| line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
|
1
|
|
|
|
|
|
|
/* |
|
2
|
|
|
|
|
|
|
|
|
3
|
|
|
|
|
|
|
This is an implementation of the AES algorithm, specifically ECB, CTR and CBC mode. |
|
4
|
|
|
|
|
|
|
Block size can be chosen in aes.h - available choices are AES128, AES192, AES256. |
|
5
|
|
|
|
|
|
|
|
|
6
|
|
|
|
|
|
|
The implementation is verified against the test vectors in: |
|
7
|
|
|
|
|
|
|
National Institute of Standards and Technology Special Publication 800-38A 2001 ED |
|
8
|
|
|
|
|
|
|
|
|
9
|
|
|
|
|
|
|
ECB-AES128 |
|
10
|
|
|
|
|
|
|
---------- |
|
11
|
|
|
|
|
|
|
|
|
12
|
|
|
|
|
|
|
plain-text: |
|
13
|
|
|
|
|
|
|
6bc1bee22e409f96e93d7e117393172a |
|
14
|
|
|
|
|
|
|
ae2d8a571e03ac9c9eb76fac45af8e51 |
|
15
|
|
|
|
|
|
|
30c81c46a35ce411e5fbc1191a0a52ef |
|
16
|
|
|
|
|
|
|
f69f2445df4f9b17ad2b417be66c3710 |
|
17
|
|
|
|
|
|
|
|
|
18
|
|
|
|
|
|
|
key: |
|
19
|
|
|
|
|
|
|
2b7e151628aed2a6abf7158809cf4f3c |
|
20
|
|
|
|
|
|
|
|
|
21
|
|
|
|
|
|
|
resulting cipher |
|
22
|
|
|
|
|
|
|
3ad77bb40d7a3660a89ecaf32466ef97 |
|
23
|
|
|
|
|
|
|
f5d3d58503b9699de785895a96fdbaaf |
|
24
|
|
|
|
|
|
|
43b1cd7f598ece23881b00e3ed030688 |
|
25
|
|
|
|
|
|
|
7b0c785e27e8ad3f8223207104725dd4 |
|
26
|
|
|
|
|
|
|
|
|
27
|
|
|
|
|
|
|
|
|
28
|
|
|
|
|
|
|
NOTE: String length must be evenly divisible by 16byte (str_len % 16 == 0) |
|
29
|
|
|
|
|
|
|
You should pad the end of the string with zeros if this is not the case. |
|
30
|
|
|
|
|
|
|
For AES192/256 the key size is proportionally larger. |
|
31
|
|
|
|
|
|
|
|
|
32
|
|
|
|
|
|
|
*/ |
|
33
|
|
|
|
|
|
|
|
|
34
|
|
|
|
|
|
|
|
|
35
|
|
|
|
|
|
|
/*****************************************************************************/ |
|
36
|
|
|
|
|
|
|
/* Includes: */ |
|
37
|
|
|
|
|
|
|
/*****************************************************************************/ |
|
38
|
|
|
|
|
|
|
#include |
|
39
|
|
|
|
|
|
|
#include // CBC mode, for memset |
|
40
|
|
|
|
|
|
|
#include "aes.h" |
|
41
|
|
|
|
|
|
|
|
|
42
|
|
|
|
|
|
|
/*****************************************************************************/ |
|
43
|
|
|
|
|
|
|
/* Defines: */ |
|
44
|
|
|
|
|
|
|
/*****************************************************************************/ |
|
45
|
|
|
|
|
|
|
// The number of columns comprising a state in AES. This is a constant in AES. Value=4 |
|
46
|
|
|
|
|
|
|
#define Nb 4 |
|
47
|
|
|
|
|
|
|
|
|
48
|
|
|
|
|
|
|
#if defined(AES256) && (AES256 == 1) |
|
49
|
|
|
|
|
|
|
#define Nk 8 |
|
50
|
|
|
|
|
|
|
#define Nr 14 |
|
51
|
|
|
|
|
|
|
#elif defined(AES192) && (AES192 == 1) |
|
52
|
|
|
|
|
|
|
#define Nk 6 |
|
53
|
|
|
|
|
|
|
#define Nr 12 |
|
54
|
|
|
|
|
|
|
#else |
|
55
|
|
|
|
|
|
|
#define Nk 4 // The number of 32 bit words in a key. |
|
56
|
|
|
|
|
|
|
#define Nr 10 // The number of rounds in AES Cipher. |
|
57
|
|
|
|
|
|
|
#endif |
|
58
|
|
|
|
|
|
|
|
|
59
|
|
|
|
|
|
|
// jcallan@github points out that declaring Multiply as a function |
|
60
|
|
|
|
|
|
|
// reduces code size considerably with the Keil ARM compiler. |
|
61
|
|
|
|
|
|
|
// See this link for more information: https://github.com/kokke/tiny-AES-C/pull/3 |
|
62
|
|
|
|
|
|
|
#ifndef MULTIPLY_AS_A_FUNCTION |
|
63
|
|
|
|
|
|
|
#define MULTIPLY_AS_A_FUNCTION 0 |
|
64
|
|
|
|
|
|
|
#endif |
|
65
|
|
|
|
|
|
|
|
|
66
|
|
|
|
|
|
|
|
|
67
|
|
|
|
|
|
|
|
|
68
|
|
|
|
|
|
|
|
|
69
|
|
|
|
|
|
|
/*****************************************************************************/ |
|
70
|
|
|
|
|
|
|
/* Private variables: */ |
|
71
|
|
|
|
|
|
|
/*****************************************************************************/ |
|
72
|
|
|
|
|
|
|
// state - array holding the intermediate results during decryption. |
|
73
|
|
|
|
|
|
|
typedef uint8_t state_t[4][4]; |
|
74
|
|
|
|
|
|
|
|
|
75
|
|
|
|
|
|
|
|
|
76
|
|
|
|
|
|
|
|
|
77
|
|
|
|
|
|
|
// The lookup-tables are marked const so they can be placed in read-only storage instead of RAM |
|
78
|
|
|
|
|
|
|
// The numbers below can be computed dynamically trading ROM for RAM - |
|
79
|
|
|
|
|
|
|
// This can be useful in (embedded) bootloader applications, where ROM is often limited. |
|
80
|
|
|
|
|
|
|
static const uint8_t sbox[256] = { |
|
81
|
|
|
|
|
|
|
//0 1 2 3 4 5 6 7 8 9 A B C D E F |
|
82
|
|
|
|
|
|
|
0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76, |
|
83
|
|
|
|
|
|
|
0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0, |
|
84
|
|
|
|
|
|
|
0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15, |
|
85
|
|
|
|
|
|
|
0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75, |
|
86
|
|
|
|
|
|
|
0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84, |
|
87
|
|
|
|
|
|
|
0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf, |
|
88
|
|
|
|
|
|
|
0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8, |
|
89
|
|
|
|
|
|
|
0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2, |
|
90
|
|
|
|
|
|
|
0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73, |
|
91
|
|
|
|
|
|
|
0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb, |
|
92
|
|
|
|
|
|
|
0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79, |
|
93
|
|
|
|
|
|
|
0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08, |
|
94
|
|
|
|
|
|
|
0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a, |
|
95
|
|
|
|
|
|
|
0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e, |
|
96
|
|
|
|
|
|
|
0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf, |
|
97
|
|
|
|
|
|
|
0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16 }; |
|
98
|
|
|
|
|
|
|
|
|
99
|
|
|
|
|
|
|
static const uint8_t rsbox[256] = { |
|
100
|
|
|
|
|
|
|
0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38, 0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb, |
|
101
|
|
|
|
|
|
|
0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87, 0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb, |
|
102
|
|
|
|
|
|
|
0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d, 0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e, |
|
103
|
|
|
|
|
|
|
0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2, 0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25, |
|
104
|
|
|
|
|
|
|
0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92, |
|
105
|
|
|
|
|
|
|
0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda, 0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84, |
|
106
|
|
|
|
|
|
|
0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a, 0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06, |
|
107
|
|
|
|
|
|
|
0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02, 0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b, |
|
108
|
|
|
|
|
|
|
0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea, 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73, |
|
109
|
|
|
|
|
|
|
0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85, 0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e, |
|
110
|
|
|
|
|
|
|
0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89, 0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b, |
|
111
|
|
|
|
|
|
|
0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20, 0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4, |
|
112
|
|
|
|
|
|
|
0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31, 0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f, |
|
113
|
|
|
|
|
|
|
0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d, 0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef, |
|
114
|
|
|
|
|
|
|
0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0, 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61, |
|
115
|
|
|
|
|
|
|
0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26, 0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d }; |
|
116
|
|
|
|
|
|
|
|
|
117
|
|
|
|
|
|
|
// The round constant word array, Rcon[i], contains the values given by |
|
118
|
|
|
|
|
|
|
// x to the power (i-1) being powers of x (x is denoted as {02}) in the field GF(2^8) |
|
119
|
|
|
|
|
|
|
static const uint8_t Rcon[11] = { |
|
120
|
|
|
|
|
|
|
0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36 }; |
|
121
|
|
|
|
|
|
|
|
|
122
|
|
|
|
|
|
|
/* |
|
123
|
|
|
|
|
|
|
* Jordan Goulder points out in PR #12 (https://github.com/kokke/tiny-AES-C/pull/12), |
|
124
|
|
|
|
|
|
|
* that you can remove most of the elements in the Rcon array, because they are unused. |
|
125
|
|
|
|
|
|
|
* |
|
126
|
|
|
|
|
|
|
* From Wikipedia's article on the Rijndael key schedule @ https://en.wikipedia.org/wiki/Rijndael_key_schedule#Rcon |
|
127
|
|
|
|
|
|
|
* |
|
128
|
|
|
|
|
|
|
* "Only the first some of these constants are actually used – up to rcon[10] for AES-128 (as 11 round keys are needed), |
|
129
|
|
|
|
|
|
|
* up to rcon[8] for AES-192, up to rcon[7] for AES-256. rcon[0] is not used in AES algorithm." |
|
130
|
|
|
|
|
|
|
*/ |
|
131
|
|
|
|
|
|
|
|
|
132
|
|
|
|
|
|
|
|
|
133
|
|
|
|
|
|
|
/*****************************************************************************/ |
|
134
|
|
|
|
|
|
|
/* Private functions: */ |
|
135
|
|
|
|
|
|
|
/*****************************************************************************/ |
|
136
|
|
|
|
|
|
|
/* |
|
137
|
|
|
|
|
|
|
static uint8_t getSBoxValue(uint8_t num) |
|
138
|
|
|
|
|
|
|
{ |
|
139
|
|
|
|
|
|
|
return sbox[num]; |
|
140
|
|
|
|
|
|
|
} |
|
141
|
|
|
|
|
|
|
*/ |
|
142
|
|
|
|
|
|
|
#define getSBoxValue(num) (sbox[(num)]) |
|
143
|
|
|
|
|
|
|
/* |
|
144
|
|
|
|
|
|
|
static uint8_t getSBoxInvert(uint8_t num) |
|
145
|
|
|
|
|
|
|
{ |
|
146
|
|
|
|
|
|
|
return rsbox[num]; |
|
147
|
|
|
|
|
|
|
} |
|
148
|
|
|
|
|
|
|
*/ |
|
149
|
|
|
|
|
|
|
#define getSBoxInvert(num) (rsbox[(num)]) |
|
150
|
|
|
|
|
|
|
|
|
151
|
|
|
|
|
|
|
// This function produces Nb(Nr+1) round keys. The round keys are used in each round to decrypt the states. |
|
152
|
0
|
|
|
|
|
|
static void KeyExpansion(uint8_t* RoundKey, const uint8_t* Key) |
|
153
|
|
|
|
|
|
|
{ |
|
154
|
|
|
|
|
|
|
unsigned i, j, k; |
|
155
|
|
|
|
|
|
|
uint8_t tempa[4]; // Used for the column/row operations |
|
156
|
|
|
|
|
|
|
|
|
157
|
|
|
|
|
|
|
// The first round key is the key itself. |
|
158
|
0
|
0
|
|
|
|
|
for (i = 0; i < Nk; ++i) |
|
159
|
|
|
|
|
|
|
{ |
|
160
|
0
|
|
|
|
|
|
RoundKey[(i * 4) + 0] = Key[(i * 4) + 0]; |
|
161
|
0
|
|
|
|
|
|
RoundKey[(i * 4) + 1] = Key[(i * 4) + 1]; |
|
162
|
0
|
|
|
|
|
|
RoundKey[(i * 4) + 2] = Key[(i * 4) + 2]; |
|
163
|
0
|
|
|
|
|
|
RoundKey[(i * 4) + 3] = Key[(i * 4) + 3]; |
|
164
|
|
|
|
|
|
|
} |
|
165
|
|
|
|
|
|
|
|
|
166
|
|
|
|
|
|
|
// All other round keys are found from the previous round keys. |
|
167
|
0
|
0
|
|
|
|
|
for (i = Nk; i < Nb * (Nr + 1); ++i) |
|
168
|
|
|
|
|
|
|
{ |
|
169
|
|
|
|
|
|
|
{ |
|
170
|
0
|
|
|
|
|
|
k = (i - 1) * 4; |
|
171
|
0
|
|
|
|
|
|
tempa[0]=RoundKey[k + 0]; |
|
172
|
0
|
|
|
|
|
|
tempa[1]=RoundKey[k + 1]; |
|
173
|
0
|
|
|
|
|
|
tempa[2]=RoundKey[k + 2]; |
|
174
|
0
|
|
|
|
|
|
tempa[3]=RoundKey[k + 3]; |
|
175
|
|
|
|
|
|
|
|
|
176
|
|
|
|
|
|
|
} |
|
177
|
|
|
|
|
|
|
|
|
178
|
0
|
0
|
|
|
|
|
if (i % Nk == 0) |
|
179
|
|
|
|
|
|
|
{ |
|
180
|
|
|
|
|
|
|
// This function shifts the 4 bytes in a word to the left once. |
|
181
|
|
|
|
|
|
|
// [a0,a1,a2,a3] becomes [a1,a2,a3,a0] |
|
182
|
|
|
|
|
|
|
|
|
183
|
|
|
|
|
|
|
// Function RotWord() |
|
184
|
|
|
|
|
|
|
{ |
|
185
|
0
|
|
|
|
|
|
const uint8_t u8tmp = tempa[0]; |
|
186
|
0
|
|
|
|
|
|
tempa[0] = tempa[1]; |
|
187
|
0
|
|
|
|
|
|
tempa[1] = tempa[2]; |
|
188
|
0
|
|
|
|
|
|
tempa[2] = tempa[3]; |
|
189
|
0
|
|
|
|
|
|
tempa[3] = u8tmp; |
|
190
|
|
|
|
|
|
|
} |
|
191
|
|
|
|
|
|
|
|
|
192
|
|
|
|
|
|
|
// SubWord() is a function that takes a four-byte input word and |
|
193
|
|
|
|
|
|
|
// applies the S-box to each of the four bytes to produce an output word. |
|
194
|
|
|
|
|
|
|
|
|
195
|
|
|
|
|
|
|
// Function Subword() |
|
196
|
|
|
|
|
|
|
{ |
|
197
|
0
|
|
|
|
|
|
tempa[0] = getSBoxValue(tempa[0]); |
|
198
|
0
|
|
|
|
|
|
tempa[1] = getSBoxValue(tempa[1]); |
|
199
|
0
|
|
|
|
|
|
tempa[2] = getSBoxValue(tempa[2]); |
|
200
|
0
|
|
|
|
|
|
tempa[3] = getSBoxValue(tempa[3]); |
|
201
|
|
|
|
|
|
|
} |
|
202
|
|
|
|
|
|
|
|
|
203
|
0
|
|
|
|
|
|
tempa[0] = tempa[0] ^ Rcon[i/Nk]; |
|
204
|
|
|
|
|
|
|
} |
|
205
|
|
|
|
|
|
|
#if defined(AES256) && (AES256 == 1) |
|
206
|
|
|
|
|
|
|
if (i % Nk == 4) |
|
207
|
|
|
|
|
|
|
{ |
|
208
|
|
|
|
|
|
|
// Function Subword() |
|
209
|
|
|
|
|
|
|
{ |
|
210
|
|
|
|
|
|
|
tempa[0] = getSBoxValue(tempa[0]); |
|
211
|
|
|
|
|
|
|
tempa[1] = getSBoxValue(tempa[1]); |
|
212
|
|
|
|
|
|
|
tempa[2] = getSBoxValue(tempa[2]); |
|
213
|
|
|
|
|
|
|
tempa[3] = getSBoxValue(tempa[3]); |
|
214
|
|
|
|
|
|
|
} |
|
215
|
|
|
|
|
|
|
} |
|
216
|
|
|
|
|
|
|
#endif |
|
217
|
0
|
|
|
|
|
|
j = i * 4; k=(i - Nk) * 4; |
|
218
|
0
|
|
|
|
|
|
RoundKey[j + 0] = RoundKey[k + 0] ^ tempa[0]; |
|
219
|
0
|
|
|
|
|
|
RoundKey[j + 1] = RoundKey[k + 1] ^ tempa[1]; |
|
220
|
0
|
|
|
|
|
|
RoundKey[j + 2] = RoundKey[k + 2] ^ tempa[2]; |
|
221
|
0
|
|
|
|
|
|
RoundKey[j + 3] = RoundKey[k + 3] ^ tempa[3]; |
|
222
|
|
|
|
|
|
|
} |
|
223
|
0
|
|
|
|
|
|
} |
|
224
|
|
|
|
|
|
|
|
|
225
|
0
|
|
|
|
|
|
void AES_init_ctx(struct AES_ctx* ctx, const uint8_t* key) |
|
226
|
|
|
|
|
|
|
{ |
|
227
|
0
|
|
|
|
|
|
KeyExpansion(ctx->RoundKey, key); |
|
228
|
0
|
|
|
|
|
|
} |
|
229
|
|
|
|
|
|
|
#if (defined(CBC) && (CBC == 1)) || (defined(CTR) && (CTR == 1)) |
|
230
|
0
|
|
|
|
|
|
void AES_init_ctx_iv(struct AES_ctx* ctx, const uint8_t* key, const uint8_t* iv) |
|
231
|
|
|
|
|
|
|
{ |
|
232
|
0
|
|
|
|
|
|
KeyExpansion(ctx->RoundKey, key); |
|
233
|
0
|
|
|
|
|
|
memcpy (ctx->Iv, iv, AES_BLOCKLEN); |
|
234
|
0
|
|
|
|
|
|
} |
|
235
|
0
|
|
|
|
|
|
void AES_ctx_set_iv(struct AES_ctx* ctx, const uint8_t* iv) |
|
236
|
|
|
|
|
|
|
{ |
|
237
|
0
|
|
|
|
|
|
memcpy (ctx->Iv, iv, AES_BLOCKLEN); |
|
238
|
0
|
|
|
|
|
|
} |
|
239
|
|
|
|
|
|
|
#endif |
|
240
|
|
|
|
|
|
|
|
|
241
|
|
|
|
|
|
|
// This function adds the round key to state. |
|
242
|
|
|
|
|
|
|
// The round key is added to the state by an XOR function. |
|
243
|
0
|
|
|
|
|
|
static void AddRoundKey(uint8_t round,state_t* state,uint8_t* RoundKey) |
|
244
|
|
|
|
|
|
|
{ |
|
245
|
|
|
|
|
|
|
uint8_t i,j; |
|
246
|
0
|
0
|
|
|
|
|
for (i = 0; i < 4; ++i) |
|
247
|
|
|
|
|
|
|
{ |
|
248
|
0
|
0
|
|
|
|
|
for (j = 0; j < 4; ++j) |
|
249
|
|
|
|
|
|
|
{ |
|
250
|
0
|
|
|
|
|
|
(*state)[i][j] ^= RoundKey[(round * Nb * 4) + (i * Nb) + j]; |
|
251
|
|
|
|
|
|
|
} |
|
252
|
|
|
|
|
|
|
} |
|
253
|
0
|
|
|
|
|
|
} |
|
254
|
|
|
|
|
|
|
|
|
255
|
|
|
|
|
|
|
// The SubBytes Function Substitutes the values in the |
|
256
|
|
|
|
|
|
|
// state matrix with values in an S-box. |
|
257
|
0
|
|
|
|
|
|
static void SubBytes(state_t* state) |
|
258
|
|
|
|
|
|
|
{ |
|
259
|
|
|
|
|
|
|
uint8_t i, j; |
|
260
|
0
|
0
|
|
|
|
|
for (i = 0; i < 4; ++i) |
|
261
|
|
|
|
|
|
|
{ |
|
262
|
0
|
0
|
|
|
|
|
for (j = 0; j < 4; ++j) |
|
263
|
|
|
|
|
|
|
{ |
|
264
|
0
|
|
|
|
|
|
(*state)[j][i] = getSBoxValue((*state)[j][i]); |
|
265
|
|
|
|
|
|
|
} |
|
266
|
|
|
|
|
|
|
} |
|
267
|
0
|
|
|
|
|
|
} |
|
268
|
|
|
|
|
|
|
|
|
269
|
|
|
|
|
|
|
// The ShiftRows() function shifts the rows in the state to the left. |
|
270
|
|
|
|
|
|
|
// Each row is shifted with different offset. |
|
271
|
|
|
|
|
|
|
// Offset = Row number. So the first row is not shifted. |
|
272
|
0
|
|
|
|
|
|
static void ShiftRows(state_t* state) |
|
273
|
|
|
|
|
|
|
{ |
|
274
|
|
|
|
|
|
|
uint8_t temp; |
|
275
|
|
|
|
|
|
|
|
|
276
|
|
|
|
|
|
|
// Rotate first row 1 columns to left |
|
277
|
0
|
|
|
|
|
|
temp = (*state)[0][1]; |
|
278
|
0
|
|
|
|
|
|
(*state)[0][1] = (*state)[1][1]; |
|
279
|
0
|
|
|
|
|
|
(*state)[1][1] = (*state)[2][1]; |
|
280
|
0
|
|
|
|
|
|
(*state)[2][1] = (*state)[3][1]; |
|
281
|
0
|
|
|
|
|
|
(*state)[3][1] = temp; |
|
282
|
|
|
|
|
|
|
|
|
283
|
|
|
|
|
|
|
// Rotate second row 2 columns to left |
|
284
|
0
|
|
|
|
|
|
temp = (*state)[0][2]; |
|
285
|
0
|
|
|
|
|
|
(*state)[0][2] = (*state)[2][2]; |
|
286
|
0
|
|
|
|
|
|
(*state)[2][2] = temp; |
|
287
|
|
|
|
|
|
|
|
|
288
|
0
|
|
|
|
|
|
temp = (*state)[1][2]; |
|
289
|
0
|
|
|
|
|
|
(*state)[1][2] = (*state)[3][2]; |
|
290
|
0
|
|
|
|
|
|
(*state)[3][2] = temp; |
|
291
|
|
|
|
|
|
|
|
|
292
|
|
|
|
|
|
|
// Rotate third row 3 columns to left |
|
293
|
0
|
|
|
|
|
|
temp = (*state)[0][3]; |
|
294
|
0
|
|
|
|
|
|
(*state)[0][3] = (*state)[3][3]; |
|
295
|
0
|
|
|
|
|
|
(*state)[3][3] = (*state)[2][3]; |
|
296
|
0
|
|
|
|
|
|
(*state)[2][3] = (*state)[1][3]; |
|
297
|
0
|
|
|
|
|
|
(*state)[1][3] = temp; |
|
298
|
0
|
|
|
|
|
|
} |
|
299
|
|
|
|
|
|
|
|
|
300
|
0
|
|
|
|
|
|
static uint8_t xtime(uint8_t x) |
|
301
|
|
|
|
|
|
|
{ |
|
302
|
0
|
|
|
|
|
|
return ((x<<1) ^ (((x>>7) & 1) * 0x1b)); |
|
303
|
|
|
|
|
|
|
} |
|
304
|
|
|
|
|
|
|
|
|
305
|
|
|
|
|
|
|
// MixColumns function mixes the columns of the state matrix |
|
306
|
0
|
|
|
|
|
|
static void MixColumns(state_t* state) |
|
307
|
|
|
|
|
|
|
{ |
|
308
|
|
|
|
|
|
|
uint8_t i; |
|
309
|
|
|
|
|
|
|
uint8_t Tmp, Tm, t; |
|
310
|
0
|
0
|
|
|
|
|
for (i = 0; i < 4; ++i) |
|
311
|
|
|
|
|
|
|
{ |
|
312
|
0
|
|
|
|
|
|
t = (*state)[i][0]; |
|
313
|
0
|
|
|
|
|
|
Tmp = (*state)[i][0] ^ (*state)[i][1] ^ (*state)[i][2] ^ (*state)[i][3] ; |
|
314
|
0
|
|
|
|
|
|
Tm = (*state)[i][0] ^ (*state)[i][1] ; Tm = xtime(Tm); (*state)[i][0] ^= Tm ^ Tmp ; |
|
315
|
0
|
|
|
|
|
|
Tm = (*state)[i][1] ^ (*state)[i][2] ; Tm = xtime(Tm); (*state)[i][1] ^= Tm ^ Tmp ; |
|
316
|
0
|
|
|
|
|
|
Tm = (*state)[i][2] ^ (*state)[i][3] ; Tm = xtime(Tm); (*state)[i][2] ^= Tm ^ Tmp ; |
|
317
|
0
|
|
|
|
|
|
Tm = (*state)[i][3] ^ t ; Tm = xtime(Tm); (*state)[i][3] ^= Tm ^ Tmp ; |
|
318
|
|
|
|
|
|
|
} |
|
319
|
0
|
|
|
|
|
|
} |
|
320
|
|
|
|
|
|
|
|
|
321
|
|
|
|
|
|
|
// Multiply is used to multiply numbers in the field GF(2^8) |
|
322
|
|
|
|
|
|
|
// Note: The last call to xtime() is unneeded, but often ends up generating a smaller binary |
|
323
|
|
|
|
|
|
|
// The compiler seems to be able to vectorize the operation better this way. |
|
324
|
|
|
|
|
|
|
// See https://github.com/kokke/tiny-AES-c/pull/34 |
|
325
|
|
|
|
|
|
|
#if MULTIPLY_AS_A_FUNCTION |
|
326
|
|
|
|
|
|
|
static uint8_t Multiply(uint8_t x, uint8_t y) |
|
327
|
|
|
|
|
|
|
{ |
|
328
|
|
|
|
|
|
|
return (((y & 1) * x) ^ |
|
329
|
|
|
|
|
|
|
((y>>1 & 1) * xtime(x)) ^ |
|
330
|
|
|
|
|
|
|
((y>>2 & 1) * xtime(xtime(x))) ^ |
|
331
|
|
|
|
|
|
|
((y>>3 & 1) * xtime(xtime(xtime(x)))) ^ |
|
332
|
|
|
|
|
|
|
((y>>4 & 1) * xtime(xtime(xtime(xtime(x)))))); /* this last call to xtime() can be omitted */ |
|
333
|
|
|
|
|
|
|
} |
|
334
|
|
|
|
|
|
|
#else |
|
335
|
|
|
|
|
|
|
#define Multiply(x, y) \ |
|
336
|
|
|
|
|
|
|
( ((y & 1) * x) ^ \ |
|
337
|
|
|
|
|
|
|
((y>>1 & 1) * xtime(x)) ^ \ |
|
338
|
|
|
|
|
|
|
((y>>2 & 1) * xtime(xtime(x))) ^ \ |
|
339
|
|
|
|
|
|
|
((y>>3 & 1) * xtime(xtime(xtime(x)))) ^ \ |
|
340
|
|
|
|
|
|
|
((y>>4 & 1) * xtime(xtime(xtime(xtime(x)))))) \ |
|
341
|
|
|
|
|
|
|
|
|
342
|
|
|
|
|
|
|
#endif |
|
343
|
|
|
|
|
|
|
|
|
344
|
|
|
|
|
|
|
#if (defined(CBC) && CBC == 1) || (defined(ECB) && ECB == 1) |
|
345
|
|
|
|
|
|
|
// MixColumns function mixes the columns of the state matrix. |
|
346
|
|
|
|
|
|
|
// The method used to multiply may be difficult to understand for the inexperienced. |
|
347
|
|
|
|
|
|
|
// Please use the references to gain more information. |
|
348
|
0
|
|
|
|
|
|
static void InvMixColumns(state_t* state) |
|
349
|
|
|
|
|
|
|
{ |
|
350
|
|
|
|
|
|
|
int i; |
|
351
|
|
|
|
|
|
|
uint8_t a, b, c, d; |
|
352
|
0
|
0
|
|
|
|
|
for (i = 0; i < 4; ++i) |
|
353
|
|
|
|
|
|
|
{ |
|
354
|
0
|
|
|
|
|
|
a = (*state)[i][0]; |
|
355
|
0
|
|
|
|
|
|
b = (*state)[i][1]; |
|
356
|
0
|
|
|
|
|
|
c = (*state)[i][2]; |
|
357
|
0
|
|
|
|
|
|
d = (*state)[i][3]; |
|
358
|
|
|
|
|
|
|
|
|
359
|
0
|
|
|
|
|
|
(*state)[i][0] = Multiply(a, 0x0e) ^ Multiply(b, 0x0b) ^ Multiply(c, 0x0d) ^ Multiply(d, 0x09); |
|
360
|
0
|
|
|
|
|
|
(*state)[i][1] = Multiply(a, 0x09) ^ Multiply(b, 0x0e) ^ Multiply(c, 0x0b) ^ Multiply(d, 0x0d); |
|
361
|
0
|
|
|
|
|
|
(*state)[i][2] = Multiply(a, 0x0d) ^ Multiply(b, 0x09) ^ Multiply(c, 0x0e) ^ Multiply(d, 0x0b); |
|
362
|
0
|
|
|
|
|
|
(*state)[i][3] = Multiply(a, 0x0b) ^ Multiply(b, 0x0d) ^ Multiply(c, 0x09) ^ Multiply(d, 0x0e); |
|
363
|
|
|
|
|
|
|
} |
|
364
|
0
|
|
|
|
|
|
} |
|
365
|
|
|
|
|
|
|
|
|
366
|
|
|
|
|
|
|
|
|
367
|
|
|
|
|
|
|
// The SubBytes Function Substitutes the values in the |
|
368
|
|
|
|
|
|
|
// state matrix with values in an S-box. |
|
369
|
0
|
|
|
|
|
|
static void InvSubBytes(state_t* state) |
|
370
|
|
|
|
|
|
|
{ |
|
371
|
|
|
|
|
|
|
uint8_t i, j; |
|
372
|
0
|
0
|
|
|
|
|
for (i = 0; i < 4; ++i) |
|
373
|
|
|
|
|
|
|
{ |
|
374
|
0
|
0
|
|
|
|
|
for (j = 0; j < 4; ++j) |
|
375
|
|
|
|
|
|
|
{ |
|
376
|
0
|
|
|
|
|
|
(*state)[j][i] = getSBoxInvert((*state)[j][i]); |
|
377
|
|
|
|
|
|
|
} |
|
378
|
|
|
|
|
|
|
} |
|
379
|
0
|
|
|
|
|
|
} |
|
380
|
|
|
|
|
|
|
|
|
381
|
0
|
|
|
|
|
|
static void InvShiftRows(state_t* state) |
|
382
|
|
|
|
|
|
|
{ |
|
383
|
|
|
|
|
|
|
uint8_t temp; |
|
384
|
|
|
|
|
|
|
|
|
385
|
|
|
|
|
|
|
// Rotate first row 1 columns to right |
|
386
|
0
|
|
|
|
|
|
temp = (*state)[3][1]; |
|
387
|
0
|
|
|
|
|
|
(*state)[3][1] = (*state)[2][1]; |
|
388
|
0
|
|
|
|
|
|
(*state)[2][1] = (*state)[1][1]; |
|
389
|
0
|
|
|
|
|
|
(*state)[1][1] = (*state)[0][1]; |
|
390
|
0
|
|
|
|
|
|
(*state)[0][1] = temp; |
|
391
|
|
|
|
|
|
|
|
|
392
|
|
|
|
|
|
|
// Rotate second row 2 columns to right |
|
393
|
0
|
|
|
|
|
|
temp = (*state)[0][2]; |
|
394
|
0
|
|
|
|
|
|
(*state)[0][2] = (*state)[2][2]; |
|
395
|
0
|
|
|
|
|
|
(*state)[2][2] = temp; |
|
396
|
|
|
|
|
|
|
|
|
397
|
0
|
|
|
|
|
|
temp = (*state)[1][2]; |
|
398
|
0
|
|
|
|
|
|
(*state)[1][2] = (*state)[3][2]; |
|
399
|
0
|
|
|
|
|
|
(*state)[3][2] = temp; |
|
400
|
|
|
|
|
|
|
|
|
401
|
|
|
|
|
|
|
// Rotate third row 3 columns to right |
|
402
|
0
|
|
|
|
|
|
temp = (*state)[0][3]; |
|
403
|
0
|
|
|
|
|
|
(*state)[0][3] = (*state)[1][3]; |
|
404
|
0
|
|
|
|
|
|
(*state)[1][3] = (*state)[2][3]; |
|
405
|
0
|
|
|
|
|
|
(*state)[2][3] = (*state)[3][3]; |
|
406
|
0
|
|
|
|
|
|
(*state)[3][3] = temp; |
|
407
|
0
|
|
|
|
|
|
} |
|
408
|
|
|
|
|
|
|
#endif // #if (defined(CBC) && CBC == 1) || (defined(ECB) && ECB == 1) |
|
409
|
|
|
|
|
|
|
|
|
410
|
|
|
|
|
|
|
// Cipher is the main function that encrypts the PlainText. |
|
411
|
0
|
|
|
|
|
|
static void Cipher(state_t* state, uint8_t* RoundKey) |
|
412
|
|
|
|
|
|
|
{ |
|
413
|
0
|
|
|
|
|
|
uint8_t round = 0; |
|
414
|
|
|
|
|
|
|
|
|
415
|
|
|
|
|
|
|
// Add the First round key to the state before starting the rounds. |
|
416
|
0
|
|
|
|
|
|
AddRoundKey(0, state, RoundKey); |
|
417
|
|
|
|
|
|
|
|
|
418
|
|
|
|
|
|
|
// There will be Nr rounds. |
|
419
|
|
|
|
|
|
|
// The first Nr-1 rounds are identical. |
|
420
|
|
|
|
|
|
|
// These Nr-1 rounds are executed in the loop below. |
|
421
|
0
|
0
|
|
|
|
|
for (round = 1; round < Nr; ++round) |
|
422
|
|
|
|
|
|
|
{ |
|
423
|
0
|
|
|
|
|
|
SubBytes(state); |
|
424
|
0
|
|
|
|
|
|
ShiftRows(state); |
|
425
|
0
|
|
|
|
|
|
MixColumns(state); |
|
426
|
0
|
|
|
|
|
|
AddRoundKey(round, state, RoundKey); |
|
427
|
|
|
|
|
|
|
} |
|
428
|
|
|
|
|
|
|
|
|
429
|
|
|
|
|
|
|
// The last round is given below. |
|
430
|
|
|
|
|
|
|
// The MixColumns function is not here in the last round. |
|
431
|
0
|
|
|
|
|
|
SubBytes(state); |
|
432
|
0
|
|
|
|
|
|
ShiftRows(state); |
|
433
|
0
|
|
|
|
|
|
AddRoundKey(Nr, state, RoundKey); |
|
434
|
0
|
|
|
|
|
|
} |
|
435
|
|
|
|
|
|
|
|
|
436
|
|
|
|
|
|
|
#if (defined(CBC) && CBC == 1) || (defined(ECB) && ECB == 1) |
|
437
|
0
|
|
|
|
|
|
static void InvCipher(state_t* state,uint8_t* RoundKey) |
|
438
|
|
|
|
|
|
|
{ |
|
439
|
0
|
|
|
|
|
|
uint8_t round = 0; |
|
440
|
|
|
|
|
|
|
|
|
441
|
|
|
|
|
|
|
// Add the First round key to the state before starting the rounds. |
|
442
|
0
|
|
|
|
|
|
AddRoundKey(Nr, state, RoundKey); |
|
443
|
|
|
|
|
|
|
|
|
444
|
|
|
|
|
|
|
// There will be Nr rounds. |
|
445
|
|
|
|
|
|
|
// The first Nr-1 rounds are identical. |
|
446
|
|
|
|
|
|
|
// These Nr-1 rounds are executed in the loop below. |
|
447
|
0
|
0
|
|
|
|
|
for (round = (Nr - 1); round > 0; --round) |
|
448
|
|
|
|
|
|
|
{ |
|
449
|
0
|
|
|
|
|
|
InvShiftRows(state); |
|
450
|
0
|
|
|
|
|
|
InvSubBytes(state); |
|
451
|
0
|
|
|
|
|
|
AddRoundKey(round, state, RoundKey); |
|
452
|
0
|
|
|
|
|
|
InvMixColumns(state); |
|
453
|
|
|
|
|
|
|
} |
|
454
|
|
|
|
|
|
|
|
|
455
|
|
|
|
|
|
|
// The last round is given below. |
|
456
|
|
|
|
|
|
|
// The MixColumns function is not here in the last round. |
|
457
|
0
|
|
|
|
|
|
InvShiftRows(state); |
|
458
|
0
|
|
|
|
|
|
InvSubBytes(state); |
|
459
|
0
|
|
|
|
|
|
AddRoundKey(0, state, RoundKey); |
|
460
|
0
|
|
|
|
|
|
} |
|
461
|
|
|
|
|
|
|
#endif // #if (defined(CBC) && CBC == 1) || (defined(ECB) && ECB == 1) |
|
462
|
|
|
|
|
|
|
|
|
463
|
|
|
|
|
|
|
/*****************************************************************************/ |
|
464
|
|
|
|
|
|
|
/* Public functions: */ |
|
465
|
|
|
|
|
|
|
/*****************************************************************************/ |
|
466
|
|
|
|
|
|
|
#if defined(ECB) && (ECB == 1) |
|
467
|
|
|
|
|
|
|
|
|
468
|
|
|
|
|
|
|
|
|
469
|
0
|
|
|
|
|
|
void AES_ECB_encrypt(struct AES_ctx *ctx, uint8_t* buf) |
|
470
|
|
|
|
|
|
|
{ |
|
471
|
|
|
|
|
|
|
// The next function call encrypts the PlainText with the Key using AES algorithm. |
|
472
|
0
|
|
|
|
|
|
Cipher((state_t*)buf, ctx->RoundKey); |
|
473
|
0
|
|
|
|
|
|
} |
|
474
|
|
|
|
|
|
|
|
|
475
|
0
|
|
|
|
|
|
void AES_ECB_decrypt(struct AES_ctx* ctx, uint8_t* buf) |
|
476
|
|
|
|
|
|
|
{ |
|
477
|
|
|
|
|
|
|
// The next function call decrypts the PlainText with the Key using AES algorithm. |
|
478
|
0
|
|
|
|
|
|
InvCipher((state_t*)buf, ctx->RoundKey); |
|
479
|
0
|
|
|
|
|
|
} |
|
480
|
|
|
|
|
|
|
|
|
481
|
|
|
|
|
|
|
|
|
482
|
|
|
|
|
|
|
#endif // #if defined(ECB) && (ECB == 1) |
|
483
|
|
|
|
|
|
|
|
|
484
|
|
|
|
|
|
|
|
|
485
|
|
|
|
|
|
|
|
|
486
|
|
|
|
|
|
|
|
|
487
|
|
|
|
|
|
|
|
|
488
|
|
|
|
|
|
|
#if defined(CBC) && (CBC == 1) |
|
489
|
|
|
|
|
|
|
|
|
490
|
|
|
|
|
|
|
|
|
491
|
0
|
|
|
|
|
|
static void XorWithIv(uint8_t* buf, uint8_t* Iv) |
|
492
|
|
|
|
|
|
|
{ |
|
493
|
|
|
|
|
|
|
uint8_t i; |
|
494
|
0
|
0
|
|
|
|
|
for (i = 0; i < AES_BLOCKLEN; ++i) // The block in AES is always 128bit no matter the key size |
|
495
|
|
|
|
|
|
|
{ |
|
496
|
0
|
|
|
|
|
|
buf[i] ^= Iv[i]; |
|
497
|
|
|
|
|
|
|
} |
|
498
|
0
|
|
|
|
|
|
} |
|
499
|
|
|
|
|
|
|
|
|
500
|
0
|
|
|
|
|
|
void AES_CBC_encrypt_buffer(struct AES_ctx *ctx,uint8_t* buf, uint32_t length) |
|
501
|
|
|
|
|
|
|
{ |
|
502
|
|
|
|
|
|
|
uintptr_t i; |
|
503
|
0
|
|
|
|
|
|
uint8_t *Iv = ctx->Iv; |
|
504
|
0
|
0
|
|
|
|
|
for (i = 0; i < length; i += AES_BLOCKLEN) |
|
505
|
|
|
|
|
|
|
{ |
|
506
|
0
|
|
|
|
|
|
XorWithIv(buf, Iv); |
|
507
|
0
|
|
|
|
|
|
Cipher((state_t*)buf, ctx->RoundKey); |
|
508
|
0
|
|
|
|
|
|
Iv = buf; |
|
509
|
0
|
|
|
|
|
|
buf += AES_BLOCKLEN; |
|
510
|
|
|
|
|
|
|
//printf("Step %d - %d", i/16, i); |
|
511
|
|
|
|
|
|
|
} |
|
512
|
|
|
|
|
|
|
/* store Iv in ctx for next call */ |
|
513
|
0
|
|
|
|
|
|
memcpy(ctx->Iv, Iv, AES_BLOCKLEN); |
|
514
|
0
|
|
|
|
|
|
} |
|
515
|
|
|
|
|
|
|
|
|
516
|
0
|
|
|
|
|
|
void AES_CBC_decrypt_buffer(struct AES_ctx* ctx, uint8_t* buf, uint32_t length) |
|
517
|
|
|
|
|
|
|
{ |
|
518
|
|
|
|
|
|
|
uintptr_t i; |
|
519
|
|
|
|
|
|
|
uint8_t storeNextIv[AES_BLOCKLEN]; |
|
520
|
0
|
0
|
|
|
|
|
for (i = 0; i < length; i += AES_BLOCKLEN) |
|
521
|
|
|
|
|
|
|
{ |
|
522
|
0
|
|
|
|
|
|
memcpy(storeNextIv, buf, AES_BLOCKLEN); |
|
523
|
0
|
|
|
|
|
|
InvCipher((state_t*)buf, ctx->RoundKey); |
|
524
|
0
|
|
|
|
|
|
XorWithIv(buf, ctx->Iv); |
|
525
|
0
|
|
|
|
|
|
memcpy(ctx->Iv, storeNextIv, AES_BLOCKLEN); |
|
526
|
0
|
|
|
|
|
|
buf += AES_BLOCKLEN; |
|
527
|
|
|
|
|
|
|
} |
|
528
|
|
|
|
|
|
|
|
|
529
|
0
|
|
|
|
|
|
} |
|
530
|
|
|
|
|
|
|
|
|
531
|
|
|
|
|
|
|
#endif // #if defined(CBC) && (CBC == 1) |
|
532
|
|
|
|
|
|
|
|
|
533
|
|
|
|
|
|
|
|
|
534
|
|
|
|
|
|
|
|
|
535
|
|
|
|
|
|
|
#if defined(CTR) && (CTR == 1) |
|
536
|
|
|
|
|
|
|
|
|
537
|
|
|
|
|
|
|
/* Symmetrical operation: same function for encrypting as for decrypting. Note any IV/nonce should never be reused with the same key */ |
|
538
|
0
|
|
|
|
|
|
void AES_CTR_xcrypt_buffer(struct AES_ctx* ctx, uint8_t* buf, uint32_t length) |
|
539
|
|
|
|
|
|
|
{ |
|
540
|
|
|
|
|
|
|
uint8_t buffer[AES_BLOCKLEN]; |
|
541
|
|
|
|
|
|
|
|
|
542
|
|
|
|
|
|
|
unsigned i; |
|
543
|
|
|
|
|
|
|
int bi; |
|
544
|
0
|
0
|
|
|
|
|
for (i = 0, bi = AES_BLOCKLEN; i < length; ++i, ++bi) |
|
545
|
|
|
|
|
|
|
{ |
|
546
|
0
|
0
|
|
|
|
|
if (bi == AES_BLOCKLEN) /* we need to regen xor compliment in buffer */ |
|
547
|
|
|
|
|
|
|
{ |
|
548
|
|
|
|
|
|
|
|
|
549
|
0
|
|
|
|
|
|
memcpy(buffer, ctx->Iv, AES_BLOCKLEN); |
|
550
|
0
|
|
|
|
|
|
Cipher((state_t*)buffer,ctx->RoundKey); |
|
551
|
|
|
|
|
|
|
|
|
552
|
|
|
|
|
|
|
/* Increment Iv and handle overflow */ |
|
553
|
0
|
0
|
|
|
|
|
for (bi = (AES_BLOCKLEN - 1); bi >= 0; --bi) |
|
554
|
|
|
|
|
|
|
{ |
|
555
|
|
|
|
|
|
|
/* inc will owerflow */ |
|
556
|
0
|
0
|
|
|
|
|
if (ctx->Iv[bi] == 255) |
|
557
|
|
|
|
|
|
|
{ |
|
558
|
0
|
|
|
|
|
|
ctx->Iv[bi] = 0; |
|
559
|
0
|
|
|
|
|
|
continue; |
|
560
|
|
|
|
|
|
|
} |
|
561
|
0
|
|
|
|
|
|
ctx->Iv[bi] += 1; |
|
562
|
0
|
|
|
|
|
|
break; |
|
563
|
|
|
|
|
|
|
} |
|
564
|
0
|
|
|
|
|
|
bi = 0; |
|
565
|
|
|
|
|
|
|
} |
|
566
|
|
|
|
|
|
|
|
|
567
|
0
|
|
|
|
|
|
buf[i] = (buf[i] ^ buffer[bi]); |
|
568
|
|
|
|
|
|
|
} |
|
569
|
0
|
|
|
|
|
|
} |
|
570
|
|
|
|
|
|
|
|
|
571
|
|
|
|
|
|
|
#endif // #if defined(CTR) && (CTR == 1) |
|
572
|
|
|
|
|
|
|
|