line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
1
|
|
|
|
|
|
|
=head1 NAME |
2
|
|
|
|
|
|
|
|
3
|
|
|
|
|
|
|
Text::NSP::Measures::2D::MI::ps - Perl module that implements Poisson-Stirling |
4
|
|
|
|
|
|
|
measure of association for bigrams. |
5
|
|
|
|
|
|
|
|
6
|
|
|
|
|
|
|
=head1 SYNOPSIS |
7
|
|
|
|
|
|
|
|
8
|
|
|
|
|
|
|
=head3 Basic Usage |
9
|
|
|
|
|
|
|
|
10
|
|
|
|
|
|
|
use Text::NSP::Measures::2D::MI::ps; |
11
|
|
|
|
|
|
|
|
12
|
|
|
|
|
|
|
my $npp = 60; my $n1p = 20; my $np1 = 20; my $n11 = 10; |
13
|
|
|
|
|
|
|
|
14
|
|
|
|
|
|
|
$ps_value = calculateStatistic( n11=>$n11, |
15
|
|
|
|
|
|
|
n1p=>$n1p, |
16
|
|
|
|
|
|
|
np1=>$np1, |
17
|
|
|
|
|
|
|
npp=>$npp); |
18
|
|
|
|
|
|
|
|
19
|
|
|
|
|
|
|
if( ($errorCode = getErrorCode())) |
20
|
|
|
|
|
|
|
{ |
21
|
|
|
|
|
|
|
print STDERR $errorCode." - ".getErrorMessage()."\n""; |
22
|
|
|
|
|
|
|
} |
23
|
|
|
|
|
|
|
else |
24
|
|
|
|
|
|
|
{ |
25
|
|
|
|
|
|
|
print getStatisticName."value for bigram is ".$ps_value."\n""; |
26
|
|
|
|
|
|
|
} |
27
|
|
|
|
|
|
|
|
28
|
|
|
|
|
|
|
=head1 DESCRIPTION |
29
|
|
|
|
|
|
|
|
30
|
|
|
|
|
|
|
The log-likelihood ratio measures the deviation between the observed data |
31
|
|
|
|
|
|
|
and what would be expected if and were independent. The |
32
|
|
|
|
|
|
|
higher the score, the less evidence there is in favor of concluding that |
33
|
|
|
|
|
|
|
the words are independent. |
34
|
|
|
|
|
|
|
|
35
|
|
|
|
|
|
|
Assume that the frequency count data associated with a bigram |
36
|
|
|
|
|
|
|
as shown by a 2x2 contingency table: |
37
|
|
|
|
|
|
|
|
38
|
|
|
|
|
|
|
word2 ~word2 |
39
|
|
|
|
|
|
|
word1 n11 n12 | n1p |
40
|
|
|
|
|
|
|
~word1 n21 n22 | n2p |
41
|
|
|
|
|
|
|
-------------- |
42
|
|
|
|
|
|
|
np1 np2 npp |
43
|
|
|
|
|
|
|
|
44
|
|
|
|
|
|
|
where n11 is the number of times occur together, and |
45
|
|
|
|
|
|
|
n12 is the number of times occurs with some word other than |
46
|
|
|
|
|
|
|
word2, and n1p is the number of times in total that word1 occurs as |
47
|
|
|
|
|
|
|
the first word in a bigram. |
48
|
|
|
|
|
|
|
|
49
|
|
|
|
|
|
|
The expected values for the internal cells are calculated by taking the |
50
|
|
|
|
|
|
|
product of their associated marginals and dividing by the sample size, |
51
|
|
|
|
|
|
|
for example: |
52
|
|
|
|
|
|
|
|
53
|
|
|
|
|
|
|
np1 * n1p |
54
|
|
|
|
|
|
|
m11= --------- |
55
|
|
|
|
|
|
|
npp |
56
|
|
|
|
|
|
|
|
57
|
|
|
|
|
|
|
The Poisson Stirling measure is a negative logarithmic approximation |
58
|
|
|
|
|
|
|
of the Poisson-likelihood measure. It uses the Stirling's formula to |
59
|
|
|
|
|
|
|
approximate the factorial in Poisson-likelihood measure. |
60
|
|
|
|
|
|
|
|
61
|
|
|
|
|
|
|
Poisson-Stirling = n11 * ( log(n11) - log(m11) - 1) |
62
|
|
|
|
|
|
|
|
63
|
|
|
|
|
|
|
which is same as |
64
|
|
|
|
|
|
|
|
65
|
|
|
|
|
|
|
Poisson-Stirling = n11 * ( log(n11/m11) - 1) |
66
|
|
|
|
|
|
|
|
67
|
|
|
|
|
|
|
|
68
|
|
|
|
|
|
|
=head2 Methods |
69
|
|
|
|
|
|
|
|
70
|
|
|
|
|
|
|
=over |
71
|
|
|
|
|
|
|
|
72
|
|
|
|
|
|
|
=cut |
73
|
|
|
|
|
|
|
|
74
|
|
|
|
|
|
|
|
75
|
|
|
|
|
|
|
package Text::NSP::Measures::2D::MI::ps; |
76
|
|
|
|
|
|
|
|
77
|
|
|
|
|
|
|
|
78
|
1
|
|
|
1
|
|
1312
|
use Text::NSP::Measures::2D::MI; |
|
1
|
|
|
|
|
3
|
|
|
1
|
|
|
|
|
293
|
|
79
|
1
|
|
|
1
|
|
4
|
use strict; |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
361
|
|
80
|
1
|
|
|
1
|
|
5
|
use Carp; |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
48
|
|
81
|
1
|
|
|
1
|
|
5
|
use warnings; |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
45
|
|
82
|
1
|
|
|
1
|
|
4
|
no warnings 'redefine'; |
|
1
|
|
|
|
|
1
|
|
|
1
|
|
|
|
|
191
|
|
83
|
|
|
|
|
|
|
require Exporter; |
84
|
|
|
|
|
|
|
|
85
|
|
|
|
|
|
|
our ($VERSION, @EXPORT, @ISA); |
86
|
|
|
|
|
|
|
|
87
|
|
|
|
|
|
|
@ISA = qw(Exporter); |
88
|
|
|
|
|
|
|
|
89
|
|
|
|
|
|
|
@EXPORT = qw(initializeStatistic calculateStatistic |
90
|
|
|
|
|
|
|
getErrorCode getErrorMessage getStatisticName); |
91
|
|
|
|
|
|
|
|
92
|
|
|
|
|
|
|
$VERSION = '0.97'; |
93
|
|
|
|
|
|
|
|
94
|
|
|
|
|
|
|
=item calculateStatistic() - This method calculates the ps value |
95
|
|
|
|
|
|
|
|
96
|
|
|
|
|
|
|
INPUT PARAMS : $count_values .. Reference of an hash containing |
97
|
|
|
|
|
|
|
the count values computed by the |
98
|
|
|
|
|
|
|
count.pl program. |
99
|
|
|
|
|
|
|
|
100
|
|
|
|
|
|
|
RETURN VALUES : $poissonStirling .. Poisson-Stirling value for this bigram. |
101
|
|
|
|
|
|
|
|
102
|
|
|
|
|
|
|
=cut |
103
|
|
|
|
|
|
|
|
104
|
|
|
|
|
|
|
sub calculateStatistic |
105
|
|
|
|
|
|
|
{ |
106
|
11
|
|
|
11
|
|
146
|
my %values = @_; |
107
|
|
|
|
|
|
|
|
108
|
|
|
|
|
|
|
# computes and returns the observed and expected values from |
109
|
|
|
|
|
|
|
# the frequency combination values. returns 0 if there is an |
110
|
|
|
|
|
|
|
# error in the computation or the values are inconsistent. |
111
|
11
|
100
|
|
|
|
29
|
if( !(Text::NSP::Measures::2D::MI::getValues(\%values)) ) { |
112
|
10
|
|
|
|
|
19
|
return; |
113
|
|
|
|
|
|
|
} |
114
|
|
|
|
|
|
|
|
115
|
|
|
|
|
|
|
# Now for the actual calculation of Loglikelihood! |
116
|
1
|
|
|
|
|
1
|
my $poissonStirling = 0; |
117
|
|
|
|
|
|
|
|
118
|
|
|
|
|
|
|
# dont want ($nxy / $mxy) to be 0 or less! flag error if so! |
119
|
1
|
|
|
|
|
4
|
$poissonStirling = $n11 * (Text::NSP::Measures::2D::MI::computePMI($n11,$m11) - 1); |
120
|
|
|
|
|
|
|
|
121
|
1
|
|
|
|
|
4
|
return $poissonStirling; |
122
|
|
|
|
|
|
|
} |
123
|
|
|
|
|
|
|
|
124
|
|
|
|
|
|
|
|
125
|
|
|
|
|
|
|
=item getStatisticName() - Returns the name of this statistic |
126
|
|
|
|
|
|
|
|
127
|
|
|
|
|
|
|
INPUT PARAMS : none |
128
|
|
|
|
|
|
|
|
129
|
|
|
|
|
|
|
RETURN VALUES : $name .. Name of the measure. |
130
|
|
|
|
|
|
|
|
131
|
|
|
|
|
|
|
=cut |
132
|
|
|
|
|
|
|
|
133
|
|
|
|
|
|
|
sub getStatisticName |
134
|
|
|
|
|
|
|
{ |
135
|
0
|
|
|
0
|
|
|
return "Poisson-Stirling Measure"; |
136
|
|
|
|
|
|
|
} |
137
|
|
|
|
|
|
|
|
138
|
|
|
|
|
|
|
|
139
|
|
|
|
|
|
|
|
140
|
|
|
|
|
|
|
1; |
141
|
|
|
|
|
|
|
__END__ |