line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
1
|
|
|
|
|
|
|
package Performance::Probability; |
2
|
|
|
|
|
|
|
|
3
|
2
|
|
|
2
|
|
127845
|
use 5.010; |
|
2
|
|
|
|
|
5
|
|
4
|
2
|
|
|
2
|
|
7
|
use strict; |
|
2
|
|
|
|
|
2
|
|
|
2
|
|
|
|
|
30
|
|
5
|
2
|
|
|
2
|
|
4
|
use warnings; |
|
2
|
|
|
|
|
5
|
|
|
2
|
|
|
|
|
37
|
|
6
|
|
|
|
|
|
|
|
7
|
2
|
|
|
2
|
|
693
|
use Math::BivariateCDF; |
|
2
|
|
|
|
|
772
|
|
|
2
|
|
|
|
|
68
|
|
8
|
2
|
|
|
2
|
|
718
|
use Math::Gauss::XS; |
|
2
|
|
|
|
|
651
|
|
|
2
|
|
|
|
|
69
|
|
9
|
2
|
|
|
2
|
|
684
|
use Machine::Epsilon; |
|
2
|
|
|
|
|
469
|
|
|
2
|
|
|
|
|
73
|
|
10
|
|
|
|
|
|
|
|
11
|
2
|
|
|
2
|
|
7
|
use Exporter; |
|
2
|
|
|
|
|
2
|
|
|
2
|
|
|
|
|
1575
|
|
12
|
|
|
|
|
|
|
|
13
|
|
|
|
|
|
|
our @ISA = qw(Exporter); |
14
|
|
|
|
|
|
|
|
15
|
|
|
|
|
|
|
our @EXPORT_OK = qw(get_performance_probability); |
16
|
|
|
|
|
|
|
|
17
|
|
|
|
|
|
|
our $VERSION = '0.04'; |
18
|
|
|
|
|
|
|
|
19
|
|
|
|
|
|
|
=head1 NAME |
20
|
|
|
|
|
|
|
|
21
|
|
|
|
|
|
|
Performance::Probability - The performance probability is a likelihood measure of a client reaching his/her current profit and loss. |
22
|
|
|
|
|
|
|
|
23
|
|
|
|
|
|
|
=head1 VERSION |
24
|
|
|
|
|
|
|
|
25
|
|
|
|
|
|
|
0.04 |
26
|
|
|
|
|
|
|
|
27
|
|
|
|
|
|
|
=head1 SYNOPSYS |
28
|
|
|
|
|
|
|
|
29
|
|
|
|
|
|
|
use Performance::Probability qw(get_performance_probability); |
30
|
|
|
|
|
|
|
|
31
|
|
|
|
|
|
|
my $probability = Performance::Probability::get_performance_probability( |
32
|
|
|
|
|
|
|
types => [qw/CALL PUT/], |
33
|
|
|
|
|
|
|
payout => [100, 100], |
34
|
|
|
|
|
|
|
bought_price => [75, 55], |
35
|
|
|
|
|
|
|
pnl => 1000.0, |
36
|
|
|
|
|
|
|
underlying => [qw/EURUSD EURUSD/], |
37
|
|
|
|
|
|
|
start_time => [1461847439, 1461930839], #time in epoch |
38
|
|
|
|
|
|
|
sell_time => [1461924960, 1461931561], #time in epoch |
39
|
|
|
|
|
|
|
); |
40
|
|
|
|
|
|
|
|
41
|
|
|
|
|
|
|
=head1 DESCRIPTION |
42
|
|
|
|
|
|
|
|
43
|
|
|
|
|
|
|
The performance probability is a likelihood measure of a client reaching his/her current profit and loss. |
44
|
|
|
|
|
|
|
|
45
|
|
|
|
|
|
|
=cut |
46
|
|
|
|
|
|
|
|
47
|
|
|
|
|
|
|
#Profit in case of winning. ( Payout minus bought price ). |
48
|
|
|
|
|
|
|
sub _build_wk { |
49
|
|
|
|
|
|
|
|
50
|
1
|
|
|
1
|
|
2
|
my $bought_price = shift; |
51
|
1
|
|
|
|
|
11
|
my $payout = shift; |
52
|
|
|
|
|
|
|
|
53
|
1
|
|
|
|
|
2
|
my @w_k; |
54
|
|
|
|
|
|
|
|
55
|
|
|
|
|
|
|
my $i; |
56
|
|
|
|
|
|
|
|
57
|
1
|
|
|
|
|
1
|
for ($i = 0; $i < @{$payout}; ++$i) { |
|
101
|
|
|
|
|
107
|
|
58
|
100
|
|
|
|
|
64
|
my $tmp_w_k = $payout->[$i] - $bought_price->[$i]; |
59
|
100
|
|
|
|
|
64
|
push @w_k, $tmp_w_k; |
60
|
|
|
|
|
|
|
} |
61
|
|
|
|
|
|
|
|
62
|
1
|
|
|
|
|
2
|
return \@w_k; |
63
|
|
|
|
|
|
|
} |
64
|
|
|
|
|
|
|
|
65
|
|
|
|
|
|
|
#Loss in case of losing. (Minus bought price). |
66
|
|
|
|
|
|
|
sub _build_lk { |
67
|
|
|
|
|
|
|
|
68
|
1
|
|
|
1
|
|
1
|
my $bought_price = shift; |
69
|
1
|
|
|
|
|
1
|
my @l_k; |
70
|
|
|
|
|
|
|
|
71
|
|
|
|
|
|
|
my $i; |
72
|
|
|
|
|
|
|
|
73
|
1
|
|
|
|
|
2
|
for ($i = 0; $i < @{$bought_price}; ++$i) { |
|
101
|
|
|
|
|
116
|
|
74
|
100
|
|
|
|
|
68
|
push @l_k, 0 - $bought_price->[$i]; |
75
|
|
|
|
|
|
|
} |
76
|
|
|
|
|
|
|
|
77
|
1
|
|
|
|
|
1
|
return \@l_k; |
78
|
|
|
|
|
|
|
} |
79
|
|
|
|
|
|
|
|
80
|
|
|
|
|
|
|
#Winning probability. ( Bought price / Payout ). |
81
|
|
|
|
|
|
|
sub _build_pk { |
82
|
|
|
|
|
|
|
|
83
|
1
|
|
|
1
|
|
1
|
my $bought_price = shift; |
84
|
1
|
|
|
|
|
2
|
my $payout = shift; |
85
|
|
|
|
|
|
|
|
86
|
1
|
|
|
|
|
1
|
my @p_k; |
87
|
|
|
|
|
|
|
|
88
|
|
|
|
|
|
|
my $i; |
89
|
|
|
|
|
|
|
|
90
|
1
|
|
|
|
|
2
|
for ($i = 0; $i < @{$bought_price}; ++$i) { |
|
101
|
|
|
|
|
113
|
|
91
|
100
|
|
|
|
|
89
|
my $tmp_pk = $bought_price->[$i] / $payout->[$i]; |
92
|
100
|
|
|
|
|
75
|
push @p_k, $tmp_pk; |
93
|
|
|
|
|
|
|
} |
94
|
|
|
|
|
|
|
|
95
|
1
|
|
|
|
|
2
|
return \@p_k; |
96
|
|
|
|
|
|
|
} |
97
|
|
|
|
|
|
|
|
98
|
|
|
|
|
|
|
#Sigma( profit * winning probability + loss * losing probability ). |
99
|
|
|
|
|
|
|
sub _mean { |
100
|
|
|
|
|
|
|
|
101
|
1
|
|
|
1
|
|
0
|
my $pk = shift; |
102
|
1
|
|
|
|
|
2
|
my $lk = shift; |
103
|
1
|
|
|
|
|
0
|
my $wk = shift; |
104
|
|
|
|
|
|
|
|
105
|
1
|
|
|
|
|
1
|
my $i; |
106
|
1
|
|
|
|
|
2
|
my $sum = 0; |
107
|
|
|
|
|
|
|
|
108
|
1
|
|
|
|
|
3
|
for ($i = 0; $i < @{$wk}; ++$i) { |
|
101
|
|
|
|
|
110
|
|
109
|
100
|
|
|
|
|
105
|
$sum = $sum + ($wk->[$i] * $pk->[$i]) + ($lk->[$i] * (1 - $pk->[$i])); |
110
|
|
|
|
|
|
|
} |
111
|
|
|
|
|
|
|
|
112
|
1
|
|
|
|
|
4
|
return $sum; |
113
|
|
|
|
|
|
|
} |
114
|
|
|
|
|
|
|
|
115
|
|
|
|
|
|
|
#Sigma( (profit**2) * winning probability + (loss**2) * losing probability ). |
116
|
|
|
|
|
|
|
sub _variance_x_square { |
117
|
|
|
|
|
|
|
|
118
|
1
|
|
|
1
|
|
1
|
my $pk = shift; |
119
|
1
|
|
|
|
|
1
|
my $lk = shift; |
120
|
1
|
|
|
|
|
1
|
my $wk = shift; |
121
|
|
|
|
|
|
|
|
122
|
1
|
|
|
|
|
1
|
my $sum = 0; |
123
|
1
|
|
|
|
|
1
|
my $i; |
124
|
|
|
|
|
|
|
|
125
|
1
|
|
|
|
|
4
|
for ($i = 0; $i < @{$wk}; ++$i) { |
|
101
|
|
|
|
|
111
|
|
126
|
100
|
|
|
|
|
104
|
$sum = $sum + (($wk->[$i]**2) * $pk->[$i]) + (($lk->[$i]**2) * (1 - $pk->[$i])); |
127
|
|
|
|
|
|
|
} |
128
|
|
|
|
|
|
|
|
129
|
1
|
|
|
|
|
2
|
return $sum; |
130
|
|
|
|
|
|
|
} |
131
|
|
|
|
|
|
|
|
132
|
|
|
|
|
|
|
#Sum of Covariance(i,j). See the documentation for the details. |
133
|
|
|
|
|
|
|
#Covariance(i, j) is the covariance between contract i and j with time overlap. |
134
|
|
|
|
|
|
|
sub _covariance { |
135
|
|
|
|
|
|
|
|
136
|
1
|
|
|
1
|
|
1
|
my ($start_time, $sell_time, $underlying, $types, $pk, $lk, $wk) = @_; |
137
|
|
|
|
|
|
|
|
138
|
1
|
|
|
|
|
1
|
my ($i, $j); |
139
|
1
|
|
|
|
|
1
|
my $covariance = 0; |
140
|
|
|
|
|
|
|
|
141
|
1
|
|
|
|
|
2
|
for ($i = 0; $i < @{$start_time}; ++$i) { |
|
101
|
|
|
|
|
115
|
|
142
|
100
|
|
|
|
|
67
|
for ($j = 0; $j < @{$sell_time}; ++$j) { |
|
10100
|
|
|
|
|
10940
|
|
143
|
10000
|
100
|
66
|
|
|
22495
|
if ($i != $j and $underlying->[$i] eq $underlying->[$j]) { |
144
|
|
|
|
|
|
|
|
145
|
|
|
|
|
|
|
#check for time overlap. |
146
|
9900
|
100
|
|
|
|
9682
|
my $min_end_time = $sell_time->[$i] < $sell_time->[$j] ? $sell_time->[$i] : $sell_time->[$j]; |
147
|
9900
|
100
|
|
|
|
8924
|
my $max_start_time = $start_time->[$i] > $start_time->[$j] ? $start_time->[$i] : $start_time->[$j]; |
148
|
9900
|
|
|
|
|
5766
|
my $b_interval = $min_end_time - $max_start_time; |
149
|
|
|
|
|
|
|
|
150
|
9900
|
50
|
|
|
|
11855
|
if ($b_interval > 0) { |
151
|
|
|
|
|
|
|
|
152
|
|
|
|
|
|
|
#calculate first and second contracts durations. please see the documentation for details |
153
|
|
|
|
|
|
|
|
154
|
0
|
|
|
|
|
0
|
my $first_contract_duration = ($sell_time->[$i] - $start_time->[$i]); |
155
|
0
|
|
|
|
|
0
|
my $second_contract_duration = ($sell_time->[$j] - $start_time->[$j]); |
156
|
|
|
|
|
|
|
|
157
|
0
|
|
|
|
|
0
|
my $i_strike = 0.0 - Math::Gauss::XS::inv_cdf($pk->[$i]); |
158
|
0
|
|
|
|
|
0
|
my $j_strike = 0.0 - Math::Gauss::XS::inv_cdf($pk->[$j]); |
159
|
|
|
|
|
|
|
|
160
|
0
|
|
|
|
|
0
|
my $corr_ij = $b_interval / (sqrt($first_contract_duration) * sqrt($second_contract_duration)); |
161
|
|
|
|
|
|
|
|
162
|
0
|
0
|
|
|
|
0
|
if ($types->[$i] ne $types->[$j]) { |
163
|
0
|
|
|
|
|
0
|
$corr_ij = -1 * $corr_ij; |
164
|
|
|
|
|
|
|
} |
165
|
|
|
|
|
|
|
|
166
|
0
|
0
|
0
|
|
|
0
|
if ($corr_ij < -1 or $corr_ij > 1) { |
167
|
0
|
|
|
|
|
0
|
next; |
168
|
|
|
|
|
|
|
} |
169
|
|
|
|
|
|
|
|
170
|
0
|
|
|
|
|
0
|
my $p_ij = Math::BivariateCDF::bivnor($i_strike, $j_strike, $corr_ij); |
171
|
|
|
|
|
|
|
|
172
|
0
|
|
|
|
|
0
|
my $covariance_ij = |
173
|
|
|
|
|
|
|
($p_ij - $pk->[$i] * $pk->[$j]) * ($wk->[$i] - $lk->[$i]) * ($wk->[$j] - $lk->[$j]); |
174
|
|
|
|
|
|
|
|
175
|
0
|
|
|
|
|
0
|
$covariance = $covariance + $covariance_ij; |
176
|
|
|
|
|
|
|
} |
177
|
|
|
|
|
|
|
} |
178
|
|
|
|
|
|
|
} |
179
|
|
|
|
|
|
|
} |
180
|
|
|
|
|
|
|
|
181
|
1
|
|
|
|
|
6
|
return $covariance; |
182
|
|
|
|
|
|
|
} |
183
|
|
|
|
|
|
|
|
184
|
|
|
|
|
|
|
=head2 get_performance_probability |
185
|
|
|
|
|
|
|
|
186
|
|
|
|
|
|
|
Calculate performance probability ( modified sharpe ratio ) |
187
|
|
|
|
|
|
|
|
188
|
|
|
|
|
|
|
=cut |
189
|
|
|
|
|
|
|
|
190
|
|
|
|
|
|
|
sub get_performance_probability { |
191
|
|
|
|
|
|
|
|
192
|
1
|
|
|
1
|
1
|
1253
|
my $params = shift; |
193
|
|
|
|
|
|
|
|
194
|
1
|
|
|
|
|
2
|
my $pnl = $params->{pnl}; |
195
|
|
|
|
|
|
|
|
196
|
1
|
50
|
|
|
|
3
|
if (not defined $pnl) { |
197
|
0
|
|
|
|
|
0
|
die "pnl is a required parameter."; |
198
|
|
|
|
|
|
|
} |
199
|
|
|
|
|
|
|
|
200
|
|
|
|
|
|
|
#Below variables are all arrays. |
201
|
1
|
|
|
|
|
2
|
my $start_time = $params->{start_time}; |
202
|
1
|
|
|
|
|
1
|
my $sell_time = $params->{sell_time}; |
203
|
1
|
|
|
|
|
1
|
my $types = $params->{types}; |
204
|
1
|
|
|
|
|
1
|
my $underlying = $params->{underlying}; |
205
|
1
|
|
|
|
|
1
|
my $bought_price = $params->{bought_price}; |
206
|
1
|
|
|
|
|
1
|
my $payout = $params->{payout}; |
207
|
|
|
|
|
|
|
|
208
|
1
|
50
|
|
|
|
2
|
if (grep { $_ != scalar(@$start_time) } (scalar(@$sell_time), scalar(@$types), scalar(@$underlying), scalar(@$bought_price), scalar(@$payout))) { |
|
5
|
|
|
|
|
8
|
|
209
|
0
|
|
|
|
|
0
|
die "start_time, sell_time, types, underlying, bought_price and payout are required parameters and need to be arrays of same lengths."; |
210
|
|
|
|
|
|
|
} |
211
|
|
|
|
|
|
|
|
212
|
1
|
|
|
|
|
1
|
my $i = 0; |
213
|
1
|
|
|
|
|
1
|
for ($i = 0; $i < @{$start_time}; ++$i) { |
|
101
|
|
|
|
|
118
|
|
214
|
100
|
50
|
|
|
|
137
|
if ($sell_time->[$i] - $start_time->[$i] == 0) { |
215
|
0
|
|
|
|
|
0
|
die "Contract duration ( sell_time minus start_time ) cannot be zero."; |
216
|
|
|
|
|
|
|
} |
217
|
|
|
|
|
|
|
} |
218
|
|
|
|
|
|
|
|
219
|
1
|
|
|
|
|
2
|
my $pk = _build_pk($bought_price, $payout); |
220
|
1
|
|
|
|
|
2
|
my $lk = _build_lk($bought_price); |
221
|
1
|
|
|
|
|
2
|
my $wk = _build_wk($bought_price, $payout); |
222
|
|
|
|
|
|
|
|
223
|
1
|
|
|
|
|
2
|
my $mean = _mean($pk, $lk, $wk); |
224
|
|
|
|
|
|
|
|
225
|
1
|
|
|
|
|
2
|
my $variance = _variance_x_square($pk, $lk, $wk); |
226
|
|
|
|
|
|
|
|
227
|
1
|
|
|
|
|
2
|
my $covariance = _covariance($start_time, $sell_time, $underlying, $types, $pk, $lk, $wk); |
228
|
|
|
|
|
|
|
|
229
|
|
|
|
|
|
|
#Calculate the performance probability here. |
230
|
1
|
|
|
|
|
2
|
my $prob = 0; |
231
|
|
|
|
|
|
|
|
232
|
1
|
|
|
|
|
11
|
my $epsilon = machine_epsilon(); |
233
|
|
|
|
|
|
|
|
234
|
1
|
|
|
|
|
89
|
$prob = $pnl - $mean; |
235
|
1
|
|
|
|
|
4
|
$prob = $prob / (sqrt(($variance - ($mean**2.0)) + 2.0 * $covariance) + $epsilon); |
236
|
|
|
|
|
|
|
|
237
|
1
|
|
|
|
|
13
|
$prob = 1.0 - Math::Gauss::XS::cdf($prob, 0.0, 1.0); |
238
|
|
|
|
|
|
|
|
239
|
1
|
|
|
|
|
24
|
return $prob; |
240
|
|
|
|
|
|
|
} |
241
|
|
|
|
|
|
|
|
242
|
|
|
|
|
|
|
1; |