line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
1
|
|
|
|
|
|
|
|
2
|
|
|
|
|
|
|
package Paws::MachineLearning::CreateMLModel; |
3
|
1
|
|
|
1
|
|
653
|
use Moose; |
|
1
|
|
|
|
|
3
|
|
|
1
|
|
|
|
|
8
|
|
4
|
|
|
|
|
|
|
has MLModelId => (is => 'ro', isa => 'Str', required => 1); |
5
|
|
|
|
|
|
|
has MLModelName => (is => 'ro', isa => 'Str'); |
6
|
|
|
|
|
|
|
has MLModelType => (is => 'ro', isa => 'Str', required => 1); |
7
|
|
|
|
|
|
|
has Parameters => (is => 'ro', isa => 'Paws::MachineLearning::TrainingParameters'); |
8
|
|
|
|
|
|
|
has Recipe => (is => 'ro', isa => 'Str'); |
9
|
|
|
|
|
|
|
has RecipeUri => (is => 'ro', isa => 'Str'); |
10
|
|
|
|
|
|
|
has TrainingDataSourceId => (is => 'ro', isa => 'Str', required => 1); |
11
|
|
|
|
|
|
|
|
12
|
1
|
|
|
1
|
|
6899
|
use MooseX::ClassAttribute; |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
9
|
|
13
|
|
|
|
|
|
|
|
14
|
|
|
|
|
|
|
class_has _api_call => (isa => 'Str', is => 'ro', default => 'CreateMLModel'); |
15
|
|
|
|
|
|
|
class_has _returns => (isa => 'Str', is => 'ro', default => 'Paws::MachineLearning::CreateMLModelOutput'); |
16
|
|
|
|
|
|
|
class_has _result_key => (isa => 'Str', is => 'ro'); |
17
|
|
|
|
|
|
|
1; |
18
|
|
|
|
|
|
|
|
19
|
|
|
|
|
|
|
### main pod documentation begin ### |
20
|
|
|
|
|
|
|
|
21
|
|
|
|
|
|
|
=head1 NAME |
22
|
|
|
|
|
|
|
|
23
|
|
|
|
|
|
|
Paws::MachineLearning::CreateMLModel - Arguments for method CreateMLModel on Paws::MachineLearning |
24
|
|
|
|
|
|
|
|
25
|
|
|
|
|
|
|
=head1 DESCRIPTION |
26
|
|
|
|
|
|
|
|
27
|
|
|
|
|
|
|
This class represents the parameters used for calling the method CreateMLModel on the |
28
|
|
|
|
|
|
|
Amazon Machine Learning service. Use the attributes of this class |
29
|
|
|
|
|
|
|
as arguments to method CreateMLModel. |
30
|
|
|
|
|
|
|
|
31
|
|
|
|
|
|
|
You shouldn't make instances of this class. Each attribute should be used as a named argument in the call to CreateMLModel. |
32
|
|
|
|
|
|
|
|
33
|
|
|
|
|
|
|
As an example: |
34
|
|
|
|
|
|
|
|
35
|
|
|
|
|
|
|
$service_obj->CreateMLModel(Att1 => $value1, Att2 => $value2, ...); |
36
|
|
|
|
|
|
|
|
37
|
|
|
|
|
|
|
Values for attributes that are native types (Int, String, Float, etc) can passed as-is (scalar values). Values for complex Types (objects) can be passed as a HashRef. The keys and values of the hashref will be used to instance the underlying object. |
38
|
|
|
|
|
|
|
|
39
|
|
|
|
|
|
|
=head1 ATTRIBUTES |
40
|
|
|
|
|
|
|
|
41
|
|
|
|
|
|
|
|
42
|
|
|
|
|
|
|
=head2 B<REQUIRED> MLModelId => Str |
43
|
|
|
|
|
|
|
|
44
|
|
|
|
|
|
|
A user-supplied ID that uniquely identifies the C<MLModel>. |
45
|
|
|
|
|
|
|
|
46
|
|
|
|
|
|
|
|
47
|
|
|
|
|
|
|
|
48
|
|
|
|
|
|
|
=head2 MLModelName => Str |
49
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
|
A user-supplied name or description of the C<MLModel>. |
51
|
|
|
|
|
|
|
|
52
|
|
|
|
|
|
|
|
53
|
|
|
|
|
|
|
|
54
|
|
|
|
|
|
|
=head2 B<REQUIRED> MLModelType => Str |
55
|
|
|
|
|
|
|
|
56
|
|
|
|
|
|
|
The category of supervised learning that this C<MLModel> will address. |
57
|
|
|
|
|
|
|
Choose from the following types: |
58
|
|
|
|
|
|
|
|
59
|
|
|
|
|
|
|
=over |
60
|
|
|
|
|
|
|
|
61
|
|
|
|
|
|
|
=item * Choose C<REGRESSION> if the C<MLModel> will be used to predict |
62
|
|
|
|
|
|
|
a numeric value. |
63
|
|
|
|
|
|
|
|
64
|
|
|
|
|
|
|
=item * Choose C<BINARY> if the C<MLModel> result has two possible |
65
|
|
|
|
|
|
|
values. |
66
|
|
|
|
|
|
|
|
67
|
|
|
|
|
|
|
=item * Choose C<MULTICLASS> if the C<MLModel> result has a limited |
68
|
|
|
|
|
|
|
number of values. |
69
|
|
|
|
|
|
|
|
70
|
|
|
|
|
|
|
=back |
71
|
|
|
|
|
|
|
|
72
|
|
|
|
|
|
|
For more information, see the Amazon Machine Learning Developer Guide. |
73
|
|
|
|
|
|
|
|
74
|
|
|
|
|
|
|
Valid values are: C<"REGRESSION">, C<"BINARY">, C<"MULTICLASS"> |
75
|
|
|
|
|
|
|
|
76
|
|
|
|
|
|
|
=head2 Parameters => L<Paws::MachineLearning::TrainingParameters> |
77
|
|
|
|
|
|
|
|
78
|
|
|
|
|
|
|
A list of the training parameters in the C<MLModel>. The list is |
79
|
|
|
|
|
|
|
implemented as a map of key-value pairs. |
80
|
|
|
|
|
|
|
|
81
|
|
|
|
|
|
|
The following is the current set of training parameters: |
82
|
|
|
|
|
|
|
|
83
|
|
|
|
|
|
|
=over |
84
|
|
|
|
|
|
|
|
85
|
|
|
|
|
|
|
=item * |
86
|
|
|
|
|
|
|
|
87
|
|
|
|
|
|
|
C<sgd.maxMLModelSizeInBytes> - The maximum allowed size of the model. |
88
|
|
|
|
|
|
|
Depending on the input data, the size of the model might affect its |
89
|
|
|
|
|
|
|
performance. |
90
|
|
|
|
|
|
|
|
91
|
|
|
|
|
|
|
The value is an integer that ranges from C<100000> to C<2147483648>. |
92
|
|
|
|
|
|
|
The default value is C<33554432>. |
93
|
|
|
|
|
|
|
|
94
|
|
|
|
|
|
|
=item * |
95
|
|
|
|
|
|
|
|
96
|
|
|
|
|
|
|
C<sgd.maxPasses> - The number of times that the training process |
97
|
|
|
|
|
|
|
traverses the observations to build the C<MLModel>. The value is an |
98
|
|
|
|
|
|
|
integer that ranges from C<1> to C<10000>. The default value is C<10>. |
99
|
|
|
|
|
|
|
|
100
|
|
|
|
|
|
|
=item * |
101
|
|
|
|
|
|
|
|
102
|
|
|
|
|
|
|
C<sgd.shuffleType> - Whether Amazon ML shuffles the training data. |
103
|
|
|
|
|
|
|
Shuffling the data improves a model's ability to find the optimal |
104
|
|
|
|
|
|
|
solution for a variety of data types. The valid values are C<auto> and |
105
|
|
|
|
|
|
|
C<none>. The default value is C<none>. We strongly recommend that you |
106
|
|
|
|
|
|
|
shuffle your data. |
107
|
|
|
|
|
|
|
|
108
|
|
|
|
|
|
|
=item * |
109
|
|
|
|
|
|
|
|
110
|
|
|
|
|
|
|
C<sgd.l1RegularizationAmount> - The coefficient regularization L1 norm. |
111
|
|
|
|
|
|
|
It controls overfitting the data by penalizing large coefficients. This |
112
|
|
|
|
|
|
|
tends to drive coefficients to zero, resulting in a sparse feature set. |
113
|
|
|
|
|
|
|
If you use this parameter, start by specifying a small value, such as |
114
|
|
|
|
|
|
|
C<1.0E-08>. |
115
|
|
|
|
|
|
|
|
116
|
|
|
|
|
|
|
The value is a double that ranges from C<0> to C<MAX_DOUBLE>. The |
117
|
|
|
|
|
|
|
default is to not use L1 normalization. This parameter can't be used |
118
|
|
|
|
|
|
|
when C<L2> is specified. Use this parameter sparingly. |
119
|
|
|
|
|
|
|
|
120
|
|
|
|
|
|
|
=item * |
121
|
|
|
|
|
|
|
|
122
|
|
|
|
|
|
|
C<sgd.l2RegularizationAmount> - The coefficient regularization L2 norm. |
123
|
|
|
|
|
|
|
It controls overfitting the data by penalizing large coefficients. This |
124
|
|
|
|
|
|
|
tends to drive coefficients to small, nonzero values. If you use this |
125
|
|
|
|
|
|
|
parameter, start by specifying a small value, such as C<1.0E-08>. |
126
|
|
|
|
|
|
|
|
127
|
|
|
|
|
|
|
The value is a double that ranges from C<0> to C<MAX_DOUBLE>. The |
128
|
|
|
|
|
|
|
default is to not use L2 normalization. This parameter can't be used |
129
|
|
|
|
|
|
|
when C<L1> is specified. Use this parameter sparingly. |
130
|
|
|
|
|
|
|
|
131
|
|
|
|
|
|
|
=back |
132
|
|
|
|
|
|
|
|
133
|
|
|
|
|
|
|
|
134
|
|
|
|
|
|
|
|
135
|
|
|
|
|
|
|
|
136
|
|
|
|
|
|
|
=head2 Recipe => Str |
137
|
|
|
|
|
|
|
|
138
|
|
|
|
|
|
|
The data recipe for creating the C<MLModel>. You must specify either |
139
|
|
|
|
|
|
|
the recipe or its URI. If you don't specify a recipe or its URI, Amazon |
140
|
|
|
|
|
|
|
ML creates a default. |
141
|
|
|
|
|
|
|
|
142
|
|
|
|
|
|
|
|
143
|
|
|
|
|
|
|
|
144
|
|
|
|
|
|
|
=head2 RecipeUri => Str |
145
|
|
|
|
|
|
|
|
146
|
|
|
|
|
|
|
The Amazon Simple Storage Service (Amazon S3) location and file name |
147
|
|
|
|
|
|
|
that contains the C<MLModel> recipe. You must specify either the recipe |
148
|
|
|
|
|
|
|
or its URI. If you don't specify a recipe or its URI, Amazon ML creates |
149
|
|
|
|
|
|
|
a default. |
150
|
|
|
|
|
|
|
|
151
|
|
|
|
|
|
|
|
152
|
|
|
|
|
|
|
|
153
|
|
|
|
|
|
|
=head2 B<REQUIRED> TrainingDataSourceId => Str |
154
|
|
|
|
|
|
|
|
155
|
|
|
|
|
|
|
The C<DataSource> that points to the training data. |
156
|
|
|
|
|
|
|
|
157
|
|
|
|
|
|
|
|
158
|
|
|
|
|
|
|
|
159
|
|
|
|
|
|
|
|
160
|
|
|
|
|
|
|
=head1 SEE ALSO |
161
|
|
|
|
|
|
|
|
162
|
|
|
|
|
|
|
This class forms part of L<Paws>, documenting arguments for method CreateMLModel in L<Paws::MachineLearning> |
163
|
|
|
|
|
|
|
|
164
|
|
|
|
|
|
|
=head1 BUGS and CONTRIBUTIONS |
165
|
|
|
|
|
|
|
|
166
|
|
|
|
|
|
|
The source code is located here: https://github.com/pplu/aws-sdk-perl |
167
|
|
|
|
|
|
|
|
168
|
|
|
|
|
|
|
Please report bugs to: https://github.com/pplu/aws-sdk-perl/issues |
169
|
|
|
|
|
|
|
|
170
|
|
|
|
|
|
|
=cut |
171
|
|
|
|
|
|
|
|