| line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
|
1
|
|
|
|
|
|
|
|
|
2
|
|
|
|
|
|
|
// Copyright Catch2 Authors |
|
3
|
|
|
|
|
|
|
// Distributed under the Boost Software License, Version 1.0. |
|
4
|
|
|
|
|
|
|
// (See accompanying file LICENSE_1_0.txt or copy at |
|
5
|
|
|
|
|
|
|
// https://www.boost.org/LICENSE_1_0.txt) |
|
6
|
|
|
|
|
|
|
|
|
7
|
|
|
|
|
|
|
// SPDX-License-Identifier: BSL-1.0 |
|
8
|
|
|
|
|
|
|
// Adapted from donated nonius code. |
|
9
|
|
|
|
|
|
|
|
|
10
|
|
|
|
|
|
|
#ifndef CATCH_STATS_HPP_INCLUDED |
|
11
|
|
|
|
|
|
|
#define CATCH_STATS_HPP_INCLUDED |
|
12
|
|
|
|
|
|
|
|
|
13
|
|
|
|
|
|
|
#include |
|
14
|
|
|
|
|
|
|
#include |
|
15
|
|
|
|
|
|
|
|
|
16
|
|
|
|
|
|
|
#include |
|
17
|
|
|
|
|
|
|
#include |
|
18
|
|
|
|
|
|
|
#include |
|
19
|
|
|
|
|
|
|
#include |
|
20
|
|
|
|
|
|
|
#include |
|
21
|
|
|
|
|
|
|
|
|
22
|
|
|
|
|
|
|
namespace Catch { |
|
23
|
|
|
|
|
|
|
namespace Benchmark { |
|
24
|
|
|
|
|
|
|
namespace Detail { |
|
25
|
|
|
|
|
|
|
using sample = std::vector; |
|
26
|
|
|
|
|
|
|
|
|
27
|
|
|
|
|
|
|
double weighted_average_quantile(int k, int q, std::vector::iterator first, std::vector::iterator last); |
|
28
|
|
|
|
|
|
|
|
|
29
|
|
|
|
|
|
|
template |
|
30
|
0
|
|
|
|
|
|
OutlierClassification classify_outliers(Iterator first, Iterator last) { |
|
31
|
0
|
0
|
|
|
|
|
std::vector copy(first, last); |
|
32
|
|
|
|
|
|
|
|
|
33
|
0
|
0
|
|
|
|
|
auto q1 = weighted_average_quantile(1, 4, copy.begin(), copy.end()); |
|
34
|
0
|
0
|
|
|
|
|
auto q3 = weighted_average_quantile(3, 4, copy.begin(), copy.end()); |
|
35
|
0
|
|
|
|
|
|
auto iqr = q3 - q1; |
|
36
|
0
|
|
|
|
|
|
auto los = q1 - (iqr * 3.); |
|
37
|
0
|
|
|
|
|
|
auto lom = q1 - (iqr * 1.5); |
|
38
|
0
|
|
|
|
|
|
auto him = q3 + (iqr * 1.5); |
|
39
|
0
|
|
|
|
|
|
auto his = q3 + (iqr * 3.); |
|
40
|
|
|
|
|
|
|
|
|
41
|
0
|
|
|
|
|
|
OutlierClassification o; |
|
42
|
0
|
0
|
|
|
|
|
for (; first != last; ++first) { |
|
43
|
0
|
|
|
|
|
|
auto&& t = *first; |
|
44
|
0
|
0
|
|
|
|
|
if (t < los) ++o.low_severe; |
|
45
|
0
|
0
|
|
|
|
|
else if (t < lom) ++o.low_mild; |
|
46
|
0
|
0
|
|
|
|
|
else if (t > his) ++o.high_severe; |
|
47
|
0
|
0
|
|
|
|
|
else if (t > him) ++o.high_mild; |
|
48
|
0
|
|
|
|
|
|
++o.samples_seen; |
|
49
|
|
|
|
|
|
|
} |
|
50
|
0
|
|
|
|
|
|
return o; |
|
51
|
|
|
|
|
|
|
} |
|
52
|
|
|
|
|
|
|
|
|
53
|
|
|
|
|
|
|
template |
|
54
|
0
|
|
|
|
|
|
double mean(Iterator first, Iterator last) { |
|
55
|
0
|
|
|
|
|
|
auto count = last - first; |
|
56
|
0
|
|
|
|
|
|
double sum = std::accumulate(first, last, 0.); |
|
57
|
0
|
|
|
|
|
|
return sum / count; |
|
58
|
|
|
|
|
|
|
} |
|
59
|
|
|
|
|
|
|
|
|
60
|
|
|
|
|
|
|
template |
|
61
|
|
|
|
|
|
|
sample jackknife(Estimator&& estimator, Iterator first, Iterator last) { |
|
62
|
|
|
|
|
|
|
auto n = last - first; |
|
63
|
|
|
|
|
|
|
auto second = first; |
|
64
|
|
|
|
|
|
|
++second; |
|
65
|
|
|
|
|
|
|
sample results; |
|
66
|
|
|
|
|
|
|
results.reserve(n); |
|
67
|
|
|
|
|
|
|
|
|
68
|
|
|
|
|
|
|
for (auto it = first; it != last; ++it) { |
|
69
|
|
|
|
|
|
|
std::iter_swap(it, first); |
|
70
|
|
|
|
|
|
|
results.push_back(estimator(second, last)); |
|
71
|
|
|
|
|
|
|
} |
|
72
|
|
|
|
|
|
|
|
|
73
|
|
|
|
|
|
|
return results; |
|
74
|
|
|
|
|
|
|
} |
|
75
|
|
|
|
|
|
|
|
|
76
|
|
|
|
|
|
|
inline double normal_cdf(double x) { |
|
77
|
|
|
|
|
|
|
return std::erfc(-x / std::sqrt(2.0)) / 2.0; |
|
78
|
|
|
|
|
|
|
} |
|
79
|
|
|
|
|
|
|
|
|
80
|
|
|
|
|
|
|
double erfc_inv(double x); |
|
81
|
|
|
|
|
|
|
|
|
82
|
|
|
|
|
|
|
double normal_quantile(double p); |
|
83
|
|
|
|
|
|
|
|
|
84
|
|
|
|
|
|
|
template |
|
85
|
|
|
|
|
|
|
Estimate bootstrap(double confidence_level, Iterator first, Iterator last, sample const& resample, Estimator&& estimator) { |
|
86
|
|
|
|
|
|
|
auto n_samples = last - first; |
|
87
|
|
|
|
|
|
|
|
|
88
|
|
|
|
|
|
|
double point = estimator(first, last); |
|
89
|
|
|
|
|
|
|
// Degenerate case with a single sample |
|
90
|
|
|
|
|
|
|
if (n_samples == 1) return { point, point, point, confidence_level }; |
|
91
|
|
|
|
|
|
|
|
|
92
|
|
|
|
|
|
|
sample jack = jackknife(estimator, first, last); |
|
93
|
|
|
|
|
|
|
double jack_mean = mean(jack.begin(), jack.end()); |
|
94
|
|
|
|
|
|
|
double sum_squares, sum_cubes; |
|
95
|
|
|
|
|
|
|
std::tie(sum_squares, sum_cubes) = std::accumulate(jack.begin(), jack.end(), std::make_pair(0., 0.), [jack_mean](std::pair sqcb, double x) -> std::pair { |
|
96
|
|
|
|
|
|
|
auto d = jack_mean - x; |
|
97
|
|
|
|
|
|
|
auto d2 = d * d; |
|
98
|
|
|
|
|
|
|
auto d3 = d2 * d; |
|
99
|
|
|
|
|
|
|
return { sqcb.first + d2, sqcb.second + d3 }; |
|
100
|
|
|
|
|
|
|
}); |
|
101
|
|
|
|
|
|
|
|
|
102
|
|
|
|
|
|
|
double accel = sum_cubes / (6 * std::pow(sum_squares, 1.5)); |
|
103
|
|
|
|
|
|
|
int n = static_cast(resample.size()); |
|
104
|
|
|
|
|
|
|
double prob_n = std::count_if(resample.begin(), resample.end(), [point](double x) { return x < point; }) / static_cast(n); |
|
105
|
|
|
|
|
|
|
// degenerate case with uniform samples |
|
106
|
|
|
|
|
|
|
if (prob_n == 0) return { point, point, point, confidence_level }; |
|
107
|
|
|
|
|
|
|
|
|
108
|
|
|
|
|
|
|
double bias = normal_quantile(prob_n); |
|
109
|
|
|
|
|
|
|
double z1 = normal_quantile((1. - confidence_level) / 2.); |
|
110
|
|
|
|
|
|
|
|
|
111
|
|
|
|
|
|
|
auto cumn = [n](double x) -> int { |
|
112
|
|
|
|
|
|
|
return std::lround(normal_cdf(x) * n); }; |
|
113
|
|
|
|
|
|
|
auto a = [bias, accel](double b) { return bias + b / (1. - accel * b); }; |
|
114
|
|
|
|
|
|
|
double b1 = bias + z1; |
|
115
|
|
|
|
|
|
|
double b2 = bias - z1; |
|
116
|
|
|
|
|
|
|
double a1 = a(b1); |
|
117
|
|
|
|
|
|
|
double a2 = a(b2); |
|
118
|
|
|
|
|
|
|
auto lo = (std::max)(cumn(a1), 0); |
|
119
|
|
|
|
|
|
|
auto hi = (std::min)(cumn(a2), n - 1); |
|
120
|
|
|
|
|
|
|
|
|
121
|
|
|
|
|
|
|
return { point, resample[lo], resample[hi], confidence_level }; |
|
122
|
|
|
|
|
|
|
} |
|
123
|
|
|
|
|
|
|
|
|
124
|
|
|
|
|
|
|
double outlier_variance(Estimate mean, Estimate stddev, int n); |
|
125
|
|
|
|
|
|
|
|
|
126
|
|
|
|
|
|
|
struct bootstrap_analysis { |
|
127
|
|
|
|
|
|
|
Estimate mean; |
|
128
|
|
|
|
|
|
|
Estimate standard_deviation; |
|
129
|
|
|
|
|
|
|
double outlier_variance; |
|
130
|
|
|
|
|
|
|
}; |
|
131
|
|
|
|
|
|
|
|
|
132
|
|
|
|
|
|
|
bootstrap_analysis analyse_samples(double confidence_level, int n_resamples, std::vector::iterator first, std::vector::iterator last); |
|
133
|
|
|
|
|
|
|
} // namespace Detail |
|
134
|
|
|
|
|
|
|
} // namespace Benchmark |
|
135
|
|
|
|
|
|
|
} // namespace Catch |
|
136
|
|
|
|
|
|
|
|
|
137
|
|
|
|
|
|
|
#endif // CATCH_STATS_HPP_INCLUDED |