File Coverage

blib/lib/Paws/MachineLearning.pm
Criterion Covered Total %
statement 10 167 5.9
branch 0 16 0.0
condition n/a
subroutine 4 39 10.2
pod 32 37 86.4
total 46 259 17.7


line stmt bran cond sub pod time code
1             package Paws::MachineLearning;
2 1     1   7164 use Moose;
  1     1   4  
  1         13  
  1         379  
  1         2  
  1         6  
3 1     1 0 3 sub service { 'machinelearning' }
4 0     0 0 0 sub version { '2014-12-12' }
5 0     0 0 0 sub target_prefix { 'AmazonML_20141212' }
6 0     0 0 0 sub json_version { "1.1" }
7             has max_attempts => (is => 'ro', isa => 'Int', default => 5);
8             has retry => (is => 'ro', isa => 'HashRef', default => sub {
9             { base => 'rand', type => 'exponential', growth_factor => 2 }
10             });
11             has retriables => (is => 'ro', isa => 'ArrayRef', default => sub { [
12             ] });
13              
14             with 'Paws::API::Caller', 'Paws::API::EndpointResolver', 'Paws::Net::V4Signature', 'Paws::Net::JsonCaller', 'Paws::Net::JsonResponse';
15              
16            
17             sub AddTags {
18 0     0 1 0 my $self = shift;
19 0         0 my $call_object = $self->new_with_coercions('Paws::MachineLearning::AddTags', @_);
20 0         0 return $self->caller->do_call($self, $call_object);
21             }
22             sub CreateBatchPrediction {
23 0     0 1 0 my $self = shift;
24 0         0 my $call_object = $self->new_with_coercions('Paws::MachineLearning::CreateBatchPrediction', @_);
25 0         0 return $self->caller->do_call($self, $call_object);
26             }
27             sub CreateDataSourceFromRDS {
28 0     0 1 0 my $self = shift;
29 0         0 my $call_object = $self->new_with_coercions('Paws::MachineLearning::CreateDataSourceFromRDS', @_);
30 0         0 return $self->caller->do_call($self, $call_object);
31             }
32             sub CreateDataSourceFromRedshift {
33 0     0 1 0 my $self = shift;
34 0         0 my $call_object = $self->new_with_coercions('Paws::MachineLearning::CreateDataSourceFromRedshift', @_);
35 0         0 return $self->caller->do_call($self, $call_object);
36             }
37             sub CreateDataSourceFromS3 {
38 0     0 1 0 my $self = shift;
39 0         0 my $call_object = $self->new_with_coercions('Paws::MachineLearning::CreateDataSourceFromS3', @_);
40 0         0 return $self->caller->do_call($self, $call_object);
41             }
42             sub CreateEvaluation {
43 0     0 1 0 my $self = shift;
44 0         0 my $call_object = $self->new_with_coercions('Paws::MachineLearning::CreateEvaluation', @_);
45 0         0 return $self->caller->do_call($self, $call_object);
46             }
47             sub CreateMLModel {
48 0     0 1 0 my $self = shift;
49 0         0 my $call_object = $self->new_with_coercions('Paws::MachineLearning::CreateMLModel', @_);
50 0         0 return $self->caller->do_call($self, $call_object);
51             }
52             sub CreateRealtimeEndpoint {
53 0     0 1 0 my $self = shift;
54 0         0 my $call_object = $self->new_with_coercions('Paws::MachineLearning::CreateRealtimeEndpoint', @_);
55 0         0 return $self->caller->do_call($self, $call_object);
56             }
57             sub DeleteBatchPrediction {
58 0     0 1 0 my $self = shift;
59 0         0 my $call_object = $self->new_with_coercions('Paws::MachineLearning::DeleteBatchPrediction', @_);
60 0         0 return $self->caller->do_call($self, $call_object);
61             }
62             sub DeleteDataSource {
63 0     0 1 0 my $self = shift;
64 0         0 my $call_object = $self->new_with_coercions('Paws::MachineLearning::DeleteDataSource', @_);
65 0         0 return $self->caller->do_call($self, $call_object);
66             }
67             sub DeleteEvaluation {
68 0     0 1 0 my $self = shift;
69 0         0 my $call_object = $self->new_with_coercions('Paws::MachineLearning::DeleteEvaluation', @_);
70 0         0 return $self->caller->do_call($self, $call_object);
71             }
72             sub DeleteMLModel {
73 0     0 1 0 my $self = shift;
74 0         0 my $call_object = $self->new_with_coercions('Paws::MachineLearning::DeleteMLModel', @_);
75 0         0 return $self->caller->do_call($self, $call_object);
76             }
77             sub DeleteRealtimeEndpoint {
78 0     0 1 0 my $self = shift;
79 0         0 my $call_object = $self->new_with_coercions('Paws::MachineLearning::DeleteRealtimeEndpoint', @_);
80 0         0 return $self->caller->do_call($self, $call_object);
81             }
82             sub DeleteTags {
83 0     0 1 0 my $self = shift;
84 0         0 my $call_object = $self->new_with_coercions('Paws::MachineLearning::DeleteTags', @_);
85 0         0 return $self->caller->do_call($self, $call_object);
86             }
87             sub DescribeBatchPredictions {
88 0     0 1 0 my $self = shift;
89 0         0 my $call_object = $self->new_with_coercions('Paws::MachineLearning::DescribeBatchPredictions', @_);
90 0         0 return $self->caller->do_call($self, $call_object);
91             }
92             sub DescribeDataSources {
93 0     0 1 0 my $self = shift;
94 0         0 my $call_object = $self->new_with_coercions('Paws::MachineLearning::DescribeDataSources', @_);
95 0         0 return $self->caller->do_call($self, $call_object);
96             }
97             sub DescribeEvaluations {
98 0     0 1 0 my $self = shift;
99 0         0 my $call_object = $self->new_with_coercions('Paws::MachineLearning::DescribeEvaluations', @_);
100 0         0 return $self->caller->do_call($self, $call_object);
101             }
102             sub DescribeMLModels {
103 1     1 1 470 my $self = shift;
104 1         4 my $call_object = $self->new_with_coercions('Paws::MachineLearning::DescribeMLModels', @_);
105 1         1311 return $self->caller->do_call($self, $call_object);
106             }
107             sub DescribeTags {
108 0     0 1   my $self = shift;
109 0           my $call_object = $self->new_with_coercions('Paws::MachineLearning::DescribeTags', @_);
110 0           return $self->caller->do_call($self, $call_object);
111             }
112             sub GetBatchPrediction {
113 0     0 1   my $self = shift;
114 0           my $call_object = $self->new_with_coercions('Paws::MachineLearning::GetBatchPrediction', @_);
115 0           return $self->caller->do_call($self, $call_object);
116             }
117             sub GetDataSource {
118 0     0 1   my $self = shift;
119 0           my $call_object = $self->new_with_coercions('Paws::MachineLearning::GetDataSource', @_);
120 0           return $self->caller->do_call($self, $call_object);
121             }
122             sub GetEvaluation {
123 0     0 1   my $self = shift;
124 0           my $call_object = $self->new_with_coercions('Paws::MachineLearning::GetEvaluation', @_);
125 0           return $self->caller->do_call($self, $call_object);
126             }
127             sub GetMLModel {
128 0     0 1   my $self = shift;
129 0           my $call_object = $self->new_with_coercions('Paws::MachineLearning::GetMLModel', @_);
130 0           return $self->caller->do_call($self, $call_object);
131             }
132             sub Predict {
133 0     0 1   my $self = shift;
134 0           my $call_object = $self->new_with_coercions('Paws::MachineLearning::Predict', @_);
135 0           return $self->caller->do_call($self, $call_object);
136             }
137             sub UpdateBatchPrediction {
138 0     0 1   my $self = shift;
139 0           my $call_object = $self->new_with_coercions('Paws::MachineLearning::UpdateBatchPrediction', @_);
140 0           return $self->caller->do_call($self, $call_object);
141             }
142             sub UpdateDataSource {
143 0     0 1   my $self = shift;
144 0           my $call_object = $self->new_with_coercions('Paws::MachineLearning::UpdateDataSource', @_);
145 0           return $self->caller->do_call($self, $call_object);
146             }
147             sub UpdateEvaluation {
148 0     0 1   my $self = shift;
149 0           my $call_object = $self->new_with_coercions('Paws::MachineLearning::UpdateEvaluation', @_);
150 0           return $self->caller->do_call($self, $call_object);
151             }
152             sub UpdateMLModel {
153 0     0 1   my $self = shift;
154 0           my $call_object = $self->new_with_coercions('Paws::MachineLearning::UpdateMLModel', @_);
155 0           return $self->caller->do_call($self, $call_object);
156             }
157            
158             sub DescribeAllBatchPredictions {
159 0     0 1   my $self = shift;
160              
161 0 0         my $callback = shift @_ if (ref($_[0]) eq 'CODE');
162 0           my $result = $self->DescribeBatchPredictions(@_);
163 0           my $next_result = $result;
164              
165 0 0         if (not defined $callback) {
166 0           while ($next_result->NextToken) {
167 0           $next_result = $self->DescribeBatchPredictions(@_, NextToken => $next_result->NextToken);
168 0           push @{ $result->Results }, @{ $next_result->Results };
  0            
  0            
169             }
170 0           return $result;
171             } else {
172 0           while ($result->NextToken) {
173 0           $callback->($_ => 'Results') foreach (@{ $result->Results });
  0            
174 0           $result = $self->DescribeBatchPredictions(@_, NextToken => $result->NextToken);
175             }
176 0           $callback->($_ => 'Results') foreach (@{ $result->Results });
  0            
177             }
178              
179             return undef
180 0           }
181             sub DescribeAllDataSources {
182 0     0 1   my $self = shift;
183              
184 0 0         my $callback = shift @_ if (ref($_[0]) eq 'CODE');
185 0           my $result = $self->DescribeDataSources(@_);
186 0           my $next_result = $result;
187              
188 0 0         if (not defined $callback) {
189 0           while ($next_result->NextToken) {
190 0           $next_result = $self->DescribeDataSources(@_, NextToken => $next_result->NextToken);
191 0           push @{ $result->Results }, @{ $next_result->Results };
  0            
  0            
192             }
193 0           return $result;
194             } else {
195 0           while ($result->NextToken) {
196 0           $callback->($_ => 'Results') foreach (@{ $result->Results });
  0            
197 0           $result = $self->DescribeDataSources(@_, NextToken => $result->NextToken);
198             }
199 0           $callback->($_ => 'Results') foreach (@{ $result->Results });
  0            
200             }
201              
202             return undef
203 0           }
204             sub DescribeAllEvaluations {
205 0     0 1   my $self = shift;
206              
207 0 0         my $callback = shift @_ if (ref($_[0]) eq 'CODE');
208 0           my $result = $self->DescribeEvaluations(@_);
209 0           my $next_result = $result;
210              
211 0 0         if (not defined $callback) {
212 0           while ($next_result->NextToken) {
213 0           $next_result = $self->DescribeEvaluations(@_, NextToken => $next_result->NextToken);
214 0           push @{ $result->Results }, @{ $next_result->Results };
  0            
  0            
215             }
216 0           return $result;
217             } else {
218 0           while ($result->NextToken) {
219 0           $callback->($_ => 'Results') foreach (@{ $result->Results });
  0            
220 0           $result = $self->DescribeEvaluations(@_, NextToken => $result->NextToken);
221             }
222 0           $callback->($_ => 'Results') foreach (@{ $result->Results });
  0            
223             }
224              
225             return undef
226 0           }
227             sub DescribeAllMLModels {
228 0     0 1   my $self = shift;
229              
230 0 0         my $callback = shift @_ if (ref($_[0]) eq 'CODE');
231 0           my $result = $self->DescribeMLModels(@_);
232 0           my $next_result = $result;
233              
234 0 0         if (not defined $callback) {
235 0           while ($next_result->NextToken) {
236 0           $next_result = $self->DescribeMLModels(@_, NextToken => $next_result->NextToken);
237 0           push @{ $result->Results }, @{ $next_result->Results };
  0            
  0            
238             }
239 0           return $result;
240             } else {
241 0           while ($result->NextToken) {
242 0           $callback->($_ => 'Results') foreach (@{ $result->Results });
  0            
243 0           $result = $self->DescribeMLModels(@_, NextToken => $result->NextToken);
244             }
245 0           $callback->($_ => 'Results') foreach (@{ $result->Results });
  0            
246             }
247              
248             return undef
249 0           }
250              
251              
252 0     0 0   sub operations { qw/AddTags CreateBatchPrediction CreateDataSourceFromRDS CreateDataSourceFromRedshift CreateDataSourceFromS3 CreateEvaluation CreateMLModel CreateRealtimeEndpoint DeleteBatchPrediction DeleteDataSource DeleteEvaluation DeleteMLModel DeleteRealtimeEndpoint DeleteTags DescribeBatchPredictions DescribeDataSources DescribeEvaluations DescribeMLModels DescribeTags GetBatchPrediction GetDataSource GetEvaluation GetMLModel Predict UpdateBatchPrediction UpdateDataSource UpdateEvaluation UpdateMLModel / }
253              
254             1;
255              
256             ### main pod documentation begin ###
257              
258             =head1 NAME
259              
260             Paws::MachineLearning - Perl Interface to AWS Amazon Machine Learning
261              
262             =head1 SYNOPSIS
263              
264             use Paws;
265              
266             my $obj = Paws->service('MachineLearning');
267             my $res = $obj->Method(
268             Arg1 => $val1,
269             Arg2 => [ 'V1', 'V2' ],
270             # if Arg3 is an object, the HashRef will be used as arguments to the constructor
271             # of the arguments type
272             Arg3 => { Att1 => 'Val1' },
273             # if Arg4 is an array of objects, the HashRefs will be passed as arguments to
274             # the constructor of the arguments type
275             Arg4 => [ { Att1 => 'Val1' }, { Att1 => 'Val2' } ],
276             );
277              
278             =head1 DESCRIPTION
279              
280             Definition of the public APIs exposed by Amazon Machine Learning
281              
282             =head1 METHODS
283              
284             =head2 AddTags(ResourceId => Str, ResourceType => Str, Tags => ArrayRef[L<Paws::MachineLearning::Tag>])
285              
286             Each argument is described in detail in: L<Paws::MachineLearning::AddTags>
287              
288             Returns: a L<Paws::MachineLearning::AddTagsOutput> instance
289              
290             Adds one or more tags to an object, up to a limit of 10. Each tag
291             consists of a key and an optional value. If you add a tag using a key
292             that is already associated with the ML object, C<AddTags> updates the
293             tag's value.
294              
295              
296             =head2 CreateBatchPrediction(BatchPredictionDataSourceId => Str, BatchPredictionId => Str, MLModelId => Str, OutputUri => Str, [BatchPredictionName => Str])
297              
298             Each argument is described in detail in: L<Paws::MachineLearning::CreateBatchPrediction>
299              
300             Returns: a L<Paws::MachineLearning::CreateBatchPredictionOutput> instance
301              
302             Generates predictions for a group of observations. The observations to
303             process exist in one or more data files referenced by a C<DataSource>.
304             This operation creates a new C<BatchPrediction>, and uses an C<MLModel>
305             and the data files referenced by the C<DataSource> as information
306             sources.
307              
308             C<CreateBatchPrediction> is an asynchronous operation. In response to
309             C<CreateBatchPrediction>, Amazon Machine Learning (Amazon ML)
310             immediately returns and sets the C<BatchPrediction> status to
311             C<PENDING>. After the C<BatchPrediction> completes, Amazon ML sets the
312             status to C<COMPLETED>.
313              
314             You can poll for status updates by using the GetBatchPrediction
315             operation and checking the C<Status> parameter of the result. After the
316             C<COMPLETED> status appears, the results are available in the location
317             specified by the C<OutputUri> parameter.
318              
319              
320             =head2 CreateDataSourceFromRDS(DataSourceId => Str, RDSData => L<Paws::MachineLearning::RDSDataSpec>, RoleARN => Str, [ComputeStatistics => Bool, DataSourceName => Str])
321              
322             Each argument is described in detail in: L<Paws::MachineLearning::CreateDataSourceFromRDS>
323              
324             Returns: a L<Paws::MachineLearning::CreateDataSourceFromRDSOutput> instance
325              
326             Creates a C<DataSource> object from an Amazon Relational Database
327             Service (Amazon RDS). A C<DataSource> references data that can be used
328             to perform C<CreateMLModel>, C<CreateEvaluation>, or
329             C<CreateBatchPrediction> operations.
330              
331             C<CreateDataSourceFromRDS> is an asynchronous operation. In response to
332             C<CreateDataSourceFromRDS>, Amazon Machine Learning (Amazon ML)
333             immediately returns and sets the C<DataSource> status to C<PENDING>.
334             After the C<DataSource> is created and ready for use, Amazon ML sets
335             the C<Status> parameter to C<COMPLETED>. C<DataSource> in the
336             C<COMPLETED> or C<PENDING> state can be used only to perform
337             C<E<gt>CreateMLModel>E<gt>, C<CreateEvaluation>, or
338             C<CreateBatchPrediction> operations.
339              
340             If Amazon ML cannot accept the input source, it sets the C<Status>
341             parameter to C<FAILED> and includes an error message in the C<Message>
342             attribute of the C<GetDataSource> operation response.
343              
344              
345             =head2 CreateDataSourceFromRedshift(DataSourceId => Str, DataSpec => L<Paws::MachineLearning::RedshiftDataSpec>, RoleARN => Str, [ComputeStatistics => Bool, DataSourceName => Str])
346              
347             Each argument is described in detail in: L<Paws::MachineLearning::CreateDataSourceFromRedshift>
348              
349             Returns: a L<Paws::MachineLearning::CreateDataSourceFromRedshiftOutput> instance
350              
351             Creates a C<DataSource> from a database hosted on an Amazon Redshift
352             cluster. A C<DataSource> references data that can be used to perform
353             either C<CreateMLModel>, C<CreateEvaluation>, or
354             C<CreateBatchPrediction> operations.
355              
356             C<CreateDataSourceFromRedshift> is an asynchronous operation. In
357             response to C<CreateDataSourceFromRedshift>, Amazon Machine Learning
358             (Amazon ML) immediately returns and sets the C<DataSource> status to
359             C<PENDING>. After the C<DataSource> is created and ready for use,
360             Amazon ML sets the C<Status> parameter to C<COMPLETED>. C<DataSource>
361             in C<COMPLETED> or C<PENDING> states can be used to perform only
362             C<CreateMLModel>, C<CreateEvaluation>, or C<CreateBatchPrediction>
363             operations.
364              
365             If Amazon ML can't accept the input source, it sets the C<Status>
366             parameter to C<FAILED> and includes an error message in the C<Message>
367             attribute of the C<GetDataSource> operation response.
368              
369             The observations should be contained in the database hosted on an
370             Amazon Redshift cluster and should be specified by a C<SelectSqlQuery>
371             query. Amazon ML executes an C<Unload> command in Amazon Redshift to
372             transfer the result set of the C<SelectSqlQuery> query to
373             C<S3StagingLocation>.
374              
375             After the C<DataSource> has been created, it's ready for use in
376             evaluations and batch predictions. If you plan to use the C<DataSource>
377             to train an C<MLModel>, the C<DataSource> also requires a recipe. A
378             recipe describes how each input variable will be used in training an
379             C<MLModel>. Will the variable be included or excluded from training?
380             Will the variable be manipulated; for example, will it be combined with
381             another variable or will it be split apart into word combinations? The
382             recipe provides answers to these questions.
383              
384             You can't change an existing datasource, but you can copy and modify
385             the settings from an existing Amazon Redshift datasource to create a
386             new datasource. To do so, call C<GetDataSource> for an existing
387             datasource and copy the values to a C<CreateDataSource> call. Change
388             the settings that you want to change and make sure that all required
389             fields have the appropriate values.
390              
391              
392             =head2 CreateDataSourceFromS3(DataSourceId => Str, DataSpec => L<Paws::MachineLearning::S3DataSpec>, [ComputeStatistics => Bool, DataSourceName => Str])
393              
394             Each argument is described in detail in: L<Paws::MachineLearning::CreateDataSourceFromS3>
395              
396             Returns: a L<Paws::MachineLearning::CreateDataSourceFromS3Output> instance
397              
398             Creates a C<DataSource> object. A C<DataSource> references data that
399             can be used to perform C<CreateMLModel>, C<CreateEvaluation>, or
400             C<CreateBatchPrediction> operations.
401              
402             C<CreateDataSourceFromS3> is an asynchronous operation. In response to
403             C<CreateDataSourceFromS3>, Amazon Machine Learning (Amazon ML)
404             immediately returns and sets the C<DataSource> status to C<PENDING>.
405             After the C<DataSource> has been created and is ready for use, Amazon
406             ML sets the C<Status> parameter to C<COMPLETED>. C<DataSource> in the
407             C<COMPLETED> or C<PENDING> state can be used to perform only
408             C<CreateMLModel>, C<CreateEvaluation> or C<CreateBatchPrediction>
409             operations.
410              
411             If Amazon ML can't accept the input source, it sets the C<Status>
412             parameter to C<FAILED> and includes an error message in the C<Message>
413             attribute of the C<GetDataSource> operation response.
414              
415             The observation data used in a C<DataSource> should be ready to use;
416             that is, it should have a consistent structure, and missing data values
417             should be kept to a minimum. The observation data must reside in one or
418             more .csv files in an Amazon Simple Storage Service (Amazon S3)
419             location, along with a schema that describes the data items by name and
420             type. The same schema must be used for all of the data files referenced
421             by the C<DataSource>.
422              
423             After the C<DataSource> has been created, it's ready to use in
424             evaluations and batch predictions. If you plan to use the C<DataSource>
425             to train an C<MLModel>, the C<DataSource> also needs a recipe. A recipe
426             describes how each input variable will be used in training an
427             C<MLModel>. Will the variable be included or excluded from training?
428             Will the variable be manipulated; for example, will it be combined with
429             another variable or will it be split apart into word combinations? The
430             recipe provides answers to these questions.
431              
432              
433             =head2 CreateEvaluation(EvaluationDataSourceId => Str, EvaluationId => Str, MLModelId => Str, [EvaluationName => Str])
434              
435             Each argument is described in detail in: L<Paws::MachineLearning::CreateEvaluation>
436              
437             Returns: a L<Paws::MachineLearning::CreateEvaluationOutput> instance
438              
439             Creates a new C<Evaluation> of an C<MLModel>. An C<MLModel> is
440             evaluated on a set of observations associated to a C<DataSource>. Like
441             a C<DataSource> for an C<MLModel>, the C<DataSource> for an
442             C<Evaluation> contains values for the C<Target Variable>. The
443             C<Evaluation> compares the predicted result for each observation to the
444             actual outcome and provides a summary so that you know how effective
445             the C<MLModel> functions on the test data. Evaluation generates a
446             relevant performance metric, such as BinaryAUC, RegressionRMSE or
447             MulticlassAvgFScore based on the corresponding C<MLModelType>:
448             C<BINARY>, C<REGRESSION> or C<MULTICLASS>.
449              
450             C<CreateEvaluation> is an asynchronous operation. In response to
451             C<CreateEvaluation>, Amazon Machine Learning (Amazon ML) immediately
452             returns and sets the evaluation status to C<PENDING>. After the
453             C<Evaluation> is created and ready for use, Amazon ML sets the status
454             to C<COMPLETED>.
455              
456             You can use the C<GetEvaluation> operation to check progress of the
457             evaluation during the creation operation.
458              
459              
460             =head2 CreateMLModel(MLModelId => Str, MLModelType => Str, TrainingDataSourceId => Str, [MLModelName => Str, Parameters => L<Paws::MachineLearning::TrainingParameters>, Recipe => Str, RecipeUri => Str])
461              
462             Each argument is described in detail in: L<Paws::MachineLearning::CreateMLModel>
463              
464             Returns: a L<Paws::MachineLearning::CreateMLModelOutput> instance
465              
466             Creates a new C<MLModel> using the C<DataSource> and the recipe as
467             information sources.
468              
469             An C<MLModel> is nearly immutable. Users can update only the
470             C<MLModelName> and the C<ScoreThreshold> in an C<MLModel> without
471             creating a new C<MLModel>.
472              
473             C<CreateMLModel> is an asynchronous operation. In response to
474             C<CreateMLModel>, Amazon Machine Learning (Amazon ML) immediately
475             returns and sets the C<MLModel> status to C<PENDING>. After the
476             C<MLModel> has been created and ready is for use, Amazon ML sets the
477             status to C<COMPLETED>.
478              
479             You can use the C<GetMLModel> operation to check the progress of the
480             C<MLModel> during the creation operation.
481              
482             C<CreateMLModel> requires a C<DataSource> with computed statistics,
483             which can be created by setting C<ComputeStatistics> to C<true> in
484             C<CreateDataSourceFromRDS>, C<CreateDataSourceFromS3>, or
485             C<CreateDataSourceFromRedshift> operations.
486              
487              
488             =head2 CreateRealtimeEndpoint(MLModelId => Str)
489              
490             Each argument is described in detail in: L<Paws::MachineLearning::CreateRealtimeEndpoint>
491              
492             Returns: a L<Paws::MachineLearning::CreateRealtimeEndpointOutput> instance
493              
494             Creates a real-time endpoint for the C<MLModel>. The endpoint contains
495             the URI of the C<MLModel>; that is, the location to send real-time
496             prediction requests for the specified C<MLModel>.
497              
498              
499             =head2 DeleteBatchPrediction(BatchPredictionId => Str)
500              
501             Each argument is described in detail in: L<Paws::MachineLearning::DeleteBatchPrediction>
502              
503             Returns: a L<Paws::MachineLearning::DeleteBatchPredictionOutput> instance
504              
505             Assigns the DELETED status to a C<BatchPrediction>, rendering it
506             unusable.
507              
508             After using the C<DeleteBatchPrediction> operation, you can use the
509             GetBatchPrediction operation to verify that the status of the
510             C<BatchPrediction> changed to DELETED.
511              
512             B<Caution:> The result of the C<DeleteBatchPrediction> operation is
513             irreversible.
514              
515              
516             =head2 DeleteDataSource(DataSourceId => Str)
517              
518             Each argument is described in detail in: L<Paws::MachineLearning::DeleteDataSource>
519              
520             Returns: a L<Paws::MachineLearning::DeleteDataSourceOutput> instance
521              
522             Assigns the DELETED status to a C<DataSource>, rendering it unusable.
523              
524             After using the C<DeleteDataSource> operation, you can use the
525             GetDataSource operation to verify that the status of the C<DataSource>
526             changed to DELETED.
527              
528             B<Caution:> The results of the C<DeleteDataSource> operation are
529             irreversible.
530              
531              
532             =head2 DeleteEvaluation(EvaluationId => Str)
533              
534             Each argument is described in detail in: L<Paws::MachineLearning::DeleteEvaluation>
535              
536             Returns: a L<Paws::MachineLearning::DeleteEvaluationOutput> instance
537              
538             Assigns the C<DELETED> status to an C<Evaluation>, rendering it
539             unusable.
540              
541             After invoking the C<DeleteEvaluation> operation, you can use the
542             C<GetEvaluation> operation to verify that the status of the
543             C<Evaluation> changed to C<DELETED>.
544              
545             The results of the C<DeleteEvaluation> operation are irreversible.
546              
547              
548             =head2 DeleteMLModel(MLModelId => Str)
549              
550             Each argument is described in detail in: L<Paws::MachineLearning::DeleteMLModel>
551              
552             Returns: a L<Paws::MachineLearning::DeleteMLModelOutput> instance
553              
554             Assigns the C<DELETED> status to an C<MLModel>, rendering it unusable.
555              
556             After using the C<DeleteMLModel> operation, you can use the
557             C<GetMLModel> operation to verify that the status of the C<MLModel>
558             changed to DELETED.
559              
560             B<Caution:> The result of the C<DeleteMLModel> operation is
561             irreversible.
562              
563              
564             =head2 DeleteRealtimeEndpoint(MLModelId => Str)
565              
566             Each argument is described in detail in: L<Paws::MachineLearning::DeleteRealtimeEndpoint>
567              
568             Returns: a L<Paws::MachineLearning::DeleteRealtimeEndpointOutput> instance
569              
570             Deletes a real time endpoint of an C<MLModel>.
571              
572              
573             =head2 DeleteTags(ResourceId => Str, ResourceType => Str, TagKeys => ArrayRef[Str|Undef])
574              
575             Each argument is described in detail in: L<Paws::MachineLearning::DeleteTags>
576              
577             Returns: a L<Paws::MachineLearning::DeleteTagsOutput> instance
578              
579             Deletes the specified tags associated with an ML object. After this
580             operation is complete, you can't recover deleted tags.
581              
582             If you specify a tag that doesn't exist, Amazon ML ignores it.
583              
584              
585             =head2 DescribeBatchPredictions([EQ => Str, FilterVariable => Str, GE => Str, GT => Str, LE => Str, Limit => Int, LT => Str, NE => Str, NextToken => Str, Prefix => Str, SortOrder => Str])
586              
587             Each argument is described in detail in: L<Paws::MachineLearning::DescribeBatchPredictions>
588              
589             Returns: a L<Paws::MachineLearning::DescribeBatchPredictionsOutput> instance
590              
591             Returns a list of C<BatchPrediction> operations that match the search
592             criteria in the request.
593              
594              
595             =head2 DescribeDataSources([EQ => Str, FilterVariable => Str, GE => Str, GT => Str, LE => Str, Limit => Int, LT => Str, NE => Str, NextToken => Str, Prefix => Str, SortOrder => Str])
596              
597             Each argument is described in detail in: L<Paws::MachineLearning::DescribeDataSources>
598              
599             Returns: a L<Paws::MachineLearning::DescribeDataSourcesOutput> instance
600              
601             Returns a list of C<DataSource> that match the search criteria in the
602             request.
603              
604              
605             =head2 DescribeEvaluations([EQ => Str, FilterVariable => Str, GE => Str, GT => Str, LE => Str, Limit => Int, LT => Str, NE => Str, NextToken => Str, Prefix => Str, SortOrder => Str])
606              
607             Each argument is described in detail in: L<Paws::MachineLearning::DescribeEvaluations>
608              
609             Returns: a L<Paws::MachineLearning::DescribeEvaluationsOutput> instance
610              
611             Returns a list of C<DescribeEvaluations> that match the search criteria
612             in the request.
613              
614              
615             =head2 DescribeMLModels([EQ => Str, FilterVariable => Str, GE => Str, GT => Str, LE => Str, Limit => Int, LT => Str, NE => Str, NextToken => Str, Prefix => Str, SortOrder => Str])
616              
617             Each argument is described in detail in: L<Paws::MachineLearning::DescribeMLModels>
618              
619             Returns: a L<Paws::MachineLearning::DescribeMLModelsOutput> instance
620              
621             Returns a list of C<MLModel> that match the search criteria in the
622             request.
623              
624              
625             =head2 DescribeTags(ResourceId => Str, ResourceType => Str)
626              
627             Each argument is described in detail in: L<Paws::MachineLearning::DescribeTags>
628              
629             Returns: a L<Paws::MachineLearning::DescribeTagsOutput> instance
630              
631             Describes one or more of the tags for your Amazon ML object.
632              
633              
634             =head2 GetBatchPrediction(BatchPredictionId => Str)
635              
636             Each argument is described in detail in: L<Paws::MachineLearning::GetBatchPrediction>
637              
638             Returns: a L<Paws::MachineLearning::GetBatchPredictionOutput> instance
639              
640             Returns a C<BatchPrediction> that includes detailed metadata, status,
641             and data file information for a C<Batch Prediction> request.
642              
643              
644             =head2 GetDataSource(DataSourceId => Str, [Verbose => Bool])
645              
646             Each argument is described in detail in: L<Paws::MachineLearning::GetDataSource>
647              
648             Returns: a L<Paws::MachineLearning::GetDataSourceOutput> instance
649              
650             Returns a C<DataSource> that includes metadata and data file
651             information, as well as the current status of the C<DataSource>.
652              
653             C<GetDataSource> provides results in normal or verbose format. The
654             verbose format adds the schema description and the list of files
655             pointed to by the DataSource to the normal format.
656              
657              
658             =head2 GetEvaluation(EvaluationId => Str)
659              
660             Each argument is described in detail in: L<Paws::MachineLearning::GetEvaluation>
661              
662             Returns: a L<Paws::MachineLearning::GetEvaluationOutput> instance
663              
664             Returns an C<Evaluation> that includes metadata as well as the current
665             status of the C<Evaluation>.
666              
667              
668             =head2 GetMLModel(MLModelId => Str, [Verbose => Bool])
669              
670             Each argument is described in detail in: L<Paws::MachineLearning::GetMLModel>
671              
672             Returns: a L<Paws::MachineLearning::GetMLModelOutput> instance
673              
674             Returns an C<MLModel> that includes detailed metadata, data source
675             information, and the current status of the C<MLModel>.
676              
677             C<GetMLModel> provides results in normal or verbose format.
678              
679              
680             =head2 Predict(MLModelId => Str, PredictEndpoint => Str, Record => L<Paws::MachineLearning::Record>)
681              
682             Each argument is described in detail in: L<Paws::MachineLearning::Predict>
683              
684             Returns: a L<Paws::MachineLearning::PredictOutput> instance
685              
686             Generates a prediction for the observation using the specified C<ML
687             Model>.
688              
689             Not all response parameters will be populated. Whether a response
690             parameter is populated depends on the type of model requested.
691              
692              
693             =head2 UpdateBatchPrediction(BatchPredictionId => Str, BatchPredictionName => Str)
694              
695             Each argument is described in detail in: L<Paws::MachineLearning::UpdateBatchPrediction>
696              
697             Returns: a L<Paws::MachineLearning::UpdateBatchPredictionOutput> instance
698              
699             Updates the C<BatchPredictionName> of a C<BatchPrediction>.
700              
701             You can use the C<GetBatchPrediction> operation to view the contents of
702             the updated data element.
703              
704              
705             =head2 UpdateDataSource(DataSourceId => Str, DataSourceName => Str)
706              
707             Each argument is described in detail in: L<Paws::MachineLearning::UpdateDataSource>
708              
709             Returns: a L<Paws::MachineLearning::UpdateDataSourceOutput> instance
710              
711             Updates the C<DataSourceName> of a C<DataSource>.
712              
713             You can use the C<GetDataSource> operation to view the contents of the
714             updated data element.
715              
716              
717             =head2 UpdateEvaluation(EvaluationId => Str, EvaluationName => Str)
718              
719             Each argument is described in detail in: L<Paws::MachineLearning::UpdateEvaluation>
720              
721             Returns: a L<Paws::MachineLearning::UpdateEvaluationOutput> instance
722              
723             Updates the C<EvaluationName> of an C<Evaluation>.
724              
725             You can use the C<GetEvaluation> operation to view the contents of the
726             updated data element.
727              
728              
729             =head2 UpdateMLModel(MLModelId => Str, [MLModelName => Str, ScoreThreshold => Num])
730              
731             Each argument is described in detail in: L<Paws::MachineLearning::UpdateMLModel>
732              
733             Returns: a L<Paws::MachineLearning::UpdateMLModelOutput> instance
734              
735             Updates the C<MLModelName> and the C<ScoreThreshold> of an C<MLModel>.
736              
737             You can use the C<GetMLModel> operation to view the contents of the
738             updated data element.
739              
740              
741              
742              
743             =head1 PAGINATORS
744              
745             Paginator methods are helpers that repetively call methods that return partial results
746              
747             =head2 DescribeAllBatchPredictions(sub { },[EQ => Str, FilterVariable => Str, GE => Str, GT => Str, LE => Str, Limit => Int, LT => Str, NE => Str, NextToken => Str, Prefix => Str, SortOrder => Str])
748              
749             =head2 DescribeAllBatchPredictions([EQ => Str, FilterVariable => Str, GE => Str, GT => Str, LE => Str, Limit => Int, LT => Str, NE => Str, NextToken => Str, Prefix => Str, SortOrder => Str])
750              
751              
752             If passed a sub as first parameter, it will call the sub for each element found in :
753              
754             - Results, passing the object as the first parameter, and the string 'Results' as the second parameter
755              
756             If not, it will return a a L<Paws::MachineLearning::DescribeBatchPredictionsOutput> instance with all the C<param>s; from all the responses. Please take into account that this mode can potentially consume vasts ammounts of memory.
757              
758              
759             =head2 DescribeAllDataSources(sub { },[EQ => Str, FilterVariable => Str, GE => Str, GT => Str, LE => Str, Limit => Int, LT => Str, NE => Str, NextToken => Str, Prefix => Str, SortOrder => Str])
760              
761             =head2 DescribeAllDataSources([EQ => Str, FilterVariable => Str, GE => Str, GT => Str, LE => Str, Limit => Int, LT => Str, NE => Str, NextToken => Str, Prefix => Str, SortOrder => Str])
762              
763              
764             If passed a sub as first parameter, it will call the sub for each element found in :
765              
766             - Results, passing the object as the first parameter, and the string 'Results' as the second parameter
767              
768             If not, it will return a a L<Paws::MachineLearning::DescribeDataSourcesOutput> instance with all the C<param>s; from all the responses. Please take into account that this mode can potentially consume vasts ammounts of memory.
769              
770              
771             =head2 DescribeAllEvaluations(sub { },[EQ => Str, FilterVariable => Str, GE => Str, GT => Str, LE => Str, Limit => Int, LT => Str, NE => Str, NextToken => Str, Prefix => Str, SortOrder => Str])
772              
773             =head2 DescribeAllEvaluations([EQ => Str, FilterVariable => Str, GE => Str, GT => Str, LE => Str, Limit => Int, LT => Str, NE => Str, NextToken => Str, Prefix => Str, SortOrder => Str])
774              
775              
776             If passed a sub as first parameter, it will call the sub for each element found in :
777              
778             - Results, passing the object as the first parameter, and the string 'Results' as the second parameter
779              
780             If not, it will return a a L<Paws::MachineLearning::DescribeEvaluationsOutput> instance with all the C<param>s; from all the responses. Please take into account that this mode can potentially consume vasts ammounts of memory.
781              
782              
783             =head2 DescribeAllMLModels(sub { },[EQ => Str, FilterVariable => Str, GE => Str, GT => Str, LE => Str, Limit => Int, LT => Str, NE => Str, NextToken => Str, Prefix => Str, SortOrder => Str])
784              
785             =head2 DescribeAllMLModels([EQ => Str, FilterVariable => Str, GE => Str, GT => Str, LE => Str, Limit => Int, LT => Str, NE => Str, NextToken => Str, Prefix => Str, SortOrder => Str])
786              
787              
788             If passed a sub as first parameter, it will call the sub for each element found in :
789              
790             - Results, passing the object as the first parameter, and the string 'Results' as the second parameter
791              
792             If not, it will return a a L<Paws::MachineLearning::DescribeMLModelsOutput> instance with all the C<param>s; from all the responses. Please take into account that this mode can potentially consume vasts ammounts of memory.
793              
794              
795              
796              
797              
798             =head1 SEE ALSO
799              
800             This service class forms part of L<Paws>
801              
802             =head1 BUGS and CONTRIBUTIONS
803              
804             The source code is located here: https://github.com/pplu/aws-sdk-perl
805              
806             Please report bugs to: https://github.com/pplu/aws-sdk-perl/issues
807              
808             =cut
809