line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
1
|
|
|
|
|
|
|
package Paws::MachineLearning; |
2
|
1
|
|
|
1
|
|
7164
|
use Moose; |
|
1
|
|
|
1
|
|
4
|
|
|
1
|
|
|
|
|
13
|
|
|
1
|
|
|
|
|
379
|
|
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
6
|
|
3
|
1
|
|
|
1
|
0
|
3
|
sub service { 'machinelearning' } |
4
|
0
|
|
|
0
|
0
|
0
|
sub version { '2014-12-12' } |
5
|
0
|
|
|
0
|
0
|
0
|
sub target_prefix { 'AmazonML_20141212' } |
6
|
0
|
|
|
0
|
0
|
0
|
sub json_version { "1.1" } |
7
|
|
|
|
|
|
|
has max_attempts => (is => 'ro', isa => 'Int', default => 5); |
8
|
|
|
|
|
|
|
has retry => (is => 'ro', isa => 'HashRef', default => sub { |
9
|
|
|
|
|
|
|
{ base => 'rand', type => 'exponential', growth_factor => 2 } |
10
|
|
|
|
|
|
|
}); |
11
|
|
|
|
|
|
|
has retriables => (is => 'ro', isa => 'ArrayRef', default => sub { [ |
12
|
|
|
|
|
|
|
] }); |
13
|
|
|
|
|
|
|
|
14
|
|
|
|
|
|
|
with 'Paws::API::Caller', 'Paws::API::EndpointResolver', 'Paws::Net::V4Signature', 'Paws::Net::JsonCaller', 'Paws::Net::JsonResponse'; |
15
|
|
|
|
|
|
|
|
16
|
|
|
|
|
|
|
|
17
|
|
|
|
|
|
|
sub AddTags { |
18
|
0
|
|
|
0
|
1
|
0
|
my $self = shift; |
19
|
0
|
|
|
|
|
0
|
my $call_object = $self->new_with_coercions('Paws::MachineLearning::AddTags', @_); |
20
|
0
|
|
|
|
|
0
|
return $self->caller->do_call($self, $call_object); |
21
|
|
|
|
|
|
|
} |
22
|
|
|
|
|
|
|
sub CreateBatchPrediction { |
23
|
0
|
|
|
0
|
1
|
0
|
my $self = shift; |
24
|
0
|
|
|
|
|
0
|
my $call_object = $self->new_with_coercions('Paws::MachineLearning::CreateBatchPrediction', @_); |
25
|
0
|
|
|
|
|
0
|
return $self->caller->do_call($self, $call_object); |
26
|
|
|
|
|
|
|
} |
27
|
|
|
|
|
|
|
sub CreateDataSourceFromRDS { |
28
|
0
|
|
|
0
|
1
|
0
|
my $self = shift; |
29
|
0
|
|
|
|
|
0
|
my $call_object = $self->new_with_coercions('Paws::MachineLearning::CreateDataSourceFromRDS', @_); |
30
|
0
|
|
|
|
|
0
|
return $self->caller->do_call($self, $call_object); |
31
|
|
|
|
|
|
|
} |
32
|
|
|
|
|
|
|
sub CreateDataSourceFromRedshift { |
33
|
0
|
|
|
0
|
1
|
0
|
my $self = shift; |
34
|
0
|
|
|
|
|
0
|
my $call_object = $self->new_with_coercions('Paws::MachineLearning::CreateDataSourceFromRedshift', @_); |
35
|
0
|
|
|
|
|
0
|
return $self->caller->do_call($self, $call_object); |
36
|
|
|
|
|
|
|
} |
37
|
|
|
|
|
|
|
sub CreateDataSourceFromS3 { |
38
|
0
|
|
|
0
|
1
|
0
|
my $self = shift; |
39
|
0
|
|
|
|
|
0
|
my $call_object = $self->new_with_coercions('Paws::MachineLearning::CreateDataSourceFromS3', @_); |
40
|
0
|
|
|
|
|
0
|
return $self->caller->do_call($self, $call_object); |
41
|
|
|
|
|
|
|
} |
42
|
|
|
|
|
|
|
sub CreateEvaluation { |
43
|
0
|
|
|
0
|
1
|
0
|
my $self = shift; |
44
|
0
|
|
|
|
|
0
|
my $call_object = $self->new_with_coercions('Paws::MachineLearning::CreateEvaluation', @_); |
45
|
0
|
|
|
|
|
0
|
return $self->caller->do_call($self, $call_object); |
46
|
|
|
|
|
|
|
} |
47
|
|
|
|
|
|
|
sub CreateMLModel { |
48
|
0
|
|
|
0
|
1
|
0
|
my $self = shift; |
49
|
0
|
|
|
|
|
0
|
my $call_object = $self->new_with_coercions('Paws::MachineLearning::CreateMLModel', @_); |
50
|
0
|
|
|
|
|
0
|
return $self->caller->do_call($self, $call_object); |
51
|
|
|
|
|
|
|
} |
52
|
|
|
|
|
|
|
sub CreateRealtimeEndpoint { |
53
|
0
|
|
|
0
|
1
|
0
|
my $self = shift; |
54
|
0
|
|
|
|
|
0
|
my $call_object = $self->new_with_coercions('Paws::MachineLearning::CreateRealtimeEndpoint', @_); |
55
|
0
|
|
|
|
|
0
|
return $self->caller->do_call($self, $call_object); |
56
|
|
|
|
|
|
|
} |
57
|
|
|
|
|
|
|
sub DeleteBatchPrediction { |
58
|
0
|
|
|
0
|
1
|
0
|
my $self = shift; |
59
|
0
|
|
|
|
|
0
|
my $call_object = $self->new_with_coercions('Paws::MachineLearning::DeleteBatchPrediction', @_); |
60
|
0
|
|
|
|
|
0
|
return $self->caller->do_call($self, $call_object); |
61
|
|
|
|
|
|
|
} |
62
|
|
|
|
|
|
|
sub DeleteDataSource { |
63
|
0
|
|
|
0
|
1
|
0
|
my $self = shift; |
64
|
0
|
|
|
|
|
0
|
my $call_object = $self->new_with_coercions('Paws::MachineLearning::DeleteDataSource', @_); |
65
|
0
|
|
|
|
|
0
|
return $self->caller->do_call($self, $call_object); |
66
|
|
|
|
|
|
|
} |
67
|
|
|
|
|
|
|
sub DeleteEvaluation { |
68
|
0
|
|
|
0
|
1
|
0
|
my $self = shift; |
69
|
0
|
|
|
|
|
0
|
my $call_object = $self->new_with_coercions('Paws::MachineLearning::DeleteEvaluation', @_); |
70
|
0
|
|
|
|
|
0
|
return $self->caller->do_call($self, $call_object); |
71
|
|
|
|
|
|
|
} |
72
|
|
|
|
|
|
|
sub DeleteMLModel { |
73
|
0
|
|
|
0
|
1
|
0
|
my $self = shift; |
74
|
0
|
|
|
|
|
0
|
my $call_object = $self->new_with_coercions('Paws::MachineLearning::DeleteMLModel', @_); |
75
|
0
|
|
|
|
|
0
|
return $self->caller->do_call($self, $call_object); |
76
|
|
|
|
|
|
|
} |
77
|
|
|
|
|
|
|
sub DeleteRealtimeEndpoint { |
78
|
0
|
|
|
0
|
1
|
0
|
my $self = shift; |
79
|
0
|
|
|
|
|
0
|
my $call_object = $self->new_with_coercions('Paws::MachineLearning::DeleteRealtimeEndpoint', @_); |
80
|
0
|
|
|
|
|
0
|
return $self->caller->do_call($self, $call_object); |
81
|
|
|
|
|
|
|
} |
82
|
|
|
|
|
|
|
sub DeleteTags { |
83
|
0
|
|
|
0
|
1
|
0
|
my $self = shift; |
84
|
0
|
|
|
|
|
0
|
my $call_object = $self->new_with_coercions('Paws::MachineLearning::DeleteTags', @_); |
85
|
0
|
|
|
|
|
0
|
return $self->caller->do_call($self, $call_object); |
86
|
|
|
|
|
|
|
} |
87
|
|
|
|
|
|
|
sub DescribeBatchPredictions { |
88
|
0
|
|
|
0
|
1
|
0
|
my $self = shift; |
89
|
0
|
|
|
|
|
0
|
my $call_object = $self->new_with_coercions('Paws::MachineLearning::DescribeBatchPredictions', @_); |
90
|
0
|
|
|
|
|
0
|
return $self->caller->do_call($self, $call_object); |
91
|
|
|
|
|
|
|
} |
92
|
|
|
|
|
|
|
sub DescribeDataSources { |
93
|
0
|
|
|
0
|
1
|
0
|
my $self = shift; |
94
|
0
|
|
|
|
|
0
|
my $call_object = $self->new_with_coercions('Paws::MachineLearning::DescribeDataSources', @_); |
95
|
0
|
|
|
|
|
0
|
return $self->caller->do_call($self, $call_object); |
96
|
|
|
|
|
|
|
} |
97
|
|
|
|
|
|
|
sub DescribeEvaluations { |
98
|
0
|
|
|
0
|
1
|
0
|
my $self = shift; |
99
|
0
|
|
|
|
|
0
|
my $call_object = $self->new_with_coercions('Paws::MachineLearning::DescribeEvaluations', @_); |
100
|
0
|
|
|
|
|
0
|
return $self->caller->do_call($self, $call_object); |
101
|
|
|
|
|
|
|
} |
102
|
|
|
|
|
|
|
sub DescribeMLModels { |
103
|
1
|
|
|
1
|
1
|
470
|
my $self = shift; |
104
|
1
|
|
|
|
|
4
|
my $call_object = $self->new_with_coercions('Paws::MachineLearning::DescribeMLModels', @_); |
105
|
1
|
|
|
|
|
1311
|
return $self->caller->do_call($self, $call_object); |
106
|
|
|
|
|
|
|
} |
107
|
|
|
|
|
|
|
sub DescribeTags { |
108
|
0
|
|
|
0
|
1
|
|
my $self = shift; |
109
|
0
|
|
|
|
|
|
my $call_object = $self->new_with_coercions('Paws::MachineLearning::DescribeTags', @_); |
110
|
0
|
|
|
|
|
|
return $self->caller->do_call($self, $call_object); |
111
|
|
|
|
|
|
|
} |
112
|
|
|
|
|
|
|
sub GetBatchPrediction { |
113
|
0
|
|
|
0
|
1
|
|
my $self = shift; |
114
|
0
|
|
|
|
|
|
my $call_object = $self->new_with_coercions('Paws::MachineLearning::GetBatchPrediction', @_); |
115
|
0
|
|
|
|
|
|
return $self->caller->do_call($self, $call_object); |
116
|
|
|
|
|
|
|
} |
117
|
|
|
|
|
|
|
sub GetDataSource { |
118
|
0
|
|
|
0
|
1
|
|
my $self = shift; |
119
|
0
|
|
|
|
|
|
my $call_object = $self->new_with_coercions('Paws::MachineLearning::GetDataSource', @_); |
120
|
0
|
|
|
|
|
|
return $self->caller->do_call($self, $call_object); |
121
|
|
|
|
|
|
|
} |
122
|
|
|
|
|
|
|
sub GetEvaluation { |
123
|
0
|
|
|
0
|
1
|
|
my $self = shift; |
124
|
0
|
|
|
|
|
|
my $call_object = $self->new_with_coercions('Paws::MachineLearning::GetEvaluation', @_); |
125
|
0
|
|
|
|
|
|
return $self->caller->do_call($self, $call_object); |
126
|
|
|
|
|
|
|
} |
127
|
|
|
|
|
|
|
sub GetMLModel { |
128
|
0
|
|
|
0
|
1
|
|
my $self = shift; |
129
|
0
|
|
|
|
|
|
my $call_object = $self->new_with_coercions('Paws::MachineLearning::GetMLModel', @_); |
130
|
0
|
|
|
|
|
|
return $self->caller->do_call($self, $call_object); |
131
|
|
|
|
|
|
|
} |
132
|
|
|
|
|
|
|
sub Predict { |
133
|
0
|
|
|
0
|
1
|
|
my $self = shift; |
134
|
0
|
|
|
|
|
|
my $call_object = $self->new_with_coercions('Paws::MachineLearning::Predict', @_); |
135
|
0
|
|
|
|
|
|
return $self->caller->do_call($self, $call_object); |
136
|
|
|
|
|
|
|
} |
137
|
|
|
|
|
|
|
sub UpdateBatchPrediction { |
138
|
0
|
|
|
0
|
1
|
|
my $self = shift; |
139
|
0
|
|
|
|
|
|
my $call_object = $self->new_with_coercions('Paws::MachineLearning::UpdateBatchPrediction', @_); |
140
|
0
|
|
|
|
|
|
return $self->caller->do_call($self, $call_object); |
141
|
|
|
|
|
|
|
} |
142
|
|
|
|
|
|
|
sub UpdateDataSource { |
143
|
0
|
|
|
0
|
1
|
|
my $self = shift; |
144
|
0
|
|
|
|
|
|
my $call_object = $self->new_with_coercions('Paws::MachineLearning::UpdateDataSource', @_); |
145
|
0
|
|
|
|
|
|
return $self->caller->do_call($self, $call_object); |
146
|
|
|
|
|
|
|
} |
147
|
|
|
|
|
|
|
sub UpdateEvaluation { |
148
|
0
|
|
|
0
|
1
|
|
my $self = shift; |
149
|
0
|
|
|
|
|
|
my $call_object = $self->new_with_coercions('Paws::MachineLearning::UpdateEvaluation', @_); |
150
|
0
|
|
|
|
|
|
return $self->caller->do_call($self, $call_object); |
151
|
|
|
|
|
|
|
} |
152
|
|
|
|
|
|
|
sub UpdateMLModel { |
153
|
0
|
|
|
0
|
1
|
|
my $self = shift; |
154
|
0
|
|
|
|
|
|
my $call_object = $self->new_with_coercions('Paws::MachineLearning::UpdateMLModel', @_); |
155
|
0
|
|
|
|
|
|
return $self->caller->do_call($self, $call_object); |
156
|
|
|
|
|
|
|
} |
157
|
|
|
|
|
|
|
|
158
|
|
|
|
|
|
|
sub DescribeAllBatchPredictions { |
159
|
0
|
|
|
0
|
1
|
|
my $self = shift; |
160
|
|
|
|
|
|
|
|
161
|
0
|
0
|
|
|
|
|
my $callback = shift @_ if (ref($_[0]) eq 'CODE'); |
162
|
0
|
|
|
|
|
|
my $result = $self->DescribeBatchPredictions(@_); |
163
|
0
|
|
|
|
|
|
my $next_result = $result; |
164
|
|
|
|
|
|
|
|
165
|
0
|
0
|
|
|
|
|
if (not defined $callback) { |
166
|
0
|
|
|
|
|
|
while ($next_result->NextToken) { |
167
|
0
|
|
|
|
|
|
$next_result = $self->DescribeBatchPredictions(@_, NextToken => $next_result->NextToken); |
168
|
0
|
|
|
|
|
|
push @{ $result->Results }, @{ $next_result->Results }; |
|
0
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
169
|
|
|
|
|
|
|
} |
170
|
0
|
|
|
|
|
|
return $result; |
171
|
|
|
|
|
|
|
} else { |
172
|
0
|
|
|
|
|
|
while ($result->NextToken) { |
173
|
0
|
|
|
|
|
|
$callback->($_ => 'Results') foreach (@{ $result->Results }); |
|
0
|
|
|
|
|
|
|
174
|
0
|
|
|
|
|
|
$result = $self->DescribeBatchPredictions(@_, NextToken => $result->NextToken); |
175
|
|
|
|
|
|
|
} |
176
|
0
|
|
|
|
|
|
$callback->($_ => 'Results') foreach (@{ $result->Results }); |
|
0
|
|
|
|
|
|
|
177
|
|
|
|
|
|
|
} |
178
|
|
|
|
|
|
|
|
179
|
|
|
|
|
|
|
return undef |
180
|
0
|
|
|
|
|
|
} |
181
|
|
|
|
|
|
|
sub DescribeAllDataSources { |
182
|
0
|
|
|
0
|
1
|
|
my $self = shift; |
183
|
|
|
|
|
|
|
|
184
|
0
|
0
|
|
|
|
|
my $callback = shift @_ if (ref($_[0]) eq 'CODE'); |
185
|
0
|
|
|
|
|
|
my $result = $self->DescribeDataSources(@_); |
186
|
0
|
|
|
|
|
|
my $next_result = $result; |
187
|
|
|
|
|
|
|
|
188
|
0
|
0
|
|
|
|
|
if (not defined $callback) { |
189
|
0
|
|
|
|
|
|
while ($next_result->NextToken) { |
190
|
0
|
|
|
|
|
|
$next_result = $self->DescribeDataSources(@_, NextToken => $next_result->NextToken); |
191
|
0
|
|
|
|
|
|
push @{ $result->Results }, @{ $next_result->Results }; |
|
0
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
192
|
|
|
|
|
|
|
} |
193
|
0
|
|
|
|
|
|
return $result; |
194
|
|
|
|
|
|
|
} else { |
195
|
0
|
|
|
|
|
|
while ($result->NextToken) { |
196
|
0
|
|
|
|
|
|
$callback->($_ => 'Results') foreach (@{ $result->Results }); |
|
0
|
|
|
|
|
|
|
197
|
0
|
|
|
|
|
|
$result = $self->DescribeDataSources(@_, NextToken => $result->NextToken); |
198
|
|
|
|
|
|
|
} |
199
|
0
|
|
|
|
|
|
$callback->($_ => 'Results') foreach (@{ $result->Results }); |
|
0
|
|
|
|
|
|
|
200
|
|
|
|
|
|
|
} |
201
|
|
|
|
|
|
|
|
202
|
|
|
|
|
|
|
return undef |
203
|
0
|
|
|
|
|
|
} |
204
|
|
|
|
|
|
|
sub DescribeAllEvaluations { |
205
|
0
|
|
|
0
|
1
|
|
my $self = shift; |
206
|
|
|
|
|
|
|
|
207
|
0
|
0
|
|
|
|
|
my $callback = shift @_ if (ref($_[0]) eq 'CODE'); |
208
|
0
|
|
|
|
|
|
my $result = $self->DescribeEvaluations(@_); |
209
|
0
|
|
|
|
|
|
my $next_result = $result; |
210
|
|
|
|
|
|
|
|
211
|
0
|
0
|
|
|
|
|
if (not defined $callback) { |
212
|
0
|
|
|
|
|
|
while ($next_result->NextToken) { |
213
|
0
|
|
|
|
|
|
$next_result = $self->DescribeEvaluations(@_, NextToken => $next_result->NextToken); |
214
|
0
|
|
|
|
|
|
push @{ $result->Results }, @{ $next_result->Results }; |
|
0
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
215
|
|
|
|
|
|
|
} |
216
|
0
|
|
|
|
|
|
return $result; |
217
|
|
|
|
|
|
|
} else { |
218
|
0
|
|
|
|
|
|
while ($result->NextToken) { |
219
|
0
|
|
|
|
|
|
$callback->($_ => 'Results') foreach (@{ $result->Results }); |
|
0
|
|
|
|
|
|
|
220
|
0
|
|
|
|
|
|
$result = $self->DescribeEvaluations(@_, NextToken => $result->NextToken); |
221
|
|
|
|
|
|
|
} |
222
|
0
|
|
|
|
|
|
$callback->($_ => 'Results') foreach (@{ $result->Results }); |
|
0
|
|
|
|
|
|
|
223
|
|
|
|
|
|
|
} |
224
|
|
|
|
|
|
|
|
225
|
|
|
|
|
|
|
return undef |
226
|
0
|
|
|
|
|
|
} |
227
|
|
|
|
|
|
|
sub DescribeAllMLModels { |
228
|
0
|
|
|
0
|
1
|
|
my $self = shift; |
229
|
|
|
|
|
|
|
|
230
|
0
|
0
|
|
|
|
|
my $callback = shift @_ if (ref($_[0]) eq 'CODE'); |
231
|
0
|
|
|
|
|
|
my $result = $self->DescribeMLModels(@_); |
232
|
0
|
|
|
|
|
|
my $next_result = $result; |
233
|
|
|
|
|
|
|
|
234
|
0
|
0
|
|
|
|
|
if (not defined $callback) { |
235
|
0
|
|
|
|
|
|
while ($next_result->NextToken) { |
236
|
0
|
|
|
|
|
|
$next_result = $self->DescribeMLModels(@_, NextToken => $next_result->NextToken); |
237
|
0
|
|
|
|
|
|
push @{ $result->Results }, @{ $next_result->Results }; |
|
0
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
238
|
|
|
|
|
|
|
} |
239
|
0
|
|
|
|
|
|
return $result; |
240
|
|
|
|
|
|
|
} else { |
241
|
0
|
|
|
|
|
|
while ($result->NextToken) { |
242
|
0
|
|
|
|
|
|
$callback->($_ => 'Results') foreach (@{ $result->Results }); |
|
0
|
|
|
|
|
|
|
243
|
0
|
|
|
|
|
|
$result = $self->DescribeMLModels(@_, NextToken => $result->NextToken); |
244
|
|
|
|
|
|
|
} |
245
|
0
|
|
|
|
|
|
$callback->($_ => 'Results') foreach (@{ $result->Results }); |
|
0
|
|
|
|
|
|
|
246
|
|
|
|
|
|
|
} |
247
|
|
|
|
|
|
|
|
248
|
|
|
|
|
|
|
return undef |
249
|
0
|
|
|
|
|
|
} |
250
|
|
|
|
|
|
|
|
251
|
|
|
|
|
|
|
|
252
|
0
|
|
|
0
|
0
|
|
sub operations { qw/AddTags CreateBatchPrediction CreateDataSourceFromRDS CreateDataSourceFromRedshift CreateDataSourceFromS3 CreateEvaluation CreateMLModel CreateRealtimeEndpoint DeleteBatchPrediction DeleteDataSource DeleteEvaluation DeleteMLModel DeleteRealtimeEndpoint DeleteTags DescribeBatchPredictions DescribeDataSources DescribeEvaluations DescribeMLModels DescribeTags GetBatchPrediction GetDataSource GetEvaluation GetMLModel Predict UpdateBatchPrediction UpdateDataSource UpdateEvaluation UpdateMLModel / } |
253
|
|
|
|
|
|
|
|
254
|
|
|
|
|
|
|
1; |
255
|
|
|
|
|
|
|
|
256
|
|
|
|
|
|
|
### main pod documentation begin ### |
257
|
|
|
|
|
|
|
|
258
|
|
|
|
|
|
|
=head1 NAME |
259
|
|
|
|
|
|
|
|
260
|
|
|
|
|
|
|
Paws::MachineLearning - Perl Interface to AWS Amazon Machine Learning |
261
|
|
|
|
|
|
|
|
262
|
|
|
|
|
|
|
=head1 SYNOPSIS |
263
|
|
|
|
|
|
|
|
264
|
|
|
|
|
|
|
use Paws; |
265
|
|
|
|
|
|
|
|
266
|
|
|
|
|
|
|
my $obj = Paws->service('MachineLearning'); |
267
|
|
|
|
|
|
|
my $res = $obj->Method( |
268
|
|
|
|
|
|
|
Arg1 => $val1, |
269
|
|
|
|
|
|
|
Arg2 => [ 'V1', 'V2' ], |
270
|
|
|
|
|
|
|
# if Arg3 is an object, the HashRef will be used as arguments to the constructor |
271
|
|
|
|
|
|
|
# of the arguments type |
272
|
|
|
|
|
|
|
Arg3 => { Att1 => 'Val1' }, |
273
|
|
|
|
|
|
|
# if Arg4 is an array of objects, the HashRefs will be passed as arguments to |
274
|
|
|
|
|
|
|
# the constructor of the arguments type |
275
|
|
|
|
|
|
|
Arg4 => [ { Att1 => 'Val1' }, { Att1 => 'Val2' } ], |
276
|
|
|
|
|
|
|
); |
277
|
|
|
|
|
|
|
|
278
|
|
|
|
|
|
|
=head1 DESCRIPTION |
279
|
|
|
|
|
|
|
|
280
|
|
|
|
|
|
|
Definition of the public APIs exposed by Amazon Machine Learning |
281
|
|
|
|
|
|
|
|
282
|
|
|
|
|
|
|
=head1 METHODS |
283
|
|
|
|
|
|
|
|
284
|
|
|
|
|
|
|
=head2 AddTags(ResourceId => Str, ResourceType => Str, Tags => ArrayRef[L<Paws::MachineLearning::Tag>]) |
285
|
|
|
|
|
|
|
|
286
|
|
|
|
|
|
|
Each argument is described in detail in: L<Paws::MachineLearning::AddTags> |
287
|
|
|
|
|
|
|
|
288
|
|
|
|
|
|
|
Returns: a L<Paws::MachineLearning::AddTagsOutput> instance |
289
|
|
|
|
|
|
|
|
290
|
|
|
|
|
|
|
Adds one or more tags to an object, up to a limit of 10. Each tag |
291
|
|
|
|
|
|
|
consists of a key and an optional value. If you add a tag using a key |
292
|
|
|
|
|
|
|
that is already associated with the ML object, C<AddTags> updates the |
293
|
|
|
|
|
|
|
tag's value. |
294
|
|
|
|
|
|
|
|
295
|
|
|
|
|
|
|
|
296
|
|
|
|
|
|
|
=head2 CreateBatchPrediction(BatchPredictionDataSourceId => Str, BatchPredictionId => Str, MLModelId => Str, OutputUri => Str, [BatchPredictionName => Str]) |
297
|
|
|
|
|
|
|
|
298
|
|
|
|
|
|
|
Each argument is described in detail in: L<Paws::MachineLearning::CreateBatchPrediction> |
299
|
|
|
|
|
|
|
|
300
|
|
|
|
|
|
|
Returns: a L<Paws::MachineLearning::CreateBatchPredictionOutput> instance |
301
|
|
|
|
|
|
|
|
302
|
|
|
|
|
|
|
Generates predictions for a group of observations. The observations to |
303
|
|
|
|
|
|
|
process exist in one or more data files referenced by a C<DataSource>. |
304
|
|
|
|
|
|
|
This operation creates a new C<BatchPrediction>, and uses an C<MLModel> |
305
|
|
|
|
|
|
|
and the data files referenced by the C<DataSource> as information |
306
|
|
|
|
|
|
|
sources. |
307
|
|
|
|
|
|
|
|
308
|
|
|
|
|
|
|
C<CreateBatchPrediction> is an asynchronous operation. In response to |
309
|
|
|
|
|
|
|
C<CreateBatchPrediction>, Amazon Machine Learning (Amazon ML) |
310
|
|
|
|
|
|
|
immediately returns and sets the C<BatchPrediction> status to |
311
|
|
|
|
|
|
|
C<PENDING>. After the C<BatchPrediction> completes, Amazon ML sets the |
312
|
|
|
|
|
|
|
status to C<COMPLETED>. |
313
|
|
|
|
|
|
|
|
314
|
|
|
|
|
|
|
You can poll for status updates by using the GetBatchPrediction |
315
|
|
|
|
|
|
|
operation and checking the C<Status> parameter of the result. After the |
316
|
|
|
|
|
|
|
C<COMPLETED> status appears, the results are available in the location |
317
|
|
|
|
|
|
|
specified by the C<OutputUri> parameter. |
318
|
|
|
|
|
|
|
|
319
|
|
|
|
|
|
|
|
320
|
|
|
|
|
|
|
=head2 CreateDataSourceFromRDS(DataSourceId => Str, RDSData => L<Paws::MachineLearning::RDSDataSpec>, RoleARN => Str, [ComputeStatistics => Bool, DataSourceName => Str]) |
321
|
|
|
|
|
|
|
|
322
|
|
|
|
|
|
|
Each argument is described in detail in: L<Paws::MachineLearning::CreateDataSourceFromRDS> |
323
|
|
|
|
|
|
|
|
324
|
|
|
|
|
|
|
Returns: a L<Paws::MachineLearning::CreateDataSourceFromRDSOutput> instance |
325
|
|
|
|
|
|
|
|
326
|
|
|
|
|
|
|
Creates a C<DataSource> object from an Amazon Relational Database |
327
|
|
|
|
|
|
|
Service (Amazon RDS). A C<DataSource> references data that can be used |
328
|
|
|
|
|
|
|
to perform C<CreateMLModel>, C<CreateEvaluation>, or |
329
|
|
|
|
|
|
|
C<CreateBatchPrediction> operations. |
330
|
|
|
|
|
|
|
|
331
|
|
|
|
|
|
|
C<CreateDataSourceFromRDS> is an asynchronous operation. In response to |
332
|
|
|
|
|
|
|
C<CreateDataSourceFromRDS>, Amazon Machine Learning (Amazon ML) |
333
|
|
|
|
|
|
|
immediately returns and sets the C<DataSource> status to C<PENDING>. |
334
|
|
|
|
|
|
|
After the C<DataSource> is created and ready for use, Amazon ML sets |
335
|
|
|
|
|
|
|
the C<Status> parameter to C<COMPLETED>. C<DataSource> in the |
336
|
|
|
|
|
|
|
C<COMPLETED> or C<PENDING> state can be used only to perform |
337
|
|
|
|
|
|
|
C<E<gt>CreateMLModel>E<gt>, C<CreateEvaluation>, or |
338
|
|
|
|
|
|
|
C<CreateBatchPrediction> operations. |
339
|
|
|
|
|
|
|
|
340
|
|
|
|
|
|
|
If Amazon ML cannot accept the input source, it sets the C<Status> |
341
|
|
|
|
|
|
|
parameter to C<FAILED> and includes an error message in the C<Message> |
342
|
|
|
|
|
|
|
attribute of the C<GetDataSource> operation response. |
343
|
|
|
|
|
|
|
|
344
|
|
|
|
|
|
|
|
345
|
|
|
|
|
|
|
=head2 CreateDataSourceFromRedshift(DataSourceId => Str, DataSpec => L<Paws::MachineLearning::RedshiftDataSpec>, RoleARN => Str, [ComputeStatistics => Bool, DataSourceName => Str]) |
346
|
|
|
|
|
|
|
|
347
|
|
|
|
|
|
|
Each argument is described in detail in: L<Paws::MachineLearning::CreateDataSourceFromRedshift> |
348
|
|
|
|
|
|
|
|
349
|
|
|
|
|
|
|
Returns: a L<Paws::MachineLearning::CreateDataSourceFromRedshiftOutput> instance |
350
|
|
|
|
|
|
|
|
351
|
|
|
|
|
|
|
Creates a C<DataSource> from a database hosted on an Amazon Redshift |
352
|
|
|
|
|
|
|
cluster. A C<DataSource> references data that can be used to perform |
353
|
|
|
|
|
|
|
either C<CreateMLModel>, C<CreateEvaluation>, or |
354
|
|
|
|
|
|
|
C<CreateBatchPrediction> operations. |
355
|
|
|
|
|
|
|
|
356
|
|
|
|
|
|
|
C<CreateDataSourceFromRedshift> is an asynchronous operation. In |
357
|
|
|
|
|
|
|
response to C<CreateDataSourceFromRedshift>, Amazon Machine Learning |
358
|
|
|
|
|
|
|
(Amazon ML) immediately returns and sets the C<DataSource> status to |
359
|
|
|
|
|
|
|
C<PENDING>. After the C<DataSource> is created and ready for use, |
360
|
|
|
|
|
|
|
Amazon ML sets the C<Status> parameter to C<COMPLETED>. C<DataSource> |
361
|
|
|
|
|
|
|
in C<COMPLETED> or C<PENDING> states can be used to perform only |
362
|
|
|
|
|
|
|
C<CreateMLModel>, C<CreateEvaluation>, or C<CreateBatchPrediction> |
363
|
|
|
|
|
|
|
operations. |
364
|
|
|
|
|
|
|
|
365
|
|
|
|
|
|
|
If Amazon ML can't accept the input source, it sets the C<Status> |
366
|
|
|
|
|
|
|
parameter to C<FAILED> and includes an error message in the C<Message> |
367
|
|
|
|
|
|
|
attribute of the C<GetDataSource> operation response. |
368
|
|
|
|
|
|
|
|
369
|
|
|
|
|
|
|
The observations should be contained in the database hosted on an |
370
|
|
|
|
|
|
|
Amazon Redshift cluster and should be specified by a C<SelectSqlQuery> |
371
|
|
|
|
|
|
|
query. Amazon ML executes an C<Unload> command in Amazon Redshift to |
372
|
|
|
|
|
|
|
transfer the result set of the C<SelectSqlQuery> query to |
373
|
|
|
|
|
|
|
C<S3StagingLocation>. |
374
|
|
|
|
|
|
|
|
375
|
|
|
|
|
|
|
After the C<DataSource> has been created, it's ready for use in |
376
|
|
|
|
|
|
|
evaluations and batch predictions. If you plan to use the C<DataSource> |
377
|
|
|
|
|
|
|
to train an C<MLModel>, the C<DataSource> also requires a recipe. A |
378
|
|
|
|
|
|
|
recipe describes how each input variable will be used in training an |
379
|
|
|
|
|
|
|
C<MLModel>. Will the variable be included or excluded from training? |
380
|
|
|
|
|
|
|
Will the variable be manipulated; for example, will it be combined with |
381
|
|
|
|
|
|
|
another variable or will it be split apart into word combinations? The |
382
|
|
|
|
|
|
|
recipe provides answers to these questions. |
383
|
|
|
|
|
|
|
|
384
|
|
|
|
|
|
|
You can't change an existing datasource, but you can copy and modify |
385
|
|
|
|
|
|
|
the settings from an existing Amazon Redshift datasource to create a |
386
|
|
|
|
|
|
|
new datasource. To do so, call C<GetDataSource> for an existing |
387
|
|
|
|
|
|
|
datasource and copy the values to a C<CreateDataSource> call. Change |
388
|
|
|
|
|
|
|
the settings that you want to change and make sure that all required |
389
|
|
|
|
|
|
|
fields have the appropriate values. |
390
|
|
|
|
|
|
|
|
391
|
|
|
|
|
|
|
|
392
|
|
|
|
|
|
|
=head2 CreateDataSourceFromS3(DataSourceId => Str, DataSpec => L<Paws::MachineLearning::S3DataSpec>, [ComputeStatistics => Bool, DataSourceName => Str]) |
393
|
|
|
|
|
|
|
|
394
|
|
|
|
|
|
|
Each argument is described in detail in: L<Paws::MachineLearning::CreateDataSourceFromS3> |
395
|
|
|
|
|
|
|
|
396
|
|
|
|
|
|
|
Returns: a L<Paws::MachineLearning::CreateDataSourceFromS3Output> instance |
397
|
|
|
|
|
|
|
|
398
|
|
|
|
|
|
|
Creates a C<DataSource> object. A C<DataSource> references data that |
399
|
|
|
|
|
|
|
can be used to perform C<CreateMLModel>, C<CreateEvaluation>, or |
400
|
|
|
|
|
|
|
C<CreateBatchPrediction> operations. |
401
|
|
|
|
|
|
|
|
402
|
|
|
|
|
|
|
C<CreateDataSourceFromS3> is an asynchronous operation. In response to |
403
|
|
|
|
|
|
|
C<CreateDataSourceFromS3>, Amazon Machine Learning (Amazon ML) |
404
|
|
|
|
|
|
|
immediately returns and sets the C<DataSource> status to C<PENDING>. |
405
|
|
|
|
|
|
|
After the C<DataSource> has been created and is ready for use, Amazon |
406
|
|
|
|
|
|
|
ML sets the C<Status> parameter to C<COMPLETED>. C<DataSource> in the |
407
|
|
|
|
|
|
|
C<COMPLETED> or C<PENDING> state can be used to perform only |
408
|
|
|
|
|
|
|
C<CreateMLModel>, C<CreateEvaluation> or C<CreateBatchPrediction> |
409
|
|
|
|
|
|
|
operations. |
410
|
|
|
|
|
|
|
|
411
|
|
|
|
|
|
|
If Amazon ML can't accept the input source, it sets the C<Status> |
412
|
|
|
|
|
|
|
parameter to C<FAILED> and includes an error message in the C<Message> |
413
|
|
|
|
|
|
|
attribute of the C<GetDataSource> operation response. |
414
|
|
|
|
|
|
|
|
415
|
|
|
|
|
|
|
The observation data used in a C<DataSource> should be ready to use; |
416
|
|
|
|
|
|
|
that is, it should have a consistent structure, and missing data values |
417
|
|
|
|
|
|
|
should be kept to a minimum. The observation data must reside in one or |
418
|
|
|
|
|
|
|
more .csv files in an Amazon Simple Storage Service (Amazon S3) |
419
|
|
|
|
|
|
|
location, along with a schema that describes the data items by name and |
420
|
|
|
|
|
|
|
type. The same schema must be used for all of the data files referenced |
421
|
|
|
|
|
|
|
by the C<DataSource>. |
422
|
|
|
|
|
|
|
|
423
|
|
|
|
|
|
|
After the C<DataSource> has been created, it's ready to use in |
424
|
|
|
|
|
|
|
evaluations and batch predictions. If you plan to use the C<DataSource> |
425
|
|
|
|
|
|
|
to train an C<MLModel>, the C<DataSource> also needs a recipe. A recipe |
426
|
|
|
|
|
|
|
describes how each input variable will be used in training an |
427
|
|
|
|
|
|
|
C<MLModel>. Will the variable be included or excluded from training? |
428
|
|
|
|
|
|
|
Will the variable be manipulated; for example, will it be combined with |
429
|
|
|
|
|
|
|
another variable or will it be split apart into word combinations? The |
430
|
|
|
|
|
|
|
recipe provides answers to these questions. |
431
|
|
|
|
|
|
|
|
432
|
|
|
|
|
|
|
|
433
|
|
|
|
|
|
|
=head2 CreateEvaluation(EvaluationDataSourceId => Str, EvaluationId => Str, MLModelId => Str, [EvaluationName => Str]) |
434
|
|
|
|
|
|
|
|
435
|
|
|
|
|
|
|
Each argument is described in detail in: L<Paws::MachineLearning::CreateEvaluation> |
436
|
|
|
|
|
|
|
|
437
|
|
|
|
|
|
|
Returns: a L<Paws::MachineLearning::CreateEvaluationOutput> instance |
438
|
|
|
|
|
|
|
|
439
|
|
|
|
|
|
|
Creates a new C<Evaluation> of an C<MLModel>. An C<MLModel> is |
440
|
|
|
|
|
|
|
evaluated on a set of observations associated to a C<DataSource>. Like |
441
|
|
|
|
|
|
|
a C<DataSource> for an C<MLModel>, the C<DataSource> for an |
442
|
|
|
|
|
|
|
C<Evaluation> contains values for the C<Target Variable>. The |
443
|
|
|
|
|
|
|
C<Evaluation> compares the predicted result for each observation to the |
444
|
|
|
|
|
|
|
actual outcome and provides a summary so that you know how effective |
445
|
|
|
|
|
|
|
the C<MLModel> functions on the test data. Evaluation generates a |
446
|
|
|
|
|
|
|
relevant performance metric, such as BinaryAUC, RegressionRMSE or |
447
|
|
|
|
|
|
|
MulticlassAvgFScore based on the corresponding C<MLModelType>: |
448
|
|
|
|
|
|
|
C<BINARY>, C<REGRESSION> or C<MULTICLASS>. |
449
|
|
|
|
|
|
|
|
450
|
|
|
|
|
|
|
C<CreateEvaluation> is an asynchronous operation. In response to |
451
|
|
|
|
|
|
|
C<CreateEvaluation>, Amazon Machine Learning (Amazon ML) immediately |
452
|
|
|
|
|
|
|
returns and sets the evaluation status to C<PENDING>. After the |
453
|
|
|
|
|
|
|
C<Evaluation> is created and ready for use, Amazon ML sets the status |
454
|
|
|
|
|
|
|
to C<COMPLETED>. |
455
|
|
|
|
|
|
|
|
456
|
|
|
|
|
|
|
You can use the C<GetEvaluation> operation to check progress of the |
457
|
|
|
|
|
|
|
evaluation during the creation operation. |
458
|
|
|
|
|
|
|
|
459
|
|
|
|
|
|
|
|
460
|
|
|
|
|
|
|
=head2 CreateMLModel(MLModelId => Str, MLModelType => Str, TrainingDataSourceId => Str, [MLModelName => Str, Parameters => L<Paws::MachineLearning::TrainingParameters>, Recipe => Str, RecipeUri => Str]) |
461
|
|
|
|
|
|
|
|
462
|
|
|
|
|
|
|
Each argument is described in detail in: L<Paws::MachineLearning::CreateMLModel> |
463
|
|
|
|
|
|
|
|
464
|
|
|
|
|
|
|
Returns: a L<Paws::MachineLearning::CreateMLModelOutput> instance |
465
|
|
|
|
|
|
|
|
466
|
|
|
|
|
|
|
Creates a new C<MLModel> using the C<DataSource> and the recipe as |
467
|
|
|
|
|
|
|
information sources. |
468
|
|
|
|
|
|
|
|
469
|
|
|
|
|
|
|
An C<MLModel> is nearly immutable. Users can update only the |
470
|
|
|
|
|
|
|
C<MLModelName> and the C<ScoreThreshold> in an C<MLModel> without |
471
|
|
|
|
|
|
|
creating a new C<MLModel>. |
472
|
|
|
|
|
|
|
|
473
|
|
|
|
|
|
|
C<CreateMLModel> is an asynchronous operation. In response to |
474
|
|
|
|
|
|
|
C<CreateMLModel>, Amazon Machine Learning (Amazon ML) immediately |
475
|
|
|
|
|
|
|
returns and sets the C<MLModel> status to C<PENDING>. After the |
476
|
|
|
|
|
|
|
C<MLModel> has been created and ready is for use, Amazon ML sets the |
477
|
|
|
|
|
|
|
status to C<COMPLETED>. |
478
|
|
|
|
|
|
|
|
479
|
|
|
|
|
|
|
You can use the C<GetMLModel> operation to check the progress of the |
480
|
|
|
|
|
|
|
C<MLModel> during the creation operation. |
481
|
|
|
|
|
|
|
|
482
|
|
|
|
|
|
|
C<CreateMLModel> requires a C<DataSource> with computed statistics, |
483
|
|
|
|
|
|
|
which can be created by setting C<ComputeStatistics> to C<true> in |
484
|
|
|
|
|
|
|
C<CreateDataSourceFromRDS>, C<CreateDataSourceFromS3>, or |
485
|
|
|
|
|
|
|
C<CreateDataSourceFromRedshift> operations. |
486
|
|
|
|
|
|
|
|
487
|
|
|
|
|
|
|
|
488
|
|
|
|
|
|
|
=head2 CreateRealtimeEndpoint(MLModelId => Str) |
489
|
|
|
|
|
|
|
|
490
|
|
|
|
|
|
|
Each argument is described in detail in: L<Paws::MachineLearning::CreateRealtimeEndpoint> |
491
|
|
|
|
|
|
|
|
492
|
|
|
|
|
|
|
Returns: a L<Paws::MachineLearning::CreateRealtimeEndpointOutput> instance |
493
|
|
|
|
|
|
|
|
494
|
|
|
|
|
|
|
Creates a real-time endpoint for the C<MLModel>. The endpoint contains |
495
|
|
|
|
|
|
|
the URI of the C<MLModel>; that is, the location to send real-time |
496
|
|
|
|
|
|
|
prediction requests for the specified C<MLModel>. |
497
|
|
|
|
|
|
|
|
498
|
|
|
|
|
|
|
|
499
|
|
|
|
|
|
|
=head2 DeleteBatchPrediction(BatchPredictionId => Str) |
500
|
|
|
|
|
|
|
|
501
|
|
|
|
|
|
|
Each argument is described in detail in: L<Paws::MachineLearning::DeleteBatchPrediction> |
502
|
|
|
|
|
|
|
|
503
|
|
|
|
|
|
|
Returns: a L<Paws::MachineLearning::DeleteBatchPredictionOutput> instance |
504
|
|
|
|
|
|
|
|
505
|
|
|
|
|
|
|
Assigns the DELETED status to a C<BatchPrediction>, rendering it |
506
|
|
|
|
|
|
|
unusable. |
507
|
|
|
|
|
|
|
|
508
|
|
|
|
|
|
|
After using the C<DeleteBatchPrediction> operation, you can use the |
509
|
|
|
|
|
|
|
GetBatchPrediction operation to verify that the status of the |
510
|
|
|
|
|
|
|
C<BatchPrediction> changed to DELETED. |
511
|
|
|
|
|
|
|
|
512
|
|
|
|
|
|
|
B<Caution:> The result of the C<DeleteBatchPrediction> operation is |
513
|
|
|
|
|
|
|
irreversible. |
514
|
|
|
|
|
|
|
|
515
|
|
|
|
|
|
|
|
516
|
|
|
|
|
|
|
=head2 DeleteDataSource(DataSourceId => Str) |
517
|
|
|
|
|
|
|
|
518
|
|
|
|
|
|
|
Each argument is described in detail in: L<Paws::MachineLearning::DeleteDataSource> |
519
|
|
|
|
|
|
|
|
520
|
|
|
|
|
|
|
Returns: a L<Paws::MachineLearning::DeleteDataSourceOutput> instance |
521
|
|
|
|
|
|
|
|
522
|
|
|
|
|
|
|
Assigns the DELETED status to a C<DataSource>, rendering it unusable. |
523
|
|
|
|
|
|
|
|
524
|
|
|
|
|
|
|
After using the C<DeleteDataSource> operation, you can use the |
525
|
|
|
|
|
|
|
GetDataSource operation to verify that the status of the C<DataSource> |
526
|
|
|
|
|
|
|
changed to DELETED. |
527
|
|
|
|
|
|
|
|
528
|
|
|
|
|
|
|
B<Caution:> The results of the C<DeleteDataSource> operation are |
529
|
|
|
|
|
|
|
irreversible. |
530
|
|
|
|
|
|
|
|
531
|
|
|
|
|
|
|
|
532
|
|
|
|
|
|
|
=head2 DeleteEvaluation(EvaluationId => Str) |
533
|
|
|
|
|
|
|
|
534
|
|
|
|
|
|
|
Each argument is described in detail in: L<Paws::MachineLearning::DeleteEvaluation> |
535
|
|
|
|
|
|
|
|
536
|
|
|
|
|
|
|
Returns: a L<Paws::MachineLearning::DeleteEvaluationOutput> instance |
537
|
|
|
|
|
|
|
|
538
|
|
|
|
|
|
|
Assigns the C<DELETED> status to an C<Evaluation>, rendering it |
539
|
|
|
|
|
|
|
unusable. |
540
|
|
|
|
|
|
|
|
541
|
|
|
|
|
|
|
After invoking the C<DeleteEvaluation> operation, you can use the |
542
|
|
|
|
|
|
|
C<GetEvaluation> operation to verify that the status of the |
543
|
|
|
|
|
|
|
C<Evaluation> changed to C<DELETED>. |
544
|
|
|
|
|
|
|
|
545
|
|
|
|
|
|
|
The results of the C<DeleteEvaluation> operation are irreversible. |
546
|
|
|
|
|
|
|
|
547
|
|
|
|
|
|
|
|
548
|
|
|
|
|
|
|
=head2 DeleteMLModel(MLModelId => Str) |
549
|
|
|
|
|
|
|
|
550
|
|
|
|
|
|
|
Each argument is described in detail in: L<Paws::MachineLearning::DeleteMLModel> |
551
|
|
|
|
|
|
|
|
552
|
|
|
|
|
|
|
Returns: a L<Paws::MachineLearning::DeleteMLModelOutput> instance |
553
|
|
|
|
|
|
|
|
554
|
|
|
|
|
|
|
Assigns the C<DELETED> status to an C<MLModel>, rendering it unusable. |
555
|
|
|
|
|
|
|
|
556
|
|
|
|
|
|
|
After using the C<DeleteMLModel> operation, you can use the |
557
|
|
|
|
|
|
|
C<GetMLModel> operation to verify that the status of the C<MLModel> |
558
|
|
|
|
|
|
|
changed to DELETED. |
559
|
|
|
|
|
|
|
|
560
|
|
|
|
|
|
|
B<Caution:> The result of the C<DeleteMLModel> operation is |
561
|
|
|
|
|
|
|
irreversible. |
562
|
|
|
|
|
|
|
|
563
|
|
|
|
|
|
|
|
564
|
|
|
|
|
|
|
=head2 DeleteRealtimeEndpoint(MLModelId => Str) |
565
|
|
|
|
|
|
|
|
566
|
|
|
|
|
|
|
Each argument is described in detail in: L<Paws::MachineLearning::DeleteRealtimeEndpoint> |
567
|
|
|
|
|
|
|
|
568
|
|
|
|
|
|
|
Returns: a L<Paws::MachineLearning::DeleteRealtimeEndpointOutput> instance |
569
|
|
|
|
|
|
|
|
570
|
|
|
|
|
|
|
Deletes a real time endpoint of an C<MLModel>. |
571
|
|
|
|
|
|
|
|
572
|
|
|
|
|
|
|
|
573
|
|
|
|
|
|
|
=head2 DeleteTags(ResourceId => Str, ResourceType => Str, TagKeys => ArrayRef[Str|Undef]) |
574
|
|
|
|
|
|
|
|
575
|
|
|
|
|
|
|
Each argument is described in detail in: L<Paws::MachineLearning::DeleteTags> |
576
|
|
|
|
|
|
|
|
577
|
|
|
|
|
|
|
Returns: a L<Paws::MachineLearning::DeleteTagsOutput> instance |
578
|
|
|
|
|
|
|
|
579
|
|
|
|
|
|
|
Deletes the specified tags associated with an ML object. After this |
580
|
|
|
|
|
|
|
operation is complete, you can't recover deleted tags. |
581
|
|
|
|
|
|
|
|
582
|
|
|
|
|
|
|
If you specify a tag that doesn't exist, Amazon ML ignores it. |
583
|
|
|
|
|
|
|
|
584
|
|
|
|
|
|
|
|
585
|
|
|
|
|
|
|
=head2 DescribeBatchPredictions([EQ => Str, FilterVariable => Str, GE => Str, GT => Str, LE => Str, Limit => Int, LT => Str, NE => Str, NextToken => Str, Prefix => Str, SortOrder => Str]) |
586
|
|
|
|
|
|
|
|
587
|
|
|
|
|
|
|
Each argument is described in detail in: L<Paws::MachineLearning::DescribeBatchPredictions> |
588
|
|
|
|
|
|
|
|
589
|
|
|
|
|
|
|
Returns: a L<Paws::MachineLearning::DescribeBatchPredictionsOutput> instance |
590
|
|
|
|
|
|
|
|
591
|
|
|
|
|
|
|
Returns a list of C<BatchPrediction> operations that match the search |
592
|
|
|
|
|
|
|
criteria in the request. |
593
|
|
|
|
|
|
|
|
594
|
|
|
|
|
|
|
|
595
|
|
|
|
|
|
|
=head2 DescribeDataSources([EQ => Str, FilterVariable => Str, GE => Str, GT => Str, LE => Str, Limit => Int, LT => Str, NE => Str, NextToken => Str, Prefix => Str, SortOrder => Str]) |
596
|
|
|
|
|
|
|
|
597
|
|
|
|
|
|
|
Each argument is described in detail in: L<Paws::MachineLearning::DescribeDataSources> |
598
|
|
|
|
|
|
|
|
599
|
|
|
|
|
|
|
Returns: a L<Paws::MachineLearning::DescribeDataSourcesOutput> instance |
600
|
|
|
|
|
|
|
|
601
|
|
|
|
|
|
|
Returns a list of C<DataSource> that match the search criteria in the |
602
|
|
|
|
|
|
|
request. |
603
|
|
|
|
|
|
|
|
604
|
|
|
|
|
|
|
|
605
|
|
|
|
|
|
|
=head2 DescribeEvaluations([EQ => Str, FilterVariable => Str, GE => Str, GT => Str, LE => Str, Limit => Int, LT => Str, NE => Str, NextToken => Str, Prefix => Str, SortOrder => Str]) |
606
|
|
|
|
|
|
|
|
607
|
|
|
|
|
|
|
Each argument is described in detail in: L<Paws::MachineLearning::DescribeEvaluations> |
608
|
|
|
|
|
|
|
|
609
|
|
|
|
|
|
|
Returns: a L<Paws::MachineLearning::DescribeEvaluationsOutput> instance |
610
|
|
|
|
|
|
|
|
611
|
|
|
|
|
|
|
Returns a list of C<DescribeEvaluations> that match the search criteria |
612
|
|
|
|
|
|
|
in the request. |
613
|
|
|
|
|
|
|
|
614
|
|
|
|
|
|
|
|
615
|
|
|
|
|
|
|
=head2 DescribeMLModels([EQ => Str, FilterVariable => Str, GE => Str, GT => Str, LE => Str, Limit => Int, LT => Str, NE => Str, NextToken => Str, Prefix => Str, SortOrder => Str]) |
616
|
|
|
|
|
|
|
|
617
|
|
|
|
|
|
|
Each argument is described in detail in: L<Paws::MachineLearning::DescribeMLModels> |
618
|
|
|
|
|
|
|
|
619
|
|
|
|
|
|
|
Returns: a L<Paws::MachineLearning::DescribeMLModelsOutput> instance |
620
|
|
|
|
|
|
|
|
621
|
|
|
|
|
|
|
Returns a list of C<MLModel> that match the search criteria in the |
622
|
|
|
|
|
|
|
request. |
623
|
|
|
|
|
|
|
|
624
|
|
|
|
|
|
|
|
625
|
|
|
|
|
|
|
=head2 DescribeTags(ResourceId => Str, ResourceType => Str) |
626
|
|
|
|
|
|
|
|
627
|
|
|
|
|
|
|
Each argument is described in detail in: L<Paws::MachineLearning::DescribeTags> |
628
|
|
|
|
|
|
|
|
629
|
|
|
|
|
|
|
Returns: a L<Paws::MachineLearning::DescribeTagsOutput> instance |
630
|
|
|
|
|
|
|
|
631
|
|
|
|
|
|
|
Describes one or more of the tags for your Amazon ML object. |
632
|
|
|
|
|
|
|
|
633
|
|
|
|
|
|
|
|
634
|
|
|
|
|
|
|
=head2 GetBatchPrediction(BatchPredictionId => Str) |
635
|
|
|
|
|
|
|
|
636
|
|
|
|
|
|
|
Each argument is described in detail in: L<Paws::MachineLearning::GetBatchPrediction> |
637
|
|
|
|
|
|
|
|
638
|
|
|
|
|
|
|
Returns: a L<Paws::MachineLearning::GetBatchPredictionOutput> instance |
639
|
|
|
|
|
|
|
|
640
|
|
|
|
|
|
|
Returns a C<BatchPrediction> that includes detailed metadata, status, |
641
|
|
|
|
|
|
|
and data file information for a C<Batch Prediction> request. |
642
|
|
|
|
|
|
|
|
643
|
|
|
|
|
|
|
|
644
|
|
|
|
|
|
|
=head2 GetDataSource(DataSourceId => Str, [Verbose => Bool]) |
645
|
|
|
|
|
|
|
|
646
|
|
|
|
|
|
|
Each argument is described in detail in: L<Paws::MachineLearning::GetDataSource> |
647
|
|
|
|
|
|
|
|
648
|
|
|
|
|
|
|
Returns: a L<Paws::MachineLearning::GetDataSourceOutput> instance |
649
|
|
|
|
|
|
|
|
650
|
|
|
|
|
|
|
Returns a C<DataSource> that includes metadata and data file |
651
|
|
|
|
|
|
|
information, as well as the current status of the C<DataSource>. |
652
|
|
|
|
|
|
|
|
653
|
|
|
|
|
|
|
C<GetDataSource> provides results in normal or verbose format. The |
654
|
|
|
|
|
|
|
verbose format adds the schema description and the list of files |
655
|
|
|
|
|
|
|
pointed to by the DataSource to the normal format. |
656
|
|
|
|
|
|
|
|
657
|
|
|
|
|
|
|
|
658
|
|
|
|
|
|
|
=head2 GetEvaluation(EvaluationId => Str) |
659
|
|
|
|
|
|
|
|
660
|
|
|
|
|
|
|
Each argument is described in detail in: L<Paws::MachineLearning::GetEvaluation> |
661
|
|
|
|
|
|
|
|
662
|
|
|
|
|
|
|
Returns: a L<Paws::MachineLearning::GetEvaluationOutput> instance |
663
|
|
|
|
|
|
|
|
664
|
|
|
|
|
|
|
Returns an C<Evaluation> that includes metadata as well as the current |
665
|
|
|
|
|
|
|
status of the C<Evaluation>. |
666
|
|
|
|
|
|
|
|
667
|
|
|
|
|
|
|
|
668
|
|
|
|
|
|
|
=head2 GetMLModel(MLModelId => Str, [Verbose => Bool]) |
669
|
|
|
|
|
|
|
|
670
|
|
|
|
|
|
|
Each argument is described in detail in: L<Paws::MachineLearning::GetMLModel> |
671
|
|
|
|
|
|
|
|
672
|
|
|
|
|
|
|
Returns: a L<Paws::MachineLearning::GetMLModelOutput> instance |
673
|
|
|
|
|
|
|
|
674
|
|
|
|
|
|
|
Returns an C<MLModel> that includes detailed metadata, data source |
675
|
|
|
|
|
|
|
information, and the current status of the C<MLModel>. |
676
|
|
|
|
|
|
|
|
677
|
|
|
|
|
|
|
C<GetMLModel> provides results in normal or verbose format. |
678
|
|
|
|
|
|
|
|
679
|
|
|
|
|
|
|
|
680
|
|
|
|
|
|
|
=head2 Predict(MLModelId => Str, PredictEndpoint => Str, Record => L<Paws::MachineLearning::Record>) |
681
|
|
|
|
|
|
|
|
682
|
|
|
|
|
|
|
Each argument is described in detail in: L<Paws::MachineLearning::Predict> |
683
|
|
|
|
|
|
|
|
684
|
|
|
|
|
|
|
Returns: a L<Paws::MachineLearning::PredictOutput> instance |
685
|
|
|
|
|
|
|
|
686
|
|
|
|
|
|
|
Generates a prediction for the observation using the specified C<ML |
687
|
|
|
|
|
|
|
Model>. |
688
|
|
|
|
|
|
|
|
689
|
|
|
|
|
|
|
Not all response parameters will be populated. Whether a response |
690
|
|
|
|
|
|
|
parameter is populated depends on the type of model requested. |
691
|
|
|
|
|
|
|
|
692
|
|
|
|
|
|
|
|
693
|
|
|
|
|
|
|
=head2 UpdateBatchPrediction(BatchPredictionId => Str, BatchPredictionName => Str) |
694
|
|
|
|
|
|
|
|
695
|
|
|
|
|
|
|
Each argument is described in detail in: L<Paws::MachineLearning::UpdateBatchPrediction> |
696
|
|
|
|
|
|
|
|
697
|
|
|
|
|
|
|
Returns: a L<Paws::MachineLearning::UpdateBatchPredictionOutput> instance |
698
|
|
|
|
|
|
|
|
699
|
|
|
|
|
|
|
Updates the C<BatchPredictionName> of a C<BatchPrediction>. |
700
|
|
|
|
|
|
|
|
701
|
|
|
|
|
|
|
You can use the C<GetBatchPrediction> operation to view the contents of |
702
|
|
|
|
|
|
|
the updated data element. |
703
|
|
|
|
|
|
|
|
704
|
|
|
|
|
|
|
|
705
|
|
|
|
|
|
|
=head2 UpdateDataSource(DataSourceId => Str, DataSourceName => Str) |
706
|
|
|
|
|
|
|
|
707
|
|
|
|
|
|
|
Each argument is described in detail in: L<Paws::MachineLearning::UpdateDataSource> |
708
|
|
|
|
|
|
|
|
709
|
|
|
|
|
|
|
Returns: a L<Paws::MachineLearning::UpdateDataSourceOutput> instance |
710
|
|
|
|
|
|
|
|
711
|
|
|
|
|
|
|
Updates the C<DataSourceName> of a C<DataSource>. |
712
|
|
|
|
|
|
|
|
713
|
|
|
|
|
|
|
You can use the C<GetDataSource> operation to view the contents of the |
714
|
|
|
|
|
|
|
updated data element. |
715
|
|
|
|
|
|
|
|
716
|
|
|
|
|
|
|
|
717
|
|
|
|
|
|
|
=head2 UpdateEvaluation(EvaluationId => Str, EvaluationName => Str) |
718
|
|
|
|
|
|
|
|
719
|
|
|
|
|
|
|
Each argument is described in detail in: L<Paws::MachineLearning::UpdateEvaluation> |
720
|
|
|
|
|
|
|
|
721
|
|
|
|
|
|
|
Returns: a L<Paws::MachineLearning::UpdateEvaluationOutput> instance |
722
|
|
|
|
|
|
|
|
723
|
|
|
|
|
|
|
Updates the C<EvaluationName> of an C<Evaluation>. |
724
|
|
|
|
|
|
|
|
725
|
|
|
|
|
|
|
You can use the C<GetEvaluation> operation to view the contents of the |
726
|
|
|
|
|
|
|
updated data element. |
727
|
|
|
|
|
|
|
|
728
|
|
|
|
|
|
|
|
729
|
|
|
|
|
|
|
=head2 UpdateMLModel(MLModelId => Str, [MLModelName => Str, ScoreThreshold => Num]) |
730
|
|
|
|
|
|
|
|
731
|
|
|
|
|
|
|
Each argument is described in detail in: L<Paws::MachineLearning::UpdateMLModel> |
732
|
|
|
|
|
|
|
|
733
|
|
|
|
|
|
|
Returns: a L<Paws::MachineLearning::UpdateMLModelOutput> instance |
734
|
|
|
|
|
|
|
|
735
|
|
|
|
|
|
|
Updates the C<MLModelName> and the C<ScoreThreshold> of an C<MLModel>. |
736
|
|
|
|
|
|
|
|
737
|
|
|
|
|
|
|
You can use the C<GetMLModel> operation to view the contents of the |
738
|
|
|
|
|
|
|
updated data element. |
739
|
|
|
|
|
|
|
|
740
|
|
|
|
|
|
|
|
741
|
|
|
|
|
|
|
|
742
|
|
|
|
|
|
|
|
743
|
|
|
|
|
|
|
=head1 PAGINATORS |
744
|
|
|
|
|
|
|
|
745
|
|
|
|
|
|
|
Paginator methods are helpers that repetively call methods that return partial results |
746
|
|
|
|
|
|
|
|
747
|
|
|
|
|
|
|
=head2 DescribeAllBatchPredictions(sub { },[EQ => Str, FilterVariable => Str, GE => Str, GT => Str, LE => Str, Limit => Int, LT => Str, NE => Str, NextToken => Str, Prefix => Str, SortOrder => Str]) |
748
|
|
|
|
|
|
|
|
749
|
|
|
|
|
|
|
=head2 DescribeAllBatchPredictions([EQ => Str, FilterVariable => Str, GE => Str, GT => Str, LE => Str, Limit => Int, LT => Str, NE => Str, NextToken => Str, Prefix => Str, SortOrder => Str]) |
750
|
|
|
|
|
|
|
|
751
|
|
|
|
|
|
|
|
752
|
|
|
|
|
|
|
If passed a sub as first parameter, it will call the sub for each element found in : |
753
|
|
|
|
|
|
|
|
754
|
|
|
|
|
|
|
- Results, passing the object as the first parameter, and the string 'Results' as the second parameter |
755
|
|
|
|
|
|
|
|
756
|
|
|
|
|
|
|
If not, it will return a a L<Paws::MachineLearning::DescribeBatchPredictionsOutput> instance with all the C<param>s; from all the responses. Please take into account that this mode can potentially consume vasts ammounts of memory. |
757
|
|
|
|
|
|
|
|
758
|
|
|
|
|
|
|
|
759
|
|
|
|
|
|
|
=head2 DescribeAllDataSources(sub { },[EQ => Str, FilterVariable => Str, GE => Str, GT => Str, LE => Str, Limit => Int, LT => Str, NE => Str, NextToken => Str, Prefix => Str, SortOrder => Str]) |
760
|
|
|
|
|
|
|
|
761
|
|
|
|
|
|
|
=head2 DescribeAllDataSources([EQ => Str, FilterVariable => Str, GE => Str, GT => Str, LE => Str, Limit => Int, LT => Str, NE => Str, NextToken => Str, Prefix => Str, SortOrder => Str]) |
762
|
|
|
|
|
|
|
|
763
|
|
|
|
|
|
|
|
764
|
|
|
|
|
|
|
If passed a sub as first parameter, it will call the sub for each element found in : |
765
|
|
|
|
|
|
|
|
766
|
|
|
|
|
|
|
- Results, passing the object as the first parameter, and the string 'Results' as the second parameter |
767
|
|
|
|
|
|
|
|
768
|
|
|
|
|
|
|
If not, it will return a a L<Paws::MachineLearning::DescribeDataSourcesOutput> instance with all the C<param>s; from all the responses. Please take into account that this mode can potentially consume vasts ammounts of memory. |
769
|
|
|
|
|
|
|
|
770
|
|
|
|
|
|
|
|
771
|
|
|
|
|
|
|
=head2 DescribeAllEvaluations(sub { },[EQ => Str, FilterVariable => Str, GE => Str, GT => Str, LE => Str, Limit => Int, LT => Str, NE => Str, NextToken => Str, Prefix => Str, SortOrder => Str]) |
772
|
|
|
|
|
|
|
|
773
|
|
|
|
|
|
|
=head2 DescribeAllEvaluations([EQ => Str, FilterVariable => Str, GE => Str, GT => Str, LE => Str, Limit => Int, LT => Str, NE => Str, NextToken => Str, Prefix => Str, SortOrder => Str]) |
774
|
|
|
|
|
|
|
|
775
|
|
|
|
|
|
|
|
776
|
|
|
|
|
|
|
If passed a sub as first parameter, it will call the sub for each element found in : |
777
|
|
|
|
|
|
|
|
778
|
|
|
|
|
|
|
- Results, passing the object as the first parameter, and the string 'Results' as the second parameter |
779
|
|
|
|
|
|
|
|
780
|
|
|
|
|
|
|
If not, it will return a a L<Paws::MachineLearning::DescribeEvaluationsOutput> instance with all the C<param>s; from all the responses. Please take into account that this mode can potentially consume vasts ammounts of memory. |
781
|
|
|
|
|
|
|
|
782
|
|
|
|
|
|
|
|
783
|
|
|
|
|
|
|
=head2 DescribeAllMLModels(sub { },[EQ => Str, FilterVariable => Str, GE => Str, GT => Str, LE => Str, Limit => Int, LT => Str, NE => Str, NextToken => Str, Prefix => Str, SortOrder => Str]) |
784
|
|
|
|
|
|
|
|
785
|
|
|
|
|
|
|
=head2 DescribeAllMLModels([EQ => Str, FilterVariable => Str, GE => Str, GT => Str, LE => Str, Limit => Int, LT => Str, NE => Str, NextToken => Str, Prefix => Str, SortOrder => Str]) |
786
|
|
|
|
|
|
|
|
787
|
|
|
|
|
|
|
|
788
|
|
|
|
|
|
|
If passed a sub as first parameter, it will call the sub for each element found in : |
789
|
|
|
|
|
|
|
|
790
|
|
|
|
|
|
|
- Results, passing the object as the first parameter, and the string 'Results' as the second parameter |
791
|
|
|
|
|
|
|
|
792
|
|
|
|
|
|
|
If not, it will return a a L<Paws::MachineLearning::DescribeMLModelsOutput> instance with all the C<param>s; from all the responses. Please take into account that this mode can potentially consume vasts ammounts of memory. |
793
|
|
|
|
|
|
|
|
794
|
|
|
|
|
|
|
|
795
|
|
|
|
|
|
|
|
796
|
|
|
|
|
|
|
|
797
|
|
|
|
|
|
|
|
798
|
|
|
|
|
|
|
=head1 SEE ALSO |
799
|
|
|
|
|
|
|
|
800
|
|
|
|
|
|
|
This service class forms part of L<Paws> |
801
|
|
|
|
|
|
|
|
802
|
|
|
|
|
|
|
=head1 BUGS and CONTRIBUTIONS |
803
|
|
|
|
|
|
|
|
804
|
|
|
|
|
|
|
The source code is located here: https://github.com/pplu/aws-sdk-perl |
805
|
|
|
|
|
|
|
|
806
|
|
|
|
|
|
|
Please report bugs to: https://github.com/pplu/aws-sdk-perl/issues |
807
|
|
|
|
|
|
|
|
808
|
|
|
|
|
|
|
=cut |
809
|
|
|
|
|
|
|
|