line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
1
|
|
|
|
|
|
|
package Statistics::LineFit; |
2
|
14
|
|
|
14
|
|
367833
|
use strict; |
|
14
|
|
|
|
|
36
|
|
|
14
|
|
|
|
|
936
|
|
3
|
14
|
|
|
14
|
|
73
|
use Carp qw(carp); |
|
14
|
|
|
|
|
22
|
|
|
14
|
|
|
|
|
1077
|
|
4
|
|
|
|
|
|
|
BEGIN { |
5
|
14
|
|
|
14
|
|
84
|
use Exporter (); |
|
14
|
|
|
|
|
40
|
|
|
14
|
|
|
|
|
353
|
|
6
|
14
|
|
|
14
|
|
81
|
use vars qw ($AUTHOR $VERSION @ISA @EXPORT @EXPORT_OK %EXPORT_TAGS); |
|
14
|
|
|
|
|
21
|
|
|
14
|
|
|
|
|
2101
|
|
7
|
14
|
|
|
14
|
|
29
|
$AUTHOR = 'Richard Anderson '; |
8
|
14
|
|
|
|
|
44
|
@EXPORT = @EXPORT_OK = qw(); |
9
|
14
|
|
|
|
|
42
|
%EXPORT_TAGS = (); |
10
|
14
|
|
|
|
|
212
|
@ISA = qw(Exporter); |
11
|
14
|
|
|
|
|
38478
|
$VERSION = 0.06; |
12
|
|
|
|
|
|
|
} |
13
|
|
|
|
|
|
|
|
14
|
|
|
|
|
|
|
sub new { |
15
|
|
|
|
|
|
|
# |
16
|
|
|
|
|
|
|
# Purpose: Create a new Statistics::LineFit object |
17
|
|
|
|
|
|
|
# |
18
|
15
|
|
|
15
|
1
|
151419
|
my ($caller, $validate, $hush) = @_; |
19
|
15
|
100
|
|
|
|
168
|
my $self = { doneRegress => 0, |
|
|
100
|
|
|
|
|
|
20
|
|
|
|
|
|
|
gotData => 0, |
21
|
|
|
|
|
|
|
hush => defined $hush ? $hush : 0, |
22
|
|
|
|
|
|
|
validate => defined $validate ? $validate : 0, |
23
|
|
|
|
|
|
|
}; |
24
|
15
|
|
33
|
|
|
135
|
bless $self, ref($caller) || $caller; |
25
|
15
|
|
|
|
|
81
|
return $self; |
26
|
|
|
|
|
|
|
} |
27
|
|
|
|
|
|
|
|
28
|
|
|
|
|
|
|
sub coefficients { |
29
|
|
|
|
|
|
|
# |
30
|
|
|
|
|
|
|
# Purpose: Return the slope and intercept from least squares line fit |
31
|
|
|
|
|
|
|
# |
32
|
17
|
|
|
17
|
1
|
605
|
my $self = shift; |
33
|
17
|
100
|
66
|
|
|
125
|
unless (defined $self->{intercept} and defined $self->{slope}) { |
34
|
12
|
100
|
|
|
|
51
|
$self->regress() or return; |
35
|
|
|
|
|
|
|
} |
36
|
15
|
|
|
|
|
748
|
return ($self->{intercept}, $self->{slope}); |
37
|
|
|
|
|
|
|
} |
38
|
|
|
|
|
|
|
|
39
|
|
|
|
|
|
|
sub computeSums { |
40
|
|
|
|
|
|
|
# |
41
|
|
|
|
|
|
|
# Purpose: Compute sum of x, y, x**2, y**2 and x*y (private method) |
42
|
|
|
|
|
|
|
# |
43
|
14
|
|
|
14
|
0
|
524
|
my $self = shift; |
44
|
14
|
|
|
|
|
39
|
my ($sumX, $sumY, $sumXX, $sumYY, $sumXY) = (0, 0, 0, 0, 0); |
45
|
14
|
100
|
|
|
|
58
|
if (defined $self->{weight}) { |
46
|
5
|
|
|
|
|
20
|
for (my $i = 0; $i < $self->{numXY}; ++$i) { |
47
|
213
|
|
|
|
|
1076
|
$sumX += $self->{weight}[$i] * $self->{x}[$i]; |
48
|
213
|
|
|
|
|
362
|
$sumY += $self->{weight}[$i] * $self->{y}[$i]; |
49
|
213
|
|
|
|
|
366
|
$sumXX += $self->{weight}[$i] * $self->{x}[$i] ** 2; |
50
|
213
|
|
|
|
|
399
|
$sumYY += $self->{weight}[$i] * $self->{y}[$i] ** 2; |
51
|
213
|
|
|
|
|
704
|
$sumXY += $self->{weight}[$i] * $self->{x}[$i] |
52
|
|
|
|
|
|
|
* $self->{y}[$i]; |
53
|
|
|
|
|
|
|
} |
54
|
|
|
|
|
|
|
} else { |
55
|
9
|
|
|
|
|
47
|
for (my $i = 0; $i < $self->{numXY}; ++$i) { |
56
|
100030
|
|
|
|
|
125902
|
$sumX += $self->{x}[$i]; |
57
|
100030
|
|
|
|
|
140433
|
$sumY += $self->{y}[$i]; |
58
|
100030
|
|
|
|
|
118488
|
$sumXX += $self->{x}[$i] ** 2; |
59
|
100030
|
|
|
|
|
126448
|
$sumYY += $self->{y}[$i] ** 2; |
60
|
100030
|
|
|
|
|
270520
|
$sumXY += $self->{x}[$i] * $self->{y}[$i]; |
61
|
|
|
|
|
|
|
} |
62
|
|
|
|
|
|
|
} |
63
|
14
|
|
|
|
|
87
|
return ($sumX, $sumY, $sumXX, $sumYY, $sumXY); |
64
|
|
|
|
|
|
|
} |
65
|
|
|
|
|
|
|
|
66
|
|
|
|
|
|
|
sub durbinWatson { |
67
|
|
|
|
|
|
|
# |
68
|
|
|
|
|
|
|
# Purpose: Return the Durbin-Watson statistic |
69
|
|
|
|
|
|
|
# |
70
|
16
|
|
|
16
|
1
|
10623
|
my $self = shift; |
71
|
16
|
100
|
|
|
|
627
|
unless (defined $self->{durbinWatson}) { |
72
|
15
|
100
|
|
|
|
639
|
$self->regress() or return; |
73
|
14
|
|
|
|
|
27
|
my $sumErrDiff = 0; |
74
|
14
|
|
|
|
|
67
|
my $errorTMinus1 = $self->{y}[0] - ($self->{intercept} + $self->{slope} |
75
|
|
|
|
|
|
|
* $self->{x}[0]); |
76
|
14
|
|
|
|
|
60
|
for (my $i = 1; $i < $self->{numXY}; ++$i) { |
77
|
100229
|
|
|
|
|
192638
|
my $error = $self->{y}[$i] - ($self->{intercept} + $self->{slope} |
78
|
|
|
|
|
|
|
* $self->{x}[$i]); |
79
|
100229
|
|
|
|
|
107398
|
$sumErrDiff += ($error - $errorTMinus1) ** 2; |
80
|
100229
|
|
|
|
|
218496
|
$errorTMinus1 = $error; |
81
|
|
|
|
|
|
|
} |
82
|
14
|
100
|
|
|
|
58
|
$self->{durbinWatson} = $self->sumSqErrors() > 0 ? |
83
|
|
|
|
|
|
|
$sumErrDiff / $self->sumSqErrors() : 0; |
84
|
|
|
|
|
|
|
} |
85
|
15
|
|
|
|
|
77
|
return $self->{durbinWatson}; |
86
|
|
|
|
|
|
|
} |
87
|
|
|
|
|
|
|
|
88
|
|
|
|
|
|
|
sub meanSqError { |
89
|
|
|
|
|
|
|
# |
90
|
|
|
|
|
|
|
# Purpose: Return the mean squared error |
91
|
|
|
|
|
|
|
# |
92
|
16
|
|
|
16
|
1
|
4082
|
my $self = shift; |
93
|
16
|
100
|
|
|
|
86
|
unless (defined $self->{meanSqError}) { |
94
|
15
|
100
|
|
|
|
46
|
$self->regress() or return; |
95
|
14
|
|
|
|
|
42
|
$self->{meanSqError} = $self->sumSqErrors() / $self->{numXY}; |
96
|
|
|
|
|
|
|
} |
97
|
15
|
|
|
|
|
74
|
return $self->{meanSqError}; |
98
|
|
|
|
|
|
|
} |
99
|
|
|
|
|
|
|
|
100
|
|
|
|
|
|
|
sub predictedYs { |
101
|
|
|
|
|
|
|
# |
102
|
|
|
|
|
|
|
# Purpose: Return the predicted y values |
103
|
|
|
|
|
|
|
# |
104
|
28
|
|
|
28
|
1
|
951
|
my $self = shift; |
105
|
28
|
100
|
|
|
|
98
|
unless (defined $self->{predictedYs}) { |
106
|
15
|
100
|
|
|
|
52
|
$self->regress() or return; |
107
|
14
|
|
|
|
|
49
|
$self->{predictedYs} = []; |
108
|
14
|
|
|
|
|
64
|
for (my $i = 0; $i < $self->{numXY}; ++$i) { |
109
|
100243
|
|
|
|
|
272968
|
$self->{predictedYs}[$i] = $self->{intercept} |
110
|
|
|
|
|
|
|
+ $self->{slope} * $self->{x}[$i]; |
111
|
|
|
|
|
|
|
} |
112
|
|
|
|
|
|
|
} |
113
|
27
|
|
|
|
|
48
|
return @{$self->{predictedYs}}; |
|
27
|
|
|
|
|
19763
|
|
114
|
|
|
|
|
|
|
} |
115
|
|
|
|
|
|
|
|
116
|
|
|
|
|
|
|
sub regress { |
117
|
|
|
|
|
|
|
# |
118
|
|
|
|
|
|
|
# Purpose: Do weighted or unweighted least squares 2-D line fit (if needed) |
119
|
|
|
|
|
|
|
# |
120
|
|
|
|
|
|
|
# Description: |
121
|
|
|
|
|
|
|
# The equations below apply to both the weighted and unweighted fit: the |
122
|
|
|
|
|
|
|
# weights are normalized in setWeights(), so the sum of the weights is |
123
|
|
|
|
|
|
|
# equal to numXY. |
124
|
|
|
|
|
|
|
# |
125
|
131
|
|
|
131
|
1
|
188
|
my $self = shift; |
126
|
131
|
100
|
|
|
|
602
|
return $self->{regressOK} if $self->{doneRegress}; |
127
|
24
|
100
|
|
|
|
637
|
unless ($self->{gotData}) { |
128
|
10
|
50
|
|
|
|
17
|
carp "No valid data input - can't do regression" unless $self->{hush}; |
129
|
10
|
|
|
|
|
57
|
return 0; |
130
|
|
|
|
|
|
|
} |
131
|
14
|
|
|
|
|
52
|
my ($sumX, $sumY, $sumYY, $sumXY); |
132
|
14
|
|
|
|
|
55
|
($sumX, $sumY, $self->{sumXX}, $sumYY, $sumXY) = $self->computeSums(); |
133
|
14
|
|
|
|
|
70
|
$self->{sumSqDevX} = $self->{sumXX} - $sumX ** 2 / $self->{numXY}; |
134
|
14
|
50
|
|
|
|
59
|
if ($self->{sumSqDevX} != 0) { |
135
|
14
|
|
|
|
|
176
|
$self->{sumSqDevY} = $sumYY - $sumY ** 2 / $self->{numXY}; |
136
|
14
|
|
|
|
|
1227
|
$self->{sumSqDevXY} = $sumXY - $sumX * $sumY / $self->{numXY}; |
137
|
14
|
|
|
|
|
39
|
$self->{slope} = $self->{sumSqDevXY} / $self->{sumSqDevX}; |
138
|
14
|
|
|
|
|
46
|
$self->{intercept} = ($sumY - $self->{slope} * $sumX) / $self->{numXY}; |
139
|
14
|
|
|
|
|
29
|
$self->{regressOK} = 1; |
140
|
|
|
|
|
|
|
} else { |
141
|
0
|
0
|
|
|
|
0
|
carp "Can't fit line when x values are all equal" unless $self->{hush}; |
142
|
0
|
|
|
|
|
0
|
$self->{sumXX} = $self->{sumSqDevX} = undef; |
143
|
0
|
|
|
|
|
0
|
$self->{regressOK} = 0; |
144
|
|
|
|
|
|
|
} |
145
|
14
|
|
|
|
|
31
|
$self->{doneRegress} = 1; |
146
|
14
|
|
|
|
|
1164
|
return $self->{regressOK}; |
147
|
|
|
|
|
|
|
} |
148
|
|
|
|
|
|
|
|
149
|
|
|
|
|
|
|
sub residuals { |
150
|
|
|
|
|
|
|
# |
151
|
|
|
|
|
|
|
# Purpose: Return the predicted Y values minus the observed Y values |
152
|
|
|
|
|
|
|
# |
153
|
15
|
|
|
15
|
1
|
11521
|
my $self = shift; |
154
|
15
|
100
|
|
|
|
64
|
unless (defined $self->{residuals}) { |
155
|
14
|
100
|
|
|
|
48
|
$self->regress() or return; |
156
|
13
|
|
|
|
|
32
|
$self->{residuals} = []; |
157
|
13
|
|
|
|
|
132
|
for (my $i = 0; $i < $self->{numXY}; ++$i) { |
158
|
243
|
|
|
|
|
1019
|
$self->{residuals}[$i] = $self->{y}[$i] - ($self->{intercept} |
159
|
|
|
|
|
|
|
+ $self->{slope} * $self->{x}[$i]); |
160
|
|
|
|
|
|
|
} |
161
|
|
|
|
|
|
|
} |
162
|
14
|
|
|
|
|
25
|
return @{$self->{residuals}}; |
|
14
|
|
|
|
|
101
|
|
163
|
|
|
|
|
|
|
} |
164
|
|
|
|
|
|
|
|
165
|
|
|
|
|
|
|
sub rSquared { |
166
|
|
|
|
|
|
|
# |
167
|
|
|
|
|
|
|
# Purpose: Return the correlation coefficient |
168
|
|
|
|
|
|
|
# |
169
|
16
|
|
|
16
|
1
|
12202
|
my $self = shift; |
170
|
16
|
100
|
|
|
|
73
|
unless (defined $self->{rSquared}) { |
171
|
15
|
100
|
|
|
|
51
|
$self->regress() or return; |
172
|
14
|
|
|
|
|
46
|
my $denom = $self->{sumSqDevX} * $self->{sumSqDevY}; |
173
|
14
|
50
|
|
|
|
112
|
$self->{rSquared} = $denom != 0 ? $self->{sumSqDevXY} ** 2 / $denom : 1; |
174
|
|
|
|
|
|
|
} |
175
|
15
|
|
|
|
|
83
|
return $self->{rSquared}; |
176
|
|
|
|
|
|
|
} |
177
|
|
|
|
|
|
|
|
178
|
|
|
|
|
|
|
sub setData { |
179
|
|
|
|
|
|
|
# |
180
|
|
|
|
|
|
|
# Purpose: Initialize (x,y) values and optional weights |
181
|
|
|
|
|
|
|
# |
182
|
29
|
|
|
29
|
1
|
1075
|
my ($self, $x, $y, $weights) = @_; |
183
|
29
|
|
|
|
|
132
|
$self->{doneRegress} = 0; |
184
|
29
|
|
|
|
|
386
|
$self->{x} = $self->{y} = $self->{numXY} = $self->{weight} |
185
|
|
|
|
|
|
|
= $self->{intercept} = $self->{slope} = $self->{rSquared} |
186
|
|
|
|
|
|
|
= $self->{sigma} = $self->{durbinWatson} = $self->{meanSqError} |
187
|
|
|
|
|
|
|
= $self->{sumSqErrors} = $self->{tStatInt} = $self->{tStatSlope} |
188
|
|
|
|
|
|
|
= $self->{predictedYs} = $self->{residuals} = $self->{sumXX} |
189
|
|
|
|
|
|
|
= $self->{sumSqDevX} = $self->{sumSqDevY} = $self->{sumSqDevXY} |
190
|
|
|
|
|
|
|
= undef; |
191
|
29
|
100
|
|
|
|
117
|
if (@$x < 2) { |
192
|
2
|
50
|
|
|
|
8
|
carp "Must input more than one data point!" unless $self->{hush}; |
193
|
2
|
|
|
|
|
11
|
return 0; |
194
|
|
|
|
|
|
|
} |
195
|
27
|
|
|
|
|
63
|
$self->{numXY} = @$x; |
196
|
27
|
100
|
|
|
|
100
|
if (ref $x->[0]) { |
197
|
5
|
100
|
|
|
|
16
|
$self->setWeights($y) or return 0; |
198
|
2
|
|
|
|
|
6
|
$self->{x} = [ ]; |
199
|
2
|
|
|
|
|
7
|
$self->{y} = [ ]; |
200
|
2
|
|
|
|
|
8
|
foreach my $xy (@$x) { |
201
|
8
|
|
|
|
|
11
|
push @{$self->{x}}, $xy->[0]; |
|
8
|
|
|
|
|
16
|
|
202
|
8
|
|
|
|
|
10
|
push @{$self->{y}}, $xy->[1]; |
|
8
|
|
|
|
|
14
|
|
203
|
|
|
|
|
|
|
} |
204
|
|
|
|
|
|
|
} else { |
205
|
22
|
100
|
|
|
|
96
|
if (@$x != @$y) { |
206
|
1
|
50
|
|
|
|
4
|
carp "Length of x and y arrays must be equal!" unless $self->{hush}; |
207
|
1
|
|
|
|
|
5
|
return 0; |
208
|
|
|
|
|
|
|
} |
209
|
21
|
100
|
|
|
|
75
|
$self->setWeights($weights) or return 0; |
210
|
16
|
|
|
|
|
15519
|
$self->{x} = [ @$x ]; |
211
|
16
|
|
|
|
|
10077
|
$self->{y} = [ @$y ]; |
212
|
|
|
|
|
|
|
} |
213
|
18
|
100
|
|
|
|
95
|
if ($self->{validate}) { |
214
|
5
|
100
|
|
|
|
28
|
unless ($self->validData()) { |
215
|
4
|
|
|
|
|
11
|
$self->{x} = $self->{y} = $self->{weights} = $self->{numXY} = undef; |
216
|
4
|
|
|
|
|
18
|
return 0; |
217
|
|
|
|
|
|
|
} |
218
|
|
|
|
|
|
|
} |
219
|
14
|
|
|
|
|
31
|
$self->{gotData} = 1; |
220
|
14
|
|
|
|
|
102
|
return 1; |
221
|
|
|
|
|
|
|
} |
222
|
|
|
|
|
|
|
|
223
|
|
|
|
|
|
|
sub setWeights { |
224
|
|
|
|
|
|
|
# |
225
|
|
|
|
|
|
|
# Purpose: Normalize and initialize line fit weighting factors (private method) |
226
|
|
|
|
|
|
|
# |
227
|
26
|
|
|
26
|
0
|
47
|
my ($self, $weights) = @_; |
228
|
26
|
100
|
|
|
|
102
|
return 1 unless defined $weights; |
229
|
13
|
100
|
|
|
|
44
|
if (@$weights != $self->{numXY}) { |
230
|
2
|
50
|
|
|
|
6
|
carp "Length of weight array must equal length of data array!" |
231
|
|
|
|
|
|
|
unless $self->{hush}; |
232
|
2
|
|
|
|
|
17
|
return 0; |
233
|
|
|
|
|
|
|
} |
234
|
11
|
100
|
|
|
|
43
|
if ($self->{validate}) { $self->validWeights($weights) or return 0 } |
|
3
|
100
|
|
|
|
11
|
|
235
|
9
|
|
|
|
|
16
|
my $sumW = my $numNonZero = 0; |
236
|
9
|
|
|
|
|
20
|
foreach my $weight (@$weights) { |
237
|
221
|
100
|
|
|
|
377
|
if ($weight < 0) { |
238
|
2
|
50
|
|
|
|
8
|
carp "Weights must be non-negative numbers!" unless $self->{hush}; |
239
|
2
|
|
|
|
|
14
|
return 0; |
240
|
|
|
|
|
|
|
} |
241
|
219
|
|
|
|
|
217
|
$sumW += $weight; |
242
|
219
|
100
|
|
|
|
367
|
if ($weight != 0) { ++$numNonZero } |
|
212
|
|
|
|
|
275
|
|
243
|
|
|
|
|
|
|
} |
244
|
7
|
100
|
|
|
|
26
|
if ($numNonZero < 2) { |
245
|
2
|
50
|
|
|
|
6
|
carp "At least two weights must be nonzero!" unless $self->{hush}; |
246
|
2
|
|
|
|
|
11
|
return 0; |
247
|
|
|
|
|
|
|
} |
248
|
5
|
|
|
|
|
15
|
my $factor = @$weights / $sumW; |
249
|
5
|
|
|
|
|
12
|
foreach my $weight (@$weights) { $weight *= $factor } |
|
213
|
|
|
|
|
445
|
|
250
|
5
|
|
|
|
|
52
|
$self->{weight} = [ @$weights ]; |
251
|
5
|
|
|
|
|
19
|
return 1; |
252
|
|
|
|
|
|
|
} |
253
|
|
|
|
|
|
|
|
254
|
|
|
|
|
|
|
sub sigma { |
255
|
|
|
|
|
|
|
# |
256
|
|
|
|
|
|
|
# Purpose: Return the estimated homoscedastic standard deviation of the |
257
|
|
|
|
|
|
|
# error term |
258
|
|
|
|
|
|
|
# |
259
|
44
|
|
|
44
|
1
|
556
|
my $self = shift; |
260
|
44
|
100
|
|
|
|
137
|
unless (defined $self->{sigma}) { |
261
|
15
|
100
|
|
|
|
58
|
$self->regress() or return; |
262
|
14
|
100
|
|
|
|
66
|
$self->{sigma} = $self->{numXY} > 2 ? |
263
|
|
|
|
|
|
|
sqrt($self->sumSqErrors() / ($self->{numXY} - 2)) : 0; |
264
|
|
|
|
|
|
|
} |
265
|
43
|
|
|
|
|
184
|
return $self->{sigma}; |
266
|
|
|
|
|
|
|
} |
267
|
|
|
|
|
|
|
|
268
|
|
|
|
|
|
|
sub sumSqErrors { |
269
|
|
|
|
|
|
|
# |
270
|
|
|
|
|
|
|
# Purpose: Return the sum of the squared errors (private method) |
271
|
|
|
|
|
|
|
# |
272
|
62
|
|
|
62
|
0
|
7574
|
my $self = shift; |
273
|
62
|
100
|
|
|
|
191
|
unless (defined $self->{sumSqErrors}) { |
274
|
14
|
50
|
|
|
|
38
|
$self->regress() or return; |
275
|
14
|
|
|
|
|
68
|
$self->{sumSqErrors} = $self->{sumSqDevY} - $self->{sumSqDevX} |
276
|
|
|
|
|
|
|
* $self->{slope} ** 2; |
277
|
14
|
50
|
|
|
|
60
|
if ($self->{sumSqErrors} < 0) { $self->{sumSqErrors} = 0 } |
|
0
|
|
|
|
|
0
|
|
278
|
|
|
|
|
|
|
} |
279
|
62
|
|
|
|
|
319
|
return $self->{sumSqErrors}; |
280
|
|
|
|
|
|
|
} |
281
|
|
|
|
|
|
|
|
282
|
|
|
|
|
|
|
sub tStatistics { |
283
|
|
|
|
|
|
|
# |
284
|
|
|
|
|
|
|
# Purpose: Return the T statistics |
285
|
|
|
|
|
|
|
# |
286
|
16
|
|
|
16
|
1
|
1111
|
my $self = shift; |
287
|
16
|
100
|
66
|
|
|
93
|
unless (defined $self->{tStatInt} and defined $self->{tStatSlope}) { |
288
|
15
|
100
|
|
|
|
48
|
$self->regress() or return; |
289
|
14
|
|
|
|
|
44
|
my $biasEstimateInt = $self->sigma() * sqrt($self->{sumXX} |
290
|
|
|
|
|
|
|
/ ($self->{sumSqDevX} * $self->{numXY})); |
291
|
14
|
100
|
|
|
|
81
|
$self->{tStatInt} = $biasEstimateInt != 0 ? |
292
|
|
|
|
|
|
|
$self->{intercept} / $biasEstimateInt : 0; |
293
|
14
|
|
|
|
|
44
|
my $biasEstimateSlope = $self->sigma() / sqrt($self->{sumSqDevX}); |
294
|
14
|
100
|
|
|
|
67
|
$self->{tStatSlope} = $biasEstimateSlope != 0 ? |
295
|
|
|
|
|
|
|
$self->{slope} / $biasEstimateSlope : 0; |
296
|
|
|
|
|
|
|
} |
297
|
15
|
|
|
|
|
67
|
return ($self->{tStatInt}, $self->{tStatSlope}); |
298
|
|
|
|
|
|
|
} |
299
|
|
|
|
|
|
|
|
300
|
|
|
|
|
|
|
sub validData { |
301
|
|
|
|
|
|
|
# |
302
|
|
|
|
|
|
|
# Purpose: Verify that the input x-y data are numeric (private method) |
303
|
|
|
|
|
|
|
# |
304
|
5
|
|
|
5
|
0
|
9
|
my $self = shift; |
305
|
5
|
|
|
|
|
20
|
for (my $i = 0; $i < $self->{numXY}; ++$i) { |
306
|
12
|
100
|
|
|
|
55
|
if (not defined $self->{x}[$i]) { |
307
|
1
|
50
|
|
|
|
4
|
carp "Input x[$i] is not defined" unless $self->{hush}; |
308
|
1
|
|
|
|
|
3
|
return 0; |
309
|
|
|
|
|
|
|
} |
310
|
11
|
100
|
|
|
|
58
|
if ($self->{x}[$i] !~ |
311
|
|
|
|
|
|
|
/^([+-]?)(?=\d|\.\d)\d*(\.\d*)?([Ee]([+-]?\d+))?$/) |
312
|
|
|
|
|
|
|
{ |
313
|
1
|
50
|
|
|
|
4
|
carp "Input x[$i] is not a number: $self->{x}[$i]" |
314
|
|
|
|
|
|
|
unless $self->{hush}; |
315
|
1
|
|
|
|
|
3
|
return 0; |
316
|
|
|
|
|
|
|
} |
317
|
10
|
100
|
|
|
|
25
|
if (not defined $self->{y}[$i]) { |
318
|
1
|
50
|
|
|
|
4
|
carp "Input y[$i] is not defined" unless $self->{hush}; |
319
|
1
|
|
|
|
|
3
|
return 0; |
320
|
|
|
|
|
|
|
} |
321
|
9
|
100
|
|
|
|
67
|
if ($self->{y}[$i] !~ |
322
|
|
|
|
|
|
|
/^([+-]?)(?=\d|\.\d)\d*(\.\d*)?([Ee]([+-]?\d+))?$/) |
323
|
|
|
|
|
|
|
{ |
324
|
1
|
50
|
|
|
|
20
|
carp "Input y[$i] is not a number: $self->{y}[$i]" |
325
|
|
|
|
|
|
|
unless $self->{hush}; |
326
|
1
|
|
|
|
|
4
|
return 0; |
327
|
|
|
|
|
|
|
} |
328
|
|
|
|
|
|
|
} |
329
|
1
|
|
|
|
|
584
|
return 1; |
330
|
|
|
|
|
|
|
} |
331
|
|
|
|
|
|
|
|
332
|
|
|
|
|
|
|
sub validWeights { |
333
|
|
|
|
|
|
|
# |
334
|
|
|
|
|
|
|
# Purpose: Verify that the input weights are numeric (private method) |
335
|
|
|
|
|
|
|
# |
336
|
3
|
|
|
3
|
0
|
5
|
my ($self, $weights) = @_; |
337
|
3
|
|
|
|
|
25
|
for (my $i = 0; $i < @$weights; ++$i) { |
338
|
9
|
100
|
|
|
|
24
|
if (not defined $weights->[$i]) { |
339
|
1
|
50
|
|
|
|
4
|
carp "Input weights[$i] is not defined" unless $self->{hush}; |
340
|
1
|
|
|
|
|
7
|
return 0; |
341
|
|
|
|
|
|
|
} |
342
|
8
|
100
|
|
|
|
80
|
if ($weights->[$i] |
343
|
|
|
|
|
|
|
!~ /^([+-]?)(?=\d|\.\d)\d*(\.\d*)?([Ee]([+-]?\d+))?$/) |
344
|
|
|
|
|
|
|
{ |
345
|
1
|
50
|
|
|
|
6
|
carp "Input weights[$i] is not a number: $weights->[$i]" |
346
|
|
|
|
|
|
|
unless $self->{hush}; |
347
|
1
|
|
|
|
|
10
|
return 0; |
348
|
|
|
|
|
|
|
} |
349
|
|
|
|
|
|
|
} |
350
|
1
|
|
|
|
|
5
|
return 1; |
351
|
|
|
|
|
|
|
} |
352
|
|
|
|
|
|
|
|
353
|
|
|
|
|
|
|
sub varianceOfEstimates { |
354
|
|
|
|
|
|
|
# |
355
|
|
|
|
|
|
|
# Purpose: Return the variances in the estimates of the intercept and slope |
356
|
|
|
|
|
|
|
# |
357
|
16
|
|
|
16
|
1
|
13271
|
my $self = shift; |
358
|
16
|
100
|
66
|
|
|
170
|
unless (defined $self->{intercept} and defined $self->{slope}) { |
359
|
1
|
50
|
|
|
|
4
|
$self->regress() or return; |
360
|
|
|
|
|
|
|
} |
361
|
15
|
|
|
|
|
55
|
my @predictedYs = $self->predictedYs(); |
362
|
15
|
|
|
|
|
2413
|
my ($s, $sx, $sxx) = (0, 0, 0); |
363
|
15
|
100
|
|
|
|
85
|
if (defined $self->{weight}) { |
364
|
5
|
|
|
|
|
31
|
for (my $i = 0; $i < $self->{numXY}; ++$i) { |
365
|
213
|
|
|
|
|
395
|
my $variance = ($predictedYs[$i] - $self->{y}[$i]) ** 2; |
366
|
213
|
100
|
|
|
|
410
|
next if 0 == $variance; |
367
|
209
|
|
|
|
|
257
|
$s += 1.0 / $variance; |
368
|
209
|
|
|
|
|
379
|
$sx += $self->{weight}[$i] * $self->{x}[$i] / $variance; |
369
|
209
|
|
|
|
|
624
|
$sxx += $self->{weight}[$i] * $self->{x}[$i] ** 2 / $variance; |
370
|
|
|
|
|
|
|
} |
371
|
|
|
|
|
|
|
} else { |
372
|
10
|
|
|
|
|
59
|
for (my $i = 0; $i < $self->{numXY}; ++$i) { |
373
|
100034
|
|
|
|
|
160238
|
my $variance = ($predictedYs[$i] - $self->{y}[$i]) ** 2; |
374
|
100034
|
100
|
|
|
|
167010
|
next if 0 == $variance; |
375
|
100027
|
|
|
|
|
96532
|
$s += 1.0 / $variance; |
376
|
100027
|
|
|
|
|
143450
|
$sx += $self->{x}[$i] / $variance; |
377
|
100027
|
|
|
|
|
230197
|
$sxx += $self->{x}[$i] ** 2 / $variance; |
378
|
|
|
|
|
|
|
} |
379
|
|
|
|
|
|
|
} |
380
|
15
|
|
|
|
|
45
|
my $denominator = ($s * $sxx - $sx ** 2); |
381
|
15
|
100
|
|
|
|
57
|
if (0 == $denominator) { |
382
|
3
|
|
|
|
|
9
|
return; |
383
|
|
|
|
|
|
|
} else { |
384
|
12
|
|
|
|
|
2457
|
return ($sxx / $denominator, $s / $denominator); |
385
|
|
|
|
|
|
|
} |
386
|
|
|
|
|
|
|
} |
387
|
|
|
|
|
|
|
|
388
|
|
|
|
|
|
|
1; |
389
|
|
|
|
|
|
|
|
390
|
|
|
|
|
|
|
__END__ |