| line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
|
1
|
|
|
|
|
|
|
=head1 NAME |
|
2
|
|
|
|
|
|
|
|
|
3
|
|
|
|
|
|
|
Text::NSP::Measures::3D::MI::ps - Perl module that implements |
|
4
|
|
|
|
|
|
|
Poisson Stirling Measure for trigrams. |
|
5
|
|
|
|
|
|
|
|
|
6
|
|
|
|
|
|
|
=head1 SYNOPSIS |
|
7
|
|
|
|
|
|
|
|
|
8
|
|
|
|
|
|
|
=head3 Basic Usage |
|
9
|
|
|
|
|
|
|
|
|
10
|
|
|
|
|
|
|
use Text::NSP::Measures::3D::MI::ps; |
|
11
|
|
|
|
|
|
|
|
|
12
|
|
|
|
|
|
|
$ps_value = calculateStatistic( n111=>10, |
|
13
|
|
|
|
|
|
|
n1pp=>40, |
|
14
|
|
|
|
|
|
|
np1p=>45, |
|
15
|
|
|
|
|
|
|
npp1=>42, |
|
16
|
|
|
|
|
|
|
n11p=>20, |
|
17
|
|
|
|
|
|
|
n1p1=>23, |
|
18
|
|
|
|
|
|
|
np11=>21, |
|
19
|
|
|
|
|
|
|
nppp=>100); |
|
20
|
|
|
|
|
|
|
|
|
21
|
|
|
|
|
|
|
if( ($errorCode = getErrorCode())) |
|
22
|
|
|
|
|
|
|
{ |
|
23
|
|
|
|
|
|
|
print STDERR $erroCode." - ".getErrorMessage()."\n"; |
|
24
|
|
|
|
|
|
|
} |
|
25
|
|
|
|
|
|
|
else |
|
26
|
|
|
|
|
|
|
{ |
|
27
|
|
|
|
|
|
|
print getStatisticName."value for bigram is ".$ps_value."\n"; |
|
28
|
|
|
|
|
|
|
} |
|
29
|
|
|
|
|
|
|
|
|
30
|
|
|
|
|
|
|
|
|
31
|
|
|
|
|
|
|
=head1 DESCRIPTION |
|
32
|
|
|
|
|
|
|
|
|
33
|
|
|
|
|
|
|
The log-likelihood ratio measures the devitation between the observed data |
|
34
|
|
|
|
|
|
|
and what would be expected if , and were independent. |
|
35
|
|
|
|
|
|
|
The higher the score, the less evidence there is in favor of concluding that |
|
36
|
|
|
|
|
|
|
the words are independent. |
|
37
|
|
|
|
|
|
|
|
|
38
|
|
|
|
|
|
|
The expected values for the internal cells are calculated by taking the |
|
39
|
|
|
|
|
|
|
product of their associated marginals and dividing by the sample size, |
|
40
|
|
|
|
|
|
|
for example: |
|
41
|
|
|
|
|
|
|
|
|
42
|
|
|
|
|
|
|
n1pp * np1p * npp1 |
|
43
|
|
|
|
|
|
|
m111= -------------------- |
|
44
|
|
|
|
|
|
|
nppp |
|
45
|
|
|
|
|
|
|
|
|
46
|
|
|
|
|
|
|
The poisson stirling measure is a negative lograthimic approximation |
|
47
|
|
|
|
|
|
|
of the poisson-likelihood measure. It uses the stirlings firmula to |
|
48
|
|
|
|
|
|
|
approximate the factorial in poisson-likelihood measure. It is |
|
49
|
|
|
|
|
|
|
computed as follows: |
|
50
|
|
|
|
|
|
|
|
|
51
|
|
|
|
|
|
|
Posson-Stirling = n111 * ( log(n111) - log(m111) - 1) |
|
52
|
|
|
|
|
|
|
|
|
53
|
|
|
|
|
|
|
=head2 Methods |
|
54
|
|
|
|
|
|
|
|
|
55
|
|
|
|
|
|
|
=over |
|
56
|
|
|
|
|
|
|
|
|
57
|
|
|
|
|
|
|
=cut |
|
58
|
|
|
|
|
|
|
|
|
59
|
|
|
|
|
|
|
package Text::NSP::Measures::3D::MI::ps; |
|
60
|
|
|
|
|
|
|
|
|
61
|
|
|
|
|
|
|
|
|
62
|
1
|
|
|
1
|
|
2016
|
use Text::NSP::Measures::3D::MI; |
|
|
1
|
|
|
|
|
3
|
|
|
|
1
|
|
|
|
|
371
|
|
|
63
|
1
|
|
|
1
|
|
7
|
use strict; |
|
|
1
|
|
|
|
|
2
|
|
|
|
1
|
|
|
|
|
29
|
|
|
64
|
1
|
|
|
1
|
|
5
|
use Carp; |
|
|
1
|
|
|
|
|
2
|
|
|
|
1
|
|
|
|
|
58
|
|
|
65
|
1
|
|
|
1
|
|
6
|
use warnings; |
|
|
1
|
|
|
|
|
2
|
|
|
|
1
|
|
|
|
|
28
|
|
|
66
|
1
|
|
|
1
|
|
5
|
no warnings 'redefine'; |
|
|
1
|
|
|
|
|
1
|
|
|
|
1
|
|
|
|
|
263
|
|
|
67
|
|
|
|
|
|
|
require Exporter; |
|
68
|
|
|
|
|
|
|
|
|
69
|
|
|
|
|
|
|
our ($VERSION, @EXPORT, @ISA); |
|
70
|
|
|
|
|
|
|
|
|
71
|
|
|
|
|
|
|
@ISA = qw(Exporter); |
|
72
|
|
|
|
|
|
|
|
|
73
|
|
|
|
|
|
|
@EXPORT = qw(initializeStatistic calculateStatistic |
|
74
|
|
|
|
|
|
|
getErrorCode getErrorMessage getStatisticName); |
|
75
|
|
|
|
|
|
|
|
|
76
|
|
|
|
|
|
|
$VERSION = '0.97'; |
|
77
|
|
|
|
|
|
|
|
|
78
|
|
|
|
|
|
|
=item calculateStatistic() - This method calculates the ps value |
|
79
|
|
|
|
|
|
|
|
|
80
|
|
|
|
|
|
|
INPUT PARAMS : $count_values .. Reference of an hash containing |
|
81
|
|
|
|
|
|
|
the count values computed by the |
|
82
|
|
|
|
|
|
|
count.pl program. |
|
83
|
|
|
|
|
|
|
|
|
84
|
|
|
|
|
|
|
RETURN VALUES : $poissonStirling .. Poisson-Stirling value for this trigram. |
|
85
|
|
|
|
|
|
|
|
|
86
|
|
|
|
|
|
|
=cut |
|
87
|
|
|
|
|
|
|
|
|
88
|
|
|
|
|
|
|
sub calculateStatistic |
|
89
|
|
|
|
|
|
|
{ |
|
90
|
16
|
|
|
16
|
|
3856
|
my %values = @_; |
|
91
|
|
|
|
|
|
|
|
|
92
|
|
|
|
|
|
|
# computes and returns the observed and expected values from |
|
93
|
|
|
|
|
|
|
# the frequency combination values. returns 0 if there is an |
|
94
|
|
|
|
|
|
|
# error in the computation or the values are inconsistent. |
|
95
|
16
|
100
|
|
|
|
60
|
if( !(Text::NSP::Measures::3D::MI::getValues(\%values)) ) { |
|
96
|
15
|
|
|
|
|
44
|
return; |
|
97
|
|
|
|
|
|
|
} |
|
98
|
|
|
|
|
|
|
|
|
99
|
|
|
|
|
|
|
# Now for the actual calculation of Loglikelihood! |
|
100
|
1
|
|
|
|
|
2
|
my $poissonStirling = 0; |
|
101
|
|
|
|
|
|
|
|
|
102
|
|
|
|
|
|
|
# dont want ($nxy / $mxy) to be 0 or less! flag error if so! |
|
103
|
1
|
|
|
|
|
4
|
$poissonStirling = $n111 * (Text::NSP::Measures::3D::MI::computePMI($n111, $m111) - 1); |
|
104
|
|
|
|
|
|
|
|
|
105
|
1
|
|
|
|
|
5
|
return $poissonStirling; |
|
106
|
|
|
|
|
|
|
} |
|
107
|
|
|
|
|
|
|
|
|
108
|
|
|
|
|
|
|
|
|
109
|
|
|
|
|
|
|
=item getStatisticName() - Returns the name of this statistic |
|
110
|
|
|
|
|
|
|
|
|
111
|
|
|
|
|
|
|
INPUT PARAMS : none |
|
112
|
|
|
|
|
|
|
|
|
113
|
|
|
|
|
|
|
RETURN VALUES : $name .. Name of the measure. |
|
114
|
|
|
|
|
|
|
|
|
115
|
|
|
|
|
|
|
=cut |
|
116
|
|
|
|
|
|
|
|
|
117
|
|
|
|
|
|
|
sub getStatisticName |
|
118
|
|
|
|
|
|
|
{ |
|
119
|
0
|
|
|
0
|
|
|
return "Poisson-Stirling Measure"; |
|
120
|
|
|
|
|
|
|
} |
|
121
|
|
|
|
|
|
|
|
|
122
|
|
|
|
|
|
|
|
|
123
|
|
|
|
|
|
|
|
|
124
|
|
|
|
|
|
|
1; |
|
125
|
|
|
|
|
|
|
__END__ |