| line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
|
1
|
|
|
|
|
|
|
package Statistics::KernelEstimation; |
|
2
|
|
|
|
|
|
|
|
|
3
|
5
|
|
|
5
|
|
115873
|
use 5.008008; |
|
|
5
|
|
|
|
|
21
|
|
|
|
5
|
|
|
|
|
197
|
|
|
4
|
5
|
|
|
5
|
|
28
|
use strict; |
|
|
5
|
|
|
|
|
9
|
|
|
|
5
|
|
|
|
|
213
|
|
|
5
|
5
|
|
|
5
|
|
43
|
use warnings; |
|
|
5
|
|
|
|
|
20
|
|
|
|
5
|
|
|
|
|
168
|
|
|
6
|
|
|
|
|
|
|
|
|
7
|
5
|
|
|
5
|
|
25
|
use Carp; |
|
|
5
|
|
|
|
|
8
|
|
|
|
5
|
|
|
|
|
24834
|
|
|
8
|
|
|
|
|
|
|
|
|
9
|
|
|
|
|
|
|
our $VERSION = '0.05'; |
|
10
|
|
|
|
|
|
|
|
|
11
|
|
|
|
|
|
|
# ================================================================= |
|
12
|
|
|
|
|
|
|
# TO DOs |
|
13
|
|
|
|
|
|
|
# |
|
14
|
|
|
|
|
|
|
# - More unit tests |
|
15
|
|
|
|
|
|
|
# - bandidth from data |
|
16
|
|
|
|
|
|
|
# - math function |
|
17
|
|
|
|
|
|
|
# - optimization |
|
18
|
|
|
|
|
|
|
# |
|
19
|
|
|
|
|
|
|
# - opt broken for epanechnikov |
|
20
|
|
|
|
|
|
|
# - max number of integration steps in stiffness integral |
|
21
|
|
|
|
|
|
|
|
|
22
|
|
|
|
|
|
|
# ================================================================= |
|
23
|
|
|
|
|
|
|
# Ctors |
|
24
|
|
|
|
|
|
|
|
|
25
|
|
|
|
|
|
|
sub new { |
|
26
|
2
|
|
|
2
|
1
|
29
|
return new_gauss( @_ ); |
|
27
|
|
|
|
|
|
|
} |
|
28
|
|
|
|
|
|
|
|
|
29
|
|
|
|
|
|
|
sub new_gauss { |
|
30
|
2
|
|
|
2
|
1
|
9
|
my $self = _new( @_ ); |
|
31
|
|
|
|
|
|
|
|
|
32
|
2
|
|
|
|
|
16
|
$self->{pdf} = \&_gauss_pdf; |
|
33
|
2
|
|
|
|
|
6
|
$self->{cdf} = \&_gauss_cdf; |
|
34
|
|
|
|
|
|
|
|
|
35
|
2
|
|
|
|
|
7
|
$self->{curvature} = \&_gauss_curvature; |
|
36
|
2
|
|
|
|
|
4
|
$self->{extension} = 3; |
|
37
|
|
|
|
|
|
|
|
|
38
|
2
|
|
|
|
|
7
|
return $self; |
|
39
|
|
|
|
|
|
|
} |
|
40
|
|
|
|
|
|
|
|
|
41
|
|
|
|
|
|
|
sub new_box { |
|
42
|
1
|
|
|
1
|
1
|
18
|
my $self = _new( @_ ); |
|
43
|
|
|
|
|
|
|
|
|
44
|
1
|
|
|
|
|
10
|
$self->{pdf} = \&_box_pdf; |
|
45
|
1
|
|
|
|
|
3
|
$self->{cdf} = \&_box_cdf; |
|
46
|
|
|
|
|
|
|
|
|
47
|
1
|
|
|
|
|
3
|
$self->{curvature} = \&_box_curvature; |
|
48
|
1
|
|
|
|
|
2
|
$self->{extension} = 0; |
|
49
|
|
|
|
|
|
|
|
|
50
|
1
|
|
|
|
|
3
|
$self->{optimizable} = 0; |
|
51
|
|
|
|
|
|
|
|
|
52
|
1
|
|
|
|
|
4
|
return $self; |
|
53
|
|
|
|
|
|
|
|
|
54
|
|
|
|
|
|
|
} |
|
55
|
|
|
|
|
|
|
|
|
56
|
|
|
|
|
|
|
sub new_epanechnikov { |
|
57
|
1
|
|
|
1
|
1
|
14
|
my $self = _new( @_ ); |
|
58
|
|
|
|
|
|
|
|
|
59
|
1
|
|
|
|
|
6
|
$self->{pdf} = \&_epanechnikov_pdf; |
|
60
|
1
|
|
|
|
|
3
|
$self->{cdf} = \&_epanechnikov_cdf; |
|
61
|
|
|
|
|
|
|
|
|
62
|
1
|
|
|
|
|
3
|
$self->{curvature} = \&_epanechnikov_curvature; |
|
63
|
1
|
|
|
|
|
1
|
$self->{extension} = 0; |
|
64
|
|
|
|
|
|
|
|
|
65
|
1
|
|
|
|
|
2
|
$self->{optimizable} = 0; |
|
66
|
|
|
|
|
|
|
|
|
67
|
1
|
|
|
|
|
5
|
return $self; |
|
68
|
|
|
|
|
|
|
} |
|
69
|
|
|
|
|
|
|
|
|
70
|
|
|
|
|
|
|
sub _new { |
|
71
|
4
|
|
|
4
|
|
13
|
my ( $class ) = @_; |
|
72
|
4
|
|
|
|
|
40
|
bless { data => [], |
|
73
|
|
|
|
|
|
|
sum_x => 0, |
|
74
|
|
|
|
|
|
|
sum_x2 => 0, |
|
75
|
|
|
|
|
|
|
sum_cnt => 0, |
|
76
|
|
|
|
|
|
|
min => undef, |
|
77
|
|
|
|
|
|
|
max => undef, |
|
78
|
|
|
|
|
|
|
optimizable => 1 }, $class; |
|
79
|
|
|
|
|
|
|
} |
|
80
|
|
|
|
|
|
|
|
|
81
|
|
|
|
|
|
|
# ================================================================= |
|
82
|
|
|
|
|
|
|
# Accessors |
|
83
|
|
|
|
|
|
|
|
|
84
|
|
|
|
|
|
|
sub count { |
|
85
|
15831
|
|
|
15831
|
1
|
29249
|
my ( $self ) = @_; |
|
86
|
15831
|
|
|
|
|
34683
|
return $self->{sum_cnt}; |
|
87
|
|
|
|
|
|
|
} |
|
88
|
|
|
|
|
|
|
|
|
89
|
|
|
|
|
|
|
sub range { |
|
90
|
37
|
|
|
37
|
1
|
1177
|
my ( $self ) = @_; |
|
91
|
|
|
|
|
|
|
|
|
92
|
37
|
100
|
|
|
|
89
|
if( wantarray ) { |
|
93
|
31
|
|
|
|
|
89
|
return ( $self->{min}, $self->{max} ); |
|
94
|
|
|
|
|
|
|
} |
|
95
|
|
|
|
|
|
|
|
|
96
|
6
|
|
|
|
|
25
|
return $self->{max}; |
|
97
|
|
|
|
|
|
|
} |
|
98
|
|
|
|
|
|
|
|
|
99
|
|
|
|
|
|
|
sub extended_range { |
|
100
|
27
|
|
|
27
|
1
|
27
|
my ( $self ) = @_; |
|
101
|
|
|
|
|
|
|
|
|
102
|
27
|
|
|
|
|
50
|
my ( $min, $max ) = $self->range(); |
|
103
|
27
|
|
|
|
|
62
|
my $w = $self->{extension}*$self->default_bandwidth(); |
|
104
|
|
|
|
|
|
|
|
|
105
|
27
|
50
|
|
|
|
50
|
if( wantarray ) { |
|
106
|
27
|
|
|
|
|
60
|
return ( $min - $w, $max + $w ); |
|
107
|
|
|
|
|
|
|
} |
|
108
|
|
|
|
|
|
|
|
|
109
|
0
|
|
|
|
|
0
|
return $max + $w; |
|
110
|
|
|
|
|
|
|
} |
|
111
|
|
|
|
|
|
|
|
|
112
|
|
|
|
|
|
|
sub default_bandwidth { |
|
113
|
34
|
|
|
34
|
1
|
1117
|
my ( $self ) = @_; |
|
114
|
|
|
|
|
|
|
|
|
115
|
34
|
100
|
|
|
|
86
|
if( $self->{sum_cnt} == 0 ) { return undef; } |
|
|
3
|
|
|
|
|
13
|
|
|
116
|
|
|
|
|
|
|
|
|
117
|
31
|
|
|
|
|
53
|
my $x = $self->{sum_x}/$self->{sum_cnt}; |
|
118
|
31
|
|
|
|
|
52
|
my $x2 = $self->{sum_x2}/$self->{sum_cnt}; |
|
119
|
31
|
|
|
|
|
52
|
my $sigma = sqrt( $x2 - $x**2 ); |
|
120
|
|
|
|
|
|
|
|
|
121
|
|
|
|
|
|
|
# This is the optimal bandwidth if the point distribution is Gaussian. |
|
122
|
|
|
|
|
|
|
# (Applied Smoothing Techniques for Data Analysis |
|
123
|
|
|
|
|
|
|
# by Adrian W, Bowman & Adelchi Azzalini (1997)) */ |
|
124
|
31
|
|
|
|
|
146
|
return $sigma * ( (3.0*$self->{sum_cnt}/4.0)**(-1.0/5.0) ); |
|
125
|
|
|
|
|
|
|
} |
|
126
|
|
|
|
|
|
|
|
|
127
|
|
|
|
|
|
|
# ================================================================= |
|
128
|
|
|
|
|
|
|
# Adding Data |
|
129
|
|
|
|
|
|
|
|
|
130
|
|
|
|
|
|
|
sub add_data { |
|
131
|
18
|
|
|
18
|
1
|
1511
|
my ( $self, $x, $y, $w ) = @_; |
|
132
|
|
|
|
|
|
|
|
|
133
|
18
|
50
|
|
|
|
41
|
unless( _isNumber( $x ) ) { croak "Input ,$x, is not numeric."; } |
|
|
0
|
|
|
|
|
0
|
|
|
134
|
|
|
|
|
|
|
|
|
135
|
18
|
100
|
|
|
|
64
|
if( !defined( $y ) ) { |
|
|
|
50
|
|
|
|
|
|
|
136
|
12
|
|
|
|
|
522
|
$y = 1; |
|
137
|
|
|
|
|
|
|
} elsif( !_notNegative( $y ) ) { |
|
138
|
0
|
|
|
|
|
0
|
croak "Weight ,$y, must be non-negative number."; |
|
139
|
|
|
|
|
|
|
} |
|
140
|
|
|
|
|
|
|
|
|
141
|
18
|
50
|
33
|
|
|
1124
|
if( defined( $w ) && !_isPositive( $w ) ) { |
|
142
|
0
|
|
|
|
|
0
|
croak "Bandwidth ,$w, must be strictly positive number in add_data."; |
|
143
|
|
|
|
|
|
|
} |
|
144
|
|
|
|
|
|
|
|
|
145
|
|
|
|
|
|
|
# If no bandwidth has been specified, $w will be undef! |
|
146
|
18
|
|
|
|
|
33
|
push @{ $self->{data} }, { pos => $x, cnt => $y, wid => $w }; |
|
|
18
|
|
|
|
|
170
|
|
|
147
|
|
|
|
|
|
|
|
|
148
|
|
|
|
|
|
|
# Update summary statistics as we go along: |
|
149
|
18
|
|
|
|
|
410
|
$self->{sum_x} += $y*$x; |
|
150
|
18
|
|
|
|
|
33
|
$self->{sum_x2} += $y*$x*$x; |
|
151
|
18
|
|
|
|
|
26
|
$self->{sum_cnt} += $y; |
|
152
|
|
|
|
|
|
|
|
|
153
|
18
|
100
|
|
|
|
28
|
if( scalar @{ $self->{data} } == 1 ) { |
|
|
18
|
|
|
|
|
770
|
|
|
154
|
4
|
|
|
|
|
9
|
$self->{min} = $x; |
|
155
|
4
|
|
|
|
|
28
|
$self->{max} = $x; |
|
156
|
|
|
|
|
|
|
} else { |
|
157
|
14
|
100
|
|
|
|
46
|
$self->{min} = $x < $self->{min} ? $x : $self->{min}; |
|
158
|
14
|
100
|
|
|
|
43
|
$self->{max} = $x > $self->{max} ? $x : $self->{max}; |
|
159
|
|
|
|
|
|
|
} |
|
160
|
|
|
|
|
|
|
|
|
161
|
18
|
|
|
|
|
687
|
return; |
|
162
|
|
|
|
|
|
|
} |
|
163
|
|
|
|
|
|
|
|
|
164
|
|
|
|
|
|
|
# ================================================================= |
|
165
|
|
|
|
|
|
|
# Kernel Estimate |
|
166
|
|
|
|
|
|
|
|
|
167
|
|
|
|
|
|
|
sub pdf { |
|
168
|
14005
|
|
|
14005
|
1
|
69321
|
my $self = shift; |
|
169
|
14005
|
|
|
|
|
27996
|
return $self->_impl( 'pdf', 'default', @_ ); |
|
170
|
|
|
|
|
|
|
} |
|
171
|
|
|
|
|
|
|
|
|
172
|
|
|
|
|
|
|
sub pdf_width_from_data { |
|
173
|
0
|
|
|
0
|
1
|
0
|
my $self = shift; |
|
174
|
0
|
|
|
|
|
0
|
return $self->_impl( 'pdf', 'fromdata', @_ ); |
|
175
|
|
|
|
|
|
|
} |
|
176
|
|
|
|
|
|
|
|
|
177
|
|
|
|
|
|
|
# sub pdf_optimal { |
|
178
|
|
|
|
|
|
|
# my $self = shift; |
|
179
|
|
|
|
|
|
|
# return $self->_impl( 'pdf', 'optimal', @_ ); |
|
180
|
|
|
|
|
|
|
# } |
|
181
|
|
|
|
|
|
|
|
|
182
|
|
|
|
|
|
|
|
|
183
|
|
|
|
|
|
|
sub cdf { |
|
184
|
3
|
|
|
3
|
1
|
1220
|
my $self = shift; |
|
185
|
3
|
|
|
|
|
17
|
return $self->_impl( 'cdf', 'default', @_ ); |
|
186
|
|
|
|
|
|
|
} |
|
187
|
|
|
|
|
|
|
|
|
188
|
|
|
|
|
|
|
sub cdf_width_from_data { |
|
189
|
0
|
|
|
0
|
1
|
0
|
my $self = shift; |
|
190
|
0
|
|
|
|
|
0
|
return $self->_impl( 'cdf', 'fromdata', @_ ); |
|
191
|
|
|
|
|
|
|
} |
|
192
|
|
|
|
|
|
|
|
|
193
|
|
|
|
|
|
|
# sub cdf_optimal { |
|
194
|
|
|
|
|
|
|
# my $self = shift; |
|
195
|
|
|
|
|
|
|
# return $self->_impl( 'cdf', 'optimal', @_ ); |
|
196
|
|
|
|
|
|
|
# } |
|
197
|
|
|
|
|
|
|
|
|
198
|
|
|
|
|
|
|
sub _curvature { |
|
199
|
1787
|
|
|
1787
|
|
1946
|
my $self = shift; |
|
200
|
1787
|
|
|
|
|
3223
|
return $self->_impl( 'curvature', 'default', @_ ); |
|
201
|
|
|
|
|
|
|
} |
|
202
|
|
|
|
|
|
|
|
|
203
|
|
|
|
|
|
|
sub _impl { |
|
204
|
15795
|
|
|
15795
|
|
20915
|
my ( $self, $mode, $bandwidth_mode, $x, $w ) = @_; |
|
205
|
|
|
|
|
|
|
|
|
206
|
15795
|
50
|
100
|
|
|
42656
|
unless( $mode eq 'pdf' || $mode eq 'cdf' |
|
|
|
|
66
|
|
|
|
|
|
207
|
0
|
|
|
|
|
0
|
|| $mode eq 'curvature' ) { die "Illegal mode: ,$mode,"; } |
|
208
|
15795
|
50
|
|
|
|
22498
|
unless( _isNumber( $x ) ) { croak "Position ,$x, must be numeric."; } |
|
|
0
|
|
|
|
|
0
|
|
|
209
|
|
|
|
|
|
|
|
|
210
|
|
|
|
|
|
|
# If no data (or only data w/ weight zero), return immediately |
|
211
|
15795
|
|
|
|
|
28220
|
my $count = $self->count(); |
|
212
|
15795
|
50
|
|
|
|
29471
|
if( $count == 0 ) { return 0; } |
|
|
0
|
|
|
|
|
0
|
|
|
213
|
|
|
|
|
|
|
|
|
214
|
|
|
|
|
|
|
# If bandwidth is from data, calculate result and return immediately |
|
215
|
15795
|
50
|
|
|
|
26413
|
if( $bandwidth_mode eq 'fromdata' ) { |
|
216
|
0
|
|
|
|
|
0
|
my $y = 0; |
|
217
|
0
|
|
|
|
|
0
|
for my $p ( @{ $self->{data} } ) { |
|
|
0
|
|
|
|
|
0
|
|
|
218
|
0
|
0
|
|
|
|
0
|
unless( defined $p->{wid} ) { |
|
219
|
0
|
|
|
|
|
0
|
carp "Undefined bandwidth in data at position " . $p->{pos} |
|
220
|
|
|
|
|
|
|
. ". Using default bandwidth."; |
|
221
|
0
|
|
|
|
|
0
|
$w = $self->default_bandwidth(); |
|
222
|
|
|
|
|
|
|
} else { |
|
223
|
0
|
|
|
|
|
0
|
$w = $p->{wid}; |
|
224
|
|
|
|
|
|
|
} |
|
225
|
|
|
|
|
|
|
|
|
226
|
0
|
|
|
|
|
0
|
$y += $p->{cnt} * $self->{$mode}( $x, $p->{pos}, $w ); |
|
227
|
|
|
|
|
|
|
} |
|
228
|
0
|
|
|
|
|
0
|
return $y/$count; |
|
229
|
|
|
|
|
|
|
} |
|
230
|
|
|
|
|
|
|
|
|
231
|
|
|
|
|
|
|
# ... otherwise, determine bandwidth |
|
232
|
15795
|
50
|
|
|
|
35796
|
if( $bandwidth_mode eq 'default' ) { |
|
233
|
15795
|
50
|
|
|
|
38210
|
if( !defined( $w ) ) { |
|
|
|
50
|
|
|
|
|
|
|
234
|
0
|
|
|
|
|
0
|
$w = $self->default_bandwidth(); |
|
235
|
|
|
|
|
|
|
} elsif( !_notNegative( $w ) ) { |
|
236
|
0
|
|
|
|
|
0
|
croak "Bandwidth ,$w, must be strictly positive number."; |
|
237
|
|
|
|
|
|
|
} |
|
238
|
|
|
|
|
|
|
|
|
239
|
|
|
|
|
|
|
# } elsif( $bandwidth_mode eq 'optimal' ) { |
|
240
|
|
|
|
|
|
|
# $w = $self->optimal_bandwidth(); |
|
241
|
|
|
|
|
|
|
} |
|
242
|
|
|
|
|
|
|
|
|
243
|
|
|
|
|
|
|
# ... now use bandwidth from above to find result |
|
244
|
15795
|
|
|
|
|
17421
|
my $y = 0; |
|
245
|
15795
|
|
|
|
|
15095
|
for my $q ( @{ $self->{data} } ) { |
|
|
15795
|
|
|
|
|
31954
|
|
|
246
|
45171
|
|
|
|
|
98838
|
$y += $q->{cnt} * $self->{$mode}( $x, $q->{pos}, $w ); |
|
247
|
|
|
|
|
|
|
} |
|
248
|
|
|
|
|
|
|
|
|
249
|
15795
|
|
|
|
|
68327
|
return $y/$count; |
|
250
|
|
|
|
|
|
|
} |
|
251
|
|
|
|
|
|
|
|
|
252
|
|
|
|
|
|
|
# ================================================================= |
|
253
|
|
|
|
|
|
|
# Classical Histograms |
|
254
|
|
|
|
|
|
|
|
|
255
|
|
|
|
|
|
|
sub histogram { |
|
256
|
2
|
|
|
2
|
1
|
12
|
my ( $self, $bins ) = @_; |
|
257
|
|
|
|
|
|
|
|
|
258
|
2
|
50
|
33
|
|
|
8
|
unless( _isPositive( $bins ) && $bins==int($bins) ) { |
|
259
|
0
|
|
|
|
|
0
|
croak "Number of bins must be strictly positive integer."; |
|
260
|
|
|
|
|
|
|
} |
|
261
|
|
|
|
|
|
|
|
|
262
|
2
|
100
|
|
|
|
7
|
if( $self->count() == 0 ) { return []; } |
|
|
1
|
|
|
|
|
7
|
|
|
263
|
|
|
|
|
|
|
|
|
264
|
1
|
|
|
|
|
5
|
my ( $min, $max ) = $self->range(); |
|
265
|
|
|
|
|
|
|
|
|
266
|
1
|
50
|
|
|
|
4
|
if( $bins == 1 ) { |
|
267
|
0
|
|
|
|
|
0
|
return [ { pos => 0.5*($max-$min), cnt => $self->count() } ]; |
|
268
|
|
|
|
|
|
|
} |
|
269
|
|
|
|
|
|
|
|
|
270
|
1
|
|
|
|
|
4
|
my $w = ($max - $min)/($bins - 1); |
|
271
|
|
|
|
|
|
|
|
|
272
|
1
|
|
|
|
|
3
|
my @histo = (); |
|
273
|
1
|
|
|
|
|
3
|
for my $k ( 0..$bins-1 ) { |
|
274
|
9
|
|
|
|
|
28
|
push @histo, { pos => $min + $k*$w, cnt => 0 }; |
|
275
|
|
|
|
|
|
|
} |
|
276
|
|
|
|
|
|
|
|
|
277
|
1
|
|
|
|
|
3
|
for my $p ( @{ $self->{data} } ) { |
|
|
1
|
|
|
|
|
3
|
|
|
278
|
6
|
|
|
|
|
14
|
my $i = int( ($p->{pos} - ( $min - 0.5*$w ) )/$w ); |
|
279
|
6
|
|
|
|
|
12
|
my ( $lo, $hi ) = ( $min + ($i-0.5)*$w, $min + ($i+0.5)*$w ); |
|
280
|
|
|
|
|
|
|
|
|
281
|
6
|
|
|
|
|
11
|
my $x = $p->{pos}; |
|
282
|
|
|
|
|
|
|
|
|
283
|
6
|
50
|
33
|
|
|
30
|
if( $x < $lo ) { $i -= 1; } |
|
|
0
|
50
|
|
|
|
0
|
|
|
|
|
0
|
|
|
|
|
|
|
284
|
6
|
|
|
|
|
8
|
elsif( $lo <= $x && $x < $hi ) { $i = $i; } |
|
285
|
0
|
|
|
|
|
0
|
elsif( $hi <= $x ) { $i += 1; } |
|
286
|
|
|
|
|
|
|
|
|
287
|
6
|
|
|
|
|
15
|
$histo[ $i ]->{cnt} += $p->{cnt}; |
|
288
|
|
|
|
|
|
|
} |
|
289
|
|
|
|
|
|
|
|
|
290
|
1
|
|
|
|
|
4
|
return \@histo; |
|
291
|
|
|
|
|
|
|
} |
|
292
|
|
|
|
|
|
|
|
|
293
|
|
|
|
|
|
|
sub distribution_function { |
|
294
|
2
|
|
|
2
|
1
|
8
|
my ( $self ) = @_; |
|
295
|
|
|
|
|
|
|
|
|
296
|
2
|
|
|
|
|
5
|
my @sorted = sort { $a->{pos} <=> $b->{pos} } @{ $self->{data} }; |
|
|
10
|
|
|
|
|
529
|
|
|
|
2
|
|
|
|
|
17
|
|
|
297
|
|
|
|
|
|
|
|
|
298
|
2
|
|
|
|
|
5
|
my @dist = (); |
|
299
|
2
|
|
|
|
|
6
|
my $cumul = 0; |
|
300
|
2
|
|
|
|
|
10
|
for my $p ( @sorted ) { |
|
301
|
6
|
|
|
|
|
241
|
$cumul += $p->{cnt}; |
|
302
|
6
|
|
|
|
|
26
|
push @dist, { pos => $p->{pos}, cnt => $cumul }; |
|
303
|
|
|
|
|
|
|
} |
|
304
|
|
|
|
|
|
|
|
|
305
|
2
|
|
|
|
|
29
|
return \@dist; |
|
306
|
|
|
|
|
|
|
} |
|
307
|
|
|
|
|
|
|
|
|
308
|
|
|
|
|
|
|
# ================================================================= |
|
309
|
|
|
|
|
|
|
# Input validation |
|
310
|
|
|
|
|
|
|
|
|
311
|
|
|
|
|
|
|
# In general: undef evaluates to invalid input! |
|
312
|
|
|
|
|
|
|
|
|
313
|
|
|
|
|
|
|
sub _isNumber { |
|
314
|
31616
|
|
|
31616
|
|
33308
|
my ( $in ) = @_; |
|
315
|
31616
|
50
|
33
|
|
|
213859
|
if( defined( $in ) && |
|
316
|
31616
|
|
|
|
|
103730
|
$in =~ /^[-+]?[0-9]*\.?[0-9]+([eE][-+]?[0-9]+)?$/ ) { return 1; } |
|
317
|
0
|
|
|
|
|
0
|
return 0; |
|
318
|
|
|
|
|
|
|
} |
|
319
|
|
|
|
|
|
|
|
|
320
|
|
|
|
|
|
|
sub _isPositive { |
|
321
|
2
|
|
|
2
|
|
4
|
my ( $in ) = @_; |
|
322
|
2
|
50
|
33
|
|
|
8
|
if( _isNumber( $in ) && $in > 0 ) { return 1; } |
|
|
2
|
|
|
|
|
15
|
|
|
323
|
0
|
|
|
|
|
0
|
return 0; |
|
324
|
|
|
|
|
|
|
} |
|
325
|
|
|
|
|
|
|
|
|
326
|
|
|
|
|
|
|
sub _notNegative { |
|
327
|
15801
|
|
|
15801
|
|
15833
|
my ( $in ) = @_; |
|
328
|
15801
|
50
|
33
|
|
|
24310
|
if( _isNumber( $in ) && $in >= 0 ) { return 1; } |
|
|
15801
|
|
|
|
|
37519
|
|
|
329
|
0
|
|
|
|
|
0
|
return 0; |
|
330
|
|
|
|
|
|
|
} |
|
331
|
|
|
|
|
|
|
|
|
332
|
|
|
|
|
|
|
# ================================================================= |
|
333
|
|
|
|
|
|
|
# Optimal Bandwidth |
|
334
|
|
|
|
|
|
|
|
|
335
|
|
|
|
|
|
|
# Development history: |
|
336
|
|
|
|
|
|
|
# |
|
337
|
|
|
|
|
|
|
# Equation solver: |
|
338
|
|
|
|
|
|
|
# 1) Straight iteration |
|
339
|
|
|
|
|
|
|
# 2) Newton's method |
|
340
|
|
|
|
|
|
|
# 3) Sekant method |
|
341
|
|
|
|
|
|
|
# 4) Bisection |
|
342
|
|
|
|
|
|
|
# |
|
343
|
|
|
|
|
|
|
# Integration: |
|
344
|
|
|
|
|
|
|
# 1) Numerical differentiation |
|
345
|
|
|
|
|
|
|
# 2) Numerical differentiation, with equal step width as integration |
|
346
|
|
|
|
|
|
|
# 3) Symbolic differentiation |
|
347
|
|
|
|
|
|
|
# 4) Adaptive step size integration |
|
348
|
|
|
|
|
|
|
# 5) Romberg integration (not implemented) |
|
349
|
|
|
|
|
|
|
|
|
350
|
|
|
|
|
|
|
# This routine solves the equation encoded in _optimal_bandwidth_equation |
|
351
|
|
|
|
|
|
|
# using the secant method. |
|
352
|
|
|
|
|
|
|
|
|
353
|
|
|
|
|
|
|
sub optimal_bandwidth { |
|
354
|
2
|
|
|
2
|
1
|
2
|
my $self = shift; |
|
355
|
2
|
50
|
|
|
|
6
|
my $n = @_ ? shift : 25; |
|
356
|
2
|
50
|
|
|
|
5
|
my $eps = @_ ? shift : 1e-3; |
|
357
|
|
|
|
|
|
|
|
|
358
|
2
|
50
|
|
|
|
7
|
unless( $self->{optimizable} ) { |
|
359
|
0
|
|
|
|
|
0
|
croak "Bandwidth Optimization not available for this type of kernel."; |
|
360
|
|
|
|
|
|
|
} |
|
361
|
|
|
|
|
|
|
|
|
362
|
2
|
100
|
|
|
|
6
|
if( $self->{sum_cnt} == 0 ) { return undef; } |
|
|
1
|
|
|
|
|
4
|
|
|
363
|
|
|
|
|
|
|
|
|
364
|
1
|
|
|
|
|
3
|
my $x0 = $self->default_bandwidth(); |
|
365
|
1
|
|
|
|
|
4
|
my $y0 = $self->_optimal_bandwidth_equation( $x0 ); |
|
366
|
|
|
|
|
|
|
|
|
367
|
1
|
|
|
|
|
3
|
my $x = 0.8*$x0; |
|
368
|
|
|
|
|
|
|
# my $x = $x0 * ( 1 - 1e-6 ); |
|
369
|
1
|
|
|
|
|
4
|
my $y = $self->_optimal_bandwidth_equation( $x ); |
|
370
|
|
|
|
|
|
|
|
|
371
|
1
|
|
|
|
|
3
|
my $dx = 0; |
|
372
|
|
|
|
|
|
|
|
|
373
|
1
|
|
|
|
|
3
|
my $i = 0; |
|
374
|
1
|
|
|
|
|
5
|
while( $i++ < $n ) { |
|
375
|
25
|
|
|
|
|
44
|
$x -= $y*($x0-$x)/($y0-$y); |
|
376
|
25
|
|
|
|
|
45
|
$y = $self->_optimal_bandwidth_equation( $x ); |
|
377
|
|
|
|
|
|
|
|
|
378
|
25
|
50
|
|
|
|
97
|
if( abs($y) < $eps*$y0 ) { last } |
|
|
0
|
|
|
|
|
0
|
|
|
379
|
|
|
|
|
|
|
} |
|
380
|
|
|
|
|
|
|
|
|
381
|
1
|
50
|
|
|
|
6
|
if( wantarray ) { return ( $x, $i ); } |
|
|
0
|
|
|
|
|
0
|
|
|
382
|
1
|
|
|
|
|
9
|
return $x; |
|
383
|
|
|
|
|
|
|
} |
|
384
|
|
|
|
|
|
|
|
|
385
|
|
|
|
|
|
|
# This routine uses the secant method. |
|
386
|
|
|
|
|
|
|
|
|
387
|
|
|
|
|
|
|
sub optimal_bandwidth_safe { |
|
388
|
0
|
|
|
0
|
1
|
0
|
my $self = shift; |
|
389
|
0
|
0
|
|
|
|
0
|
my $x0 = @_ ? shift : $self->default_bandwidth() / $self->count(); |
|
390
|
0
|
0
|
|
|
|
0
|
my $x1 = @_ ? shift : 2*$self->default_bandwidth(); |
|
391
|
0
|
0
|
|
|
|
0
|
my $eps = @_ ? shift : 1e-3; |
|
392
|
|
|
|
|
|
|
|
|
393
|
0
|
0
|
|
|
|
0
|
unless( $self->{optimizable} ) { |
|
394
|
0
|
|
|
|
|
0
|
croak "Bandwidth Optimization not available for this type of kernel."; |
|
395
|
|
|
|
|
|
|
} |
|
396
|
|
|
|
|
|
|
|
|
397
|
0
|
0
|
|
|
|
0
|
if( $self->{sum_cnt} == 0 ) { return undef; } |
|
|
0
|
|
|
|
|
0
|
|
|
398
|
|
|
|
|
|
|
|
|
399
|
0
|
|
|
|
|
0
|
my $y0 = $self->_optimal_bandwidth_equation( $x0 ); |
|
400
|
0
|
|
|
|
|
0
|
my $y1 = $self->_optimal_bandwidth_equation( $x1 ); |
|
401
|
|
|
|
|
|
|
|
|
402
|
0
|
0
|
|
|
|
0
|
unless( $y0 * $y1 < 0 ) { |
|
403
|
0
|
|
|
|
|
0
|
croak "Interval [ f(x0=$x0)=$y0 : f(x1=$x1)=$y1 ] does not bracket root."; |
|
404
|
|
|
|
|
|
|
} |
|
405
|
|
|
|
|
|
|
|
|
406
|
0
|
|
|
|
|
0
|
my ( $x, $y, $i ) = ( 0, 0, 0 ); |
|
407
|
0
|
|
|
|
|
0
|
while( abs( $x0 - $x1 ) > $eps*$x1 ) { |
|
408
|
0
|
|
|
|
|
0
|
$i += 1; |
|
409
|
|
|
|
|
|
|
|
|
410
|
0
|
|
|
|
|
0
|
$x = ( $x0 + $x1 )/2; |
|
411
|
0
|
|
|
|
|
0
|
$y = $self->_optimal_bandwidth_equation( $x ); |
|
412
|
|
|
|
|
|
|
|
|
413
|
0
|
0
|
|
|
|
0
|
if( abs( $y ) < $eps*$y0 ) { last } |
|
|
0
|
|
|
|
|
0
|
|
|
414
|
|
|
|
|
|
|
|
|
415
|
0
|
0
|
|
|
|
0
|
if( $y * $y0 < 0 ) { |
|
416
|
0
|
|
|
|
|
0
|
( $x1, $y1 ) = ( $x, $y ); |
|
417
|
|
|
|
|
|
|
} else { |
|
418
|
0
|
|
|
|
|
0
|
( $x0, $y0 ) = ( $x, $y ); |
|
419
|
|
|
|
|
|
|
} |
|
420
|
|
|
|
|
|
|
} |
|
421
|
|
|
|
|
|
|
|
|
422
|
0
|
0
|
|
|
|
0
|
if( wantarray ) { return ( $x, $i ); } |
|
|
0
|
|
|
|
|
0
|
|
|
423
|
0
|
|
|
|
|
0
|
return $x; |
|
424
|
|
|
|
|
|
|
} |
|
425
|
|
|
|
|
|
|
|
|
426
|
|
|
|
|
|
|
# This routine encodes the self-consistent equation that is fulfilled |
|
427
|
|
|
|
|
|
|
# by the optimal bandwidth. Notation according to Bowman & Azzalini. |
|
428
|
|
|
|
|
|
|
|
|
429
|
|
|
|
|
|
|
sub _optimal_bandwidth_equation { |
|
430
|
27
|
|
|
27
|
|
38
|
my ( $self, $w ) = @_; |
|
431
|
|
|
|
|
|
|
|
|
432
|
27
|
|
|
|
|
29
|
my $alpha = 1.0/(2.0*sqrt( 3.14159265358979323846 ) ); |
|
433
|
27
|
|
|
|
|
28
|
my $sigma = 1.0; |
|
434
|
27
|
|
|
|
|
42
|
my $n = $self->count(); |
|
435
|
27
|
|
|
|
|
55
|
my $q = $self->_stiffness_integral( $w ); |
|
436
|
|
|
|
|
|
|
|
|
437
|
27
|
|
|
|
|
137
|
return $w - ( ($n*$q*$sigma**4)/$alpha )**(-1.0/5.0); |
|
438
|
|
|
|
|
|
|
} |
|
439
|
|
|
|
|
|
|
|
|
440
|
|
|
|
|
|
|
# This routine calculates the integral over the square of the curvature |
|
441
|
|
|
|
|
|
|
# (it: Int (f'')**2 ) using the trapezoidal rule. The routine decreases |
|
442
|
|
|
|
|
|
|
# the step size by half until the relative error in the last step is less |
|
443
|
|
|
|
|
|
|
# than epsilon. |
|
444
|
|
|
|
|
|
|
|
|
445
|
|
|
|
|
|
|
sub _stiffness_integral { |
|
446
|
27
|
|
|
27
|
|
29
|
my ( $self, $w ) = @_; |
|
447
|
|
|
|
|
|
|
|
|
448
|
27
|
|
|
|
|
54
|
my $eps = 1e-4; |
|
449
|
|
|
|
|
|
|
|
|
450
|
27
|
|
|
|
|
64
|
my ( $mn, $mx ) = $self->extended_range(); |
|
451
|
27
|
|
|
|
|
33
|
my $n = 1; |
|
452
|
27
|
|
|
|
|
36
|
my $dx = ($mx-$mn)/$n; |
|
453
|
|
|
|
|
|
|
|
|
454
|
27
|
|
|
|
|
49
|
my $yy = 0.5*($self->_curvature($mn,$w)**2+$self->_curvature($mx,$w)**2)*$dx; |
|
455
|
|
|
|
|
|
|
|
|
456
|
|
|
|
|
|
|
# The trapezoidal rule guarantees a relative error of better than eps |
|
457
|
|
|
|
|
|
|
# for some number of steps less than maxn. |
|
458
|
27
|
|
|
|
|
51
|
my $maxn = ($mx-$mn)/sqrt($eps); |
|
459
|
|
|
|
|
|
|
|
|
460
|
|
|
|
|
|
|
# This is not ideal, but I want to cap the total computation spent here: |
|
461
|
27
|
50
|
|
|
|
47
|
$maxn = ( $maxn > 2048 ? 2048 : $maxn ); |
|
462
|
|
|
|
|
|
|
|
|
463
|
27
|
|
|
|
|
71
|
for( my $n=2; $n<=$maxn; $n*=2 ) { |
|
464
|
162
|
|
|
|
|
171
|
$dx /= 2.0; |
|
465
|
|
|
|
|
|
|
|
|
466
|
162
|
|
|
|
|
153
|
my $y = 0; |
|
467
|
162
|
|
|
|
|
333
|
for( my $i=1; $i<=$n-1; $i+=2 ) { |
|
468
|
1733
|
|
|
|
|
3730
|
$y += $self->_curvature( $mn + $i*$dx, $w )**2; |
|
469
|
|
|
|
|
|
|
} |
|
470
|
162
|
|
|
|
|
198
|
$yy = 0.5*$yy + $y*$dx; |
|
471
|
|
|
|
|
|
|
|
|
472
|
|
|
|
|
|
|
# Make at least 8 steps, then evaluate the relative change between steps |
|
473
|
162
|
100
|
100
|
|
|
689
|
if( $n > 8 && abs($y*$dx-0.5*$yy) < $eps*$yy ) { last } |
|
|
27
|
|
|
|
|
42
|
|
|
474
|
|
|
|
|
|
|
} |
|
475
|
|
|
|
|
|
|
|
|
476
|
27
|
|
|
|
|
51
|
return $yy; |
|
477
|
|
|
|
|
|
|
} |
|
478
|
|
|
|
|
|
|
|
|
479
|
|
|
|
|
|
|
# ================================================================= |
|
480
|
|
|
|
|
|
|
# Kernels |
|
481
|
|
|
|
|
|
|
|
|
482
|
|
|
|
|
|
|
sub _gauss_pdf { |
|
483
|
17157
|
|
|
17157
|
|
18811
|
my ( $x, $m, $s ) = @_; |
|
484
|
17157
|
|
|
|
|
18890
|
my $z = ($x - $m)/$s; |
|
485
|
17157
|
|
|
|
|
47285
|
return exp(-0.5*$z*$z)/( $s*sqrt( 2.0*3.14159265358979323846 ) ); |
|
486
|
|
|
|
|
|
|
} |
|
487
|
|
|
|
|
|
|
|
|
488
|
|
|
|
|
|
|
# Abramowitz & Stegun, 26.2.17 |
|
489
|
|
|
|
|
|
|
sub _gauss_cdf { |
|
490
|
4
|
|
|
4
|
|
7
|
my ( $x, $m, $s ) = @_; |
|
491
|
|
|
|
|
|
|
|
|
492
|
4
|
|
|
|
|
6
|
my $z = abs( $x - $m)/$s; |
|
493
|
4
|
|
|
|
|
7
|
my $t = 1.0/(1.0 + 0.2316419*$z); |
|
494
|
4
|
|
|
|
|
10
|
my $y = $t*( 0.319381530 |
|
495
|
|
|
|
|
|
|
+ $t*( -0.356563782 |
|
496
|
|
|
|
|
|
|
+ $t*( 1.781477937 |
|
497
|
|
|
|
|
|
|
+ $t*( -1.821255978 + $t*1.330274429 ) ) ) ); |
|
498
|
|
|
|
|
|
|
|
|
499
|
4
|
50
|
|
|
|
7
|
if( $x >= $m ) { |
|
500
|
4
|
|
|
|
|
9
|
return 1.0 - _gauss_pdf( $x, $m, $s )*$y*$s; |
|
501
|
|
|
|
|
|
|
} else { |
|
502
|
0
|
|
|
|
|
0
|
return _gauss_pdf( $x, $m, $s )*$y*$s; |
|
503
|
|
|
|
|
|
|
} |
|
504
|
|
|
|
|
|
|
} |
|
505
|
|
|
|
|
|
|
|
|
506
|
|
|
|
|
|
|
sub _gauss_curvature { |
|
507
|
7148
|
|
|
7148
|
|
8535
|
my ( $x, $m, $s ) = @_; |
|
508
|
7148
|
|
|
|
|
8936
|
my $z = ($x - $m)/$s; |
|
509
|
7148
|
|
|
|
|
12276
|
return ($z**2 - 1.0)*_gauss_pdf( $x, $m, $s )/$s**2; |
|
510
|
|
|
|
|
|
|
} |
|
511
|
|
|
|
|
|
|
|
|
512
|
|
|
|
|
|
|
sub _box_pdf { |
|
513
|
10005
|
|
|
10005
|
|
14258
|
my ( $x, $m, $s ) = @_; |
|
514
|
10005
|
100
|
100
|
|
|
39502
|
if( $x < $m-0.5*$s || $x > $m+0.5*$s ) { return 0.0; } |
|
|
9505
|
|
|
|
|
27942
|
|
|
515
|
500
|
|
|
|
|
1498
|
return 1.0/$s; |
|
516
|
|
|
|
|
|
|
} |
|
517
|
|
|
|
|
|
|
|
|
518
|
|
|
|
|
|
|
sub _box_cdf { |
|
519
|
4
|
|
|
4
|
|
6
|
my ( $x, $m, $s ) = @_; |
|
520
|
4
|
50
|
|
|
|
13
|
if( $x < $m-0.5*$s ) { return 0.0; } |
|
|
0
|
|
|
|
|
0
|
|
|
521
|
4
|
50
|
|
|
|
11
|
if( $x > $m+0.5*$s ) { return 1.0; } |
|
|
4
|
|
|
|
|
21
|
|
|
522
|
0
|
|
|
|
|
0
|
return ( $x-$m )/$s + 0.5; |
|
523
|
|
|
|
|
|
|
} |
|
524
|
|
|
|
|
|
|
|
|
525
|
|
|
|
|
|
|
sub _box_curvature { |
|
526
|
0
|
|
|
0
|
|
0
|
return 0; |
|
527
|
|
|
|
|
|
|
} |
|
528
|
|
|
|
|
|
|
|
|
529
|
|
|
|
|
|
|
sub _epanechnikov_pdf { |
|
530
|
18001
|
|
|
18001
|
|
18733
|
my ( $x, $m, $s ) = @_; |
|
531
|
18001
|
|
|
|
|
18983
|
my $z = ($x-$m)/$s; |
|
532
|
18001
|
100
|
|
|
|
30869
|
if( abs($z) > 1 ) { return 0.0; } |
|
|
16201
|
|
|
|
|
35040
|
|
|
533
|
1800
|
|
|
|
|
4465
|
return 0.75*(1-$z**2)/$s; |
|
534
|
|
|
|
|
|
|
} |
|
535
|
|
|
|
|
|
|
|
|
536
|
|
|
|
|
|
|
sub _epanechnikov_cdf { |
|
537
|
4
|
|
|
4
|
|
6
|
my ( $x, $m, $s ) = @_; |
|
538
|
4
|
|
|
|
|
7
|
my $z = ($x-$m)/$s; |
|
539
|
4
|
50
|
|
|
|
9
|
if( $z < -1 ) { return 0.0; } |
|
|
0
|
|
|
|
|
0
|
|
|
540
|
4
|
50
|
|
|
|
18
|
if( $z > 1 ) { return 1.0; } |
|
|
4
|
|
|
|
|
12
|
|
|
541
|
0
|
|
|
|
|
|
return 0.25*(2.0 + 3.0*$z - $z**3 ); |
|
542
|
|
|
|
|
|
|
} |
|
543
|
|
|
|
|
|
|
|
|
544
|
|
|
|
|
|
|
sub _epanechnikov_curvature { |
|
545
|
0
|
|
|
0
|
|
|
my ( $x, $m, $s ) = @_; |
|
546
|
0
|
|
|
|
|
|
my $z = ($x-$m)/$s; |
|
547
|
0
|
0
|
|
|
|
|
if( abs($z) > 1 ) { return 0; } |
|
|
0
|
|
|
|
|
|
|
|
548
|
0
|
|
|
|
|
|
return -1.5/$s**3; |
|
549
|
|
|
|
|
|
|
} |
|
550
|
|
|
|
|
|
|
|
|
551
|
|
|
|
|
|
|
1; |
|
552
|
|
|
|
|
|
|
|
|
553
|
|
|
|
|
|
|
__END__ |