  |  |  | |-------|------|------|------|------|------|-------|----|----|----|---------|--------| | 
| 168 |  |  |  |  |  |  | | 1974  | 3    | 1    |      |      | 2    | 6     | 3  | 4  | 3  | 42.86%  | 50.00% | | 
| 169 |  |  |  |  |  |  | | 1978  | 1    | 5    |      |      |      | 6     | 5  | 4  | 1  | 55.56%  | 83.33% | | 
| 170 |  |  |  |  |  |  | | 2002  | 2    | 2    | 8    |      |      | 12    | 8  | 1  | 4  | 88.89%  | 66.67% | | 
| 171 |  |  |  |  |  |  | | 2003  | 1    |      |      | 7    | 2    | 10    | 7  | 0  | 3  | 100.00% | 70.00% | | 
| 172 |  |  |  |  |  |  | | 2005  |      | 1    | 1    |      | 6    | 8     | 6  | 4  | 2  | 60.00%  | 75.00% | | 
| 173 |  |  |  |  |  |  | | TOTAL | 7    | 9    | 9    | 7    | 10   | 42    | 29 | 13 | 13 | 69.05%  | 69.05% | | 
| 174 |  |  |  |  |  |  |  | 
| 175 |  |  |  |  |  |  | =over | 
| 176 |  |  |  |  |  |  |  | 
| 177 |  |  |  |  |  |  | =item TP: | 
| 178 |  |  |  |  |  |  |  | 
| 179 |  |  |  |  |  |  | True Positive | 
| 180 |  |  |  |  |  |  |  | 
| 181 |  |  |  |  |  |  | =item FP: | 
| 182 |  |  |  |  |  |  |  | 
| 183 |  |  |  |  |  |  | False Positive | 
| 184 |  |  |  |  |  |  |  | 
| 185 |  |  |  |  |  |  | =item FN: | 
| 186 |  |  |  |  |  |  |  | 
| 187 |  |  |  |  |  |  | False Negative | 
| 188 |  |  |  |  |  |  |  | 
| 189 |  |  |  |  |  |  | =item SENS | 
| 190 |  |  |  |  |  |  |  | 
| 191 |  |  |  |  |  |  | Sensitivity. Number of true positives divided by the number of positives. | 
| 192 |  |  |  |  |  |  |  | 
| 193 |  |  |  |  |  |  | =item ACC: | 
| 194 |  |  |  |  |  |  |  | 
| 195 |  |  |  |  |  |  | Accuracy | 
| 196 |  |  |  |  |  |  |  | 
| 197 |  |  |  |  |  |  | =back | 
| 198 |  |  |  |  |  |  |  | 
| 199 |  |  |  |  |  |  | =head1 AUTHOR | 
| 200 |  |  |  |  |  |  |  | 
| 201 |  |  |  |  |  |  | Vincent Lequertier | 
| 202 |  |  |  |  |  |  |  | 
| 203 |  |  |  |  |  |  | =head1 LICENSE | 
| 204 |  |  |  |  |  |  |  | 
| 205 |  |  |  |  |  |  | This library is free software; you can redistribute it and/or modify | 
| 206 |  |  |  |  |  |  | it under the same terms as Perl itself. | 
| 207 |  |  |  |  |  |  |  | 
| 208 |  |  |  |  |  |  | =cut | 
| 209 |  |  |  |  |  |  |  | 
| 210 |  |  |  |  |  |  | 1; | 
| 211 |  |  |  |  |  |  |  | 
| 212 |  |  |  |  |  |  | # vim: set ts=4 sw=4 tw=0 fdm=marker : | 
| 213 |  |  |  |  |  |  |  |