blib/lib/Statistics/ANOVA/EffectSize.pm | |||
---|---|---|---|
Criterion | Covered | Total | % |
statement | 42 | 47 | 89.3 |
branch | 6 | 14 | 42.8 |
condition | n/a | ||
subroutine | 18 | 20 | 90.0 |
pod | 7 | 7 | 100.0 |
total | 73 | 88 | 82.9 |
line | stmt | bran | cond | sub | pod | time | code |
---|---|---|---|---|---|---|---|
1 | package Statistics::ANOVA::EffectSize; | ||||||
2 | |||||||
3 | 5 | 5 | 27900 | use 5.006; | |||
5 | 12 | ||||||
4 | 5 | 5 | 15 | use strict; | |||
5 | 8 | ||||||
5 | 82 | ||||||
5 | 5 | 5 | 15 | use warnings; | |||
5 | 4 | ||||||
5 | 123 | ||||||
6 | 5 | 5 | 14 | use base qw(Statistics::Data); | |||
5 | 6 | ||||||
5 | 1195 | ||||||
7 | 5 | 5 | 42349 | use Carp qw(croak); | |||
5 | 6 | ||||||
5 | 220 | ||||||
8 | 5 | 5 | 18 | use List::AllUtils qw(any); | |||
5 | 5 | ||||||
5 | 2712 | ||||||
9 | $Statistics::ANOVA::EffectSize::VERSION = '0.01'; | ||||||
10 | |||||||
11 | =head1 NAME | ||||||
12 | |||||||
13 | Statistics::ANOVA::EffectSize - Calculate effect-sizes from ANOVAs incl. eta-squared and omega-squared | ||||||
14 | |||||||
15 | =head1 VERSION | ||||||
16 | |||||||
17 | This is documentation for B |
||||||
18 | |||||||
19 | =head1 SYNOPSIS | ||||||
20 | |||||||
21 | use Statistics::ANOVA::EffectSize; | ||||||
22 | my $es = Statistics::ANOVA::EffectSize->new(); | ||||||
23 | $es->load(HOA); # a hash of arefs, or other, as in Statistics::Data | ||||||
24 | my $etasq = $es->eta_squared(independent => BOOL, partial => 1); # or give data => HOA here | ||||||
25 | my $omgsq = $es->omega_squared(independent => BOOL); | ||||||
26 | # or calculate not from loaded data but directly: | ||||||
27 | |||||||
28 | =head2 DESCRIPTION | ||||||
29 | |||||||
30 | Calculates effect-sizes from ANOVAs. | ||||||
31 | |||||||
32 | For I |
||||||
33 | |||||||
34 | For I |
||||||
35 | |||||||
36 | =head1 SUBROUTINES/METHODS | ||||||
37 | |||||||
38 | Rather than working from raw data, these methods are given the statistics, like sums-of-squares, needed to calculate the effect-sizes. | ||||||
39 | |||||||
40 | =head2 eta_sq_partial_by_ss, r_squared | ||||||
41 | |||||||
42 | $es->eta_sq_partial_by_ss(ss_b => NUM, ss_w => NUM); | ||||||
43 | |||||||
44 | Returns partial I |
||||||
45 | |||||||
46 | =for html η2P = SSb / ( SSb + SSw ) |
||||||
47 | |||||||
48 | This is also what is commonly designated as I |
||||||
49 | |||||||
50 | =cut | ||||||
51 | |||||||
52 | sub eta_sq_partial_by_ss { | ||||||
53 | 4 | 4 | 1 | 58 | my ($self, %args) = @_; | ||
54 | 4 | 50 | 8 | 30 | croak 'Undefined values needed to calculate partial eta-squared by sums-of-squares' if any { ! defined $args{$_} } (qw/ss_b ss_w/); | ||
8 | 18 | ||||||
55 | 4 | 20 | return $args{'ss_b'} / ( $args{'ss_b'} + $args{'ss_w'} ); | ||||
56 | } | ||||||
57 | *r_squared = \&eta_sq_partial_by_ss; | ||||||
58 | |||||||
59 | =head2 r_squared_adj | ||||||
60 | |||||||
61 | $es->r_squared_adj(ss_b => NUM, ss_w => NUM, df_b => NUM, df_w => NUM); | ||||||
62 | |||||||
63 | Returns adjusted I |
||||||
64 | |||||||
65 | =cut | ||||||
66 | |||||||
67 | sub r_squared_adj { | ||||||
68 | 0 | 0 | 1 | 0 | my ($self, %args) = @_; | ||
69 | 0 | 0 | my $r_squared = $self->r_squared(%args); # will check for ss_b and ss_w | ||||
70 | 0 | 0 | 0 | 0 | croak 'Could not obtain values to calculate adjusted r-squared' if any { ! defined $args{$_} } (qw/df_b df_w/); | ||
0 | 0 | ||||||
71 | 0 | 0 | return 1 - ( ($args{'df_b'} + $args{'df_w'}) / $args{'df_w'} ) * ( 1 - $r_squared ); | ||||
72 | } | ||||||
73 | |||||||
74 | =head2 eta_sq_partial_by_f | ||||||
75 | |||||||
76 | $es->eta_sq_partial_by_f(f_value => NUM , df_b => NUM, df_w => NUM); | ||||||
77 | |||||||
78 | Returns partial I |
||||||
79 | |||||||
80 | =for html η2P = ( dfb . F ) / ( dfb . F + dfw ) |
||||||
81 | |||||||
82 | =cut | ||||||
83 | |||||||
84 | sub eta_sq_partial_by_f { | ||||||
85 | 2 | 2 | 1 | 511 | my ($self, %args) = @_; | ||
86 | 2 | 50 | 6 | 17 | croak 'Could not obtain values to calculate partial eta-squared by F-value' if any { ! defined $args{$_} } (qw/df_b df_w f_value/); | ||
6 | 11 | ||||||
87 | 2 | 13 | return ( $args{'df_b'} * $args{'f_value'} ) / ( $args{'df_b'} * $args{'f_value'} + $args{'df_w'} ); | ||||
88 | } | ||||||
89 | |||||||
90 | =head2 omega_sq_partial_by_ss | ||||||
91 | |||||||
92 | $es->omega_sq_partial_by_ss(df_b => NUM, df_w => NUM, ss_b => NUM, ss_w => NUM); | ||||||
93 | |||||||
94 | Returns partial I |
||||||
95 | |||||||
96 | Essentially as given by Maxwell & Delaney (1990), Eq. 92: | ||||||
97 | |||||||
98 | =for html ω2P = ( ssb — (dfb . SSw / dfb) ) / (( SSb + SSw ) + SSw / dfw ) |
||||||
99 | |||||||
100 | =cut | ||||||
101 | |||||||
102 | sub omega_sq_partial_by_ss { | ||||||
103 | 1 | 1 | 1 | 26 | my ($self, %args) = @_; | ||
104 | 1 | 50 | 4 | 4 | croak 'Undefined values for calculating partial omega-squared by sums-of-squares' if any { ! defined $args{$_} } (qw/ss_b ss_w df_b df_w/); | ||
4 | 6 | ||||||
105 | 1 | 6 | return ( $args{'ss_b'} - ( $args{'df_b'} * $args{'ss_w'} / $args{'df_w'} ) ) / ( ( $args{'ss_b'} + $args{'ss_w'} ) + $args{'ss_w'} / $args{'df_w'} ); | ||||
106 | } | ||||||
107 | |||||||
108 | =head2 omega_sq_partial_by_ms | ||||||
109 | |||||||
110 | $es->omega_sq_partial_by_ms(df_b => NUM, ms_b => NUM, ms_w => NUM, count => NUM); | ||||||
111 | |||||||
112 | Returns partial I |
||||||
113 | |||||||
114 | =for html ω2P = dfb ( MSb – MSw ) / ( dfb . MSb + ( N – dfb ) MSw ) |
||||||
115 | |||||||
116 | =cut | ||||||
117 | |||||||
118 | sub omega_sq_partial_by_ms { | ||||||
119 | 1 | 1 | 1 | 169 | my ($self, %args) = @_; | ||
120 | 1 | 50 | 4 | 6 | croak 'Could not obtain values to calculate partial omega-squared by mean sums-of-squares' if any { ! defined $_ } values %args; | ||
4 | 6 | ||||||
121 | 1 | 8 | return $args{'df_b'} * ( $args{'ms_b'} - $args{'ms_w'} ) / ( $args{'df_b'} * $args{'ms_b'} + ( $args{'count'} - $args{'df_b'} ) * $args{'ms_w'} ); | ||||
122 | } | ||||||
123 | |||||||
124 | =head2 omega_sq_partial_by_f | ||||||
125 | |||||||
126 | $es->omega_sq_partial_by_ms(f_value => NUM, df_b => NUM, df_w => NUM); | ||||||
127 | |||||||
128 | Returns partial I |
||||||
129 | |||||||
130 | =for html ω2P(est.) = ( F - 1 ) / ( F + ( dfw + 1 ) / dfb ) |
||||||
131 | |||||||
132 | This is an estimate formulated by L |
||||||
133 | |||||||
134 | =cut | ||||||
135 | |||||||
136 | sub omega_sq_partial_by_f { | ||||||
137 | 2 | 2 | 1 | 193 | my ($self, %args) = @_; | ||
138 | 2 | 50 | 6 | 12 | croak 'Could not obtain values to calculate partial omega-squared by mean sums-of-squares' if any { ! defined $_ } values %args; | ||
6 | 9 | ||||||
139 | 2 | 13 | return ( $args{'f_value'} - 1 ) / ( $args{'f_value'} + ( $args{'df_w'} + 1)/$args{'df_b'} ); | ||||
140 | } | ||||||
141 | |||||||
142 | =head2 eta_to_omega | ||||||
143 | |||||||
144 | $es->eta_to_omega(df_b => NUM, df_w => NUM, eta_sq => NUM); | ||||||
145 | |||||||
146 | Returns I |
||||||
147 | |||||||
148 | =for html ω2P = ( η2P(dfb + dfw) – dfb ) / ( η2P(dfb + dfw) – dfb ) + ( (dfw + 1)(1 – η2P) ) ) |
||||||
149 | |||||||
150 | =cut | ||||||
151 | |||||||
152 | sub eta_to_omega { | ||||||
153 | 2 | 2 | 1 | 345 | my ($self, %args) = @_; | ||
154 | 2 | 50 | 6 | 12 | croak 'Could not obtain values to calculate partial omega-squared by mean sums-of-squares' if any { ! defined $_ } values %args; | ||
6 | 10 | ||||||
155 | 2 | 8 | my $num = $args{'eta_sq'} * ( $args{'df_b'} + $args{'df_w'} ) - $args{'df_b'}; | ||||
156 | 2 | 9 | return $num / ( $num + ( ( $args{'df_w'} + 1) * ( 1 - $args{'eta_sq'} ) ) ); | ||||
157 | } | ||||||
158 | |||||||
159 | =head1 DEPENDENCIES | ||||||
160 | |||||||
161 | L |
||||||
162 | |||||||
163 | L |
||||||
164 | |||||||
165 | =head1 DIAGNOSTICS | ||||||
166 | |||||||
167 | =over 4 | ||||||
168 | |||||||
169 | =item Could not obtain values to calculate ... | ||||||
170 | |||||||
171 | C |
||||||
172 | |||||||
173 | =back | ||||||
174 | |||||||
175 | =head1 REFERENCES | ||||||
176 | |||||||
177 | Cohen, J. (1969). I |
||||||
178 | |||||||
179 | Lakens, D. (2015). Why you should use omega-squared instead of eta-squared, I |
||||||
180 | |||||||
181 | Maxwell, S. E., & Delaney, H. D. (1990). I |
||||||
182 | |||||||
183 | Olejnik, S., & Algina, J. (2003). Generalized eta and omega squared statistics: Measures of effect size for some common research designs. I |
||||||
184 | |||||||
185 | =head1 AUTHOR | ||||||
186 | |||||||
187 | Roderick Garton, C<< |
||||||
188 | |||||||
189 | =head1 BUGS | ||||||
190 | |||||||
191 | Please report any bugs or feature requests to C |
||||||
192 | the web interface at L |
||||||
193 | automatically be notified of progress on your bug as I make changes. | ||||||
194 | |||||||
195 | =head1 NOTES | ||||||
196 | |||||||
197 | |||||||
198 | For independent variables only, omega-square (raw): | ||||||
199 | |||||||
200 | w2 = (SSeffect - (dfeffect)(MSerror)) / MSerror + SStotal | ||||||
201 | |||||||
202 | =head1 SUPPORT | ||||||
203 | |||||||
204 | You can find documentation for this module with the perldoc command. | ||||||
205 | |||||||
206 | perldoc Statistics::ANOVA::EffectSize | ||||||
207 | |||||||
208 | |||||||
209 | You can also look for information at: | ||||||
210 | |||||||
211 | =over 4 | ||||||
212 | |||||||
213 | =item * RT: CPAN's request tracker (report bugs here) | ||||||
214 | |||||||
215 | L |
||||||
216 | |||||||
217 | =item * AnnoCPAN: Annotated CPAN documentation | ||||||
218 | |||||||
219 | L |
||||||
220 | |||||||
221 | =item * CPAN Ratings | ||||||
222 | |||||||
223 | L |
||||||
224 | |||||||
225 | =item * Search CPAN | ||||||
226 | |||||||
227 | L |
||||||
228 | |||||||
229 | =back | ||||||
230 | |||||||
231 | =head1 LICENSE AND COPYRIGHT | ||||||
232 | |||||||
233 | Copyright 2015 Roderick Garton. | ||||||
234 | |||||||
235 | This program is free software; you can redistribute it and/or modify it | ||||||
236 | under the terms of either: the GNU General Public License as published | ||||||
237 | by the Free Software Foundation; or the Artistic License. | ||||||
238 | |||||||
239 | See L |
||||||
240 | |||||||
241 | =cut | ||||||
242 | |||||||
243 | 1; # End of Statistics::ANOVA::EffectSize |