| line | stmt | bran | cond | sub | pod | time | code | 
| 1 |  |  |  |  |  |  | package Random::PoissonDisc; | 
| 2 | 2 |  |  | 2 |  | 57743 | use strict; | 
|  | 2 |  |  |  |  | 11 |  | 
|  | 2 |  |  |  |  | 55 |  | 
| 3 | 2 |  |  | 2 |  | 10 | use List::Util qw(sum); | 
|  | 2 |  |  |  |  | 4 |  | 
|  | 2 |  |  |  |  | 166 |  | 
| 4 | 2 |  |  | 2 |  | 1164 | use Math::Random::MT::Auto qw(rand gaussian); | 
|  | 2 |  |  |  |  | 97720 |  | 
|  | 2 |  |  |  |  | 8 |  | 
| 5 |  |  |  |  |  |  |  | 
| 6 | 2 |  |  | 2 |  | 11871 | use vars qw($VERSION %grid_neighbours); | 
|  | 2 |  |  |  |  | 4 |  | 
|  | 2 |  |  |  |  | 1801 |  | 
| 7 |  |  |  |  |  |  | $VERSION = '0.03'; | 
| 8 |  |  |  |  |  |  |  | 
| 9 |  |  |  |  |  |  | # %grid_neighbours caches the vectors pointing to | 
| 10 |  |  |  |  |  |  | # neighbours | 
| 11 |  |  |  |  |  |  |  | 
| 12 |  |  |  |  |  |  | =head1 NAME | 
| 13 |  |  |  |  |  |  |  | 
| 14 |  |  |  |  |  |  | Random::PoissonDisc - distribute points aesthetically in R^n | 
| 15 |  |  |  |  |  |  |  | 
| 16 |  |  |  |  |  |  | =head1 SYNOPSIS | 
| 17 |  |  |  |  |  |  |  | 
| 18 |  |  |  |  |  |  | my $points = Random::PoissonDisc->points( | 
| 19 |  |  |  |  |  |  | dimensions => [100,100], | 
| 20 |  |  |  |  |  |  | r => $r, | 
| 21 |  |  |  |  |  |  | ); | 
| 22 |  |  |  |  |  |  | print join( ",", @$_),"\n" | 
| 23 |  |  |  |  |  |  | for @$points; | 
| 24 |  |  |  |  |  |  |  | 
| 25 |  |  |  |  |  |  | This module allows relatively fast | 
| 26 |  |  |  |  |  |  | (linear in the number of points generated) generation of random points in | 
| 27 |  |  |  |  |  |  | I-dimensional space with a distance of | 
| 28 |  |  |  |  |  |  | at least C between each other. This distribution | 
| 29 |  |  |  |  |  |  | results in aesthetic so called "blue noise". | 
| 30 |  |  |  |  |  |  |  | 
| 31 |  |  |  |  |  |  | The algorithm was adapted from a sketch | 
| 32 |  |  |  |  |  |  | by Robert Bridson | 
| 33 |  |  |  |  |  |  | in L. | 
| 34 |  |  |  |  |  |  |  | 
| 35 |  |  |  |  |  |  | =head1 DATA REPRESENTATION | 
| 36 |  |  |  |  |  |  |  | 
| 37 |  |  |  |  |  |  | All vectors (or points) are represented | 
| 38 |  |  |  |  |  |  | as anonymous arrays of numbers. All have the same | 
| 39 |  |  |  |  |  |  | dimension as the cardinality of the C | 
| 40 |  |  |  |  |  |  | array passed in the C<< ->points >> method. | 
| 41 |  |  |  |  |  |  |  | 
| 42 |  |  |  |  |  |  | =head2 USER INTERFACE | 
| 43 |  |  |  |  |  |  |  | 
| 44 |  |  |  |  |  |  | =head3 C<< Random::PoissonDisc->points( %options ) >> | 
| 45 |  |  |  |  |  |  |  | 
| 46 |  |  |  |  |  |  | Returns a reference to an array of points. | 
| 47 |  |  |  |  |  |  |  | 
| 48 |  |  |  |  |  |  | Acceptable options are: | 
| 49 |  |  |  |  |  |  |  | 
| 50 |  |  |  |  |  |  | =over 4 | 
| 51 |  |  |  |  |  |  |  | 
| 52 |  |  |  |  |  |  | =item * | 
| 53 |  |  |  |  |  |  |  | 
| 54 |  |  |  |  |  |  | C< r > - minimum distance between points. | 
| 55 |  |  |  |  |  |  |  | 
| 56 |  |  |  |  |  |  | Default is 10 units. | 
| 57 |  |  |  |  |  |  |  | 
| 58 |  |  |  |  |  |  | =item * | 
| 59 |  |  |  |  |  |  |  | 
| 60 |  |  |  |  |  |  | C< dimensions > - number of dimensions and respective value range as an arrayref. | 
| 61 |  |  |  |  |  |  |  | 
| 62 |  |  |  |  |  |  | Default is | 
| 63 |  |  |  |  |  |  |  | 
| 64 |  |  |  |  |  |  | [ 100, 100 ] | 
| 65 |  |  |  |  |  |  |  | 
| 66 |  |  |  |  |  |  | meaning all points will be in R^2 , with each coordinate in the | 
| 67 |  |  |  |  |  |  | range [0, 100). | 
| 68 |  |  |  |  |  |  |  | 
| 69 |  |  |  |  |  |  | =item * | 
| 70 |  |  |  |  |  |  |  | 
| 71 |  |  |  |  |  |  | C< candidates > - Number of candidates to inspect before deciding that no | 
| 72 |  |  |  |  |  |  | ew neighbours can be placed around a point. | 
| 73 |  |  |  |  |  |  |  | 
| 74 |  |  |  |  |  |  | Default is 30. | 
| 75 |  |  |  |  |  |  |  | 
| 76 |  |  |  |  |  |  | This number may or may not need to be tweaked if you go further up in | 
| 77 |  |  |  |  |  |  | dimensionality beyond 3 dimensions. The more candidates you inspect | 
| 78 |  |  |  |  |  |  | the longer the algorithm will run for generating a number of points. | 
| 79 |  |  |  |  |  |  |  | 
| 80 |  |  |  |  |  |  | In the algorithm description, this constant is named I. | 
| 81 |  |  |  |  |  |  |  | 
| 82 |  |  |  |  |  |  | =item * | 
| 83 |  |  |  |  |  |  |  | 
| 84 |  |  |  |  |  |  | C<< avoid_edge >> - The distance from the edge of the plot. | 
| 85 |  |  |  |  |  |  |  | 
| 86 |  |  |  |  |  |  | Default is C<0> | 
| 87 |  |  |  |  |  |  |  | 
| 88 |  |  |  |  |  |  | If greater than zero, this will not plot points within that distance from the edge. | 
| 89 |  |  |  |  |  |  |  | 
| 90 |  |  |  |  |  |  | =item * | 
| 91 |  |  |  |  |  |  |  | 
| 92 |  |  |  |  |  |  | C<< center >> - Start adding points at the center of the plot. | 
| 93 |  |  |  |  |  |  |  | 
| 94 |  |  |  |  |  |  | Default is C<0> | 
| 95 |  |  |  |  |  |  |  | 
| 96 |  |  |  |  |  |  | If this is set to the default, the initial point will be added at a | 
| 97 |  |  |  |  |  |  | random position in the plot. | 
| 98 |  |  |  |  |  |  |  | 
| 99 |  |  |  |  |  |  | =back | 
| 100 |  |  |  |  |  |  |  | 
| 101 |  |  |  |  |  |  | =cut | 
| 102 |  |  |  |  |  |  |  | 
| 103 |  |  |  |  |  |  | sub points { | 
| 104 | 0 |  |  | 0 | 1 | 0 | my ($class,%options) = @_; | 
| 105 |  |  |  |  |  |  |  | 
| 106 | 0 |  | 0 |  |  | 0 | $options{center}     ||= 0; | 
| 107 | 0 |  | 0 |  |  | 0 | $options{avoid_edge} ||= 0; | 
| 108 | 0 |  | 0 |  |  | 0 | $options{candidates} ||= 30; | 
| 109 | 0 |  | 0 |  |  | 0 | $options{dimensions} ||= [100,100]; # do we only create integral points? | 
| 110 | 0 |  | 0 |  |  | 0 | $options{r} ||= 10; | 
| 111 |  |  |  |  |  |  | #$options{max} ||= 10; # we want to fill the space instead?! | 
| 112 | 0 |  | 0 |  |  | 0 | $options{ grid } ||= {}; | 
| 113 |  |  |  |  |  |  |  | 
| 114 | 0 |  |  |  |  | 0 | my $grid_size = $options{ r } / sqrt( 0+@{$options{dimensions}}); | 
|  | 0 |  |  |  |  | 0 |  | 
| 115 |  |  |  |  |  |  |  | 
| 116 | 0 |  |  |  |  | 0 | my @result; | 
| 117 |  |  |  |  |  |  | my @work; | 
| 118 |  |  |  |  |  |  |  | 
| 119 |  |  |  |  |  |  | # Create a first point in our cube - either at random or in the center: | 
| 120 |  |  |  |  |  |  | my $p = $options{ center } | 
| 121 | 0 |  |  |  |  | 0 | ? [map { $_ / 2 } @{ $options{ dimensions }}] | 
|  | 0 |  |  |  |  | 0 |  | 
| 122 | 0 | 0 |  |  |  | 0 | : [map { rnd(0,$_) } @{ $options{ dimensions }}]; | 
|  | 0 |  |  |  |  | 0 |  | 
|  | 0 |  |  |  |  | 0 |  | 
| 123 | 0 |  |  |  |  | 0 | push @result, $p; | 
| 124 | 0 |  |  |  |  | 0 | push @work, $p; | 
| 125 | 0 |  |  |  |  | 0 | my $c = grid_coords($grid_size, $p); | 
| 126 | 0 |  |  |  |  | 0 | $options{ grid }->{ $c } = $p; | 
| 127 |  |  |  |  |  |  |  | 
| 128 | 0 |  |  |  |  | 0 | while (@work) { | 
| 129 | 0 |  |  |  |  | 0 | my $origin = splice @work, int rnd(0,$#work), 1; | 
| 130 | 0 |  |  |  |  | 0 | CANDIDATE: for my $candidate ( 1..$options{ candidates } ) { | 
| 131 |  |  |  |  |  |  | # Create a random distance between r and 2r | 
| 132 |  |  |  |  |  |  | # that is, in the annulus with radius (r,2r) | 
| 133 |  |  |  |  |  |  | # surrounding our current point | 
| 134 | 0 |  |  |  |  | 0 | my $dist = rnd( $options{r}, $options{r}*2 ); | 
| 135 |  |  |  |  |  |  |  | 
| 136 |  |  |  |  |  |  | # Choose a random angle in which to point | 
| 137 |  |  |  |  |  |  | # this vector | 
| 138 | 0 |  |  |  |  | 0 | my $angle = random_unit_vector(0+@{$options{ dimensions}}); | 
|  | 0 |  |  |  |  | 0 |  | 
| 139 |  |  |  |  |  |  |  | 
| 140 |  |  |  |  |  |  | # Generate a new point by adding the $angle*$dist to $origin | 
| 141 | 0 |  |  |  |  | 0 | my $p = [map { $origin->[$_] + $angle->[$_]* $dist } 0..$#$angle]; | 
|  | 0 |  |  |  |  | 0 |  | 
| 142 |  |  |  |  |  |  |  | 
| 143 |  |  |  |  |  |  | # Check whether our point lies within the dimensions | 
| 144 | 0 |  |  |  |  | 0 | for (0..$#$p) { | 
| 145 |  |  |  |  |  |  | next CANDIDATE | 
| 146 |  |  |  |  |  |  | if   $p->[$_] >= $options{ dimensions }->[ $_ ] - $options{ avoid_edge } | 
| 147 |  |  |  |  |  |  | or $p->[$_] < $options{ avoid_edge } | 
| 148 | 0 | 0 | 0 |  |  | 0 | }; | 
| 149 |  |  |  |  |  |  |  | 
| 150 |  |  |  |  |  |  | # check discs by using the grid | 
| 151 |  |  |  |  |  |  | # Here we should check the "neighbours" in the grid too | 
| 152 | 0 |  |  |  |  | 0 | my $c = grid_coords($grid_size, $p); | 
| 153 | 0 | 0 |  |  |  | 0 | if (! $options{ grid }->{ $c }) { | 
| 154 | 0 |  |  |  |  | 0 | my @n = neighbour_points($grid_size, $p, $options{ grid }); | 
| 155 | 0 |  |  |  |  | 0 | for my $neighbour (@n) { | 
| 156 | 0 | 0 |  |  |  | 0 | if( vdist($neighbour, $p) < $options{ r }) { | 
| 157 | 0 |  |  |  |  | 0 | next CANDIDATE; | 
| 158 |  |  |  |  |  |  | }; | 
| 159 |  |  |  |  |  |  | }; | 
| 160 |  |  |  |  |  |  |  | 
| 161 |  |  |  |  |  |  | # not already in grid, no close neighbours, add it | 
| 162 | 0 |  |  |  |  | 0 | push @result, $p; | 
| 163 | 0 |  |  |  |  | 0 | push @work, $p; | 
| 164 | 0 |  |  |  |  | 0 | $options{ grid }->{ $c } = $p; | 
| 165 |  |  |  |  |  |  | #warn "$candidate Taking"; | 
| 166 |  |  |  |  |  |  | } else { | 
| 167 |  |  |  |  |  |  | #warn "$candidate Occupied"; | 
| 168 |  |  |  |  |  |  | }; | 
| 169 |  |  |  |  |  |  | }; | 
| 170 |  |  |  |  |  |  | }; | 
| 171 |  |  |  |  |  |  |  | 
| 172 |  |  |  |  |  |  | \@result | 
| 173 | 0 |  |  |  |  | 0 | }; | 
| 174 |  |  |  |  |  |  |  | 
| 175 |  |  |  |  |  |  | =head2 INTERNAL SUBROUTINES | 
| 176 |  |  |  |  |  |  |  | 
| 177 |  |  |  |  |  |  | These subroutines are used for the algorithm. | 
| 178 |  |  |  |  |  |  | If you want to port this module to PDL or any other | 
| 179 |  |  |  |  |  |  | vector library, you will likely have to rewrite these. | 
| 180 |  |  |  |  |  |  |  | 
| 181 |  |  |  |  |  |  | =head3 C<< rnd( $low, $high ) >> | 
| 182 |  |  |  |  |  |  |  | 
| 183 |  |  |  |  |  |  | print rnd( 0, 1 ); | 
| 184 |  |  |  |  |  |  |  | 
| 185 |  |  |  |  |  |  | Returns a uniform distributed random number | 
| 186 |  |  |  |  |  |  | in C<< [ $low, $high ) >>. | 
| 187 |  |  |  |  |  |  |  | 
| 188 |  |  |  |  |  |  | =cut | 
| 189 |  |  |  |  |  |  |  | 
| 190 |  |  |  |  |  |  | sub rnd { | 
| 191 | 0 |  |  | 0 | 1 | 0 | my ($low,$high) = @_; | 
| 192 | 0 |  |  |  |  | 0 | return $low + rand($high-$low); | 
| 193 |  |  |  |  |  |  | }; | 
| 194 |  |  |  |  |  |  |  | 
| 195 |  |  |  |  |  |  | =head3 C<< grid_coords( $grid_size, $point ) >> | 
| 196 |  |  |  |  |  |  |  | 
| 197 |  |  |  |  |  |  | Returns the string representing the coordinates | 
| 198 |  |  |  |  |  |  | of the grid cell in which C<< $point >> falls. | 
| 199 |  |  |  |  |  |  |  | 
| 200 |  |  |  |  |  |  | =cut | 
| 201 |  |  |  |  |  |  |  | 
| 202 |  |  |  |  |  |  | sub grid_coords { | 
| 203 | 0 |  |  | 0 | 1 | 0 | my ($size,$point) = @_; | 
| 204 | 0 |  |  |  |  | 0 | join "\t", map { int($_/$size) } @$point; | 
|  | 0 |  |  |  |  | 0 |  | 
| 205 |  |  |  |  |  |  | }; | 
| 206 |  |  |  |  |  |  |  | 
| 207 |  |  |  |  |  |  | =head3 C<< norm( @vector ) >> | 
| 208 |  |  |  |  |  |  |  | 
| 209 |  |  |  |  |  |  | print norm( 1,1 ); # 1.4142 | 
| 210 |  |  |  |  |  |  |  | 
| 211 |  |  |  |  |  |  | Returns the Euclidean length of the vector, passed in as array. | 
| 212 |  |  |  |  |  |  |  | 
| 213 |  |  |  |  |  |  | =cut | 
| 214 |  |  |  |  |  |  |  | 
| 215 |  |  |  |  |  |  | sub norm { | 
| 216 | 2000 |  |  | 2000 | 1 | 3402 | sqrt( sum @{[map {$_**2} @_]} ); | 
|  | 2000 |  |  |  |  | 2575 |  | 
|  | 11000 |  |  |  |  | 18333 |  | 
| 217 |  |  |  |  |  |  | }; | 
| 218 |  |  |  |  |  |  |  | 
| 219 |  |  |  |  |  |  | =head3 C<< vdist( $l, $r ) >> | 
| 220 |  |  |  |  |  |  |  | 
| 221 |  |  |  |  |  |  | print vdist( [1,0], [0,1] ); # 1.4142 | 
| 222 |  |  |  |  |  |  |  | 
| 223 |  |  |  |  |  |  | Returns the Euclidean distance between two points | 
| 224 |  |  |  |  |  |  | (or vectors) | 
| 225 |  |  |  |  |  |  |  | 
| 226 |  |  |  |  |  |  | =cut | 
| 227 |  |  |  |  |  |  |  | 
| 228 |  |  |  |  |  |  | sub vdist { | 
| 229 | 0 |  |  | 0 | 1 | 0 | my ($l,$r) = @_; | 
| 230 | 0 |  |  |  |  | 0 | my @connector = map { $l->[$_] - $r->[$_] } 0..$#$l; | 
|  | 0 |  |  |  |  | 0 |  | 
| 231 | 0 |  |  |  |  | 0 | norm(@connector); | 
| 232 |  |  |  |  |  |  | }; | 
| 233 |  |  |  |  |  |  |  | 
| 234 |  |  |  |  |  |  | =head3 C<< neighbour_points( $size, $point, $grid ) >> | 
| 235 |  |  |  |  |  |  |  | 
| 236 |  |  |  |  |  |  | my @neighbours = neighbour_points( $size, $p, \%grid ) | 
| 237 |  |  |  |  |  |  |  | 
| 238 |  |  |  |  |  |  | Returns the points from the grid that have a distance | 
| 239 |  |  |  |  |  |  | between 0 and 2r around C<$point>. These points are | 
| 240 |  |  |  |  |  |  | the candidates to check when trying to insert a new | 
| 241 |  |  |  |  |  |  | random point into the space. | 
| 242 |  |  |  |  |  |  |  | 
| 243 |  |  |  |  |  |  | =cut | 
| 244 |  |  |  |  |  |  |  | 
| 245 |  |  |  |  |  |  | sub neighbour_points { | 
| 246 | 0 |  |  | 0 | 1 | 0 | my ($size,$point,$grid) = @_; | 
| 247 |  |  |  |  |  |  |  | 
| 248 | 0 |  |  |  |  | 0 | my $dimension = 0+@$point; | 
| 249 | 0 |  |  |  |  | 0 | my $vectors; | 
| 250 | 0 | 0 |  |  |  | 0 | if (! $grid_neighbours{ $dimension }) { | 
| 251 | 0 |  |  |  |  | 0 | my @elements = (-1,0,1); | 
| 252 |  |  |  |  |  |  | $grid_neighbours{ $dimension } = | 
| 253 |  |  |  |  |  |  | # Count up, and use the number in ternary as our odometer | 
| 254 |  |  |  |  |  |  | [map { | 
| 255 | 0 |  |  |  |  | 0 | my $val = $_; | 
|  | 0 |  |  |  |  | 0 |  | 
| 256 |  |  |  |  |  |  | my $res = [ map { | 
| 257 | 0 |  |  |  |  | 0 | my $res = $elements[ $val % 3 ]; | 
|  | 0 |  |  |  |  | 0 |  | 
| 258 | 0 |  |  |  |  | 0 | $val = int($val/3); | 
| 259 | 0 |  |  |  |  | 0 | $res | 
| 260 |  |  |  |  |  |  | } 1..$dimension ]; | 
| 261 |  |  |  |  |  |  | } (1..3**$dimension) | 
| 262 |  |  |  |  |  |  | ]; | 
| 263 |  |  |  |  |  |  | }; | 
| 264 |  |  |  |  |  |  |  | 
| 265 | 0 |  |  |  |  | 0 | my @coords = split /\t/, grid_coords( $size, $point ); | 
| 266 |  |  |  |  |  |  |  | 
| 267 |  |  |  |  |  |  | # Find the elements in the grid according to the offsets | 
| 268 |  |  |  |  |  |  | map { | 
| 269 | 0 |  |  |  |  | 0 | my $e = $_; | 
| 270 | 0 |  |  |  |  | 0 | my $n = join "\t", map { $coords[$_]+$e->[$_] } 0..$#$_; | 
|  | 0 |  |  |  |  | 0 |  | 
| 271 |  |  |  |  |  |  | # Negative grid positions never get filled, conveniently! | 
| 272 | 0 | 0 |  |  |  | 0 | $grid->{ $n } ? $grid->{ $n } : () | 
| 273 | 0 |  |  |  |  | 0 | } @{ $grid_neighbours{ $dimension }}; | 
|  | 0 |  |  |  |  | 0 |  | 
| 274 |  |  |  |  |  |  | }; | 
| 275 |  |  |  |  |  |  |  | 
| 276 |  |  |  |  |  |  | =head3 C<< random_unit_vector( $dimensions ) >> | 
| 277 |  |  |  |  |  |  |  | 
| 278 |  |  |  |  |  |  | print join ",", @{ random_unit_vector( 2 ) }; | 
| 279 |  |  |  |  |  |  |  | 
| 280 |  |  |  |  |  |  | Returns a vector of unit length | 
| 281 |  |  |  |  |  |  | pointing in a random uniform distributed | 
| 282 |  |  |  |  |  |  | I-dimensional direction | 
| 283 |  |  |  |  |  |  | angle | 
| 284 |  |  |  |  |  |  | and returns a unit vector pointing in | 
| 285 |  |  |  |  |  |  | that direction | 
| 286 |  |  |  |  |  |  |  | 
| 287 |  |  |  |  |  |  | The algorithm used is outlined in | 
| 288 |  |  |  |  |  |  | Knuth, _The Art of Computer Programming_, vol. 2, | 
| 289 |  |  |  |  |  |  | 3rd. ed., section 3.4.1.E.6. | 
| 290 |  |  |  |  |  |  | but has not been verified formally or mathematically | 
| 291 |  |  |  |  |  |  | by the module author. | 
| 292 |  |  |  |  |  |  |  | 
| 293 |  |  |  |  |  |  | =cut | 
| 294 |  |  |  |  |  |  |  | 
| 295 |  |  |  |  |  |  | sub random_unit_vector { | 
| 296 | 1000 |  |  | 1000 | 1 | 366925 | my ($dimensions) = @_; | 
| 297 | 1000 |  |  |  |  | 1447 | my (@vec,$len); | 
| 298 |  |  |  |  |  |  |  | 
| 299 |  |  |  |  |  |  | # Create normal distributed coordinates | 
| 300 |  |  |  |  |  |  | RETRY: { | 
| 301 | 1000 |  |  |  |  | 1201 | @vec = map { gaussian() } 1..$dimensions; | 
|  | 1000 |  |  |  |  | 1906 |  | 
|  | 5500 |  |  |  |  | 13567 |  | 
| 302 | 1000 |  |  |  |  | 2033 | $len = norm(@vec); | 
| 303 | 1000 | 50 |  |  |  | 2487 | redo RETRY unless $len; | 
| 304 |  |  |  |  |  |  | }; | 
| 305 |  |  |  |  |  |  | # Normalize our vector so we get a unit vector | 
| 306 | 1000 |  |  |  |  | 1305 | @vec = map { $_ / $len } @vec; | 
|  | 5500 |  |  |  |  | 7037 |  | 
| 307 |  |  |  |  |  |  |  | 
| 308 |  |  |  |  |  |  | \@vec | 
| 309 | 1000 |  |  |  |  | 1939 | }; | 
| 310 |  |  |  |  |  |  |  | 
| 311 |  |  |  |  |  |  | 1; | 
| 312 |  |  |  |  |  |  |  | 
| 313 |  |  |  |  |  |  | =head1 TODO | 
| 314 |  |  |  |  |  |  |  | 
| 315 |  |  |  |  |  |  | The module does not use L or any other | 
| 316 |  |  |  |  |  |  | vector library. | 
| 317 |  |  |  |  |  |  |  | 
| 318 |  |  |  |  |  |  | =head1 REPOSITORY | 
| 319 |  |  |  |  |  |  |  | 
| 320 |  |  |  |  |  |  | The public repository of this module is | 
| 321 |  |  |  |  |  |  | L. | 
| 322 |  |  |  |  |  |  |  | 
| 323 |  |  |  |  |  |  | =head1 SUPPORT | 
| 324 |  |  |  |  |  |  |  | 
| 325 |  |  |  |  |  |  | The public support forum of this module is | 
| 326 |  |  |  |  |  |  | L. | 
| 327 |  |  |  |  |  |  |  | 
| 328 |  |  |  |  |  |  | =head1 BUG TRACKER | 
| 329 |  |  |  |  |  |  |  | 
| 330 |  |  |  |  |  |  | Please report bugs in this module via the RT CPAN bug queue at | 
| 331 |  |  |  |  |  |  | L | 
| 332 |  |  |  |  |  |  | or via mail to L. | 
| 333 |  |  |  |  |  |  |  | 
| 334 |  |  |  |  |  |  | =head1 AUTHOR | 
| 335 |  |  |  |  |  |  |  | 
| 336 |  |  |  |  |  |  | Max Maischein C | 
| 337 |  |  |  |  |  |  |  | 
| 338 |  |  |  |  |  |  | =head1 COPYRIGHT (c) | 
| 339 |  |  |  |  |  |  |  | 
| 340 |  |  |  |  |  |  | Copyright 2011 by Max Maischein C. | 
| 341 |  |  |  |  |  |  |  | 
| 342 |  |  |  |  |  |  | =head1 LICENSE | 
| 343 |  |  |  |  |  |  |  | 
| 344 |  |  |  |  |  |  | This module is released under the same terms as Perl itself. | 
| 345 |  |  |  |  |  |  |  | 
| 346 |  |  |  |  |  |  | =cut |