line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
1
|
|
|
|
|
|
|
package Statistics::MVA; |
2
|
1
|
|
|
1
|
|
46707
|
use strict; |
|
1
|
|
|
|
|
3
|
|
|
1
|
|
|
|
|
43
|
|
3
|
1
|
|
|
1
|
|
5
|
use warnings; |
|
1
|
|
|
|
|
1
|
|
|
1
|
|
|
|
|
28
|
|
4
|
1
|
|
|
1
|
|
5
|
use Carp; |
|
1
|
|
|
|
|
5
|
|
|
1
|
|
|
|
|
96
|
|
5
|
1
|
|
|
1
|
|
2142
|
use Math::MatrixReal; |
|
1
|
|
|
|
|
145174
|
|
|
1
|
|
|
|
|
553
|
|
6
|
|
|
|
|
|
|
|
7
|
|
|
|
|
|
|
#r/ while this module is intended to be the base module and dependency for - and eventually... YOU CAN USE IT TO GENERATE GROUPS OF CV_MATRICES |
8
|
|
|
|
|
|
|
#y standardise - i.e. make sig=1 and mu=0?!? while div - these are more for factor and PCA... so are largely irrelevant |
9
|
|
|
|
|
|
|
|
10
|
|
|
|
|
|
|
#/ need to confirm these are defaults: {standardise => 0, divisor => 1} |
11
|
|
|
|
|
|
|
|
12
|
1
|
|
|
1
|
|
2337
|
use version; our $VERSION = qv('0.0.2'); |
|
1
|
|
|
|
|
8873
|
|
|
1
|
|
|
|
|
10
|
|
13
|
|
|
|
|
|
|
|
14
|
|
|
|
|
|
|
=head1 NAME |
15
|
|
|
|
|
|
|
|
16
|
|
|
|
|
|
|
Statistics::MVA - Base module/Dependency for other modules in Statistics::MVA namespace. |
17
|
|
|
|
|
|
|
|
18
|
|
|
|
|
|
|
=cut |
19
|
|
|
|
|
|
|
=head1 VERSION |
20
|
|
|
|
|
|
|
|
21
|
|
|
|
|
|
|
This document describes Statistics::MVA version 0.0.2 |
22
|
|
|
|
|
|
|
|
23
|
|
|
|
|
|
|
=cut |
24
|
|
|
|
|
|
|
|
25
|
|
|
|
|
|
|
#/ perhaps add something about generating CV_matrices using Statistics::MVA::CVMat and groups of them with Statistics::MVA |
26
|
|
|
|
|
|
|
|
27
|
|
|
|
|
|
|
=head1 DESCRIPTION |
28
|
|
|
|
|
|
|
|
29
|
|
|
|
|
|
|
This module is a base module for the other modules in the Statistics::MVA namespace (e.g. Statistics::MVA::Bartlett, |
30
|
|
|
|
|
|
|
Statistics::MVA::Hotelling etc.). It is not intended for direct use - though it may be used for generating covariance matrices directly. |
31
|
|
|
|
|
|
|
|
32
|
|
|
|
|
|
|
This set of modules is still very much in development. Please let me know if you find any bugs. |
33
|
|
|
|
|
|
|
|
34
|
|
|
|
|
|
|
The constructor accepts an array containing a series of List-of-Lists (LoL) references and returns an object of the form |
35
|
|
|
|
|
|
|
(modified output from Data::TreeDraw): |
36
|
|
|
|
|
|
|
|
37
|
|
|
|
|
|
|
ARRAY REFERENCE (0) |
38
|
|
|
|
|
|
|
| |
39
|
|
|
|
|
|
|
|__ARRAY REFERENCE (1) [ '->[0]' ] |
40
|
|
|
|
|
|
|
| | |
41
|
|
|
|
|
|
|
| |__ARRAY REFERENCE (2) [ '->[0][0]' ] |
42
|
|
|
|
|
|
|
| | | |
43
|
|
|
|
|
|
|
| | |__BLESSED OBJECT BELONGING TO CLASS: Math::MatrixReal (3) [ '->[0][0][0]' ] |
44
|
|
|
|
|
|
|
| | | MatrixReal object containing covariance matrix for first LoL passed. |
45
|
|
|
|
|
|
|
| | | |
46
|
|
|
|
|
|
|
| | |__SCALAR = '7' (3) [ '->[0][0][1]' ] |
47
|
|
|
|
|
|
|
| | | p for first LoL. |
48
|
|
|
|
|
|
|
| | | |
49
|
|
|
|
|
|
|
| | |__ARRAY REFERENCE (3) [ '->[0][0][2]' ] |
50
|
|
|
|
|
|
|
| | LoL of the raw data passed. |
51
|
|
|
|
|
|
|
| | |
52
|
|
|
|
|
|
|
| Continues for all other LoLs refs passed. |
53
|
|
|
|
|
|
|
| |
54
|
|
|
|
|
|
|
|__SCALAR = '3' (1) [ '->[1]' ] |
55
|
|
|
|
|
|
|
| k. |
56
|
|
|
|
|
|
|
| |
57
|
|
|
|
|
|
|
|__SCALAR = '3' (1) [ '->[2]' ] |
58
|
|
|
|
|
|
|
| Overall p - i.e. only allows completes if all individual p´s are equal. |
59
|
|
|
|
|
|
|
| |
60
|
|
|
|
|
|
|
|__SCALAR = '0' (1) [ '->[3]' ] |
61
|
|
|
|
|
|
|
| Value of standardise option. |
62
|
|
|
|
|
|
|
| |
63
|
|
|
|
|
|
|
|__SCALAR = '1' (1) [ '->[4]' ] |
64
|
|
|
|
|
|
|
Value of divisor option. |
65
|
|
|
|
|
|
|
|
66
|
|
|
|
|
|
|
=cut |
67
|
|
|
|
|
|
|
|
68
|
|
|
|
|
|
|
sub new { |
69
|
0
|
|
|
0
|
0
|
|
my ($class, $groups, $options) = @_; |
70
|
0
|
|
|
|
|
|
my $k = scalar @{$groups}; |
|
0
|
|
|
|
|
|
|
71
|
0
|
0
|
|
|
|
|
croak qq{\nThere must be more than one group} if ($k < 2); |
72
|
0
|
0
|
0
|
|
|
|
croak qq{\nArguments must be passed as HASH reference.} if ( ( $options ) && ( ref $options ne q{HASH} ) ); |
73
|
|
|
|
|
|
|
|
74
|
0
|
|
|
|
|
|
my ($s_ref, $p, $stand, $div) = &_cv_matrices($groups, $k, $options); |
75
|
|
|
|
|
|
|
|
76
|
|
|
|
|
|
|
#y feed object - still need data, but this is messy |
77
|
0
|
|
|
|
|
|
my $self = [$s_ref, $k, $p, $stand, $div]; |
78
|
|
|
|
|
|
|
#my $self = [$s_ref, $k, $p, $groups]; |
79
|
|
|
|
|
|
|
|
80
|
0
|
|
|
|
|
|
bless $self, $class; |
81
|
0
|
|
|
|
|
|
return $self; |
82
|
|
|
|
|
|
|
} |
83
|
|
|
|
|
|
|
|
84
|
|
|
|
|
|
|
sub _cv_matrices { |
85
|
0
|
|
|
0
|
|
|
my ( $groups, $k, $options ) = @_; |
86
|
0
|
0
|
0
|
|
|
|
my $stand = defined $options && exists $options->{standardise} ? $options->{standardise} : 0; |
87
|
0
|
0
|
|
|
|
|
my $div = exists $options->{divisor} ? $options->{divisor} : 1; |
88
|
0
|
|
|
|
|
|
my @p; |
89
|
0
|
|
|
|
|
|
my $a_ref = []; |
90
|
|
|
|
|
|
|
#for my $i (0..$self->[1]-1) { |
91
|
0
|
|
|
|
|
|
for my $i (0..$k-1) { |
92
|
|
|
|
|
|
|
# this will be combined into single step |
93
|
0
|
|
|
|
|
|
my $mva = Statistics::MVA::CVMat->new($groups->[$i],{standardise => $stand, divisor => $div}); |
94
|
|
|
|
|
|
|
#my $mva = Statistics::MVA->new($self->[0][$i],{standardise => 0, divisor => 1}); |
95
|
0
|
|
|
|
|
|
my $mva_matrix = my $a = Math::MatrixReal->new_from_rows($mva->[0]); |
96
|
0
|
|
|
|
|
|
push @p, $mva->[1]; |
97
|
|
|
|
|
|
|
#y don´t want the adjusted scores anymore |
98
|
|
|
|
|
|
|
#$a_ref->[$i] = [ $mva_matrix, $mva->[2], $mva->[3] ]; |
99
|
|
|
|
|
|
|
#$a_ref->[$i] = [ $mva_matrix, $mva->[2] ]; |
100
|
|
|
|
|
|
|
#y let´s feed data in too |
101
|
0
|
|
|
|
|
|
$a_ref->[$i] = [ $mva_matrix, $mva->[2], $groups->[$i] ]; |
102
|
|
|
|
|
|
|
} |
103
|
0
|
|
|
|
|
|
my $p_check = shift @p; |
104
|
|
|
|
|
|
|
#croak qq{\nAll groups must have the same variable number} if &_p_notall(@p); |
105
|
0
|
0
|
|
|
|
|
croak qq{\nAll groups must have the same variable number} if &_p_notall($p_check, \@p); |
106
|
0
|
|
|
|
|
|
return ($a_ref, $p_check, $stand, $div); |
107
|
|
|
|
|
|
|
} |
108
|
|
|
|
|
|
|
|
109
|
|
|
|
|
|
|
sub _p_notall { |
110
|
0
|
|
|
0
|
|
|
my ($p_check, $p_ref) = @_; |
111
|
|
|
|
|
|
|
#my @p = @_; |
112
|
|
|
|
|
|
|
#my $p_check = shift @p; |
113
|
|
|
|
|
|
|
#for (@p) { |
114
|
0
|
|
|
|
|
|
for (@{$p_ref}) { |
|
0
|
|
|
|
|
|
|
115
|
|
|
|
|
|
|
# return 0 if $_ != $p_check; |
116
|
0
|
0
|
|
|
|
|
return 1 if $_ != $p_check; |
117
|
|
|
|
|
|
|
} |
118
|
0
|
|
|
|
|
|
return 0; |
119
|
|
|
|
|
|
|
} |
120
|
|
|
|
|
|
|
|
121
|
|
|
|
|
|
|
1; |
122
|
|
|
|
|
|
|
|
123
|
|
|
|
|
|
|
package Statistics::MVA::CVMat; |
124
|
1
|
|
|
1
|
|
1949
|
use strict; |
|
1
|
|
|
|
|
3
|
|
|
1
|
|
|
|
|
42
|
|
125
|
1
|
|
|
1
|
|
6
|
use warnings; |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
38
|
|
126
|
1
|
|
|
1
|
|
4
|
use Carp; |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
94
|
|
127
|
1
|
|
|
1
|
|
6
|
use List::Util qw/sum/; |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
4083
|
|
128
|
|
|
|
|
|
|
|
129
|
|
|
|
|
|
|
# covariance matrix or dispersion matrix is a matrix of covariances between elements |
130
|
|
|
|
|
|
|
sub new { |
131
|
0
|
|
|
0
|
|
|
my ( $class, $lol, $h_ref ) = @_; |
132
|
|
|
|
|
|
|
|
133
|
0
|
0
|
0
|
|
|
|
croak qq{\nData must be passed as ARRAY reference.} if ( !$lol || ( ref $lol ne q{ARRAY} ) ); |
134
|
0
|
0
|
0
|
|
|
|
croak qq{\nArguments must be passed as HASH reference.} if ( ( $h_ref ) && ( ref $h_ref ne q{HASH} ) ); |
135
|
0
|
0
|
|
|
|
|
croak qq{\nAll data must be a matrix of numbers} if &_check($lol); |
136
|
|
|
|
|
|
|
|
137
|
0
|
0
|
|
|
|
|
my $stand = exists $h_ref->{standardise} ? $h_ref->{standardise} : 0; |
138
|
0
|
0
|
|
|
|
|
my $div = exists $h_ref->{divisor} ? $h_ref->{divisor} : 1; |
139
|
0
|
|
|
|
|
|
$lol = &transpose($lol); |
140
|
|
|
|
|
|
|
# need to have adjusted atm |
141
|
|
|
|
|
|
|
# my ( $cv, $p, $n ) = &_cv($lol, $stand, $div); |
142
|
|
|
|
|
|
|
#y not using adjusted anymore here |
143
|
0
|
|
|
|
|
|
my ( $cv, $p, $n ) = &_cv($lol, $stand, $div); |
144
|
|
|
|
|
|
|
#my ( $cv, $p, $n, $adjusted ) = &_cv($lol, $stand, $div); |
145
|
|
|
|
|
|
|
#y not using adjusted anymore here |
146
|
0
|
|
|
|
|
|
my $self = [$cv,$p,$n]; |
147
|
|
|
|
|
|
|
# my $self = [$cv,$p,$n, $adjusted]; |
148
|
0
|
|
|
|
|
|
bless $self, $class; |
149
|
0
|
|
|
|
|
|
return $self; |
150
|
|
|
|
|
|
|
} |
151
|
|
|
|
|
|
|
|
152
|
|
|
|
|
|
|
sub _check { |
153
|
|
|
|
|
|
|
# we already checked $lol is an array. |
154
|
0
|
|
|
0
|
|
|
my $lol = shift; |
155
|
0
|
|
|
|
|
|
my @lol = @{$lol}; |
|
0
|
|
|
|
|
|
|
156
|
0
|
|
|
|
|
|
my $l_check = shift @lol; |
157
|
0
|
|
|
|
|
|
$l_check = scalar ( @{$l_check} ); |
|
0
|
|
|
|
|
|
|
158
|
0
|
|
|
|
|
|
for my $r (@lol) { |
159
|
0
|
0
|
|
|
|
|
return 1 if ( scalar ( @{$r} ) != $l_check ); |
|
0
|
|
|
|
|
|
|
160
|
0
|
|
|
|
|
|
for my $cell (@{$r}) { |
|
0
|
|
|
|
|
|
|
161
|
|
|
|
|
|
|
#/ No need to check that $cells are scalars - i.e. ref \$cell eq q{SCALAR} etc as regexp checks it a number! |
162
|
0
|
0
|
|
|
|
|
return 1 if ( $cell !~ /\A[+-]?\ *(\d+(\.\d*)?|\.\d+)([eE][+-]?\d+)?\z/xms ); |
163
|
|
|
|
|
|
|
} |
164
|
|
|
|
|
|
|
} |
165
|
0
|
|
|
|
|
|
return 0; |
166
|
|
|
|
|
|
|
} |
167
|
|
|
|
|
|
|
|
168
|
|
|
|
|
|
|
sub transpose { |
169
|
0
|
|
|
0
|
|
|
my $a_ref = shift; |
170
|
0
|
|
|
|
|
|
my $done = []; |
171
|
0
|
|
|
|
|
|
for my $col ( 0..$#{$a_ref->[0]} ) { |
|
0
|
|
|
|
|
|
|
172
|
0
|
|
|
|
|
|
push @{$done}, [ map { $_->[$col] } @{$a_ref} ]; |
|
0
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
173
|
|
|
|
|
|
|
} |
174
|
0
|
|
|
|
|
|
return $done; |
175
|
|
|
|
|
|
|
} |
176
|
|
|
|
|
|
|
|
177
|
|
|
|
|
|
|
sub _cv { |
178
|
0
|
|
|
0
|
|
|
my ( $lol, $stand, $div ) = @_; |
179
|
|
|
|
|
|
|
# only accepts table format |
180
|
0
|
|
|
|
|
|
my ( $averages, $var_num, $var_length) = &_averages($lol); |
181
|
0
|
|
|
|
|
|
my $variances = &_variances ( $lol, $averages, $var_num ); |
182
|
0
|
|
|
|
|
|
my $adjusted = &_adjust ($lol, $averages, $variances, $var_num, $stand); |
183
|
0
|
|
|
|
|
|
my $cv_mat = &_CVs($adjusted, $var_num, $var_length, $div); |
184
|
|
|
|
|
|
|
#y not using adjusted anymore here |
185
|
0
|
|
|
|
|
|
return ($cv_mat, $var_num, $var_length); |
186
|
|
|
|
|
|
|
# return ($cv_mat, $var_num, $var_length, $adjusted); |
187
|
|
|
|
|
|
|
} |
188
|
|
|
|
|
|
|
|
189
|
|
|
|
|
|
|
sub _averages { |
190
|
0
|
|
|
0
|
|
|
my $lol = shift; |
191
|
0
|
|
|
|
|
|
my $var_num = scalar ( @{$lol} ); |
|
0
|
|
|
|
|
|
|
192
|
0
|
|
|
|
|
|
my $var_length = scalar ( @{$lol->[0]} ); |
|
0
|
|
|
|
|
|
|
193
|
0
|
|
|
|
|
|
my $totals_ref = []; |
194
|
0
|
|
|
|
|
|
for my $row (0..$var_num-1) { |
195
|
0
|
|
|
|
|
|
my $sum = sum @{$lol->[$row]}; |
|
0
|
|
|
|
|
|
|
196
|
0
|
|
|
|
|
|
my $length = scalar ( @{$lol->[$row]} ); |
|
0
|
|
|
|
|
|
|
197
|
0
|
|
|
|
|
|
my $average = $sum / $length; |
198
|
0
|
|
|
|
|
|
push @{$totals_ref}, { sum => $sum, length => $length, average => $average}; |
|
0
|
|
|
|
|
|
|
199
|
|
|
|
|
|
|
} |
200
|
|
|
|
|
|
|
#$self->{averages} = $totals_ref; |
201
|
|
|
|
|
|
|
#$self->{var_num} = $var_num; |
202
|
|
|
|
|
|
|
#$self->{var_length} = $var_length; |
203
|
0
|
|
|
|
|
|
return ($totals_ref, $var_num, $var_length); |
204
|
|
|
|
|
|
|
} |
205
|
|
|
|
|
|
|
|
206
|
|
|
|
|
|
|
sub _variances { |
207
|
0
|
|
|
0
|
|
|
my ( $data, $avs, $n ) = @_; |
208
|
|
|
|
|
|
|
#my $self = shift; |
209
|
|
|
|
|
|
|
#my $data = $self->{data}; |
210
|
|
|
|
|
|
|
#my $avs = $self->{averages}; |
211
|
0
|
|
|
|
|
|
my $var = []; |
212
|
0
|
|
|
|
|
|
for my $row ( 0..$n-1 ) { |
213
|
0
|
|
|
|
|
|
my $sum = sum map { ($_ - $avs->[$row]{average})**2 } @{$data->[$row]}; |
|
0
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
214
|
0
|
|
|
|
|
|
my $length = scalar ( @{$data->[$row]} ); |
|
0
|
|
|
|
|
|
|
215
|
0
|
|
|
|
|
|
my $variance = $sum / $length; |
216
|
0
|
|
|
|
|
|
push @{$var}, $variance; |
|
0
|
|
|
|
|
|
|
217
|
|
|
|
|
|
|
} |
218
|
0
|
|
|
|
|
|
return $var; |
219
|
|
|
|
|
|
|
} |
220
|
|
|
|
|
|
|
|
221
|
|
|
|
|
|
|
sub _adjust { |
222
|
|
|
|
|
|
|
|
223
|
0
|
|
|
0
|
|
|
my ($trans, $totals, $variances, $n, $stand) = @_; |
224
|
0
|
|
|
|
|
|
my $adjust = []; |
225
|
0
|
0
|
|
|
|
|
croak qq{\nI don\'t recognise that value for the \'standardise\' option - requires \'1\' or \'0\' (defaults to \'0\' without option).} |
226
|
|
|
|
|
|
|
if ( $stand !~ /\A[01]\z/xms ); |
227
|
|
|
|
|
|
|
|
228
|
|
|
|
|
|
|
# if ( $stand == 1 ) { for my $row ( 0..$n-1 ) { @{$adjust->[$row]} = map { ( $_ - $totals->[$row]{average}) / sqrt($variances->[$row]) } @{$trans->[$row]}; } |
229
|
|
|
|
|
|
|
# $self->{adjusted} = $adjust; return $adjust; } |
230
|
|
|
|
|
|
|
# elsif ($stand == 0 ) { for my $row ( 0..$n-1 ) { @{$adjust->[$row]} = map { ( $_ - $totals->[$row]{average}) } @{$trans->[$row]}; } |
231
|
|
|
|
|
|
|
# $self->{adjusted} = $adjust; return $adjust } |
232
|
|
|
|
|
|
|
|
233
|
0
|
|
|
|
|
|
for my $row ( 0..$n-1 ) { |
234
|
0
|
0
|
|
|
|
|
my $divisor = $stand == 1 ? sqrt($variances->[$row]) : 1; |
235
|
0
|
|
|
|
|
|
@{$adjust->[$row]} = |
|
0
|
|
|
|
|
|
|
236
|
|
|
|
|
|
|
#map { ( $_ - $totals->[$row]{average}) / sqrt($variances->[$row]) } @{$trans->[$row]}; |
237
|
0
|
|
|
|
|
|
map { ( $_ - $totals->[$row]{average}) / $divisor } @{$trans->[$row]}; |
|
0
|
|
|
|
|
|
|
238
|
|
|
|
|
|
|
} |
239
|
0
|
|
|
|
|
|
return $adjust; |
240
|
|
|
|
|
|
|
} |
241
|
|
|
|
|
|
|
|
242
|
|
|
|
|
|
|
sub _CVs { |
243
|
|
|
|
|
|
|
|
244
|
0
|
|
|
0
|
|
|
my ($adjusted, $var_num, $length, $div) = @_; |
245
|
0
|
0
|
|
|
|
|
croak qq{\nI don\'t recognise that value for the \'divisor\' option - requires \'1\' for n-1 or \'0\' for n (defaults to \'1\').} |
246
|
|
|
|
|
|
|
if ( $div !~ /\A[01]\z/xms ); |
247
|
0
|
|
|
|
|
|
my $covariance_matrix_ref = []; |
248
|
|
|
|
|
|
|
|
249
|
|
|
|
|
|
|
#/ this is silly - just have divisor: $divisor = $div == 1 ? $length-1 : $length; |
250
|
|
|
|
|
|
|
# if ( $div == 0 ) { for my $row ( 0..($var_num-1) ) { for my $col ( 0..($var_num-1) ) { my $sum = 0; for my $iteration (0..$#{$adjusted->[0]}) { |
251
|
|
|
|
|
|
|
# my $val = $adjusted->[$col][$iteration] * $adjusted->[$row][$iteration]; $sum += $val; } my $cv = $sum / ($length-1); my $cv = $sum / $length; |
252
|
|
|
|
|
|
|
# $covariance_matrix_ref->[$col][$row] = $cv; } } $self->{covariance_matrix} = $covariance_matrix_ref; return $covariance_matrix_ref; } |
253
|
|
|
|
|
|
|
# elsif ( $div == 1 ) { for my $row ( 0..($var_num-1) ) { for my $col ( 0..($var_num-1) ) { my $sum = 0; for my $iteration (0..$#{$adjusted->[0]}) { |
254
|
|
|
|
|
|
|
# my $val = $adjusted->[$col][$iteration] * $adjusted->[$row][$iteration]; $sum += $val; } my $cv = $sum / ($length-1); my $cv = $sum / $length; |
255
|
|
|
|
|
|
|
# $covariance_matrix_ref->[$col][$row] = $cv; } } $self->{covariance_matrix} = $covariance_matrix_ref; return $covariance_matrix_ref; } |
256
|
|
|
|
|
|
|
|
257
|
0
|
0
|
|
|
|
|
my $divisor = $div == 1 ? $length-1 : $length; |
258
|
|
|
|
|
|
|
|
259
|
0
|
|
|
|
|
|
for my $row ( 0..($var_num-1) ) { |
260
|
0
|
|
|
|
|
|
for my $col ( 0..($var_num-1) ) { |
261
|
0
|
|
|
|
|
|
my $sum = 0; |
262
|
0
|
|
|
|
|
|
for my $iteration (0..$#{$adjusted->[0]}) { |
|
0
|
|
|
|
|
|
|
263
|
0
|
|
|
|
|
|
my $val = $adjusted->[$col][$iteration] * $adjusted->[$row][$iteration]; |
264
|
0
|
|
|
|
|
|
$sum += $val; |
265
|
|
|
|
|
|
|
} |
266
|
|
|
|
|
|
|
#my $cv = $sum / ($length-1); |
267
|
0
|
|
|
|
|
|
my $cv = $sum / $divisor; |
268
|
|
|
|
|
|
|
#my $cv = $sum / $length; |
269
|
0
|
|
|
|
|
|
$covariance_matrix_ref->[$col][$row] = $cv; |
270
|
|
|
|
|
|
|
} |
271
|
|
|
|
|
|
|
} |
272
|
|
|
|
|
|
|
#$self->{covariance_matrix} = $covariance_matrix_ref; |
273
|
0
|
|
|
|
|
|
return $covariance_matrix_ref; |
274
|
|
|
|
|
|
|
} |
275
|
|
|
|
|
|
|
|
276
|
|
|
|
|
|
|
1; |
277
|
|
|
|
|
|
|
|
278
|
|
|
|
|
|
|
__END__ |