|  line  | 
 stmt  | 
 bran  | 
 cond  | 
 sub  | 
 pod  | 
 time  | 
 code  | 
| 
1
 | 
  
 
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =head1 NAME  | 
| 
2
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
3
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 PDLA::Transform::Cartography - Useful cartographic projections  | 
| 
4
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
5
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =head1 SYNOPSIS  | 
| 
6
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
7
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
  # make a Mercator map of Earth  | 
| 
8
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
  use PDLA::Transform::Cartography;  | 
| 
9
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
  $x = earth_coast();  | 
| 
10
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
  $x = graticule(10,2)->glue(1,$x);  | 
| 
11
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
  $t = t_mercator;  | 
| 
12
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
  $w = pgwin(xs);  | 
| 
13
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
  $w->lines($t->apply($x)->clean_lines());  | 
| 
14
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
15
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =head1 DESCRIPTION  | 
| 
16
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
17
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 PDLA::Transform::Cartography includes a variety of useful cartographic  | 
| 
18
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 and observing projections (mappings of the surface of a sphere),  | 
| 
19
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 including reprojected observer coordinates.  See L  | 
| 
20
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 for more information about image transforms in general.  | 
| 
21
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
22
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 Cartographic transformations are used for projecting not just  | 
| 
23
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 terrestrial maps, but also any nearly spherical surface including the  | 
| 
24
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 Sun, the Celestial sphere, various moons and planets, distant stars,  | 
| 
25
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 etc.  They also are useful for interpreting scientific images, which  | 
| 
26
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 are themselves generally projections of a sphere onto a flat focal  | 
| 
27
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 plane (e.g. the L projection).  | 
| 
28
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
29
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 Unless otherwise noted, all the transformations in this file convert  | 
| 
30
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 from (theta,phi) coordinates on the unit sphere (e.g. (lon,lat) on a  | 
| 
31
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 planet or (RA,dec) on the celestial sphere) into some sort of  | 
| 
32
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 projected coordinates, and have inverse transformations that convert  | 
| 
33
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 back to (theta,phi).  This is equivalent to working from the  | 
| 
34
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 equidistant cylindrical (or L<"plate caree"|/t_caree>) projection, if  | 
| 
35
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 you are a cartography wonk.  | 
| 
36
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
37
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 The projected coordinates are generally in units of body radii  | 
| 
38
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 (radians), so that multiplying the output by the scale of the map  | 
| 
39
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 yields physical units that are correct wherever the scale is correct  | 
| 
40
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 for that projection.  For example, areas should be correct everywhere  | 
| 
41
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 in the authalic projections; and linear scales are correct along  | 
| 
42
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 meridians in the equidistant projections and along the standard  | 
| 
43
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 parallels in all the projections.  | 
| 
44
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
45
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 The transformations that are authalic (equal-area), conformal  | 
| 
46
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 (equal-angle), azimuthal (circularly symmetric), or perspective (true  | 
| 
47
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 perspective on a focal plane from some viewpoint) are marked.  The  | 
| 
48
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 first two categories are mutually exclusive for all but the   | 
| 
49
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 L<"unit sphere"|/t_unit_sphere> 3-D projection.  | 
| 
50
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
51
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 Extra dimensions tacked on to each point to be transformed are, in  | 
| 
52
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 general, ignored.  That is so that you can add on an extra index  | 
| 
53
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 to keep track of pen color.  For example, L  | 
| 
54
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 returns a 3x piddle containing (lon, lat, pen) at each list location.  | 
| 
55
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 Transforming the vector list retains the pen value as the first index  | 
| 
56
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 after the dimensional directions.  | 
| 
57
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
58
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =head1 GENERAL NOTES ON CARTOGRAPHY  | 
| 
59
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
60
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 Unless otherwise noted, the transformations and miscellaneous  | 
| 
61
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 information in this section are taken from Snyder & Voxland 1989: "An  | 
| 
62
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 Album of Map Projections", US Geological Survey Professional Paper  | 
| 
63
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 1453, US Printing Office (Denver); and from Snyder 1987: "Map  | 
| 
64
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 Projections - A Working Manual", US Geological Survey Professional  | 
| 
65
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 Paper 1395, US Printing Office (Denver, USA).  You can obtain your own  | 
| 
66
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 copy of both by contacting the U.S. Geological Survey, Federal Center,  | 
| 
67
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 Box 25425, Denver, CO 80225 USA.  | 
| 
68
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
69
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 The mathematics of cartography have a long history, and the details  | 
| 
70
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 are far trickier than the broad overview.  For terrestrial (and, in  | 
| 
71
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 general, planetary) cartography, the best reference datum is not a  | 
| 
72
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 sphere but an oblate ellipsoid due to centrifugal force from the  | 
| 
73
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 planet's rotation.  Furthermore, because all rocky planets, including  | 
| 
74
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 Earth, have randomly placed mass concentrations that affect the  | 
| 
75
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 gravitational field, the reference gravitational isosurface (sea level  | 
| 
76
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 on Earth) is even more complex than an ellipsoid and, in general,  | 
| 
77
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 different ellipsoids have been used for different locations at the  | 
| 
78
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 same time and for the same location at different times.  | 
| 
79
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
80
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 The transformations in this package use a spherical datum and hence  | 
| 
81
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 include global distortion at about the 0.5% level for terrestrial maps  | 
| 
82
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 (Earth's oblateness is ~1/300).  This is roughly equal to the  | 
| 
83
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 dimensional precision of physical maps printed on paper (due to  | 
| 
84
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 stretching and warping of the paper) but is significant at larger  | 
| 
85
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 scales (e.g. for regional maps).  If you need more precision than  | 
| 
86
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 that, you will want to implement and use the ellipsoidal  | 
| 
87
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 transformations from Snyder 1987 or another reference work on geodesy.  | 
| 
88
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 A good name for that package would be C<...::Cartography::Geodetic>.  | 
| 
89
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
90
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =head1 GENERAL NOTES ON PERSPECTIVE AND SCIENTIFIC IMAGES  | 
| 
91
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
92
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 Cartographic transformations are useful for interpretation of  | 
| 
93
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 scientific images, as all cameras produce projections of the celestial  | 
| 
94
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 sphere onto the focal plane of the camera.  A simple (single-element)  | 
| 
95
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 optical system with a planar focal plane generates  | 
| 
96
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 L images -- that is to say, gnomonic projections  | 
| 
97
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 of a portion of the celestial sphere near the paraxial direction.  | 
| 
98
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 This is the projection that most consumer grade cameras produce.  | 
| 
99
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
100
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 Magnification in an optical system changes the angle of incidence  | 
| 
101
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 of the rays on the focal plane for a given angle of incidence at the  | 
| 
102
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 aperture.  For example, a 10x telescope with a 2 degree field of view  | 
| 
103
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 exhibits the same gnomonic distortion as a simple optical system with   | 
| 
104
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 a 20 degree field of view.  Wide-angle optics typically have magnification  | 
| 
105
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 less than 1 ('fisheye lenses'), reducing the gnomonic distortion   | 
| 
106
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 considerably but introducing L<"equidistant azimuthal"|/t_az_eqd> distortion --  | 
| 
107
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 there's no such thing as a free lunch!  | 
| 
108
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
109
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 Because many solar-system objects are spherical,  | 
| 
110
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 PDLA::Transform::Cartography includes perspective projections for  | 
| 
111
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 producing maps of spherical bodies from perspective views.  Those  | 
| 
112
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 projections are L<"t_vertical"|/t_vertical> and  | 
| 
113
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 L<"t_perspective"|/t_perspective>.  They map between (lat,lon) on the  | 
| 
114
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 spherical body and planar projected coordinates at the viewpoint.    | 
| 
115
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 L<"t_vertical"|/t_vertical> is the vertical perspective projection   | 
| 
116
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 given by Snyder, but L<"t_perspective"|/t_perspective> is a fully  | 
| 
117
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 general perspective projection that also handles magnification correction.  | 
| 
118
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
119
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =head1 TRANSVERSE & OBLIQUE PROJECTIONS; STANDARD OPTIONS  | 
| 
120
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
121
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 Oblique projections rotate the sphere (and graticule) to an arbitrary  | 
| 
122
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 angle before generating the projection; transverse projections rotate  | 
| 
123
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 the sphere exactly 90 degrees before generating the projection.    | 
| 
124
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
125
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 Most of the projections accept the following standard options,  | 
| 
126
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 useful for making transverse and oblique projection maps.    | 
| 
127
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
128
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =over 3  | 
| 
129
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
130
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =item o, origin, Origin [default (0,0,0)]  | 
| 
131
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
132
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 The origin of the oblique map coordinate system, in (old-theta, old-phi)   | 
| 
133
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 coordinates.  | 
| 
134
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
135
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =item r, roll, Roll [default 0.0]  | 
| 
136
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
137
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 The roll angle of the sphere about the origin, measured CW from (N = up)  | 
| 
138
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 for reasonable values of phi and CW from (S = up) for unreasonable  | 
| 
139
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 values of phi.  This is equivalent to observer roll angle CCW from the  | 
| 
140
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 same direction.  | 
| 
141
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
142
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =item u, unit, Unit [default 'degree']  | 
| 
143
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
144
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 This is the name of the angular unit to use in the lon/lat coordinate system.  | 
| 
145
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
146
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =item b, B  | 
| 
147
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
148
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 The "B" angle of the body -- used for extraterrestrial maps.  Setting  | 
| 
149
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 this parameter is exactly equivalent to setting the phi component  | 
| 
150
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 of the origin, and in fact overrides it.  | 
| 
151
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
152
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =item l,L  | 
| 
153
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
154
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 The longitude of the central meridian as observed -- used for extraterrestrial  | 
| 
155
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 maps.  Setting this parameter is exactly equivalent to setting the theta  | 
| 
156
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 component of the origin, and in fact overrides it.  | 
| 
157
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
158
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =item p,P  | 
| 
159
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
160
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 The "P" (or position) angle of the body -- used for extraterrestrial maps.  | 
| 
161
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 This parameter is a synonym for the roll angle, above.  | 
| 
162
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
163
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =item bad, Bad, missing, Missing [default nan]  | 
| 
164
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
165
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 This is the value that missing points get.  Mainly useful for the  | 
| 
166
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 inverse transforms.  (This should work fine if set to BAD, if you have  | 
| 
167
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 bad-value support compiled in).  The default nan is asin(1.2), calculated  | 
| 
168
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 at load time.  | 
| 
169
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
170
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =back  | 
| 
171
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
172
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =head1 EXAMPLES  | 
| 
173
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
174
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 Draw a Mercator map of the world on-screen:  | 
| 
175
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
176
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    $w = pgwin(xs);  | 
| 
177
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    $w->lines(earth_coast->apply(t_mercator)->clean_lines);  | 
| 
178
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
179
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 Here, C returns a 3xn piddle containing (lon, lat, pen)   | 
| 
180
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 values for the included world coastal outline; C converts  | 
| 
181
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 the values to projected Mercator coordinates, and C breaks  | 
| 
182
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 lines that cross the 180th meridian.  | 
| 
183
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
184
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 Draw a Mercator map of the world, with lon/lat at 10 degree intervals:  | 
| 
185
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
186
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    $w = pgwin(xs)  | 
| 
187
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    $x = earth_coast()->glue(1,graticule(10,1));  | 
| 
188
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    $w->lines($x->apply(t_mercator)->clean_lines);  | 
| 
189
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
190
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 This works just the same as the first example, except that a map graticule  | 
| 
191
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 has been applied with interline spacing of 10 degrees lon/lat and   | 
| 
192
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 inter-vertex spacing of 1 degree (so that each meridian contains 181 points,  | 
| 
193
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 and each parallel contains 361 points).  | 
| 
194
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
195
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =head1 NOTES  | 
| 
196
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
197
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 Currently angular conversions are rather simpleminded.  A list of  | 
| 
198
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 common conversions is present in the main constructor, which inserts a  | 
| 
199
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 conversion constant to radians into the {params} field of the new  | 
| 
200
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 transform.  Something like Math::Convert::Units should be used instead  | 
| 
201
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 to generate the conversion constant.   | 
| 
202
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
203
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 A cleaner higher-level interface is probably needed (see the examples);  | 
| 
204
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 for example, earth_coast could return a graticule if asked, instead of   | 
| 
205
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 needing one to be glued on.  | 
| 
206
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
207
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 The class structure is somewhat messy because of the varying needs of  | 
| 
208
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 the different transformations.  PDLA::Transform::Cartography is a base  | 
| 
209
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 class that interprets the origin options and sets up the basic  | 
| 
210
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 machinery of the Transform.  The conic projections have their  | 
| 
211
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 own subclass, PDLA::Transform::Conic, that interprets the standard  | 
| 
212
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 parallels.  Since the cylindrical and azimuthal projections are pretty  | 
| 
213
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 simple, they are not subclassed.  | 
| 
214
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
215
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 The perl 5.6.1 compiler is quite slow at adding new classes to the  | 
| 
216
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 structure, so it does not makes sense to subclass new transformations  | 
| 
217
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 merely for the sake of pedantry.  | 
| 
218
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
219
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =head1 AUTHOR  | 
| 
220
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
221
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 Copyright 2002, Craig DeForest (deforest@boulder.swri.edu).  This  | 
| 
222
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 module may be modified and distributed under the same terms as PDLA  | 
| 
223
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 itself.  The module comes with NO WARRANTY.  | 
| 
224
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
225
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 The included digital world map is derived from the 1987 CIA World Map,  | 
| 
226
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 translated to ASCII in 1988 by Joe Dellinger (geojoe@freeusp.org) and  | 
| 
227
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 simplified in 1995 by Kirk Johnson (tuna@indra.com) for the program  | 
| 
228
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 XEarth.  The map comes with NO WARRANTY.  An ASCII version of the map,  | 
| 
229
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 and a sample PDLA function to read it, may be found in the Demos  | 
| 
230
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 subdirectory of the PDLA source distribution.  | 
| 
231
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
232
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =head1 FUNCTIONS  | 
| 
233
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
234
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 The module exports both transform constructors ('t_') and some  | 
| 
235
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 auxiliary functions (no leading 't_').  | 
| 
236
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
237
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =cut  | 
| 
238
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
239
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 # Import PDLA::Transform into the calling package -- the cartography  | 
| 
240
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 # stuff isn't much use without it.  | 
| 
241
 | 
1
 | 
 
 | 
 
 | 
  
1
  
 | 
 
 | 
74796
 | 
 use PDLA::Transform;  | 
| 
 
 | 
1
 | 
 
 | 
 
 | 
 
 | 
 
 | 
3
 | 
    | 
| 
 
 | 
1
 | 
 
 | 
 
 | 
 
 | 
 
 | 
8
 | 
    | 
| 
242
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
243
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 package PDLA::Transform::Cartography;  | 
| 
244
 | 
1
 | 
 
 | 
 
 | 
  
1
  
 | 
 
 | 
264
 | 
 use PDLA::Core ':Internal'; # Load 'topdl' (internal routine)  | 
| 
 
 | 
1
 | 
 
 | 
 
 | 
 
 | 
 
 | 
3
 | 
    | 
| 
 
 | 
1
 | 
 
 | 
 
 | 
 
 | 
 
 | 
19
 | 
    | 
| 
245
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
246
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 @ISA = ( 'Exporter','PDLA::Transform' );  | 
| 
247
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 our $VERSION = "0.6";  | 
| 
248
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 $VERSION = eval $VERSION;  | 
| 
249
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
250
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 BEGIN {  | 
| 
251
 | 
1
 | 
 
 | 
 
 | 
  
1
  
 | 
 
 | 
235
 | 
   use Exporter ();  | 
| 
 
 | 
1
 | 
 
 | 
 
 | 
 
 | 
 
 | 
2
 | 
    | 
| 
 
 | 
1
 | 
 
 | 
 
 | 
 
 | 
 
 | 
234
 | 
    | 
| 
252
 | 
1
 | 
 
 | 
 
 | 
  
1
  
 | 
 
 | 
7
 | 
   @EXPORT_OK = qw(graticule earth_image earth_coast clean_lines t_unit_sphere t_orthographic t_rot_sphere t_caree t_mercator t_utm t_sin_lat t_sinusoidal t_conic t_albers t_lambert t_stereographic t_gnomonic t_az_eqd t_az_eqa t_vertical t_perspective t_hammer t_aitoff);  | 
| 
253
 | 
1
 | 
 
 | 
 
 | 
 
 | 
 
 | 
4
 | 
   @EXPORT = @EXPORT_OK;  | 
| 
254
 | 
1
 | 
 
 | 
 
 | 
 
 | 
 
 | 
32
 | 
   %EXPORT_TAGS = (Func=>[@EXPORT_OK]);  | 
| 
255
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 }  | 
| 
256
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
257
 | 
1
 | 
 
 | 
 
 | 
  
1
  
 | 
 
 | 
7
 | 
 use PDLA;  | 
| 
 
 | 
1
 | 
 
 | 
 
 | 
 
 | 
 
 | 
2
 | 
    | 
| 
 
 | 
1
 | 
 
 | 
 
 | 
 
 | 
 
 | 
10
 | 
    | 
| 
258
 | 
1
 | 
 
 | 
 
 | 
  
1
  
 | 
 
 | 
3210
 | 
 use PDLA::Transform;  | 
| 
 
 | 
1
 | 
 
 | 
 
 | 
 
 | 
 
 | 
3
 | 
    | 
| 
 
 | 
1
 | 
 
 | 
 
 | 
 
 | 
 
 | 
4
 | 
    | 
| 
259
 | 
1
 | 
 
 | 
 
 | 
  
1
  
 | 
 
 | 
238
 | 
 use PDLA::MatrixOps;  | 
| 
 
 | 
1
 | 
 
 | 
 
 | 
 
 | 
 
 | 
3
 | 
    | 
| 
 
 | 
1
 | 
 
 | 
 
 | 
 
 | 
 
 | 
4
 | 
    | 
| 
260
 | 
1
 | 
 
 | 
 
 | 
  
1
  
 | 
 
 | 
107
 | 
 use PDLA::NiceSlice;  | 
| 
 
 | 
1
 | 
 
 | 
 
 | 
 
 | 
 
 | 
2
 | 
    | 
| 
 
 | 
1
 | 
 
 | 
 
 | 
 
 | 
 
 | 
19
 | 
    | 
| 
261
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
262
 | 
1
 | 
 
 | 
 
 | 
  
1
  
 | 
 
 | 
155382
 | 
 use Carp;  | 
| 
 
 | 
1
 | 
 
 | 
 
 | 
 
 | 
 
 | 
4
 | 
    | 
| 
 
 | 
1
 | 
 
 | 
 
 | 
 
 | 
 
 | 
131
 | 
    | 
| 
263
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
264
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
265
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 ##############################  | 
| 
266
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 # Steal _opt from PDLA::Transform.  | 
| 
267
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 *PDLA::Transform::Cartography::_opt = \&PDLA::Transform::_opt;  | 
| 
268
 | 
1
 | 
 
 | 
 
 | 
  
1
  
 | 
 
 | 
11
 | 
 use overload '""' => \&_strval;  | 
| 
 
 | 
1
 | 
 
 | 
 
 | 
 
 | 
 
 | 
2
 | 
    | 
| 
 
 | 
1
 | 
 
 | 
 
 | 
 
 | 
 
 | 
25
 | 
    | 
| 
269
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
270
 | 
1
 | 
 
 | 
 
 | 
  
1
  
 | 
 
 | 
70
 | 
 use strict;  | 
| 
 
 | 
1
 | 
 
 | 
 
 | 
 
 | 
 
 | 
2
 | 
    | 
| 
 
 | 
1
 | 
 
 | 
 
 | 
 
 | 
 
 | 
10708
 | 
    | 
| 
271
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
272
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 our $PI = $PDLA::Transform::PI;  | 
| 
273
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 our $DEG2RAD = $PDLA::Transform::DEG2RAD;  | 
| 
274
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 our $RAD2DEG = $PDLA::Transform::RAD2DEG;  | 
| 
275
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
276
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 sub _strval {  | 
| 
277
 | 
  
0
  
 | 
 
 | 
 
 | 
  
0
  
 | 
 
 | 
0
 | 
   my($me) = shift;  | 
| 
278
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
   $me->stringify();  | 
| 
279
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 }  | 
| 
280
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
281
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 ######################################################################  | 
| 
282
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
283
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =head2 graticule  | 
| 
284
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
285
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =for usage  | 
| 
286
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
287
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    $lonlatp     = graticule(,);     | 
| 
288
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    $lonlatp     = graticule(,,1);  | 
| 
289
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
290
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =for ref  | 
| 
291
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
292
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 (Cartography) PDLA constructor - generate a lat/lon grid.  | 
| 
293
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
294
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 Returns a grid of meridians and parallels as a list of vectors suitable  | 
| 
295
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 for sending to  | 
| 
296
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 L  | 
| 
297
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 for plotting.  | 
| 
298
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 The grid is in degrees in (theta, phi) coordinates -- this is (E lon, N lat)   | 
| 
299
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 for terrestrial grids or (RA, dec) for celestial ones.  You must then   | 
| 
300
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 transform the graticule in the same way that you transform the map.  | 
| 
301
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
302
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 You can attach the graticule to a vector map using the syntax:  | 
| 
303
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
304
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     $out = graticule(10,2)->glue(1,$map);  | 
| 
305
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
306
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 In array context you get back a 2-element list containing a piddle of  | 
| 
307
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 the (theta,phi) pairs and a piddle of the pen values (1 or 0) suitable for  | 
| 
308
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 calling  | 
| 
309
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 L.  | 
| 
310
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 In scalar context the two elements are combined into a single piddle.  | 
| 
311
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
312
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 The pen values associated with the graticule are negative, which will cause  | 
| 
313
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 L  | 
| 
314
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 to plot them as hairlines.  | 
| 
315
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
316
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 If a third argument is given, it is a hash of options, which can be:  | 
| 
317
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
318
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =over 3  | 
| 
319
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
320
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =item nan - if true, use two columns instead of three, and separate lines with a 'nan' break  | 
| 
321
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
322
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =item lonpos - if true, all reported longitudes are positive (0 to 360) instead of (-180 to 180).  | 
| 
323
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
324
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =item dup - if true, the meridian at the far boundary is duplicated.  | 
| 
325
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
326
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =back   | 
| 
327
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
328
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =cut  | 
| 
329
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
330
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 sub graticule {  | 
| 
331
 | 
  
0
  
 | 
 
 | 
 
 | 
  
0
  
 | 
  
1
  
 | 
0
 | 
     my $grid = shift;  | 
| 
332
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     my $step = shift;  | 
| 
333
 | 
  
0
  
 | 
  
  0
  
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     my $hash = shift; $hash = {} unless defined($hash); # avoid // for ancient compatibility  | 
| 
 
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
    | 
| 
334
 | 
  
0
  
 | 
 
 | 
  
  0
  
 | 
 
 | 
 
 | 
0
 | 
     my $two_cols = $hash->{nan} || 0;  | 
| 
335
 | 
  
0
  
 | 
 
 | 
  
  0
  
 | 
 
 | 
 
 | 
0
 | 
     my $lonpos = $hash->{lonpos} || 0;  | 
| 
336
 | 
  
0
  
 | 
 
 | 
  
  0
  
 | 
 
 | 
 
 | 
0
 | 
     my $dup = $hash->{dup} || 0;  | 
| 
337
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
338
 | 
  
0
  
 | 
  
  0
  
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     $grid = 10 unless defined($grid);  | 
| 
339
 | 
  
0
  
 | 
  
  0
  
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     $grid = $grid->at(0) if(ref($grid) eq 'PDLA');  | 
| 
340
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
       | 
| 
341
 | 
  
0
  
 | 
  
  0
  
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     $step = $grid/2 unless defined($step);  | 
| 
342
 | 
  
0
  
 | 
  
  0
  
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     $step = $step->at(0) if(ref($step) eq 'PDLA');  | 
| 
343
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
344
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     # Figure number of parallels and meridians  | 
| 
345
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     my $np = 2 * int(90/$grid);  | 
| 
346
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     my $nm = 2 * int(180/$grid);  | 
| 
347
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
       | 
| 
348
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     # First do parallels.  | 
| 
349
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     my $xp = xvals(360/$step + 1 + !!$two_cols, $np + 1) * $step       - 180 * (!$lonpos);  | 
| 
350
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     my $yp = yvals(360/$step + 1 + !!$two_cols, $np + 1) * 180/$np     -  90;  | 
| 
351
 | 
  
0
  
 | 
  
  0
  
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     $xp->(-1,:) .= $yp->(-1,:) .= asin(pdl(1.1)) if($two_cols);  | 
| 
352
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
353
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     # Next do meridians.  | 
| 
354
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     my $xm = yvals( 180/$step + 1 + !!$two_cols,  $nm + !!$dup  ) * 360/$nm   - 180 * (!$lonpos);  | 
| 
355
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     my $ym = xvals( 180/$step + 1 + !!$two_cols,  $nm + !!$dup  ) * $step     - 90;  | 
| 
356
 | 
  
0
  
 | 
  
  0
  
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     $xm->(-1,:) .= $ym->(-1,:) .= asin(pdl(1.1)) if($two_cols);  | 
| 
357
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
358
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
       | 
| 
359
 | 
  
0
  
 | 
  
  0
  
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     if($two_cols) {  | 
| 
360
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	return pdl( $xp->flat->append($xm->flat),  | 
| 
361
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 		    $yp->flat->append($ym->flat)  | 
| 
362
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	    )->mv(1,0);  | 
| 
363
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     } else {  | 
| 
364
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	 our $pp = (zeroes($xp)-1); $pp->((-1)) .= 0;  | 
| 
 
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
    | 
| 
365
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	 our $pm = (zeroes($xm)-1); $pm->((-1)) .= 0;  | 
| 
 
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
    | 
| 
366
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
367
 | 
  
0
  
 | 
  
  0
  
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	if(wantarray) {  | 
| 
368
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	    return (  pdl( $xp->flat->append($xm->flat),  | 
| 
369
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 			   $yp->flat->append($ym->flat)  | 
| 
370
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 		      )->mv(1,0),  | 
| 
371
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 		        | 
| 
372
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 		      $pp->flat->append($pm->flat)  | 
| 
373
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 		);  | 
| 
374
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	} else {  | 
| 
375
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	    return pdl( $xp->flat->append($xm->flat),  | 
| 
376
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 			$yp->flat->append($ym->flat),  | 
| 
377
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 			$pp->flat->append($pm->flat)  | 
| 
378
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 		     )->mv(1,0);  | 
| 
379
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	}    | 
| 
380
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	barf "This can't happen";  | 
| 
381
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     }  | 
| 
382
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 }  | 
| 
383
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
384
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =head2 earth_coast  | 
| 
385
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
386
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =for usage  | 
| 
387
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
388
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   $x = earth_coast()  | 
| 
389
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
390
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =for ref  | 
| 
391
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
392
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 (Cartography) PDLA constructor - coastline map of Earth  | 
| 
393
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
394
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 Returns a vector coastline map based on the 1987 CIA World Coastline  | 
| 
395
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 database (see author information).  The vector coastline data are in  | 
| 
396
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 plate caree format so they can be converted to other projections via  | 
| 
397
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 the L method and cartographic transforms,  | 
| 
398
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 and are suitable for plotting with the  | 
| 
399
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 L  | 
| 
400
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 method in the PGPLOT  | 
| 
401
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 output library:  the first dimension is (X,Y,pen) with breaks having   | 
| 
402
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 a pen value of 0 and hairlines having negative pen values.  The second   | 
| 
403
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 dimension threads over all the points in the data set.    | 
| 
404
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
405
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 The vector map includes lines that pass through the antipodean  | 
| 
406
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 meridian, so if you want to plot it without reprojecting, you should  | 
| 
407
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 run it through L first:  | 
| 
408
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
409
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     $w = pgwin();  | 
| 
410
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     $w->lines(earth_coast->clean_lines);     # plot plate caree map of world  | 
| 
411
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     $w->lines(earth_coast->apply(t_gnomonic))# plot gnomonic map of world  | 
| 
412
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
413
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 C is just a quick-and-dirty way of loading the file  | 
| 
414
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 "earth_coast.vec.fits" that is part of the normal installation tree.  | 
| 
415
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
416
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =cut  | 
| 
417
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
418
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 sub earth_coast {  | 
| 
419
 | 
  
0
  
 | 
 
 | 
 
 | 
  
0
  
 | 
  
1
  
 | 
0
 | 
     my $fn = "PDLA/Transform/Cartography/earth_coast.vec.fits";  | 
| 
420
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     local $_;  | 
| 
421
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     foreach(@INC) {  | 
| 
422
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	my $file = "$_/$fn";  | 
| 
423
 | 
  
0
  
 | 
  
  0
  
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	return rfits($file) if(-e $file);  | 
| 
424
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     }  | 
| 
425
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     barf("earth_coast: $fn not found in \@INC.\n");  | 
| 
426
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 }  | 
| 
427
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
428
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =head2 earth_image  | 
| 
429
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
430
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =for usage  | 
| 
431
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
432
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
  $rgb = earth_image()  | 
| 
433
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
434
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =for ref  | 
| 
435
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
436
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 (Cartography) PDLA constructor - RGB pixel map of Earth   | 
| 
437
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
438
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 Returns an RGB image of Earth based on data from the MODIS instrument  | 
| 
439
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 on the NASA EOS/Terra satellite.  (You can get a full-resolution  | 
| 
440
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 image from L).  | 
| 
441
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 The image is a plate caree map, so you can convert it to other  | 
| 
442
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 projections via the L | 
| 
443
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 transforms.  | 
| 
444
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
445
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 This is just a quick-and-dirty way of loading the earth-image files that  | 
| 
446
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 are distributed along with PDLA.  | 
| 
447
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
448
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =cut  | 
| 
449
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
450
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 sub earth_image {  | 
| 
451
 | 
  
0
  
 | 
 
 | 
 
 | 
  
0
  
 | 
  
1
  
 | 
0
 | 
   my($nd) = shift;  | 
| 
452
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
   my $f;  | 
| 
453
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
   my $dir = "PDLA/Transform/Cartography/earth_";  | 
| 
454
 | 
  
0
  
 | 
  
  0
  
 | 
 
 | 
 
 | 
 
 | 
0
 | 
   $f = ($nd =~ m/^n/i) ? "${dir}night.jpg" : "${dir}day.jpg";  | 
| 
455
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     | 
| 
456
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
   local $_;  | 
| 
457
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
   my $im;  | 
| 
458
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
   my $found = 0;  | 
| 
459
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
   foreach(@INC) {  | 
| 
460
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     my $file = "$_/$f";  | 
| 
461
 | 
  
0
  
 | 
  
  0
  
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     if(-e $file) {  | 
| 
462
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
       $found = 1;  | 
| 
463
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
       $im = rpic($file)->mv(0,-1);  | 
| 
464
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     }  | 
| 
465
 | 
  
0
  
 | 
  
  0
  
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     last if defined($im);  | 
| 
466
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   }  | 
| 
467
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
468
 | 
  
0
  
 | 
  
  0
  
 | 
 
 | 
 
 | 
 
 | 
0
 | 
   barf("earth_image: $f not found in \@INC\n")  | 
| 
469
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     unless defined($found);  | 
| 
470
 | 
  
0
  
 | 
  
  0
  
 | 
 
 | 
 
 | 
 
 | 
0
 | 
   barf("earth_image: couldn't load $f; you may need to install netpbm.\n")  | 
| 
471
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     unless defined($im);  | 
| 
472
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
473
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
   my $h = $im->fhdr;  | 
| 
474
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
475
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
   $h->{SIMPLE} = 'T';  | 
| 
476
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
   $h->{NAXIS} = 3;  | 
| 
477
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
   $h->{NAXIS1}=2048;	      $h->{CRPIX1}=1024.5;    $h->{CRVAL1}=0;  | 
| 
 
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
    | 
| 
 
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
    | 
| 
478
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
   $h->{NAXIS2}=1024;	      $h->{CRPIX2}=512.5;     $h->{CRVAL2}=0;  | 
| 
 
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
    | 
| 
 
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
    | 
| 
479
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
   $h->{NAXIS3}=3,             $h->{CRPIX3}=1;         $h->{CRVAL3}=0;  | 
| 
 
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
    | 
| 
480
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
   $h->{CTYPE1}='Longitude';   $h->{CUNIT1}='degrees'; $h->{CDELT1}=180/1024.0;  | 
| 
 
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
    | 
| 
 
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
    | 
| 
481
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
   $h->{CTYPE2}='Latitude';    $h->{CUNIT2}='degrees'; $h->{CDELT2}=180/1024.0;  | 
| 
 
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
    | 
| 
 
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
    | 
| 
482
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
   $h->{CTYPE3}='RGB';         $h->{CUNIT3}='index';   $h->{CDELT3}=1.0;  | 
| 
 
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
    | 
| 
 
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
    | 
| 
483
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
   $h->{COMMENT}='Plate Caree Projection';  | 
| 
484
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
   $h->{HISTORY}='PDLA Distribution Image, derived from NASA/MODIS data',  | 
| 
485
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     | 
| 
486
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   $im->hdrcpy(1);  | 
| 
487
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
   $im;  | 
| 
488
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 }  | 
| 
489
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
490
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =head2 clean_lines  | 
| 
491
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
492
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =for usage  | 
| 
493
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
494
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
  $x = clean_lines(t_mercator->apply(scalar(earth_coast())));  | 
| 
495
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
  $x = clean_lines($line_pen, [threshold]);  | 
| 
496
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
  $x = $lines->clean_lines;  | 
| 
497
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
498
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =for ref  | 
| 
499
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
500
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 (Cartography) PDLA method - remove projection irregularities  | 
| 
501
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
502
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 C massages vector data to remove jumps due to singularities  | 
| 
503
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 in the transform.  | 
| 
504
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
505
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 In the first (scalar) form, C<$line_pen> contains both (X,Y) points and pen   | 
| 
506
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 values suitable to be fed to  | 
| 
507
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 L:  | 
| 
508
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 in the second (list) form, C<$lines> contains the (X,Y) points and C<$pen>  | 
| 
509
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 contains the pen values.    | 
| 
510
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
511
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 C assumes that all the outline polylines are local --  | 
| 
512
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 that is to say, there are no large jumps.  Any jumps larger than a  | 
| 
513
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 threshold size are broken by setting the appropriate pen values to 0.  | 
| 
514
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
515
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 The C parameter sets the relative size of the largest jump, relative  | 
| 
516
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 to the map range (as determined by a min/max operation).  The default size is  | 
| 
517
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 0.1.  | 
| 
518
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
519
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 NOTES  | 
| 
520
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
521
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 This almost never catches stuff near the apex of cylindrical maps,  | 
| 
522
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 because the anomalous vectors get arbitrarily small.  This could be   | 
| 
523
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 improved somewhat by looking at individual runs of the pen and using  | 
| 
524
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 a relative length scale that is calibrated to the rest of each run.  | 
| 
525
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 it is probably not worth the computational overhead.  | 
| 
526
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
527
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =cut  | 
| 
528
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
529
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 *PDLA::clean_lines = \&clean_lines;  | 
| 
530
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 sub clean_lines {  | 
| 
531
 | 
  
0
  
 | 
 
 | 
 
 | 
  
0
  
 | 
  
1
  
 | 
0
 | 
     my($lines) = shift;  | 
| 
532
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     my($x) = shift;  | 
| 
533
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     my($y) = shift;  | 
| 
534
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     my($l,$p,$th);  | 
| 
535
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
536
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     $th = 0.1;  | 
| 
537
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
538
 | 
  
0
  
 | 
  
  0
  
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     if(defined($y)) {  | 
| 
539
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	# separate case with thresh  | 
| 
540
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	$l = $lines;  | 
| 
541
 | 
  
0
  
 | 
  
  0
  
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	$p = $x->is_inplace?$x:$x->copy;  | 
| 
542
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	$th = $y;  | 
| 
543
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     } else {  | 
| 
544
 | 
  
0
  
 | 
  
  0
  
 | 
  
  0
  
 | 
 
 | 
 
 | 
0
 | 
 	if(!defined($x)) {  | 
| 
 
 | 
 
 | 
  
  0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
545
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	    # duplex case no thresh  | 
| 
546
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	    $l = $lines->(0:1);  | 
| 
547
 | 
  
0
  
 | 
  
  0
  
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	    $p = $lines->is_inplace ? $lines->((2)) : $lines->((2))->sever;  | 
| 
548
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	} elsif(UNIVERSAL::isa($x,'PDLA') &&   | 
| 
549
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 		$lines->((0))->nelem == $x->nelem) {  | 
| 
550
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	    # Separate case no thresh  | 
| 
551
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	    $l = $lines;  | 
| 
552
 | 
  
0
  
 | 
  
  0
  
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	    $p = $x->is_inplace ? $x : $x->copy;;  | 
| 
553
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	} else {  | 
| 
554
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	    # duplex case with thresh  | 
| 
555
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	    $l = $lines->(0:1);  | 
| 
556
 | 
  
0
  
 | 
  
  0
  
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	    $p = $lines->is_inplace ? $lines->((2)) : $lines->((2))->sever;  | 
| 
557
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	    $th = $x;  | 
| 
558
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	}  | 
| 
559
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     }  | 
| 
560
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
561
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     my $pok = (($p != 0) & isfinite($p));  | 
| 
562
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     # Kludge to work around minmax bug (nans confuse it!)  | 
| 
563
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     my($l0) = $l->((0));  | 
| 
564
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     my($x0,$x1) = $l0->where(isfinite($l0) & $pok)->minmax;  | 
| 
565
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     my($xth) = abs($x1-$x0) * $th;  | 
| 
566
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
567
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     my($l1) = $l->((1));  | 
| 
568
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     ($x0,$x1) = $l1->where(isfinite($l1) & $pok)->minmax;  | 
| 
569
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     my($yth) = abs($x1-$x0) * $th;  | 
| 
570
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
571
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     my $diff = abs($l->(:,1:-1) - $l->(:,0:-2));  | 
| 
572
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
573
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     $diff->where(!isfinite($diff)) .= 2*($xth + $yth);   | 
| 
574
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     $p->where(($diff->((0)) > $xth) | ($diff->((1)) > $yth)) .= 0;  | 
| 
575
 | 
  
0
  
 | 
  
  0
  
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     if(wantarray){  | 
| 
576
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	return($l,$p);  | 
| 
577
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     } else {  | 
| 
578
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	return $l->append($p->dummy(0,1));  | 
| 
579
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     }  | 
| 
580
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 }      | 
| 
581
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
582
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
583
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
584
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 ######################################################################  | 
| 
585
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
586
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 ###  | 
| 
587
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 # Units parser  | 
| 
588
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 # Get unit, return conversion factor to radii, or undef if no match found.  | 
| 
589
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 #  | 
| 
590
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 sub _uconv{  | 
| 
591
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   ###  | 
| 
592
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   # Replace this with a more general units resolver call!  | 
| 
593
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   ###  | 
| 
594
 | 
3
 | 
 
 | 
 
 | 
  
3
  
 | 
 
 | 
8
 | 
   local($_) = shift;  | 
| 
595
 | 
3
 | 
 
 | 
 
 | 
 
 | 
 
 | 
5
 | 
   my($silent) =shift;  | 
| 
596
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
597
 | 
3
 | 
  
  0
  
 | 
 
 | 
 
 | 
 
 | 
44
 | 
   my($x) =   | 
| 
 
 | 
 
 | 
  
  0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
 
 | 
 
 | 
  
  0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
 
 | 
 
 | 
  
  0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
 
 | 
 
 | 
  
  0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
 
 | 
 
 | 
  
 50
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
 
 | 
 
 | 
  
 50
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
 
 | 
 
 | 
  
 50
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
 
 | 
 
 | 
  
 50
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
 
 | 
 
 | 
  
 50
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
 
 | 
 
 | 
  
 50
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
 
 | 
 
 | 
  
100
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
 
 | 
 
 | 
  
100
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
598
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     ( m/^deg/i    ? $DEG2RAD :  | 
| 
599
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
       m/^arcmin/i ? $DEG2RAD / 60 :  | 
| 
600
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
       m/^arcsec/i ? $DEG2RAD / 3600 :  | 
| 
601
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
       m/^hour/i   ? $DEG2RAD * 15 :    # Right ascension  | 
| 
602
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
       m/^min/i    ? $DEG2RAD * 15/60 : # Right ascension  | 
| 
603
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
       m/^microrad/i ? 1e-6 :  | 
| 
604
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
       m/^millirad/i ? 1e-3 :  | 
| 
605
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
       m/^rad(ian)?s?$/i ? 1.0 :  | 
| 
606
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
       m/^meter/ ? 1.0/6371000 :                # Assuming Earth cartography!  | 
| 
607
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
       m/^kilometer/ ? 1.0/6371 :  | 
| 
608
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
       m/^km/ ? 1.0/6371 :  | 
| 
609
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
       m/^Mm/ ? 1.0/6.371 :  | 
| 
610
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
       m/^mile/  ? 1.0/(637100000/2.54/12/5280) :  | 
| 
611
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
       undef  | 
| 
612
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
       );  | 
| 
613
 | 
3
 | 
  
  0
  
 | 
  
 33
  
 | 
 
 | 
 
 | 
12
 | 
   print STDERR "Cartography: unrecognized unit '$_'\n"      | 
| 
 
 | 
 
 | 
 
 | 
  
  0
  
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
 
 | 
 
 | 
 
 | 
  
 33
  
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
614
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     if( (!defined $x) && !$silent && ($PDLA::debug || $PDLA::verbose));  | 
| 
615
 | 
3
 | 
 
 | 
 
 | 
 
 | 
 
 | 
22
 | 
   $x;  | 
| 
616
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 }  | 
| 
617
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
618
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 ###  | 
| 
619
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 #  | 
| 
620
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 # Cartography general constructor -- called by the individual map  | 
| 
621
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 # constructors.  Not underscored because it's certainly OK to call from  | 
| 
622
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 # outside -- but the *last* argument is the name of the transform.  | 
| 
623
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 #  | 
| 
624
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 # The options list is put into the {options} field of the newly constructed  | 
| 
625
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 # Transform -- fastidious subclass constructors will want to delete it before   | 
| 
626
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 # returning.  | 
| 
627
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 #  | 
| 
628
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
629
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
630
 | 
2
 | 
 
 | 
 
 | 
  
2
  
 | 
 
 | 
9
 | 
 sub _new { new('PDLA::Transform::Cartography',@_); } # not exported  | 
| 
631
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 sub new {  | 
| 
632
 | 
2
 | 
 
 | 
 
 | 
  
2
  
 | 
  
0
  
 | 
6
 | 
     my($class) = shift;  | 
| 
633
 | 
2
 | 
 
 | 
 
 | 
 
 | 
 
 | 
5
 | 
     my($name) = pop;  | 
| 
634
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
635
 | 
2
 | 
 
 | 
 
 | 
 
 | 
 
 | 
4
 | 
     my($o) = $_[0];  | 
| 
636
 | 
2
 | 
  
 50
  
 | 
 
 | 
 
 | 
 
 | 
13
 | 
     $o = {@_}  | 
| 
637
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
       unless(ref $o eq 'HASH');  | 
| 
638
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
639
 | 
2
 | 
 
 | 
 
 | 
 
 | 
 
 | 
8
 | 
     my($me) = PDLA::Transform::new($class);  | 
| 
640
 | 
2
 | 
 
 | 
 
 | 
 
 | 
 
 | 
101
 | 
     $me->{idim} = $me->{odim} = 2;  | 
| 
641
 | 
2
 | 
 
 | 
 
 | 
 
 | 
 
 | 
6
 | 
     $me->{name} = $name;  | 
| 
642
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
643
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     ####  | 
| 
644
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     # Parse origin and units arguments  | 
| 
645
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     #   | 
| 
646
 | 
2
 | 
 
 | 
 
 | 
 
 | 
 
 | 
10
 | 
     my $or = _opt($o,['o','origin','Origin'],zeroes(2));  | 
| 
647
 | 
2
 | 
  
 50
  
 | 
 
 | 
 
 | 
 
 | 
30
 | 
     if($or->nelem != 2) {  | 
| 
648
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	croak("PDLA::Transform::Cartography: origin must have 2 elements\n");  | 
| 
649
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     }  | 
| 
650
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
651
 | 
2
 | 
 
 | 
 
 | 
 
 | 
 
 | 
9
 | 
     my($l) = _opt($o,['l','L']);  | 
| 
652
 | 
2
 | 
 
 | 
 
 | 
 
 | 
 
 | 
8
 | 
     my($b_angle) = _opt($o,['b','B']);  | 
| 
653
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
654
 | 
2
 | 
  
 50
  
 | 
 
 | 
 
 | 
 
 | 
6
 | 
     $or->(0) .= $l if defined($l);  | 
| 
655
 | 
2
 | 
  
 50
  
 | 
 
 | 
 
 | 
 
 | 
5
 | 
     $or->(1) .= $b_angle if defined($b_angle);  | 
| 
656
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
657
 | 
2
 | 
 
 | 
 
 | 
 
 | 
 
 | 
7
 | 
     my $roll = topdl(_opt($o,['r','roll','Roll','P'],0));  | 
| 
658
 | 
2
 | 
 
 | 
 
 | 
 
 | 
 
 | 
96
 | 
     my $unit = _opt($o,['u','unit','Unit'],'degrees');  | 
| 
659
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
660
 | 
2
 | 
 
 | 
 
 | 
 
 | 
 
 | 
7
 | 
     $me->{params}->{conv} = my $conv = _uconv($unit);  | 
| 
661
 | 
2
 | 
 
 | 
 
 | 
 
 | 
 
 | 
6
 | 
     $me->{params}->{u} = $unit;  | 
| 
662
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
663
 | 
2
 | 
 
 | 
 
 | 
 
 | 
 
 | 
6
 | 
     $me->{itype} = ['longitude','latitude'];  | 
| 
664
 | 
2
 | 
 
 | 
 
 | 
 
 | 
 
 | 
8
 | 
     $me->{iunit} = [$me->{params}->{u},$me->{params}->{u}];  | 
| 
665
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
666
 | 
2
 | 
 
 | 
 
 | 
 
 | 
 
 | 
9
 | 
     my($ou) = _opt($o,['ou','ounit','OutputUnit'],undef);  | 
| 
667
 | 
2
 | 
 
 | 
 
 | 
 
 | 
 
 | 
6
 | 
     $me->{params}->{ou} = $ou;  | 
| 
668
 | 
2
 | 
  
 50
  
 | 
 
 | 
 
 | 
 
 | 
5
 | 
     if(defined $ou) {  | 
| 
669
 | 
  
0
  
 | 
  
  0
  
 | 
 
 | 
 
 | 
 
 | 
0
 | 
       if(!(ref $ou)) {  | 
| 
670
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	$me->{params}->{oconv} = _uconv($ou);  | 
| 
671
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
       } else {  | 
| 
672
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	my @oconv;  | 
| 
673
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	map {push(@oconv,_uconv($_))} @$ou;  | 
| 
 
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
    | 
| 
674
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	$me->{params}->{oconv} = topdl([@oconv]);  | 
| 
675
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
       }  | 
| 
676
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     } else {  | 
| 
677
 | 
2
 | 
 
 | 
 
 | 
 
 | 
 
 | 
5
 | 
       $me->{params}->{oconv} = undef;  | 
| 
678
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     }  | 
| 
679
 | 
2
 | 
 
 | 
 
 | 
 
 | 
 
 | 
5
 | 
     $me->{ounit} = $me->{params}->{ou};  | 
| 
680
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
681
 | 
2
 | 
 
 | 
 
 | 
 
 | 
 
 | 
24
 | 
     $me->{params}->{o} = $or * $conv;  | 
| 
682
 | 
2
 | 
 
 | 
 
 | 
 
 | 
 
 | 
19
 | 
     $me->{params}->{roll} = $roll * $conv;  | 
| 
683
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
684
 | 
2
 | 
 
 | 
 
 | 
 
 | 
 
 | 
12
 | 
     $me->{params}->{bad} = _opt($o,['b','bad','Bad','missing','Missing'],  | 
| 
685
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 			      asin(pdl(1.1)));  | 
| 
686
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
687
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     # Get the standard parallel (in general there's only one; the conics  | 
| 
688
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     # have two but that's handled by _c_new)  | 
| 
689
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     $me->{params}->{std} = topdl(_opt($me->{options},  | 
| 
690
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 			 ['s','std','standard','Standard'],  | 
| 
691
 | 
2
 | 
 
 | 
 
 | 
 
 | 
 
 | 
13
 | 
 			 0))->at(0) * $me->{params}->{conv};  | 
| 
692
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
693
 | 
2
 | 
 
 | 
 
 | 
 
 | 
 
 | 
104
 | 
     $me->{options} = $o;  | 
| 
694
 | 
2
 | 
 
 | 
 
 | 
 
 | 
 
 | 
9
 | 
     $me;  | 
| 
695
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 }  | 
| 
696
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
697
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 # Compose self with t_rot_sphere if necessary -- useful for   | 
| 
698
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 # finishing off the transformations that accept the origin and roll   | 
| 
699
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 # options.  | 
| 
700
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 sub PDLA::Transform::Cartography::_finish {  | 
| 
701
 | 
  
0
  
 | 
 
 | 
 
 | 
  
0
  
 | 
 
 | 
0
 | 
   my($me) = shift;  | 
| 
702
 | 
  
0
  
 | 
  
  0
  
 | 
  
  0
  
 | 
 
 | 
 
 | 
0
 | 
   if( ($me->{params}->{o}->(0) != 0) ||   | 
| 
 
 | 
 
 | 
 
 | 
  
  0
  
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
703
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
       ($me->{params}->{o}->(1) != 0) ||  | 
| 
704
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
       ($me->{params}->{roll} != 0)   | 
| 
705
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
       ) {  | 
| 
706
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
       my $out = t_compose($me,t_rot_sphere($me->{options}));  | 
| 
707
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
       $out->{itype} = $me->{itype};  | 
| 
708
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
       $out->{iunit} = $me->{iunit};  | 
| 
709
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
       $out->{otype} = $me->{otype};  | 
| 
710
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
       $out->{ounit} = $me->{ounit};  | 
| 
711
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
       $out->{odim} = 2;  | 
| 
712
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
       $out->{idim} = 2;  | 
| 
713
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
       return $out;  | 
| 
714
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     }   | 
| 
715
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
   return $me;  | 
| 
716
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 }  | 
| 
717
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
718
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
719
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 ######################################################################  | 
| 
720
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
721
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =head2 t_unit_sphere  | 
| 
722
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
723
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =for usage  | 
| 
724
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
725
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   $t = t_unit_sphere();  | 
| 
726
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
727
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =for ref  | 
| 
728
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
729
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 (Cartography) 3-D globe projection (conformal; authalic)  | 
| 
730
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
731
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 This is similar to the inverse of  | 
| 
732
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 L,  | 
| 
733
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 but the  | 
| 
734
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 inverse transform projects 3-D coordinates onto the unit sphere,  | 
| 
735
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 yielding only a 2-D (lon/lat) output.  Similarly, the forward  | 
| 
736
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 transform deprojects 2-D (lon/lat) coordinates onto the surface of a  | 
| 
737
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 unit sphere.  | 
| 
738
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
739
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 The cartesian system has its Z axis pointing through the pole of the   | 
| 
740
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 (lon,lat) system, and its X axis pointing through the equator at the   | 
| 
741
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 prime meridian.  | 
| 
742
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
743
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 Unit sphere mapping is unusual in that it is both conformal and authalic.  | 
| 
744
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 That is possible because it properly embeds the sphere in 3-space, as a   | 
| 
745
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 notional globe.  | 
| 
746
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
747
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 This is handy as an intermediate step in lots of transforms, as   | 
| 
748
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 Cartesian 3-space is cleaner to work with than spherical 2-space.  | 
| 
749
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
750
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 Higher dimensional indices are preserved, so that "rider" indices (such as   | 
| 
751
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 pen value) are propagated.  | 
| 
752
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
753
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 There is no oblique transform for t_unit_sphere, largely because   | 
| 
754
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 it's so easy to rotate the output using t_linear once it's out into   | 
| 
755
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 Cartesian space.  In fact, the other projections implement oblique  | 
| 
756
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 transforms by  | 
| 
757
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 L  | 
| 
758
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 L with  | 
| 
759
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 L.  | 
| 
760
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
761
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 OPTIONS:  | 
| 
762
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
763
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =over 3  | 
| 
764
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
765
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =item radius, Radius (default 1.0)   | 
| 
766
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
767
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 The radius of the sphere, for the inverse transform.  (Radius is ignored  | 
| 
768
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 in the forward transform).  Defaults to 1.0 so that the resulting Cartesian  | 
| 
769
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 coordinates are in units of "body radii".  | 
| 
770
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
771
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =back  | 
| 
772
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
773
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =cut  | 
| 
774
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
775
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 sub t_unit_sphere {  | 
| 
776
 | 
1
 | 
 
 | 
 
 | 
  
1
  
 | 
  
1
  
 | 
6
 | 
   my($me) = _new(@_,'Unit Sphere Projection');   | 
| 
777
 | 
1
 | 
 
 | 
 
 | 
 
 | 
 
 | 
4
 | 
   $me->{odim} = 3;  | 
| 
778
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
779
 | 
1
 | 
 
 | 
 
 | 
 
 | 
 
 | 
3
 | 
   $me->{params}->{otype} = ['X','Y','Z'];  | 
| 
780
 | 
1
 | 
 
 | 
 
 | 
 
 | 
 
 | 
3
 | 
   $me->{params}->{ounit} = ['body radii','body radii','body radii'];  | 
| 
781
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
782
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   $me->{params}->{r} = topdl(_opt($me->{options},  | 
| 
783
 | 
1
 | 
 
 | 
 
 | 
 
 | 
 
 | 
5
 | 
 				['r','radius','Radius'],  | 
| 
784
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 				1.0)  | 
| 
785
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 			   )->at(0);  | 
| 
786
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 				      | 
| 
787
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     | 
| 
788
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   $me->{func} = sub {  | 
| 
789
 | 
8
 | 
 
 | 
 
 | 
  
8
  
 | 
 
 | 
23
 | 
     my($d,$o) = @_;  | 
| 
790
 | 
8
 | 
 
 | 
 
 | 
 
 | 
 
 | 
40
 | 
     my(@dims) = $d->dims;  | 
| 
791
 | 
8
 | 
 
 | 
 
 | 
 
 | 
 
 | 
274
 | 
     $dims[0] ++;  | 
| 
792
 | 
8
 | 
 
 | 
 
 | 
 
 | 
 
 | 
55
 | 
     my $out = zeroes(@dims);  | 
| 
793
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
       | 
| 
794
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     my($thetaphi) = ((defined $o->{conv} && $o->{conv} != 1.0) ?   | 
| 
795
 | 
8
 | 
  
 50
  
 | 
  
 33
  
 | 
 
 | 
 
 | 
5489
 | 
 		     $d->(0:1) * $o->{conv} : $d->(0:1)  | 
| 
796
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 		     );  | 
| 
797
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
798
 | 
8
 | 
 
 | 
 
 | 
 
 | 
 
 | 
183
 | 
     my $th = $thetaphi->((0));  | 
| 
799
 | 
8
 | 
 
 | 
 
 | 
 
 | 
 
 | 
106
 | 
     my $ph = $thetaphi->((1));  | 
| 
800
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
801
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     # use x as a holding tank for the cos-phi multiplier  | 
| 
802
 | 
8
 | 
 
 | 
 
 | 
 
 | 
 
 | 
94
 | 
     $out->((0)) .= $o->{r} * cos($ph) ;  | 
| 
803
 | 
8
 | 
 
 | 
 
 | 
 
 | 
 
 | 
40775
 | 
     $out->((1)) .= $out->((0)) * sin($th);  | 
| 
804
 | 
8
 | 
 
 | 
 
 | 
 
 | 
 
 | 
44049
 | 
     $out->((0)) *= cos($th);  | 
| 
805
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
806
 | 
8
 | 
 
 | 
 
 | 
 
 | 
 
 | 
40081
 | 
     $out->((2)) .= $o->{r} * sin($ph);  | 
| 
807
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
808
 | 
8
 | 
  
 50
  
 | 
 
 | 
 
 | 
 
 | 
40402
 | 
     if($d->dim(0) > 2) {  | 
| 
809
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	$out->(3:-1) .= $d->(2:-1);  | 
| 
810
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     }  | 
| 
811
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
812
 | 
8
 | 
 
 | 
 
 | 
 
 | 
 
 | 
106
 | 
     $out;  | 
| 
813
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
814
 | 
1
 | 
 
 | 
 
 | 
 
 | 
 
 | 
49
 | 
   };  | 
| 
815
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
816
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   $me->{inv} = sub {  | 
| 
817
 | 
  
0
  
 | 
 
 | 
 
 | 
  
0
  
 | 
 
 | 
0
 | 
     my($d,$o) = @_;  | 
| 
818
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	  | 
| 
819
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     my($d0,$d1,$d2) = ($d->((0)),$d->((1)),$d->((2)));  | 
| 
820
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     my($r) = sqrt(($d->(0:2)*$d->(0:2))->sumover);  | 
| 
821
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     my(@dims) = $d->dims;  | 
| 
822
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     $dims[0]--;  | 
| 
823
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     my($out) = zeroes(@dims);  | 
| 
824
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
       | 
| 
825
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     $out->((0)) .= atan2($d1,$d0);  | 
| 
826
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     $out->((1)) .= asin($d2/$r);  | 
| 
827
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
828
 | 
  
0
  
 | 
  
  0
  
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     if($d->dim(0) > 3) {  | 
| 
829
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	$out->(2:-1) .= $d->(3:-1);  | 
| 
830
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     }  | 
| 
831
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
832
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     $out->(0:1) /= $o->{conv}  | 
| 
833
 | 
  
0
  
 | 
  
  0
  
 | 
  
  0
  
 | 
 
 | 
 
 | 
0
 | 
       if(defined $o->{conv} && $o->{conv} != 1.0);  | 
| 
834
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
835
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     $out;  | 
| 
836
 | 
1
 | 
 
 | 
 
 | 
 
 | 
 
 | 
5
 | 
   };  | 
| 
837
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
838
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
       | 
| 
839
 | 
1
 | 
 
 | 
 
 | 
 
 | 
 
 | 
5
 | 
   $me;  | 
| 
840
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 }  | 
| 
841
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
842
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 ######################################################################  | 
| 
843
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
844
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =head2 t_rot_sphere  | 
| 
845
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
846
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =for usage  | 
| 
847
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
848
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     $t = t_rot_sphere({origin=>[,],roll=>[]});  | 
| 
849
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
850
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =for ref  | 
| 
851
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
852
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 (Cartography) Generate oblique projections  | 
| 
853
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
854
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 You feed in the origin in (theta,phi) and a roll angle, and you get back   | 
| 
855
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 out (theta', phi') coordinates.  This is useful for making oblique or   | 
| 
856
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 transverse projections:  just compose t_rot_sphere with your favorite  | 
| 
857
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 projection and you get an oblique one.  | 
| 
858
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
859
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 Most of the projections automagically compose themselves with t_rot_sphere  | 
| 
860
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 if you feed in an origin or roll angle.  | 
| 
861
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
862
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 t_rot_sphere converts the base plate caree projection (straight lon, straight  | 
| 
863
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 lat) to a Cassini projection.  | 
| 
864
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
865
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 OPTIONS  | 
| 
866
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
867
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =over 3  | 
| 
868
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
869
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =item STANDARD POSITIONAL OPTIONS  | 
| 
870
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
871
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =back  | 
| 
872
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
873
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =cut  | 
| 
874
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
875
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 # helper routine for making the rotation matrix  | 
| 
876
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 sub _rotmat {  | 
| 
877
 | 
2
 | 
 
 | 
 
 | 
  
2
  
 | 
 
 | 
47
 | 
   my($th,$ph,$r) = @_;  | 
| 
878
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     | 
| 
879
 | 
2
 | 
 
 | 
 
 | 
 
 | 
 
 | 
15
 | 
   pdl( [ cos($th) ,  -sin($th),    0  ],   # apply theta  | 
| 
880
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
        [ sin($th) ,   cos($th),    0  ],  | 
| 
881
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
        [  0,          0,           1  ] )  | 
| 
882
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     x  | 
| 
883
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   pdl( [ cos($ph),    0,  -sin($ph)  ], # apply phi  | 
| 
884
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	 [ 0,           1,    0       ],  | 
| 
885
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	 [ sin($ph),   0,  cos($ph)  ] )  | 
| 
886
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     x  | 
| 
887
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   pdl( [ 1,         0 ,       0      ], # apply roll last  | 
| 
888
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	 [ 0,    cos($r),   -sin($r)   ],   | 
| 
889
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	 [ 0,    sin($r),    cos($r)   ])  | 
| 
890
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     ;  | 
| 
891
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 }  | 
| 
892
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
893
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 sub t_rot_sphere {  | 
| 
894
 | 
  
0
  
 | 
 
 | 
 
 | 
  
0
  
 | 
  
1
  
 | 
0
 | 
     my($me) = _new(@_,'Spherical rotation');  | 
| 
895
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
896
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
897
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     my($th,$ph) = $me->{params}->{o}->list;  | 
| 
898
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     my($r) = $me->{params}->{roll}->at(0);  | 
| 
899
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
900
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     my($rotmat) = _rotmat($th,$ph,$r);  | 
| 
901
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
902
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     my $out =  t_wrap( t_linear(m=>$rotmat, d=>3), t_unit_sphere());  | 
| 
903
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     $out->{itype} = $me->{itype};  | 
| 
904
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     $out->{iunit} = $me->{iunit};  | 
| 
905
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     $out->{otype} = ['rotated longitude','rotated latitude'];  | 
| 
906
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     $out->{ounit} = $me->{iunit};  | 
| 
907
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
908
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     $out;  | 
| 
909
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 }  | 
| 
910
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
911
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
912
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 ######################################################################  | 
| 
913
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
914
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =head2 t_orthographic  | 
| 
915
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
916
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =for usage  | 
| 
917
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
918
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     $t = t_orthographic();  | 
| 
919
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
920
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =for ref  | 
| 
921
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
922
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 (Cartography) Ortho. projection (azimuthal; perspective)  | 
| 
923
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
924
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 This is a perspective view as seen from infinite distance.  You  | 
| 
925
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 can specify the sub-viewer point in (lon,lat) coordinates, and a rotation  | 
| 
926
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 angle of the map CW from (north=up).  This is equivalent to specify  | 
| 
927
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 viewer roll angle CCW from (north=up).  | 
| 
928
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
929
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 t_orthographic is a convenience interface to t_unit_sphere -- it is implemented  | 
| 
930
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 as a composition of a t_unit_sphere call, a rotation, and a slice.  | 
| 
931
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
932
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 [*] In the default case where the near hemisphere is mapped, the  | 
| 
933
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 inverse exists.  There is no single inverse for the whole-sphere case,  | 
| 
934
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 so the inverse transform superimposes everything on a single  | 
| 
935
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 hemisphere.  If you want an invertible 3-D transform, you want  | 
| 
936
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 L.  | 
| 
937
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
938
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 OPTIONS  | 
| 
939
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
940
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =over 3  | 
| 
941
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
942
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =item STANDARD POSITIONAL OPTIONS  | 
| 
943
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
944
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =item m, mask, Mask, h, hemisphere, Hemisphere [default 'near']  | 
| 
945
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
946
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 The hemisphere to keep in the projection (see L).  | 
| 
947
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
948
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =back   | 
| 
949
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
950
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 NOTES  | 
| 
951
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
952
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 Alone of the various projections, this one does not use  | 
| 
953
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 L to handle the standard options, because  | 
| 
954
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 the cartesian coordinates of the rotated sphere are already correctly  | 
| 
955
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 projected -- t_rot_sphere would put them back into (theta', phi')  | 
| 
956
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 coordinates.  | 
| 
957
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
958
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =cut  | 
| 
959
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
960
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 sub t_orthographic {  | 
| 
961
 | 
  
0
  
 | 
 
 | 
 
 | 
  
0
  
 | 
  
1
  
 | 
0
 | 
     my($me) = _new(@_,'Orthographic Projection');  | 
| 
962
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
       | 
| 
963
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     $me->{otype} = ['projected X','projected Y'];  | 
| 
964
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     $me->{ounit} = ['body radii','body radii'];  | 
| 
965
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
966
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     my $m= _opt($me->{options},  | 
| 
967
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 		['m','mask','Mask','h','hemi','hemisphere','Hemisphere'],  | 
| 
968
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 		1);  | 
| 
969
 | 
  
0
  
 | 
  
  0
  
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     if($m=~m/^b/i) {  | 
| 
 
 | 
 
 | 
  
  0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
 
 | 
 
 | 
  
  0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
970
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	$me->{params}->{m} = 0;  | 
| 
971
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     } elsif($m=~m/^n/i) {  | 
| 
972
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	$me->{params}->{m} = 1;  | 
| 
973
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     } elsif($m=~m/^f/i) {  | 
| 
974
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	$me->{params}->{m} = 2;  | 
| 
975
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     } else {  | 
| 
976
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	$me->{params}->{m} = $m;  | 
| 
977
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     }  | 
| 
978
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
979
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     my $origin= $me->{params}->{o} * $RAD2DEG;  | 
| 
980
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     my $roll = $me->{params}->{roll} * $RAD2DEG;  | 
| 
981
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
982
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     $me->{params}->{t_int} =   | 
| 
983
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	t_compose(  | 
| 
984
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 		  t_linear(rot=>[90 - $origin->at(1),  | 
| 
985
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 				 0,  | 
| 
986
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 				 90 + $origin->at(0)],  | 
| 
987
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 			   d=>3),  | 
| 
988
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 		  t_unit_sphere(u=>$me->{params}->{u})  | 
| 
989
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 		  );  | 
| 
990
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
       | 
| 
991
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     $me->{params}->{t_int} =   | 
| 
992
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	t_compose(  | 
| 
993
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 		  t_linear(rot=>[0,0,$roll->at(0)],d=>3),  | 
| 
994
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 		  $me->{params}->{t_int}  | 
| 
995
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 		  )  | 
| 
996
 | 
  
0
  
 | 
  
  0
  
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	    if($roll->at(0));  | 
| 
997
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
998
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     $me->{name} = "orthographic";  | 
| 
999
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1000
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     $me->{idim} = 2;  | 
| 
1001
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     $me->{odim} = 2;  | 
| 
1002
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1003
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     $me->{func} = sub {  | 
| 
1004
 | 
  
0
  
 | 
 
 | 
 
 | 
  
0
  
 | 
 
 | 
0
 | 
 	my ($d,$o) = @_ ;  | 
| 
1005
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	my ($out) = $o->{t_int}->apply($d);  | 
| 
1006
 | 
  
0
  
 | 
  
  0
  
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	if($o->{m}) {  | 
| 
1007
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	    my $idx;  | 
| 
1008
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	    $idx = whichND($out->((2)) < 0)   | 
| 
1009
 | 
  
0
  
 | 
  
  0
  
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 		if($o->{m} == 1);  | 
| 
1010
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	    $idx = whichND($out->((2)) > 0)  | 
| 
1011
 | 
  
0
  
 | 
  
  0
  
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 		if($o->{m} == 2);  | 
| 
1012
 | 
  
0
  
 | 
  
  0
  
 | 
  
  0
  
 | 
 
 | 
 
 | 
0
 | 
 	    if(defined $idx && ref $idx eq 'PDLA' && $idx->nelem){  | 
| 
 
 | 
 
 | 
 
 | 
  
  0
  
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1013
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	      $out->((0))->range($idx) .= $o->{bad};  | 
| 
1014
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	      $out->((1))->range($idx) .= $o->{bad};  | 
| 
1015
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	    }  | 
| 
1016
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	}  | 
| 
1017
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1018
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	my($d0) = $out->dim(0);  | 
| 
1019
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1020
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	# Remove the Z direction  | 
| 
1021
 | 
  
0
  
 | 
  
  0
  
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	($d0 > 3) ? $out->(pdl(0,1,3..$d0-1)) : $out->(0:1);  | 
| 
1022
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1023
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     };  | 
| 
1024
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1025
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     # This is slow to run, quick to code -- could be made better by  | 
| 
1026
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     # having its own 2-d inverse instead of calling the internal one.  | 
| 
1027
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     $me->{inv} = sub {  | 
| 
1028
 | 
  
0
  
 | 
 
 | 
 
 | 
  
0
  
 | 
 
 | 
0
 | 
 	my($d,$o) = @_;  | 
| 
1029
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	my($d1) = $d->(0:1);  | 
| 
1030
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	my(@dims) = $d->dims;  | 
| 
1031
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	$dims[0]++;  | 
| 
1032
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	my($out) = zeroes(@dims);  | 
| 
1033
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	$out->(0:1) .= $d1;  | 
| 
1034
 | 
  
0
  
 | 
  
  0
  
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	$out->(3:-1) .= $d->(2:-1)   | 
| 
1035
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	    if($dims[0] > 3);  | 
| 
1036
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1037
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	$out->((2)) .= sqrt(1 - ($d1*$d1)->sumover);  | 
| 
1038
 | 
  
0
  
 | 
  
  0
  
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	$out->((2)) *= -1 if($o->{m} == 2);  | 
| 
1039
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1040
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	$o->{t_int}->invert($out);  | 
| 
1041
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     };  | 
| 
1042
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1043
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     $me;  | 
| 
1044
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 }  | 
| 
1045
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1046
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 ######################################################################  | 
| 
1047
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1048
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =head2 t_caree  | 
| 
1049
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1050
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =for usage  | 
| 
1051
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1052
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     $t = t_caree();  | 
| 
1053
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1054
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =for ref  | 
| 
1055
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1056
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 (Cartography) Plate Caree projection (cylindrical; equidistant)  | 
| 
1057
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1058
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 This is the simple Plate Caree projection -- also called a "lat/lon plot".  | 
| 
1059
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 The horizontal axis is theta; the vertical axis is phi.  This is a no-op  | 
| 
1060
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 if the angular unit is radians; it is a simple scale otherwise.   | 
| 
1061
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1062
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 OPTIONS  | 
| 
1063
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1064
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =over 3  | 
| 
1065
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1066
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =item STANDARD POSITIONAL OPTIONS  | 
| 
1067
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1068
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =item s, std, standard, Standard (default 0)  | 
| 
1069
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1070
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 The standard parallel where the transformation is conformal.  Conformality  | 
| 
1071
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 is achieved by shrinking of the horizontal scale to match the   | 
| 
1072
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 vertical scale (which is correct everywhere).  | 
| 
1073
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1074
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =back  | 
| 
1075
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1076
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =cut  | 
| 
1077
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1078
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 @PDLA::Transform::Cartography::Caree::ISA = ('PDLA::Transform::Cartography');  | 
| 
1079
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1080
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 sub t_caree {  | 
| 
1081
 | 
  
0
  
 | 
 
 | 
 
 | 
  
0
  
 | 
  
1
  
 | 
0
 | 
     my($me) = _new(@_,'Plate Caree Projection');  | 
| 
1082
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     my $p = $me->{params};  | 
| 
1083
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1084
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     $me->{otype} = ['projected longitude','latitude'];  | 
| 
1085
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     $me->{ounit} = ['proj. body radii','body radii'];  | 
| 
1086
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1087
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     $p->{stretch} = cos($p->{std});  | 
| 
1088
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1089
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     $me->{func} = sub {  | 
| 
1090
 | 
  
0
  
 | 
 
 | 
 
 | 
  
0
  
 | 
 
 | 
0
 | 
 	my($d,$o) = @_;  | 
| 
1091
 | 
  
0
  
 | 
  
  0
  
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	my($out) = $d->is_inplace ? $d : $d->copy;  | 
| 
1092
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	$out->(0:1) *= $o->{conv};  | 
| 
1093
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	$out->(0) *= $p->{stretch};  | 
| 
1094
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	$out;  | 
| 
1095
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     };  | 
| 
1096
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
       | 
| 
1097
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     $me->{inv} = sub {  | 
| 
1098
 | 
  
0
  
 | 
 
 | 
 
 | 
  
0
  
 | 
 
 | 
0
 | 
 	my($d,$o)= @_;  | 
| 
1099
 | 
  
0
  
 | 
  
  0
  
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	my($out) = $d->is_inplace ? $d : $d->copy;  | 
| 
1100
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	$out->(0:1) /= $o->{conv};  | 
| 
1101
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	$out->(0) /= $p->{stretch};  | 
| 
1102
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	$out;  | 
| 
1103
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     };  | 
| 
1104
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
       | 
| 
1105
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     $me->_finish;  | 
| 
1106
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 }  | 
| 
1107
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1108
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 ######################################################################  | 
| 
1109
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1110
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =head2 t_mercator  | 
| 
1111
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1112
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =for usage  | 
| 
1113
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1114
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     $t = t_mercator();  | 
| 
1115
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1116
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =for ref  | 
| 
1117
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1118
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 (Cartography) Mercator projection (cylindrical; conformal)  | 
| 
1119
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1120
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 This is perhaps the most famous of all map projections: meridians are mapped  | 
| 
1121
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 to parallel vertical lines and parallels are unevenly spaced horizontal lines.  | 
| 
1122
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 The poles are shifted to +/- infinity.  The output values are in units of   | 
| 
1123
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 globe-radii for easy conversion to kilometers; hence the horizontal extent  | 
| 
1124
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 is -pi to pi.  | 
| 
1125
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1126
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 You can get oblique Mercator projections by specifying the C or  | 
| 
1127
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 C options; this is implemented via L.  | 
| 
1128
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1129
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 OPTIONS  | 
| 
1130
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1131
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =over 3  | 
| 
1132
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1133
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =item STANDARD POSITIONAL OPTIONS  | 
| 
1134
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1135
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =item c, clip, Clip (default 75 [degrees])  | 
| 
1136
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1137
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 The north/south clipping boundary of the transformation.  Because the poles are  | 
| 
1138
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 displaced to infinity, many applications require a clipping boundary.  The  | 
| 
1139
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 value is in whatever angular unit you set with the standard 'units' option.  | 
| 
1140
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 The default roughly matches interesting landforms on Earth.  | 
| 
1141
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 For no clipping at all, set b=>0.  For asymmetric clipping, use a 2-element  | 
| 
1142
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 list ref or piddle.  | 
| 
1143
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1144
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =item s, std, Standard (default 0)  | 
| 
1145
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1146
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 This is the parallel at which the map has correct scale.  The scale  | 
| 
1147
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 is also correct at the parallel of opposite sign.    | 
| 
1148
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1149
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =back  | 
| 
1150
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1151
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =cut  | 
| 
1152
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1153
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1154
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 @PDLA::Transform::Cartography::Mercator::ISA = ('PDLA::Transform::Cartography');  | 
| 
1155
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1156
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 sub t_mercator {  | 
| 
1157
 | 
  
0
  
 | 
 
 | 
 
 | 
  
0
  
 | 
  
1
  
 | 
0
 | 
     my($me) = _new(@_,'Mercator Projection');  | 
| 
1158
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     my $p = $me->{params};  | 
| 
1159
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1160
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 # This is a lot of shenanigans just to get the clip parallels, but what the  | 
| 
1161
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 # heck -- it's not a hot spot and it saves copying the input data (for   | 
| 
1162
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 # nondestructive clipping).  | 
| 
1163
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     $p->{c} = _opt($me->{options},  | 
| 
1164
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 		   ['c','clip','Clip'],  | 
| 
1165
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 		   undef);  | 
| 
1166
 | 
  
0
  
 | 
  
  0
  
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     if(defined($p->{c})) {  | 
| 
1167
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	$p->{c} = topdl($p->{c});  | 
| 
1168
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	$p->{c} *= $p->{conv};  | 
| 
1169
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     } else {  | 
| 
1170
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	$p->{c} = pdl($DEG2RAD * 75);  | 
| 
1171
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     }  | 
| 
1172
 | 
  
0
  
 | 
  
  0
  
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     $p->{c} = abs($p->{c}) * pdl(-1,1) if($p->{c}->nelem == 1);  | 
| 
1173
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1174
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     $p->{c} = log(tan(($p->{c}/2) + $PI/4));         | 
| 
1175
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     $p->{c} = [$p->{c}->list];  | 
| 
1176
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1177
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     $p->{std} = topdl(_opt($me->{options},  | 
| 
1178
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 			 ['s','std','standard','Standard'],  | 
| 
1179
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 			 0))->at(0) * $p->{conv};  | 
| 
1180
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1181
 | 
  
0
  
 | 
  
  0
  
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     if($p->{std} == 0) {  | 
| 
1182
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
       $me->{otype} = ['longitude','tan latitude'];  | 
| 
1183
 | 
  
0
  
 | 
  
  0
  
 | 
 
 | 
 
 | 
 
 | 
0
 | 
       $me->{ounit} = ['radians',' '] unless(defined $me->{ounit});  | 
| 
1184
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     } else {  | 
| 
1185
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
       $me->{otype} = ['proj. longitude','proj. tan latitude'];  | 
| 
1186
 | 
  
0
  
 | 
  
  0
  
 | 
 
 | 
 
 | 
 
 | 
0
 | 
       $me->{ounit} = ['radians',' '] unless(defined $me->{ounit});  | 
| 
1187
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     }  | 
| 
1188
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1189
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     $p->{stretch} = cos($p->{std});  | 
| 
1190
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1191
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     $me->{func} = sub {  | 
| 
1192
 | 
  
0
  
 | 
 
 | 
 
 | 
  
0
  
 | 
 
 | 
0
 | 
 	my($d,$o) = @_;  | 
| 
1193
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1194
 | 
  
0
  
 | 
  
  0
  
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	my($out) = $d->is_inplace ? $d : $d->copy;  | 
| 
1195
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1196
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	$out->(0:1) *= $o->{conv};  | 
| 
1197
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1198
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	$out->((1)) .= log(tan($out->((1))/2 + $PI/4));  | 
| 
1199
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	$out->((1)) .= $out->((1))->clip(@{$o->{c}})  | 
| 
1200
 | 
  
0
  
 | 
  
  0
  
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	    unless($o->{c}->[0] == $o->{c}->[1]);  | 
| 
1201
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1202
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	$out->(0:1) *= $o->{stretch};  | 
| 
1203
 | 
  
0
  
 | 
  
  0
  
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	$out->(0:1) /= $o->{oconv} if(defined $o->{oconv});  | 
| 
1204
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 			      | 
| 
1205
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	$out;  | 
| 
1206
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     };  | 
| 
1207
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1208
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     $me->{inv} = sub {  | 
| 
1209
 | 
  
0
  
 | 
 
 | 
 
 | 
  
0
  
 | 
 
 | 
0
 | 
 	my($d,$o) = @_;  | 
| 
1210
 | 
  
0
  
 | 
  
  0
  
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	my($out) = $d->is_inplace? $d : $d->copy;  | 
| 
1211
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1212
 | 
  
0
  
 | 
  
  0
  
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	$out->(0:1) *= $o->{oconv} if defined($o->{oconv});  | 
| 
1213
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	$out->(0:1) /= $o->{stretch};  | 
| 
1214
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	$out->((1)) .= (atan(exp($out->((1)))) - $PI/4)*2;  | 
| 
1215
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	$out->(0:1) /= $o->{conv};  | 
| 
1216
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1217
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	$out;  | 
| 
1218
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     };  | 
| 
1219
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1220
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     $me->_finish;  | 
| 
1221
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 }      | 
| 
1222
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1223
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 ######################################################################  | 
| 
1224
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1225
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =head2 t_utm  | 
| 
1226
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1227
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =for usage  | 
| 
1228
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1229
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   $t = t_utm(,);  | 
| 
1230
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1231
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =for ref  | 
| 
1232
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1233
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 (Cartography) Universal Transverse Mercator projection (cylindrical)  | 
| 
1234
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1235
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 This is the internationally used UTM projection, with 2 subzones   | 
| 
1236
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 (North/South).  The UTM zones are parametrized individually, so if you  | 
| 
1237
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 want a Zone 30 map you should use C.  By default you get  | 
| 
1238
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 the northern subzone, so that locations in the southern hemisphere get   | 
| 
1239
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 negative Y coordinates.  If you select the southern subzone (with the   | 
| 
1240
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 "subzone=>-1" option), you get offset southern UTM coordinates.    | 
| 
1241
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1242
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 The 20-subzone military system is not yet supported.  If/when it is  | 
| 
1243
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 implemented, you will be able to enter "subzone=>[a-t]" to select a N/S  | 
| 
1244
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 subzone.  | 
| 
1245
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1246
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 Note that UTM is really a family of transverse Mercator projections  | 
| 
1247
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 with different central meridia.  Each zone properly extends for six  | 
| 
1248
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 degrees of longitude on either side of its appropriate central meridian,  | 
| 
1249
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 with Zone 1 being centered at -177 degrees longitude (177 west).  | 
| 
1250
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 Properly speaking, the zones only extend from 80 degrees south to 84 degrees  | 
| 
1251
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 north; but this implementation lets you go all the way to 90 degrees.  | 
| 
1252
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 The default UTM coordinates are meters.  The origin for each zone is  | 
| 
1253
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 on the equator, at an easting of -500,000 meters.  | 
| 
1254
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1255
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 The default output units are meters, assuming that you are wanting a  | 
| 
1256
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 map of the Earth.  This will break for bodies other than Earth (which  | 
| 
1257
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 have different radii and hence different conversions between lat/lon  | 
| 
1258
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 angle and meters).  | 
| 
1259
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1260
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 The standard UTM projection has a slight reduction in scale at the  | 
| 
1261
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 prime meridian of each zone: the transverse Mercator projection's  | 
| 
1262
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 standard "parallels" are 180km e/w of the central meridian.  However,  | 
| 
1263
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 many Europeans prefer the "Gauss-Kruger" system, which is virtually  | 
| 
1264
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 identical to UTM but with a normal tangent Mercator (standard parallel  | 
| 
1265
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 on the prime meridian).  To get this behavior, set "gk=>1".  | 
| 
1266
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1267
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 Like the rest of the PDLA::Transform::Cartography package, t_utm uses a  | 
| 
1268
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 spherical datum rather than the "official" ellipsoidal datums for the  | 
| 
1269
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 UTM system.  | 
| 
1270
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1271
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 This implementation was derived from the rather nice description by   | 
| 
1272
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 Denis J. Dean, located on the web at:  | 
| 
1273
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 http://www.cnr.colostate.edu/class_info/nr502/lg3/datums_coordinates/utm.html  | 
| 
1274
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1275
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 OPTIONS  | 
| 
1276
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1277
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =over 3  | 
| 
1278
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1279
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =item STANDARD OPTIONS   | 
| 
1280
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1281
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 (No positional options -- Origin and Roll are ignored)   | 
| 
1282
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1283
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =item ou, ounit, OutputUnit (default 'meters')  | 
| 
1284
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1285
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 (This is likely to become a standard option in a future release) The  | 
| 
1286
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 unit of the output map.  By default, this is 'meters' for UTM, but you  | 
| 
1287
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 may specify 'deg' or 'km' or even (heaven help us) 'miles' if you  | 
| 
1288
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 prefer.  | 
| 
1289
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1290
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =item sz, subzone, SubZone (default 1)  | 
| 
1291
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1292
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 Set this to -1 for the southern hemisphere subzone.  Ultimately you  | 
| 
1293
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 should be able to set it to a letter to get the corresponding military  | 
| 
1294
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 subzone, but that's too much effort for now.  | 
| 
1295
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1296
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =item gk, gausskruger (default 0)  | 
| 
1297
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1298
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 Set this to 1 to get the (European-style) tangent-plane Mercator with  | 
| 
1299
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 standard parallel on the prime meridian.  The default of 0 places the  | 
| 
1300
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 standard parallels 180km east/west of the prime meridian, yielding better   | 
| 
1301
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 average scale across the zone.  Setting gk=>1 makes the scale exactly 1.0  | 
| 
1302
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 at the central meridian, and >1.0 everywhere else on the projection.   | 
| 
1303
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 The difference in scale is about 0.3%.  | 
| 
1304
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1305
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =back  | 
| 
1306
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1307
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =cut  | 
| 
1308
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1309
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 sub t_utm {  | 
| 
1310
 | 
  
0
  
 | 
 
 | 
 
 | 
  
0
  
 | 
  
1
  
 | 
0
 | 
   my $zone = (int(shift)-1) % 60 + 1;  | 
| 
1311
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
   my($x) = _new(@_,"UTM-$zone");  | 
| 
1312
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
   my $opt = $x->{options};  | 
| 
1313
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1314
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   ## Make sure that there is a conversion (default is 'meters')  | 
| 
1315
 | 
  
0
  
 | 
  
  0
  
 | 
 
 | 
 
 | 
 
 | 
0
 | 
   $x->{ounit} = ['meter','meter'] unless defined($x->{ounit});  | 
| 
1316
 | 
  
0
  
 | 
  
  0
  
 | 
 
 | 
 
 | 
 
 | 
0
 | 
   $x->{ounit} = [$x->{ounit},$x->{ounit}] unless ref($x->{ounit});  | 
| 
1317
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
   $x->{params}->{oconv} = _uconv($x->{ounit}->[0]);  | 
| 
1318
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1319
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   ## Define our zone and NS offset   | 
| 
1320
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
   my $subzone = _opt($opt,['sz', 'subzone', 'SubZone'],1);  | 
| 
1321
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
   my $offset = zeroes(2);  | 
| 
1322
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
   $offset->(0) .= 5e5*(2*$PI/40e6)/$x->{params}->{oconv};  | 
| 
1323
 | 
  
0
  
 | 
  
  0
  
 | 
 
 | 
 
 | 
 
 | 
0
 | 
   $offset->(1) .= ($subzone < 0) ? $PI/2/$x->{params}->{oconv} : 0;  | 
| 
1324
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1325
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
   my $merid = ($zone * 6) - 183;  | 
| 
1326
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1327
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
   my $gk = _opt($opt,['gk','gausskruger'],0);  | 
| 
1328
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     | 
| 
1329
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   my($me) = t_compose(t_linear(post=>$offset,  | 
| 
1330
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 			       rot=>-90  | 
| 
1331
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 			       ),  | 
| 
1332
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1333
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 		      t_mercator(o=>[$merid,0],   | 
| 
1334
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 				 r=>90,   | 
| 
1335
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 				 ou=>$x->{ounit},   | 
| 
1336
 | 
  
0
  
 | 
  
  0
  
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 				 s=>$gk ? 0 : ($RAD2DEG * (180/6371))  | 
| 
1337
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 				)  | 
| 
1338
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 		      );  | 
| 
1339
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1340
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1341
 | 
  
0
  
 | 
  
  0
  
 | 
 
 | 
 
 | 
 
 | 
0
 | 
   my $s = ($zone < 0) ? "S Hemisphere " : "";  | 
| 
1342
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
   $me->{otype} = ["UTM-$zone Easting","${s}Northing"];  | 
| 
1343
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
   $me->{ounit} = $x->{ounit};  | 
| 
1344
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1345
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
   return $me;  | 
| 
1346
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 }  | 
| 
1347
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1348
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 ######################################################################  | 
| 
1349
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1350
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =head2 t_sin_lat  | 
| 
1351
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1352
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =for usage  | 
| 
1353
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1354
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     $t = t_sin_lat();  | 
| 
1355
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1356
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =for ref  | 
| 
1357
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1358
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 (Cartography) Cyl. equal-area projection (cyl.; authalic)  | 
| 
1359
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1360
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 This projection is commonly used in solar Carrington plots; but not much  | 
| 
1361
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 for terrestrial mapping.  | 
| 
1362
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1363
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 OPTIONS  | 
| 
1364
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1365
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =over 3  | 
| 
1366
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1367
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =item STANDARD POSITIONAL OPTIONS  | 
| 
1368
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1369
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =item s,std, Standard (default 0)  | 
| 
1370
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1371
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 This is the parallel at which the map is conformal.  It is also conformal  | 
| 
1372
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 at the parallel of opposite sign.  The conformality is achieved by matched  | 
| 
1373
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 vertical stretching and horizontal squishing (to achieve constant area).  | 
| 
1374
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1375
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =back  | 
| 
1376
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1377
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =cut  | 
| 
1378
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1379
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 @PDLA::Transform::Cartography::SinLat::ISA = ('PDLA::Transform::Cartography');  | 
| 
1380
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 sub t_sin_lat {  | 
| 
1381
 | 
  
0
  
 | 
 
 | 
 
 | 
  
0
  
 | 
  
1
  
 | 
0
 | 
     my($me) = _new(@_,"Sine-Latitude Projection");  | 
| 
1382
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1383
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     $me->{params}->{std} = topdl(_opt($me->{options},  | 
| 
1384
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 				['s','std','standard','Standard'],  | 
| 
1385
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 				0))->at(0) * $me->{params}->{conv};  | 
| 
1386
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1387
 | 
  
0
  
 | 
  
  0
  
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     if($me->{params}->{std} == 0) {  | 
| 
1388
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
       $me->{otype} = ['longitude','sin latitude'];  | 
| 
1389
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
       $me->{ounit} = ['radians',' ']; # nonzero but blank!  | 
| 
1390
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     } else {  | 
| 
1391
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
       $me->{otype} = ['proj. longitude','proj. sin latitude'];  | 
| 
1392
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
       $me->{ounit} = ['radians',' '];  | 
| 
1393
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     }  | 
| 
1394
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1395
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     $me->{params}->{stretch} = sqrt(cos($me->{params}->{std}));  | 
| 
1396
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1397
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     $me->{func} = sub {  | 
| 
1398
 | 
  
0
  
 | 
 
 | 
 
 | 
  
0
  
 | 
 
 | 
0
 | 
 	my($d,$o) = @_;  | 
| 
1399
 | 
  
0
  
 | 
  
  0
  
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	my($out) = $d->is_inplace ? $d : $d->copy;  | 
| 
1400
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1401
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	$out->(0:1) *= $me->{params}->{conv};  | 
| 
1402
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	$out->((1)) .= sin($out->((1))) / $o->{stretch};  | 
| 
1403
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	$out->((0)) *= $o->{stretch};  | 
| 
1404
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	$out;  | 
| 
1405
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     };  | 
| 
1406
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1407
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     $me->{inv} = sub {  | 
| 
1408
 | 
  
0
  
 | 
 
 | 
 
 | 
  
0
  
 | 
 
 | 
0
 | 
 	my($d,$o) = @_;  | 
| 
1409
 | 
  
0
  
 | 
  
  0
  
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	my($out) = $d->is_inplace ? $d : $d->copy;  | 
| 
1410
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	$out->((1)) .= asin($out->((1)) * $o->{stretch});  | 
| 
1411
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	$out->((0)) /= $o->{stretch};  | 
| 
1412
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	$out->(0:1) /= $me->{params}->{conv};  | 
| 
1413
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	$out;  | 
| 
1414
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     };  | 
| 
1415
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1416
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     $me->_finish;  | 
| 
1417
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 }  | 
| 
1418
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1419
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 ######################################################################  | 
| 
1420
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1421
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =head2 t_sinusoidal  | 
| 
1422
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1423
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =for usage  | 
| 
1424
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1425
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     $t = t_sinusoidal();  | 
| 
1426
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1427
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =for ref  | 
| 
1428
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1429
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 (Cartography) Sinusoidal projection (authalic)  | 
| 
1430
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1431
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 Sinusoidal projection preserves the latitude scale but scales  | 
| 
1432
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 longitude according to sin(lat); in this respect it is the companion to  | 
| 
1433
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 L, which is also authalic but preserves the  | 
| 
1434
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 longitude scale instead.    | 
| 
1435
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1436
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 OPTIONS  | 
| 
1437
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1438
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =over 3  | 
| 
1439
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1440
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =item STANDARD POSITIONAL OPTIONS  | 
| 
1441
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1442
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =back  | 
| 
1443
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1444
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =cut  | 
| 
1445
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1446
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 sub t_sinusoidal {  | 
| 
1447
 | 
  
0
  
 | 
 
 | 
 
 | 
  
0
  
 | 
  
1
  
 | 
0
 | 
   my($me) = _new(@_,"Sinusoidal Projection");  | 
| 
1448
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
   $me->{otype} = ['longitude','latitude'];  | 
| 
1449
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
   $me->{ounit} = [' ','radians'];  | 
| 
1450
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     | 
| 
1451
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   $me->{func} = sub {  | 
| 
1452
 | 
  
0
  
 | 
 
 | 
 
 | 
  
0
  
 | 
 
 | 
0
 | 
     my($d,$o) = @_;  | 
| 
1453
 | 
  
0
  
 | 
  
  0
  
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     my($out) = $d->is_inplace ? $d : $d->copy;  | 
| 
1454
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     $out->(0:1) *= $o->{conv};  | 
| 
1455
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1456
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     $out->((0)) *= cos($out->((1)));  | 
| 
1457
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     $out;  | 
| 
1458
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
   };  | 
| 
1459
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1460
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   $me->{inv} = sub {  | 
| 
1461
 | 
  
0
  
 | 
 
 | 
 
 | 
  
0
  
 | 
 
 | 
0
 | 
     my($d,$o) = @_;  | 
| 
1462
 | 
  
0
  
 | 
  
  0
  
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     my($out) = $d->is_inplace ? $d : $d->copy;  | 
| 
1463
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     my($x) = $out->((0));  | 
| 
1464
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     my($y) = $out->((1));  | 
| 
1465
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
       | 
| 
1466
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     $x /= cos($out->((1)));  | 
| 
1467
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1468
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     my($rej) = ( (abs($x)>$PI) | (abs($y)>($PI/2)) )->flat;  | 
| 
1469
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     $x->flat->($rej) .= $o->{bad};  | 
| 
1470
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     $y->flat->($rej) .= $o->{bad};  | 
| 
1471
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
       | 
| 
1472
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     $out->(0:1) /= $o->{conv};  | 
| 
1473
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     $out;  | 
| 
1474
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
   };  | 
| 
1475
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1476
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
   $me->_finish;  | 
| 
1477
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 }  | 
| 
1478
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
      | 
| 
1479
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1480
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1481
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1482
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1483
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 ######################################################################  | 
| 
1484
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 #  | 
| 
1485
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 # Conic projections are subclassed for easier stringification and  | 
| 
1486
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 # parsing of the standard parallels.  The constructor gets copied  | 
| 
1487
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 # into the current package for ease of hackage.  | 
| 
1488
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 #  | 
| 
1489
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 # This is a little kludgy -- it's intended for direct calling  | 
| 
1490
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 # rather than method calling, and it puts its own class name on the  | 
| 
1491
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 # front of the argument list.  But, hey, it works...  | 
| 
1492
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 #  | 
| 
1493
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 @PDLA::Transform::Cartography::Conic::ISA = ('PDLA::Transform::Cartography');  | 
| 
1494
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 sub _c_new {  | 
| 
1495
 | 
  
0
  
 | 
 
 | 
 
 | 
  
0
  
 | 
 
 | 
0
 | 
     my($def_std) = pop;  | 
| 
1496
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     my($me) = new('PDLA::Transform::Cartography::Conic',@_);   | 
| 
1497
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1498
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     my($p) = $me->{params};  | 
| 
1499
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     $p->{std} = _opt($me->{options},['s','std','standard','Standard'],  | 
| 
1500
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 		     $def_std);  | 
| 
1501
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     $p->{std} = topdl($p->{std}) * $me->{params}->{conv};  | 
| 
1502
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     $p->{std} = topdl([$PI/2 * ($p->{std}<0 ? -1 : 1), $p->{std}->at(0)])  | 
| 
1503
 | 
  
0
  
 | 
  
  0
  
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	if($p->{std}->nelem == 1);  | 
| 
 
 | 
 
 | 
  
  0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1504
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
       | 
| 
1505
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     $me->{params}->{cylindrical} = 1  | 
| 
1506
 | 
  
0
  
 | 
  
  0
  
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	if(approx($p->{std}->(0),-$p->{std}->(1)));  | 
| 
1507
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1508
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     $me;  | 
| 
1509
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 }  | 
| 
1510
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1511
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 sub PDLA::Transform::Cartography::Conic::stringify {  | 
| 
1512
 | 
  
0
  
 | 
 
 | 
 
 | 
  
0
  
 | 
 
 | 
0
 | 
     my($me) = shift;  | 
| 
1513
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     my($out) = $me->SUPER::stringify;  | 
| 
1514
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1515
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     $out .= sprintf("\tStd parallels: %6.2f,%6.2f %s\n",  | 
| 
1516
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 		    $me->{params}->{std}->at(0) / $me->{params}->{conv},   | 
| 
1517
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 		    $me->{params}->{std}->at(1) / $me->{params}->{conv},   | 
| 
1518
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 		    $me->{params}->{u});  | 
| 
1519
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     $out;  | 
| 
1520
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 }  | 
| 
1521
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1522
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 ######################################################################  | 
| 
1523
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1524
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =head2 t_conic  | 
| 
1525
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1526
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =for usage  | 
| 
1527
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1528
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     $t = t_conic()  | 
| 
1529
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1530
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =for ref  | 
| 
1531
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1532
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 (Cartography) Simple conic projection (conic; equidistant)  | 
| 
1533
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1534
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 This is the simplest conic projection, with parallels mapped to  | 
| 
1535
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 equidistant concentric circles.  It is neither authalic nor conformal.  | 
| 
1536
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 This transformation is also referred to as the "Modified Transverse  | 
| 
1537
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 Mercator" projection in several maps of Alaska published by the USGS;  | 
| 
1538
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 and the American State of New Mexico re-invented the projection in  | 
| 
1539
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 1936 for an official map of that State.  | 
| 
1540
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1541
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 OPTIONS  | 
| 
1542
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1543
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =over 3  | 
| 
1544
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1545
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =item STANDARD POSITIONAL OPTIONS  | 
| 
1546
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1547
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =item s, std, Standard (default 29.5, 45.5)  | 
| 
1548
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1549
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 The locations of the standard parallel(s) (where the cone intersects  | 
| 
1550
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 the surface of the sphere).  If you specify only one then the other is  | 
| 
1551
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 taken to be the nearest pole.  If you specify both of them to be one  | 
| 
1552
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 pole then you get an equidistant azimuthal map.  If you specify both  | 
| 
1553
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 of them to be opposite and equidistant from the equator you get a  | 
| 
1554
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 Plate Caree projection.  | 
| 
1555
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1556
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =back  | 
| 
1557
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1558
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =cut  | 
| 
1559
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1560
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 sub t_conic {  | 
| 
1561
 | 
  
0
  
 | 
 
 | 
 
 | 
  
0
  
 | 
  
1
  
 | 
0
 | 
     my($me) = _c_new(@_,"Simple Conic Projection",[29.5,45.5]);  | 
| 
1562
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1563
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     my($p) = $me->{params};  | 
| 
1564
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1565
 | 
  
0
  
 | 
  
  0
  
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     if($p->{cylindrical}) {  | 
| 
1566
 | 
  
0
  
 | 
  
  0
  
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	print STDERR "Simple conic: degenerate case; using Plate Caree\n"  | 
| 
1567
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	    if($PDLA::verbose);  | 
| 
1568
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	return t_caree($me->{options});  | 
| 
1569
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     }  | 
| 
1570
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1571
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     $p->{n} = ((cos($p->{std}->((0))) - cos($p->{std}->((1))))   | 
| 
1572
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	       /  | 
| 
1573
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	       ($p->{std}->((1)) - $p->{std}->((0))));  | 
| 
1574
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1575
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     $p->{G} = cos($p->{std}->((0)))/$p->{n} + $p->{std}->((0));  | 
| 
1576
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1577
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     $me->{otype} = ['Conic X','Conic Y'];  | 
| 
1578
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     $me->{ounit} = ['Proj. radians','Proj. radians'];  | 
| 
1579
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1580
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     $me->{func} = sub {  | 
| 
1581
 | 
  
0
  
 | 
 
 | 
 
 | 
  
0
  
 | 
 
 | 
0
 | 
 	my($d,$o) = @_;  | 
| 
1582
 | 
  
0
  
 | 
  
  0
  
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	my($out) = $d->is_inplace ? $d : $d->copy;  | 
| 
1583
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1584
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	my($rho) = $o->{G} - $d->((1)) * $o->{conv};  | 
| 
1585
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	my($theta) = $o->{n} * $d->((0)) * $o->{conv};  | 
| 
1586
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	  | 
| 
1587
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	$out->((0)) .= $rho * sin($theta);  | 
| 
1588
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	$out->((1)) .= $o->{G} - $rho * cos($theta);  | 
| 
1589
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1590
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	$out;  | 
| 
1591
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     };  | 
| 
1592
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1593
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     $me->{inv} = sub {  | 
| 
1594
 | 
  
0
  
 | 
 
 | 
 
 | 
  
0
  
 | 
 
 | 
0
 | 
 	my($d,$o) = @_;  | 
| 
1595
 | 
  
0
  
 | 
  
  0
  
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	my($out) = $d->is_inplace ? $d : $d->copy;  | 
| 
1596
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1597
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	my($x) = $d->((0));  | 
| 
1598
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	my($y) = $o->{G} - $d->((1));  | 
| 
1599
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	my($rho) = sqrt($x*$x + $y*$y);  | 
| 
1600
 | 
  
0
  
 | 
  
  0
  
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	$rho *= -1 if($o->{n}<0);  | 
| 
1601
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1602
 | 
  
0
  
 | 
  
  0
  
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	my($theta) = ($o->{n} < 0) ? atan2(-$x,-$y) : atan2($x,$y);  | 
| 
1603
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
       | 
| 
1604
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	$out->((1)) .= $o->{G} - $rho;  | 
| 
1605
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	$out->((1))->where(($out->((1)) < -$PI/2) | ($out->((1)) > $PI/2))  | 
| 
1606
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	    .= $o->{bad};  | 
| 
1607
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1608
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	$out->((0)) .= $theta / $o->{n};  | 
| 
1609
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	$out->((0))->where(($out->((0)) < -$PI) | ($out->((0)) > $PI/2))  | 
| 
1610
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	    .= $o->{bad};  | 
| 
1611
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1612
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	$out->(0:1) /= $o->{conv};  | 
| 
1613
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1614
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	$out;  | 
| 
1615
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     };  | 
| 
1616
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1617
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     $me->_finish;  | 
| 
1618
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 }  | 
| 
1619
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1620
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1621
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1622
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1623
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 ######################################################################  | 
| 
1624
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1625
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =head2 t_albers  | 
| 
1626
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1627
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =for usage  | 
| 
1628
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1629
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     $t = t_albers()  | 
| 
1630
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1631
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =for ref  | 
| 
1632
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1633
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 (Cartography) Albers conic projection (conic; authalic)  | 
| 
1634
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1635
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 This is the standard projection used by the US Geological Survey for  | 
| 
1636
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 sectionals of the 50 contiguous United States of America.    | 
| 
1637
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1638
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 The projection reduces to the Lambert equal-area conic (infrequently  | 
| 
1639
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 used and not to be confused with the Lambert conformal conic,  | 
| 
1640
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 L!)  if the pole is used as one of the two  | 
| 
1641
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 standard parallels.  | 
| 
1642
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1643
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 Notionally, this is a conic projection onto a cone that intersects the  | 
| 
1644
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 sphere at the two standard parallels; it works best when the two parallels  | 
| 
1645
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 straddle the region of interest.  | 
| 
1646
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1647
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 OPTIONS  | 
| 
1648
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1649
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =over 3  | 
| 
1650
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1651
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =item STANDARD POSITIONAL OPTIONS  | 
| 
1652
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1653
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =item s, std, standard, Standard (default (29.5,45.5))  | 
| 
1654
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1655
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 The locations of the standard parallel(s).  If you specify only one then   | 
| 
1656
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 the other is taken to be the nearest pole and a Lambert Equal-Area Conic  | 
| 
1657
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 map results.  If you specify both standard parallels to be the same pole,  | 
| 
1658
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 then the projection reduces to the Lambert Azimuthal Equal-Area map as  | 
| 
1659
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 aq special case.  (Note that L is Lambert's  | 
| 
1660
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 Conformal Conic, the most commonly used of Lambert's projections.)  | 
| 
1661
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1662
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 The default values for the standard parallels are those chosen by Adams  | 
| 
1663
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 for maps of the lower 48 US states: (29.5,45.5).  The USGS recommends  | 
| 
1664
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 (55,65) for maps of Alaska and (8,18) for maps of Hawaii -- these latter  | 
| 
1665
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 are chosen to also include the Canal Zone and Philippine Islands farther  | 
| 
1666
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 south, which is why both of those parallels are south of the Hawaiian islands.  | 
| 
1667
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1668
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 The transformation reduces to the cylindrical equal-area (sin-lat)  | 
| 
1669
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 transformation in the case where the standard parallels are opposite and  | 
| 
1670
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 equidistant from the equator, and in fact this is implemented by a call to  | 
| 
1671
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 t_sin_lat.  | 
| 
1672
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1673
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =back  | 
| 
1674
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1675
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =cut  | 
| 
1676
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1677
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 sub t_albers  {  | 
| 
1678
 | 
  
0
  
 | 
 
 | 
 
 | 
  
0
  
 | 
  
1
  
 | 
0
 | 
     my($me) = _c_new(@_,"Albers Equal-Area Conic Projection",[29.5,45.5]);  | 
| 
1679
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1680
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     my($p) = $me->{params};  | 
| 
1681
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1682
 | 
  
0
  
 | 
  
  0
  
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     if($p->{cylindrical}) {  | 
| 
1683
 | 
  
0
  
 | 
  
  0
  
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	print STDERR "Albers equal-area conic: degenerate case; using equal-area cylindrical\n"  | 
| 
1684
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	    if($PDLA::verbose);  | 
| 
1685
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	return t_sin_lat($me->{options});  | 
| 
1686
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     }  | 
| 
1687
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1688
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     $p->{n} = sin($p->{std})->sumover / 2;  | 
| 
1689
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     $p->{C} = (cos($p->{std}->((1)))*cos($p->{std}->((1))) +   | 
| 
1690
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 		     2 * $p->{n} * sin($p->{std}->((1))) );  | 
| 
1691
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     $p->{rho0} = sqrt($p->{C}) / $p->{n};   | 
| 
1692
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1693
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     $me->{otype} = ['Conic X','Conic Y'];  | 
| 
1694
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     $me->{ounit} = ['Proj. radians','Proj. radians'];  | 
| 
1695
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1696
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     $me->{func} = sub {  | 
| 
1697
 | 
  
0
  
 | 
 
 | 
 
 | 
  
0
  
 | 
 
 | 
0
 | 
 	my($d,$o) = @_;  | 
| 
1698
 | 
  
0
  
 | 
  
  0
  
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	my($out) = $d->is_inplace ? $d : $d->copy;  | 
| 
1699
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1700
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	my($rho) = sqrt( $o->{C} - 2 * $o->{n} * sin($d->((1)) * $o->{conv}) ) / $o->{n};  | 
| 
1701
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	my($theta) = $o->{n} * $d->((0)) * $o->{conv};  | 
| 
1702
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1703
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	$out->((0)) .= $rho * sin($theta);  | 
| 
1704
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	$out->((1)) .= $p->{rho0} - $rho * cos($theta);  | 
| 
1705
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	$out;  | 
| 
1706
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     };  | 
| 
1707
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1708
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     $me->{inv} = sub {  | 
| 
1709
 | 
  
0
  
 | 
 
 | 
 
 | 
  
0
  
 | 
 
 | 
0
 | 
 	my($d,$o) = @_;  | 
| 
1710
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1711
 | 
  
0
  
 | 
  
  0
  
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	my($out) = $d->is_inplace ? $d : $d->copy;  | 
| 
1712
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1713
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	my($x) = $d->((0));  | 
| 
1714
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	my($y) = $o->{rho0} - $d->((1));  | 
| 
1715
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1716
 | 
  
0
  
 | 
  
  0
  
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	my($theta) = ($o->{n} < 0) ? atan2 -$x,-$y : atan2 $x, $y;  | 
| 
1717
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	my($rho) = sqrt( $x*$x + $y*$y ) * $o->{n};  | 
| 
1718
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1719
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	$out->((1)) .= asin( ( $o->{C} - ( $rho * $rho ) ) / (2 * $o->{n}) );  | 
| 
1720
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1721
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	$out->((0)) .= $theta / $o->{n};  | 
| 
1722
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	$out->((0))->where(($out->((0))>$PI) | ($out->((0))<-$PI)) .= $o->{bad};  | 
| 
1723
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1724
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	$out->(0:1) /= $o->{conv};  | 
| 
1725
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1726
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	$out;  | 
| 
1727
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     };  | 
| 
1728
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1729
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     $me->_finish;  | 
| 
1730
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 }  | 
| 
1731
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1732
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 ######################################################################  | 
| 
1733
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1734
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =head2 t_lambert  | 
| 
1735
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1736
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =for usage  | 
| 
1737
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1738
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     $t = t_lambert();  | 
| 
1739
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1740
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =for ref  | 
| 
1741
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1742
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 (Cartography) Lambert conic projection (conic; conformal)  | 
| 
1743
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1744
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 Lambert conformal conic projection is widely used in aeronautical  | 
| 
1745
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 charts and state base maps published by the USA's FAA and USGS.  It's  | 
| 
1746
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 especially useful for mid-latitude charts.  In particular, straight lines  | 
| 
1747
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 approximate (but are not exactly) great circle routes of up to ~2 radians.  | 
| 
1748
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1749
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 The default standard parallels are 33 and 45 to match the USGS state  | 
| 
1750
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 1:500,000 base maps of the United States.  At scales of 1:500,000 and  | 
| 
1751
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 larger, discrepancies between the spherical and ellipsoidal projections  | 
| 
1752
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 become important; use care with this projection on spheres.  | 
| 
1753
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1754
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 OPTIONS  | 
| 
1755
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1756
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =over 3  | 
| 
1757
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1758
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =item STANDARD POSITIONAL OPTIONS  | 
| 
1759
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1760
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =item s, std, standard, Standard (default (33,45))  | 
| 
1761
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1762
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 The locations of the standard parallel(s) for the conic projection.  | 
| 
1763
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 The transform reduces to the Mercator projection in the case where the  | 
| 
1764
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 standard parallels are opposite and equidistant from the equator, and  | 
| 
1765
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 in fact this is implemented by a call to t_mercator.  | 
| 
1766
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1767
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =item c, clip, Clip (default [-75,75])  | 
| 
1768
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1769
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 Because the transform is conformal, the distant pole is displaced to  | 
| 
1770
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 infinity.  Many applications require a clipping boundary.  The value  | 
| 
1771
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 is in whatever angular unit you set with the standard 'unit' option.  | 
| 
1772
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 For consistency with L, clipping works the same  | 
| 
1773
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 way even though in most cases only one pole needs it.  Set this to 0  | 
| 
1774
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 for no clipping at all.  | 
| 
1775
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1776
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =back  | 
| 
1777
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1778
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =cut  | 
| 
1779
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1780
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 sub t_lambert {  | 
| 
1781
 | 
  
0
  
 | 
 
 | 
 
 | 
  
0
  
 | 
  
1
  
 | 
0
 | 
     my($me)= _c_new(@_,"Lambert Conformal Conic Projection",[33,45]);  | 
| 
1782
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     my($p) = $me->{params};  | 
| 
1783
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1784
 | 
  
0
  
 | 
  
  0
  
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     if($p->{cylindrical}){  | 
| 
1785
 | 
  
0
  
 | 
  
  0
  
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	print STDERR "Lambert conformal conic: std parallels are opposite & equal; using Mercator\n"   | 
| 
1786
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	    if($PDLA::verbose);  | 
| 
1787
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	return t_mercator($me->{options});  | 
| 
1788
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     }  | 
| 
1789
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
       | 
| 
1790
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     # Find clipping parallels  | 
| 
1791
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     $p->{c} = _opt($me->{options},['c','clip','Clip'],undef);  | 
| 
1792
 | 
  
0
  
 | 
  
  0
  
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     if(defined($p->{c})) {  | 
| 
1793
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	$p->{c} = topdl($p->{c});  | 
| 
1794
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     } else {  | 
| 
1795
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	$p->{c} = topdl([-75,75]);  | 
| 
1796
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     }  | 
| 
1797
 | 
  
0
  
 | 
  
  0
  
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     $p->{c} = abs($p->{c}) * topdl([-1,1]) if($p->{c}->nelem == 1);  | 
| 
1798
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     $p->{c} = [$p->{c}->list];  | 
| 
1799
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1800
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     # Prefrobnicate  | 
| 
1801
 | 
  
0
  
 | 
  
  0
  
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     if(approx($p->{std}->((0)),$p->{std}->((1)))) {  | 
| 
1802
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	$p->{n} = sin($p->{std}->((0)));  | 
| 
1803
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     } else {  | 
| 
1804
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	$p->{n} = (log(cos($p->{std}->((0)))/cos($p->{std}->((1))))   | 
| 
1805
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 		   /   | 
| 
1806
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 		   log( tan( $PI/4 + $p->{std}->((1))/2 )   | 
| 
1807
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 			/   | 
| 
1808
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 			tan( $PI/4 + $p->{std}->((0))/2 )   | 
| 
1809
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 			)  | 
| 
1810
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 		   );  | 
| 
1811
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     }  | 
| 
1812
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1813
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     $p->{F} = ( cos($p->{std}->((0)))   | 
| 
1814
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 		*  | 
| 
1815
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 		( tan( $PI/4 + $p->{std}->((0))/2 ) ** $p->{n} ) / $p->{n}  | 
| 
1816
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 		);  | 
| 
1817
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1818
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     $p->{rho0} = $p->{F};  | 
| 
1819
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1820
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     $me->{otype} = ['Conic X','Conic Y'];  | 
| 
1821
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     $me->{ounit} = ['Proj. radians','Proj. radians'];  | 
| 
1822
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1823
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     $me->{func} = sub {  | 
| 
1824
 | 
  
0
  
 | 
 
 | 
 
 | 
  
0
  
 | 
 
 | 
0
 | 
 	my($d,$o) = @_;  | 
| 
1825
 | 
  
0
  
 | 
  
  0
  
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	my($out) = $d->is_inplace ? $d : $d->copy;  | 
| 
1826
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1827
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	my($cl) = ( ($o->{c}->[0] == $o->{c}->[1]) ?   | 
| 
1828
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 		    $d->((1))*$o->{conv} :   | 
| 
1829
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 		    ($d->((1))->clip(@{$o->{c}}) * $o->{conv})  | 
| 
1830
 | 
  
0
  
 | 
  
  0
  
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 		    );  | 
| 
1831
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1832
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	my($rho) = $o->{F} / ( tan($PI/4 + ($cl)/2 ) ** $o->{n} );  | 
| 
1833
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	my($theta) = $o->{n} * $d->((0)) * $o->{conv};  | 
| 
1834
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1835
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	$out->((0)) .= $rho * sin($theta);  | 
| 
1836
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	$out->((1)) .= $o->{rho0} - $rho * cos($theta);  | 
| 
1837
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	$out;  | 
| 
1838
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     };  | 
| 
1839
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1840
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     $me->{inv} = sub {  | 
| 
1841
 | 
  
0
  
 | 
 
 | 
 
 | 
  
0
  
 | 
 
 | 
0
 | 
 	my($d,$o) = @_;  | 
| 
1842
 | 
  
0
  
 | 
  
  0
  
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	my($out) = $d->is_inplace ? $d : $d->copy;  | 
| 
1843
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	  | 
| 
1844
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	my($x) = $d->((0));  | 
| 
1845
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	my($y) = $o->{rho0} - $d->((1));  | 
| 
1846
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1847
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	my($rho) = sqrt($x * $x + $y * $y);  | 
| 
1848
 | 
  
0
  
 | 
  
  0
  
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	$rho *= -1 if($o->{n} < 0);  | 
| 
1849
 | 
  
0
  
 | 
  
  0
  
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	my($theta) = ($o->{n} < 0) ? atan2(-$x,-$y):(atan2 $x,$y);  | 
| 
1850
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1851
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1852
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	$out->((0)) .= $theta / $o->{n};  | 
| 
1853
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	$out->((0))->where(($out->((0)) > $PI) | ($out->((0)) < -$PI)) .= $o->{bad};  | 
| 
1854
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1855
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1856
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	$out->((1)) .= 2 * atan(($o->{F}/$rho)**(1.0/$o->{n})) - $PI/2;  | 
| 
1857
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	$out->((1))->where(($out->((1)) > $PI/2) | ($out->((1)) < -$PI/2)) .= $o->{bad};  | 
| 
1858
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1859
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	$out->(0:1) /= $o->{conv};  | 
| 
1860
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1861
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	$out;  | 
| 
1862
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     };  | 
| 
1863
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1864
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1865
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     $me->_finish;  | 
| 
1866
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 }  | 
| 
1867
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1868
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 ######################################################################  | 
| 
1869
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1870
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =head2 t_stereographic  | 
| 
1871
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1872
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =for usage  | 
| 
1873
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1874
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     $t = t_stereographic();  | 
| 
1875
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1876
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =for ref  | 
| 
1877
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1878
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 (Cartography) Stereographic projection (az.; conf.; persp.)  | 
| 
1879
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1880
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 The stereographic projection is a true perspective (planar) projection  | 
| 
1881
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 from a point on the spherical surface opposite the origin of the map.    | 
| 
1882
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1883
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 OPTIONS  | 
| 
1884
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1885
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =over 3  | 
| 
1886
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1887
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =item STANDARD POSITIONAL OPTIONS  | 
| 
1888
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1889
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =item c, clip, Clip (default 120)  | 
| 
1890
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1891
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 This is the angular distance from the center to the edge of the   | 
| 
1892
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 projected map.  The default 120 degrees gives you most of the opposite  | 
| 
1893
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 hemisphere but avoids the hugely distorted part near the antipodes.  | 
| 
1894
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1895
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =back  | 
| 
1896
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1897
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =cut  | 
| 
1898
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1899
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 sub t_stereographic {  | 
| 
1900
 | 
  
0
  
 | 
 
 | 
 
 | 
  
0
  
 | 
  
1
  
 | 
0
 | 
     my($me) = _new(@_,"Stereographic Projection");  | 
| 
1901
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
       | 
| 
1902
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     $me->{params}->{k0} = 1.0;  | 
| 
1903
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     $me->{params}->{c} = _opt($me->{options},  | 
| 
1904
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 			      ['c','clip','Clip'],  | 
| 
1905
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 			      120) * $me->{params}->{conv};  | 
| 
1906
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1907
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     $me->{otype} = ['Stereo X','Stereo Y'];  | 
| 
1908
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     $me->{ounit} = ['Proj. body radii','Proj. radians'];  | 
| 
1909
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1910
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     $me->{func} = sub {  | 
| 
1911
 | 
  
0
  
 | 
 
 | 
 
 | 
  
0
  
 | 
 
 | 
0
 | 
 	my($d,$o) = @_;  | 
| 
1912
 | 
  
0
  
 | 
  
  0
  
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	my($out) = $d->is_inplace ? $d : $d->copy;  | 
| 
1913
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1914
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	my($th,$ph) = ($out->((0)) * $o->{conv},  | 
| 
1915
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 		       $out->((1)) * $o->{conv});  | 
| 
1916
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1917
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	my($cph) = cos($ph); # gets re-used   | 
| 
1918
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	my($k) = 2 * $o->{k0} / (1 + cos($th) * $cph);  | 
| 
1919
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	$out->((0)) .= $k * $cph * sin($th);  | 
| 
1920
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	$out->((1)) .= $k * sin($ph);  | 
| 
1921
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1922
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	my($cl0) = 2*$o->{k0} / (1 + cos($o->{c}));  | 
| 
1923
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	$out->((0))->where($k>$cl0) .= $o->{bad};  | 
| 
1924
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	$out->((1))->where($k>$cl0) .= $o->{bad};  | 
| 
1925
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	$out;  | 
| 
1926
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     };  | 
| 
1927
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1928
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     $me->{inv} = sub {  | 
| 
1929
 | 
  
0
  
 | 
 
 | 
 
 | 
  
0
  
 | 
 
 | 
0
 | 
 	my($d,$o) = @_;  | 
| 
1930
 | 
  
0
  
 | 
  
  0
  
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	my($out) = $d->is_inplace ? $d : $d->copy;  | 
| 
1931
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	  | 
| 
1932
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	my($x) = $d->((0));  | 
| 
1933
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	my($y) = $d->((1));  | 
| 
1934
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	my($rho) = sqrt($x*$x + $y*$y);  | 
| 
1935
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	my($c) = 2 * atan2($rho,2*$o->{k0});  | 
| 
1936
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	  | 
| 
1937
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	$out->((0)) .= atan2($x * sin($c), $rho * cos($c));  | 
| 
1938
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	$out->((1)) .= asin($y * sin($c) / $rho);  | 
| 
1939
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	  | 
| 
1940
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	$out ->(0:1) /= $o->{conv};  | 
| 
1941
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	$out;  | 
| 
1942
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     };  | 
| 
1943
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1944
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     $me->_finish;  | 
| 
1945
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 }  | 
| 
1946
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
        | 
| 
1947
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 ######################################################################  | 
| 
1948
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1949
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =head2 t_gnomonic  | 
| 
1950
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1951
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =for usage  | 
| 
1952
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1953
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     $t = t_gnomonic();  | 
| 
1954
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1955
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =for ref  | 
| 
1956
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1957
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 (Cartography) Gnomonic (focal-plane) projection (az.; persp.)  | 
| 
1958
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1959
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 The gnomonic projection projects a hemisphere onto a tangent plane.  | 
| 
1960
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 It is useful in cartography for the property that straight lines are  | 
| 
1961
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 great circles; and it is useful in scientific imaging because   | 
| 
1962
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 it is the projection generated by a simple optical system with a flat  | 
| 
1963
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 focal plane.  | 
| 
1964
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1965
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 OPTIONS  | 
| 
1966
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1967
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =over 3  | 
| 
1968
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1969
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =item STANDARD POSITIONAL OPTIONS  | 
| 
1970
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1971
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =item c, clip, Clip (default 75)  | 
| 
1972
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1973
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 This is the angular distance from the center to the edge of the   | 
| 
1974
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 projected map.  The default 75 degrees gives you most of the   | 
| 
1975
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 hemisphere but avoids the hugely distorted part near the horizon.  | 
| 
1976
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1977
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =back  | 
| 
1978
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1979
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =cut  | 
| 
1980
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1981
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 sub t_gnomonic {  | 
| 
1982
 | 
  
0
  
 | 
 
 | 
 
 | 
  
0
  
 | 
  
1
  
 | 
0
 | 
     my($me) = _new(@_,"Gnomonic Projection");  | 
| 
1983
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
       | 
| 
1984
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     $me->{params}->{k0} = 1.0;  # Useful for standard parallel (TBD: add one)  | 
| 
1985
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1986
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     $me->{params}->{c} = topdl(_opt($me->{options},  | 
| 
1987
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 			      ['c','clip','Clip'],  | 
| 
1988
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 			      75) * $me->{params}->{conv});  | 
| 
1989
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1990
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     $me->{params}->{c} .= $me->{params}->{c}->clip(undef,(90-1e-6)*$me->{params}->{conv});  | 
| 
1991
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1992
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     $me->{otype} = ['Tangent-plane X','Tangent-plane Y'];  | 
| 
1993
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     $me->{ounit} = ['Proj. radians','Proj. radians'];  | 
| 
1994
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1995
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     $me->{func} = sub {  | 
| 
1996
 | 
  
0
  
 | 
 
 | 
 
 | 
  
0
  
 | 
 
 | 
0
 | 
 	my($d,$o) = @_;  | 
| 
1997
 | 
  
0
  
 | 
  
  0
  
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	my($out) = $d->is_inplace ? $d : $d->copy;  | 
| 
1998
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
1999
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	my($th,$ph) = ($out->((0)) * $o->{conv},  | 
| 
2000
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 		       $out->((1)) * $o->{conv});  | 
| 
2001
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2002
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	my($cph) = cos($ph); # gets re-used   | 
| 
2003
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2004
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	my($k) = $o->{k0} / (cos($th) * $cph);  | 
| 
2005
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	my($cl0) = $o->{k0} / (cos($o->{c}));  | 
| 
2006
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2007
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	$out->((0)) .= $k * $cph * sin($th);  | 
| 
2008
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	$out->((1)) .= $k * sin($ph);  | 
| 
2009
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2010
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	my $idx = whichND(($k > $cl0)  | ($k < 0) | (!isfinite($k)));  | 
| 
2011
 | 
  
0
  
 | 
  
  0
  
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	if($idx->nelem) {  | 
| 
2012
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	  $out->((0))->range($idx) .= $o->{bad};  | 
| 
2013
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	  $out->((1))->range($idx) .= $o->{bad};  | 
| 
2014
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	}  | 
| 
2015
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2016
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	$out;  | 
| 
2017
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     };  | 
| 
2018
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2019
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     $me->{inv} = sub {  | 
| 
2020
 | 
  
0
  
 | 
 
 | 
 
 | 
  
0
  
 | 
 
 | 
0
 | 
 	my($d,$o) = @_;  | 
| 
2021
 | 
  
0
  
 | 
  
  0
  
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	my($out) = $d->is_inplace ? $d : $d->copy;  | 
| 
2022
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2023
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	my($x) = $d->((0));  | 
| 
2024
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	my($y) = $d->((1));  | 
| 
2025
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2026
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	my($rho) = sqrt($x*$x + $y*$y);  | 
| 
2027
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	my($c) = atan($rho/$o->{k0});  | 
| 
2028
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2029
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	$out->((0)) .= atan2($x * sin($c), $rho * cos($c));  | 
| 
2030
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	$out->((1)) .= asin($y * sin($c) / $rho);  | 
| 
2031
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2032
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	my $idx = whichND($rho==0);  | 
| 
2033
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2034
 | 
  
0
  
 | 
  
  0
  
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	if($idx->nelem) {  | 
| 
2035
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	  $out->((0))->range($idx) .= 0;  | 
| 
2036
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	  $out->((1))->range($idx) .= 0;  | 
| 
2037
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	}  | 
| 
2038
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	$out->(0:1) /= $o->{conv};  | 
| 
2039
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	$out;  | 
| 
2040
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     };  | 
| 
2041
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2042
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     $me->_finish;  | 
| 
2043
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 }  | 
| 
2044
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2045
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 ######################################################################  | 
| 
2046
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2047
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =head2 t_az_eqd  | 
| 
2048
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2049
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =for usage  | 
| 
2050
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2051
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   $t = t_az_eqd();  | 
| 
2052
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2053
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =for ref   | 
| 
2054
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2055
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 (Cartography) Azimuthal equidistant projection (az.; equi.)  | 
| 
2056
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2057
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 Basic azimuthal projection preserving length along radial lines from  | 
| 
2058
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 the origin (meridians, in the original polar aspect).  Hence, both  | 
| 
2059
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 azimuth and distance are correct for journeys beginning at the origin.  | 
| 
2060
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2061
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 Applied to the celestial sphere, this is the projection made by  | 
| 
2062
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 fisheye lenses; it is also the projection into which C  | 
| 
2063
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 puts perspective views.  | 
| 
2064
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2065
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 The projected plane scale is normally taken to be planetary radii;  | 
| 
2066
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 this is useful for cartographers but not so useful for scientific  | 
| 
2067
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 observers.  Setting the 't=>1' option causes the output scale to shift  | 
| 
2068
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 to camera angular coordinates (the angular unit is determined by the  | 
| 
2069
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 standard 'Units' option; default is degrees).  | 
| 
2070
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2071
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 OPTIONS  | 
| 
2072
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2073
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =over 3  | 
| 
2074
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2075
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =item STANDARD POSITIONAL OPTIONS  | 
| 
2076
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2077
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =item c, clip, Clip (default 180 degrees)  | 
| 
2078
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2079
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 The largest angle relative to the origin.  Default is the whole sphere.  | 
| 
2080
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2081
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =back  | 
| 
2082
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2083
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =cut  | 
| 
2084
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2085
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 sub t_az_eqd {  | 
| 
2086
 | 
  
0
  
 | 
 
 | 
 
 | 
  
0
  
 | 
  
1
  
 | 
0
 | 
   my($me) = _new(@_,"Equidistant Azimuthal Projection");  | 
| 
2087
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2088
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   $me->{params}->{c} = topdl(_opt($me->{options},  | 
| 
2089
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 				['c','clip','Clip'],  | 
| 
2090
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 				180) * $me->{params}->{conv});  | 
| 
2091
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2092
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
   $me->{otype} = ['X distance','Y distance'];  | 
| 
2093
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
   $me->{ounit} = ['radians','radians'];  | 
| 
2094
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2095
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   $me->{func} = sub {  | 
| 
2096
 | 
  
0
  
 | 
 
 | 
 
 | 
  
0
  
 | 
 
 | 
0
 | 
     my($d,$o) = @_;  | 
| 
2097
 | 
  
0
  
 | 
  
  0
  
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     my($out) = $d->is_inplace ? $d : $d->copy;  | 
| 
2098
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
       | 
| 
2099
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     my($ph) = $d->((1)) * $o->{conv};  | 
| 
2100
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     my($th) = $d->((0)) * $o->{conv};  | 
| 
2101
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2102
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     my $cos_c = cos($ph) * cos($th);  | 
| 
2103
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     my $c = acos($cos_c);  | 
| 
2104
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     my $k = $c / sin($c);  | 
| 
2105
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     $k->where($c==0) .= 1;  | 
| 
2106
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
       | 
| 
2107
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     my($x,$y) = ($out->((0)), $out->((1)));  | 
| 
2108
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2109
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     $x .= $k * cos($ph) * sin($th);  | 
| 
2110
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     $y .= $k * sin($ph);  | 
| 
2111
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2112
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     my $idx = whichND($c > $o->{c});  | 
| 
2113
 | 
  
0
  
 | 
  
  0
  
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     if($idx->nelem) {  | 
| 
2114
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
       $x->range($idx) .= $o->{bad};  | 
| 
2115
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
       $y->range($idx) .= $o->{bad};  | 
| 
2116
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     }  | 
| 
2117
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2118
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     $out;  | 
| 
2119
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
   };  | 
| 
2120
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2121
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   $me->{inv} = sub {  | 
| 
2122
 | 
  
0
  
 | 
 
 | 
 
 | 
  
0
  
 | 
 
 | 
0
 | 
     my($d,$o) = @_;  | 
| 
2123
 | 
  
0
  
 | 
  
  0
  
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     my($out) = $d->is_inplace ? $d : $d->copy;  | 
| 
2124
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     my($x) = $d->((0));  | 
| 
2125
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     my($y) = $d->((1));  | 
| 
2126
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2127
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     my $rho = sqrt(($d->(0:1)*$d->(0:1))->sumover);  | 
| 
2128
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     # Order is important -- ((0)) overwrites $x if is_inplace!  | 
| 
2129
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     $out->((0)) .= atan2( $x * sin($rho), $rho * cos $rho );  | 
| 
2130
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     $out->((1)) .= asin( $y * sin($rho) / $rho );  | 
| 
2131
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2132
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     my $idx = whichND($rho == 0);  | 
| 
2133
 | 
  
0
  
 | 
  
  0
  
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     if($idx->nelem) {  | 
| 
2134
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
       $out->((0))->range($idx) .= 0;  | 
| 
2135
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
       $out->((1))->range($idx) .= 0;  | 
| 
2136
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     }  | 
| 
2137
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2138
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     $out->(0:1) /= $o->{conv};  | 
| 
2139
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2140
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     $out;  | 
| 
2141
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
   };  | 
| 
2142
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2143
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
   $me->_finish;  | 
| 
2144
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 }  | 
| 
2145
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2146
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2147
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 ######################################################################  | 
| 
2148
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2149
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =head2 t_az_eqa  | 
| 
2150
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2151
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =for usage  | 
| 
2152
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2153
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   $t = t_az_eqa();  | 
| 
2154
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2155
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =for ref  | 
| 
2156
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2157
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 (Cartography) Azimuthal equal-area projection (az.; auth.)  | 
| 
2158
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2159
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 OPTIONS  | 
| 
2160
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2161
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =over 3  | 
| 
2162
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2163
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =item STANDARD POSITIONAL OPTIONS  | 
| 
2164
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2165
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =item c, clip, Clip (default 180 degrees)  | 
| 
2166
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2167
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 The largest angle relative to the origin.  Default is the whole sphere.  | 
| 
2168
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2169
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =back  | 
| 
2170
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2171
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =cut  | 
| 
2172
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2173
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 sub t_az_eqa {  | 
| 
2174
 | 
  
0
  
 | 
 
 | 
 
 | 
  
0
  
 | 
  
1
  
 | 
0
 | 
   my($me) = _new(@_,"Equal-Area Azimuthal Projection");  | 
| 
2175
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     | 
| 
2176
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   $me->{params}->{c} = topdl(_opt($me->{options},  | 
| 
2177
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 				['c','clip','Clip'],  | 
| 
2178
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 				180) * $me->{params}->{conv});  | 
| 
2179
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2180
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
   $me->{otype} = ['Azimuthal X','Azimuthal Y'];  | 
| 
2181
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
   $me->{ounit} = ['Proj. radians','Proj. radians'];  | 
| 
2182
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2183
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   $me->{func} = sub {  | 
| 
2184
 | 
  
0
  
 | 
 
 | 
 
 | 
  
0
  
 | 
 
 | 
0
 | 
     my($d,$o) = @_;  | 
| 
2185
 | 
  
0
  
 | 
  
  0
  
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     my($out) = $d->is_inplace ? $d : $d->copy;  | 
| 
2186
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
       | 
| 
2187
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     my($ph) = $d->((1)) * $o->{conv};  | 
| 
2188
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     my($th) = $d->((0)) * $o->{conv};  | 
| 
2189
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 				  | 
| 
2190
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     my($c) = acos(cos($ph) * cos($th));  | 
| 
2191
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     my($rho) = 2 * sin($c/2);  | 
| 
2192
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     my($k) = 1.0/cos($c/2);  | 
| 
2193
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2194
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     my($x,$y) = ($out->((0)),$out->((1)));  | 
| 
2195
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     $x .= $k * cos($ph) * sin($th);  | 
| 
2196
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     $y .= $k * sin($ph);  | 
| 
2197
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2198
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     my $idx = whichND($c > $o->{c});  | 
| 
2199
 | 
  
0
  
 | 
  
  0
  
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     if($idx->nelem) {  | 
| 
2200
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
       $x->range($idx) .= $o->{bad};  | 
| 
2201
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
       $y->range($idx) .= $o->{bad};  | 
| 
2202
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     }  | 
| 
2203
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2204
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     $out;  | 
| 
2205
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
   };  | 
| 
2206
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2207
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   $me->{inv} = sub {  | 
| 
2208
 | 
  
0
  
 | 
 
 | 
 
 | 
  
0
  
 | 
 
 | 
0
 | 
     my($d,$o) = @_;  | 
| 
2209
 | 
  
0
  
 | 
  
  0
  
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     my($out) = $d->is_inplace ? $d : $d->copy;  | 
| 
2210
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2211
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     my($x,$y) = ($d->((0)),$d->((1)));  | 
| 
2212
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     my($ph,$th) = ($out->((0)),$out->((1)));  | 
| 
2213
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     my($rho) = sqrt($x*$x + $y*$y);  | 
| 
2214
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     my($c) = 2 * asin($rho/2);  | 
| 
2215
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2216
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     $ph .= asin($d->((1)) * sin($c) / $rho);  | 
| 
2217
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     $th .= atan2($x * sin($c),$rho * cos($c));  | 
| 
2218
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2219
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     $ph /= $o->{conv};  | 
| 
2220
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     $th /= $o->{conv};  | 
| 
2221
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
       | 
| 
2222
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     $out;  | 
| 
2223
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
   };  | 
| 
2224
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2225
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
   $me->_finish;  | 
| 
2226
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 }  | 
| 
2227
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2228
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2229
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 ######################################################################  | 
| 
2230
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2231
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =head2 t_aitoff  | 
| 
2232
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2233
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 C in an alias for C  | 
| 
2234
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2235
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =head2 t_hammer  | 
| 
2236
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2237
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =for ref  | 
| 
2238
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2239
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 (Cartography) Hammer/Aitoff elliptical projection (az.; auth.)  | 
| 
2240
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2241
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 The Hammer/Aitoff projection is often used to display the Celestial  | 
| 
2242
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 sphere.  It is mathematically related to the Lambert Azimuthal Equal-Area  | 
| 
2243
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 projection (L), and maps the sphere to an ellipse of unit   | 
| 
2244
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 eccentricity, with vertical radius sqrt(2) and horizontal radius of   | 
| 
2245
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 2 sqrt(2).  | 
| 
2246
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2247
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 OPTIONS  | 
| 
2248
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2249
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =over 3  | 
| 
2250
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2251
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =item STANDARD POSITIONAL OPTIONS  | 
| 
2252
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2253
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =back  | 
| 
2254
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2255
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =cut  | 
| 
2256
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2257
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 *t_aitoff = \&t_hammer;  | 
| 
2258
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2259
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 sub t_hammer {  | 
| 
2260
 | 
  
0
  
 | 
 
 | 
 
 | 
  
0
  
 | 
  
1
  
 | 
0
 | 
   my($me) = _new(@_,"Hammer/Aitoff Projection");  | 
| 
2261
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     | 
| 
2262
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
   $me->{otype} = ['Longitude','Latitude'];  | 
| 
2263
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
   $me->{ounit} = [' ',' '];  | 
| 
2264
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
   $me->{odim} = 2;  | 
| 
2265
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
   $me->{idim} = 2;  | 
| 
2266
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2267
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   $me->{func} = sub {  | 
| 
2268
 | 
  
0
  
 | 
 
 | 
 
 | 
  
0
  
 | 
 
 | 
0
 | 
     my($d,$o) = @_;  | 
| 
2269
 | 
  
0
  
 | 
  
  0
  
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     my($out) = $d->is_inplace ? $d : $d->copy;  | 
| 
2270
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     $out->(0:1) *= $o->{conv};  | 
| 
2271
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     my($th) = $out->((0));  | 
| 
2272
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     my($ph) = $out->((1));  | 
| 
2273
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     my($t) = sqrt( 2 / (1 + cos($ph) * cos($th/2)));  | 
| 
2274
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     $th .= 2 * $t * cos($ph) * sin($th/2);  | 
| 
2275
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     $ph .= $t * sin($ph);  | 
| 
2276
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     $out;  | 
| 
2277
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   }  | 
| 
2278
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
   ;  | 
| 
2279
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2280
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   $me->{inv} = sub {  | 
| 
2281
 | 
  
0
  
 | 
 
 | 
 
 | 
  
0
  
 | 
 
 | 
0
 | 
     my($d,$o) = @_;  | 
| 
2282
 | 
  
0
  
 | 
  
  0
  
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     my($out) = $d->is_inplace ? $d : $d->copy;  | 
| 
2283
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     my($x) = $out->((0));  | 
| 
2284
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     my($y) = $out->((1));  | 
| 
2285
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2286
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     my($rej) = which(($x*$x/8 + $y*$y/2)->flat > 1);  | 
| 
2287
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
       | 
| 
2288
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     my($zz);  | 
| 
2289
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     my($z) = sqrt( $zz = (1 - $x*$x/16 - $y*$y/4) );  | 
| 
2290
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     $x .= 2 * atan( ($z * $x) / (4 * $zz - 2) );  | 
| 
2291
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     $y .= asin($y * $z);  | 
| 
2292
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
       | 
| 
2293
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     $out->(0:1) /= $o->{conv};  | 
| 
2294
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2295
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     $x->flat->($rej) .= $o->{bad};  | 
| 
2296
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     $y->flat->($rej) .= $o->{bad};  | 
| 
2297
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2298
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     $out;  | 
| 
2299
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
   };  | 
| 
2300
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2301
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
   $me->_finish;  | 
| 
2302
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 }  | 
| 
2303
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2304
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2305
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 ######################################################################  | 
| 
2306
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2307
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =head2 t_zenithal  | 
| 
2308
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2309
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 Vertical projections are also called "zenithal", and C is an  | 
| 
2310
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 alias for C.  | 
| 
2311
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2312
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =head2 t_vertical  | 
| 
2313
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2314
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =for usage  | 
| 
2315
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2316
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     $t = t_vertical();  | 
| 
2317
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2318
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =for ref  | 
| 
2319
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2320
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 (Cartography) Vertical perspective projection (az.; persp.)  | 
| 
2321
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2322
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 Vertical perspective projection is a generalization of L  | 
| 
2323
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 and L projection, and a special case of   | 
| 
2324
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 L projection.  It is a projection from the   | 
| 
2325
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 sphere onto a tangent plane from a point at the camera location.  | 
| 
2326
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2327
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 OPTIONS  | 
| 
2328
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2329
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =over 3  | 
| 
2330
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2331
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =item STANDARD POSITIONAL OPTIONS  | 
| 
2332
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2333
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =item m, mask, Mask, h, hemisphere, Hemisphere [default 'near']  | 
| 
2334
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2335
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 The hemisphere to keep in the projection (see L).  | 
| 
2336
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2337
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =item r0, R0, radius, d, dist, distance [default 2.0]  | 
| 
2338
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2339
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 The altitude of the focal plane above the center of the sphere.  The default  | 
| 
2340
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 places the point of view one radius above the surface.  | 
| 
2341
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2342
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =item t, telescope, Telescope, cam, Camera (default '')  | 
| 
2343
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2344
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 If this is set, then the central scale is in telescope or camera   | 
| 
2345
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 angular units rather than in planetary radii.  The angular units are   | 
| 
2346
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 parsed as with the normal 'u' option for the lon/lat specification.  | 
| 
2347
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 If you specify a non-string value (such as 1) then you get telescope-frame  | 
| 
2348
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 radians, suitable for working on with other transformations.  | 
| 
2349
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2350
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =item f, fish, fisheye (default '')  | 
| 
2351
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2352
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 If this is set then the output is in azimuthal equidistant coordinates  | 
| 
2353
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 instead of in tangent-plane coordinates.  This is a convenience function  | 
| 
2354
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 for '(t_az_eqd) x !(t_gnomonic) x (t_vertical)'.  | 
| 
2355
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2356
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =back  | 
| 
2357
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2358
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =cut  | 
| 
2359
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2360
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 sub t_vertical {  | 
| 
2361
 | 
  
0
  
 | 
 
 | 
 
 | 
  
0
  
 | 
  
1
  
 | 
0
 | 
     my($me) = _new(@_,'Vertical Perspective');  | 
| 
2362
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     my $p = $me->{params};  | 
| 
2363
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
       | 
| 
2364
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     my $m= _opt($me->{options},  | 
| 
2365
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 		['m','mask','Mask','h','hemi','hemisphere','Hemisphere'],  | 
| 
2366
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 		1);  | 
| 
2367
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2368
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     $me->{otype} = ['Perspective X','Perspective Y'];  | 
| 
2369
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     $me->{ounit} = ['Body radii','Body radii'];  | 
| 
2370
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2371
 | 
  
0
  
 | 
  
  0
  
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     if($m=~m/^b/i) {  | 
| 
 
 | 
 
 | 
  
  0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
 
 | 
 
 | 
  
  0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2372
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	$p->{m} = 0;  | 
| 
2373
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     } elsif($m=~m/^n/i) {  | 
| 
2374
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	$p->{m} = 1;  | 
| 
2375
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     } elsif($m=~m/^f/i) {  | 
| 
2376
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	$p->{m} = 2;  | 
| 
2377
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     } else {  | 
| 
2378
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	$p->{m} = $m;  | 
| 
2379
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     }  | 
| 
2380
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2381
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     $p->{r0} = _opt($me->{options},  | 
| 
2382
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 		    ['r0','R0','radius','Radius',  | 
| 
2383
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 		     'd','dist','distance','Distance'],  | 
| 
2384
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 		    2.0  | 
| 
2385
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 		    );  | 
| 
2386
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
       | 
| 
2387
 | 
  
0
  
 | 
  
  0
  
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     if($p->{r0} == 0) {  | 
| 
2388
 | 
  
0
  
 | 
  
  0
  
 | 
 
 | 
 
 | 
 
 | 
0
 | 
       print "t_vertical: r0 = 0; using t_gnomonic instead\n"  | 
| 
2389
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	if($PDLA::verbose);  | 
| 
2390
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
       return t_gnomonic($me->{options});  | 
| 
2391
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     }  | 
| 
2392
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
       | 
| 
2393
 | 
  
0
  
 | 
  
  0
  
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     if($p->{r0} == 1) {  | 
| 
2394
 | 
  
0
  
 | 
  
  0
  
 | 
 
 | 
 
 | 
 
 | 
0
 | 
       print "t_vertical: r0 = 1; using t_stereographic instead\n"  | 
| 
2395
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	if($PDLA::verbose);  | 
| 
2396
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
       return t_stereographic($me->{options});  | 
| 
2397
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     }  | 
| 
2398
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
       | 
| 
2399
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
       | 
| 
2400
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     $p->{t} = _opt($me->{options},  | 
| 
2401
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 		   ['t','tele','telescope','Telescope',  | 
| 
2402
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 		    'cam','camera','Camera'],  | 
| 
2403
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 		   undef);  | 
| 
2404
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
       | 
| 
2405
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     $p->{f} = _opt($me->{options},  | 
| 
2406
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 		   ['f','fish','fisheye','Fisheye'],  | 
| 
2407
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 		   undef);  | 
| 
2408
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
       | 
| 
2409
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     $p->{t} = 'rad'  | 
| 
2410
 | 
  
0
  
 | 
  
  0
  
 | 
  
  0
  
 | 
 
 | 
 
 | 
0
 | 
       if($p->{f} && !defined($p->{t}));  | 
| 
2411
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
         | 
| 
2412
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     $p->{tconv} = _uconv($p->{t},1) || _uconv('rad')  | 
| 
2413
 | 
  
0
  
 | 
  
  0
  
 | 
  
  0
  
 | 
 
 | 
 
 | 
0
 | 
       if(defined $p->{t});  | 
| 
2414
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2415
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     $me->{func} = sub {  | 
| 
2416
 | 
  
0
  
 | 
 
 | 
 
 | 
  
0
  
 | 
 
 | 
0
 | 
 	my($d,$o) = @_;  | 
| 
2417
 | 
  
0
  
 | 
  
  0
  
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	my($out) = $d->is_inplace ? $d : $d->copy;  | 
| 
2418
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	my($th) = $d->((0))*$o->{conv};  | 
| 
2419
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	my($ph) = $d->((1))*$o->{conv};  | 
| 
2420
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2421
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	my($cph) = cos($ph);  | 
| 
2422
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2423
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	my($cos_c) = $cph * cos($th);  | 
| 
2424
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2425
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	my($k) = (($o->{r0} - 1) /   | 
| 
2426
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 		  ($o->{r0} - $cos_c));  | 
| 
2427
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2428
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	# If it's a telescope perspective, figure the apparent size  | 
| 
2429
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	# of the globe and scale accordingly.  | 
| 
2430
 | 
  
0
  
 | 
  
  0
  
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	if($o->{t}) {  | 
| 
2431
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	  my($theta) = asin(1/$o->{r0});  | 
| 
2432
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	}  | 
| 
2433
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	  | 
| 
2434
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	$out->(0:1) /= ($o->{r0} - 1.0) * ($o->{f} ? 1.0 : $o->{tconv})  | 
| 
2435
 | 
  
0
  
 | 
  
  0
  
 | 
 
 | 
 
 | 
 
 | 
0
 | 
   	  if($o->{t});  | 
| 
 
 | 
 
 | 
  
  0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2436
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2437
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2438
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2439
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	$out->((0)) .= $cph * sin($th);  | 
| 
2440
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	$out->((1)) .= sin($ph);  | 
| 
2441
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2442
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	# Handle singularity at the origin  | 
| 
2443
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	$k->where(($out->((0)) == 0) & ($out->((1)) == 0)) .= 0;  | 
| 
2444
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	$out->(0:1) *= $k->dummy(0,2);  | 
| 
2445
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2446
 | 
  
0
  
 | 
  
  0
  
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	if($o->{m}) {  | 
| 
2447
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	    my $idx;  | 
| 
2448
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	    $idx = whichND($cos_c < 1.0/$o->{r0})  | 
| 
2449
 | 
  
0
  
 | 
  
  0
  
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 		if($o->{m} == 1);  | 
| 
2450
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	    $idx = whichND($cos_c > 1.0/$o->{r0})  | 
| 
2451
 | 
  
0
  
 | 
  
  0
  
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 		if($o->{m} == 2);  | 
| 
2452
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2453
 | 
  
0
  
 | 
  
  0
  
 | 
  
  0
  
 | 
 
 | 
 
 | 
0
 | 
 	    if(defined $idx && ref $idx eq 'PDLA' && $idx->nelem){  | 
| 
 
 | 
 
 | 
 
 | 
  
  0
  
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2454
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	      $out->((0))->range($idx) .= $o->{bad};  | 
| 
2455
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	      $out->((1))->range($idx) .= $o->{bad};  | 
| 
2456
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	    }  | 
| 
2457
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	}  | 
| 
2458
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2459
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2460
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	$out;  | 
| 
2461
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     };  | 
| 
2462
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2463
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     $me->{inv} = sub {  | 
| 
2464
 | 
  
0
  
 | 
 
 | 
 
 | 
  
0
  
 | 
 
 | 
0
 | 
 	my($d,$o) = @_;  | 
| 
2465
 | 
  
0
  
 | 
  
  0
  
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	my($out) = $d->is_inplace ? $d : $d->copy;  | 
| 
2466
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2467
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	# Reverse the hemisphere if the mask is set to 'far'  | 
| 
2468
 | 
  
0
  
 | 
  
  0
  
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	my($P) = ($o->{m} == 2) ? -$o->{r0} : $o->{r0};  | 
| 
2469
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2470
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	$out->(0:1) *= ($P - 1.0) * ($o->{f} ? 1.0 : $o->{tconv})  | 
| 
2471
 | 
  
0
  
 | 
  
  0
  
 | 
 
 | 
 
 | 
 
 | 
0
 | 
      	    if($o->{t});  | 
| 
 
 | 
 
 | 
  
  0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2472
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2473
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	my($rho) = sqrt(sumover($d->(0:1) * $d->(0:1)));  | 
| 
2474
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	my($sin_c) = ( (  $P - sqrt( 1 - ($rho*$rho * ($P+1)/($P-1)) ) ) /  | 
| 
2475
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 		       ( ($P-1)/$rho + $rho/($P-1) )  | 
| 
2476
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 		       );  | 
| 
2477
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2478
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	my($cos_c) = sqrt(1 - $sin_c*$sin_c);  | 
| 
2479
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2480
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	# Switch c's quadrant where necessary, by inverting cos(c).  | 
| 
2481
 | 
  
0
  
 | 
  
  0
  
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	if($P<0) {  | 
| 
2482
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	  my $idx = whichND($rho > ($P-1/$P));  | 
| 
2483
 | 
  
0
  
 | 
  
  0
  
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	  $cos_c->range($idx) *= -1  | 
| 
2484
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	    if($idx->nelem > 0);  | 
| 
2485
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	}  | 
| 
2486
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2487
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	  | 
| 
2488
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	$out->((0)) .= atan( $d->((0)) * $sin_c / ($rho * $cos_c) );  | 
| 
2489
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	$out->((1)) .= asin( $d->((1)) * $sin_c / $rho );  | 
| 
2490
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2491
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	$out->(0:1) /= $o->{conv};  | 
| 
2492
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2493
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	$out;  | 
| 
2494
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     };  | 
| 
2495
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	        | 
| 
2496
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2497
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     # Compose on both front and back as necessary.  | 
| 
2498
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     return t_compose( t_scale(1.0/$p->{tconv}),   | 
| 
2499
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 		      t_az_eqd,   | 
| 
2500
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 		      t_gnomonic->inverse,   | 
| 
2501
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 		      $me->_finish )  | 
| 
2502
 | 
  
0
  
 | 
  
  0
  
 | 
 
 | 
 
 | 
 
 | 
0
 | 
       if($p->{f});   | 
| 
2503
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2504
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     $me->_finish;  | 
| 
2505
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   }  | 
| 
2506
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2507
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 *t_zenithal = \&t_vertical;  | 
| 
2508
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2509
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 ######################################################################  | 
| 
2510
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2511
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =head2 t_perspective  | 
| 
2512
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2513
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =for usage  | 
| 
2514
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2515
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     $t = t_perspective();  | 
| 
2516
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2517
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =for ref  | 
| 
2518
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2519
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 (Cartography) Arbitrary perspective projection   | 
| 
2520
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2521
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 Perspective projection onto a focal plane from an arbitrary location  | 
| 
2522
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 within or without the sphere, with an arbitrary central look direction,  | 
| 
2523
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 and with correction for magnification within the optical system.  | 
| 
2524
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2525
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 In the forward direction, t_perspective generates perspective views of  | 
| 
2526
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 a sphere given (lon/lat) mapping or vector information.  In the reverse  | 
| 
2527
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 direction, t_perspective produces (lon/lat) maps from aerial or distant  | 
| 
2528
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 photographs of spherical objects.  | 
| 
2529
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2530
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 Viewpoints outside the sphere treat the sphere as opaque by default,  | 
| 
2531
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 though you can use the 'm' option to specify either the near or far  | 
| 
2532
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 surface (relative to the origin).  Viewpoints below the surface treat  | 
| 
2533
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 the sphere as transparent and undergo a mirror reversal for  | 
| 
2534
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 consistency with projections that are special cases of the perspective  | 
| 
2535
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 projection (e.g. t_gnomonic for r0=0 or t_stereographic for r0=-1).  | 
| 
2536
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2537
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 Magnification correction handles the extra edge distortion due to  | 
| 
2538
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 higher angles between the focal plane and focused rays within the  | 
| 
2539
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 optical system of your camera.  If you do not happen to know the  | 
| 
2540
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 magnification of your camera, a simple rule of thumb is that the  | 
| 
2541
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 magnification of a reflective telescope is roughly its focal length  | 
| 
2542
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 (plate scale) divided by its physical length; and the magnification of   | 
| 
2543
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 a compound refractive telescope is roughly twice its physical length divided   | 
| 
2544
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 by its focal length.  Simple optical systems with a single optic have  | 
| 
2545
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 magnification = 1.  Fisheye lenses have magnification < 1.  | 
| 
2546
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2547
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 This transformation was derived by direct geometrical calculation  | 
| 
2548
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 rather than being translated from Voxland & Snyder.  | 
| 
2549
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2550
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 OPTIONS  | 
| 
2551
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2552
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =over 3  | 
| 
2553
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2554
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =item STANDARD POSITIONAL OPTIONS  | 
| 
2555
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2556
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 As always, the 'origin' field specifies the sub-camera point on the  | 
| 
2557
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 sphere.  | 
| 
2558
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2559
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 The 'roll' option is the roll angle about the sub-camera point, for  | 
| 
2560
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 consistency with the other projectons.  | 
| 
2561
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2562
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =item p, ptg, pointing, Pointing (default (0,0,0))  | 
| 
2563
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2564
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 The pointing direction, in (horiz. offset, vert. offset, roll) of the  | 
| 
2565
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 camera relative to the center of the sphere.  This is a spherical  | 
| 
2566
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 coordinate system with the origin pointing directly at the sphere and  | 
| 
2567
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 the pole pointing north in the pre-rolled coordinate system set by the  | 
| 
2568
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 standard origin.  It's most useful for space-based images taken some distance  | 
| 
2569
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 from the body in question (e.g. images of other planets or the Sun).  | 
| 
2570
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2571
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 Be careful not to confuse 'p' (pointing) with 'P' (P angle, a standard  | 
| 
2572
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 synonym for roll).  | 
| 
2573
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2574
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =item c, cam, camera, Camera (default undef)   | 
| 
2575
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2576
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 Alternate way of specifying the camera pointing, using a spherical  | 
| 
2577
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 coordinate system with poles at the zenith (positive) and nadir  | 
| 
2578
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 (negative) -- this is useful for aerial photographs and such, where  | 
| 
2579
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 the point of view is near the surface of the sphere.  You specify  | 
| 
2580
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 (azimuth from N, altitude from horizontal, roll from vertical=up).  If  | 
| 
2581
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 you specify pointing by this method, it overrides the 'pointing'  | 
| 
2582
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 option, above.  This coordinate system is most useful for aerial photography  | 
| 
2583
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 or low-orbit work, where the nadir is not necessarily the most interesting  | 
| 
2584
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 part of the scene.  | 
| 
2585
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2586
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =item r0, R0, radius, d, dist, distance [default 2.0]   | 
| 
2587
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2588
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 The altitude of the point of view above the center of the sphere.  | 
| 
2589
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 The default places the point of view 1 radius aboove the surface.  | 
| 
2590
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 Do not confuse this with 'r', the standard origin roll angle!  Setting   | 
| 
2591
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 r0 < 1 gives a viewpoint inside the sphere.  In that case, the images are  | 
| 
2592
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 mirror-reversed to preserve the chiralty of the perspective.  Setting   | 
| 
2593
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 r0=0 gives gnomonic projections; setting r0=-1 gives stereographic projections.  | 
| 
2594
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 Setting r0 < -1 gives strange results.  | 
| 
2595
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2596
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =item iu, im_unit, image_unit, Image_Unit (default 'degrees')  | 
| 
2597
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2598
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 This is the angular units in which the viewing camera is calibrated  | 
| 
2599
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 at the center of the image.  | 
| 
2600
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2601
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =item mag, magnification, Magnification (default 1.0)  | 
| 
2602
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2603
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 This is the magnification factor applied to the optics -- it affects the  | 
| 
2604
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 amount of tangent-plane distortion within the telescope.   | 
| 
2605
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 1.0 yields the view from a simple optical system; higher values are   | 
| 
2606
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 telescopic, while lower values are wide-angle (fisheye).  Higher   | 
| 
2607
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 magnification leads to higher angles within the optical system, and more   | 
| 
2608
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 tangent-plane distortion at the edges of the image.    | 
| 
2609
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 The magnification is applied to the incident angles themselves, rather than  | 
| 
2610
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 to their tangents (simple two-element telescopes magnify tan(theta) rather  | 
| 
2611
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 than theta itself); this is appropriate because wide-field optics more  | 
| 
2612
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 often conform to the equidistant azimuthal approximation than to the   | 
| 
2613
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 tangent plane approximation.  If you need more detailed control of   | 
| 
2614
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 the relationship between incident angle and focal-plane position,   | 
| 
2615
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 use mag=1.0 and compose the transform with something else to tweak the  | 
| 
2616
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 angles.  | 
| 
2617
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2618
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =item m, mask, Mask, h, hemisphere, Hemisphere [default 'near']  | 
| 
2619
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2620
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 'hemisphere' is by analogy to other cartography methods although the two   | 
| 
2621
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 regions to be selected are not really hemispheres.  | 
| 
2622
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2623
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =item f, fov, field_of_view, Field_Of_View [default 60 degrees]  | 
| 
2624
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2625
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 The field of view of the telescope -- sets the crop radius on the  | 
| 
2626
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 focal plane.  If you pass in a scalar, you get a circular crop.  If you  | 
| 
2627
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 pass in a 2-element list ref, you get a rectilinear crop, with the  | 
| 
2628
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 horizontal 'radius' and vertical 'radius' set separately.   | 
| 
2629
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2630
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =back  | 
| 
2631
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2632
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 EXAMPLES  | 
| 
2633
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2634
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 Model a camera looking at the Sun through a 10x telescope from Earth  | 
| 
2635
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 (~230 solar radii from the Sun), with an 0.5 degree field of view and  | 
| 
2636
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 a solar P (roll) angle of 30 degrees, in February (sub-Earth solar  | 
| 
2637
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 latitude is 7 degrees south).  Convert a solar FITS image taken with  | 
| 
2638
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 that camera to a FITS lon/lat map of the Sun with 20 pixels/degree  | 
| 
2639
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 latitude:  | 
| 
2640
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2641
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   # Define map output header (no need if you don't want a FITS output map)  | 
| 
2642
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   $maphdr = {NAXIS1=>7200,NAXIS2=>3600,            # Size of image  | 
| 
2643
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	     CTYPE1=>longitude,CTYPE2=>latitude,   # Type of axes  | 
| 
2644
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	     CUNIT1=>deg,CUNIT2=>deg,              # Unit of axes  | 
| 
2645
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	     CDELT1=>0.05,CDELT2=>0.05,            # Scale of axes  | 
| 
2646
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	     CRPIX1=>3601,CRPIX2=>1801,            # Center of map  | 
| 
2647
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	     CRVAL1=>0,CRVAL2=>0                   # (lon,lat) of center   | 
| 
2648
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	     };  | 
| 
2649
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2650
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   # Set up the perspective transformation, and apply it.  | 
| 
2651
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   $t = t_perspective(r0=>229,fov=>0.5,mag=>10,P=>30,B=>-7);  | 
| 
2652
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   $map = $im->map( $t , $maphdr );  | 
| 
2653
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2654
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 Draw an aerial-view map of the Chesapeake Bay, as seen from a sounding  | 
| 
2655
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 rocket at an altitude of 100km, looking NNE from ~200km south of  | 
| 
2656
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 Washington (the radius of Earth is 6378 km; Washington D.C. is at  | 
| 
2657
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 roughly 77W,38N).  Superimpose a linear coastline map on a photographic map.  | 
| 
2658
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2659
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   $x = graticule(1,0.1)->glue(1,earth_coast());  | 
| 
2660
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   $t = t_perspective(r0=>6478/6378.0,fov=>60,cam=>[22.5,-20],o=>[-77,36])  | 
| 
2661
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   $w = pgwin(size=>[10,6],J=>1);  | 
| 
2662
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   $w->fits_imag(earth_image()->map($t,[800,500],{m=>linear}));  | 
| 
2663
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   $w->hold;  | 
| 
2664
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   $w->lines($x->apply($t),{xt=>'Degrees',yt=>'Degrees'});  | 
| 
2665
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   $w->release;  | 
| 
2666
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2667
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 Model a 5x telescope looking at Betelgeuse with a 10 degree field of view  | 
| 
2668
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 (since the telescope is looking at the Celestial sphere, r is 0 and this  | 
| 
2669
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 is just an expensive modified-gnomonic projection).  | 
| 
2670
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2671
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   $t = t_perspective(r0=>0,fov=>10,mag=>5,o=>[88.79,7.41])  | 
| 
2672
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2673
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =cut  | 
| 
2674
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2675
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 sub t_perspective {  | 
| 
2676
 | 
1
 | 
 
 | 
 
 | 
  
1
  
 | 
  
1
  
 | 
3210
 | 
     my($me) = _new(@_,'Focal-Plane Perspective');  | 
| 
2677
 | 
1
 | 
 
 | 
 
 | 
 
 | 
 
 | 
5
 | 
     my $p = $me->{params};  | 
| 
2678
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
       | 
| 
2679
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     my $m= _opt($me->{options},  | 
| 
2680
 | 
1
 | 
 
 | 
 
 | 
 
 | 
 
 | 
8
 | 
 		['m','mask','Mask','h','hemi','hemisphere','Hemisphere'],  | 
| 
2681
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 		1);  | 
| 
2682
 | 
1
 | 
 
 | 
 
 | 
 
 | 
 
 | 
4
 | 
     $p->{m} = $m;  | 
| 
2683
 | 
1
 | 
  
 50
  
 | 
 
 | 
 
 | 
 
 | 
5
 | 
     $p->{m} = 0 if($m=~m/^b/i);  | 
| 
2684
 | 
1
 | 
  
 50
  
 | 
 
 | 
 
 | 
 
 | 
12
 | 
     $p->{m} = 1 if($m=~m/^n/i);  | 
| 
2685
 | 
1
 | 
  
 50
  
 | 
 
 | 
 
 | 
 
 | 
4
 | 
     $p->{m} = 2 if($m=~m/^f/i);  | 
| 
2686
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2687
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     $p->{r0} = _opt($me->{options},  | 
| 
2688
 | 
1
 | 
 
 | 
 
 | 
 
 | 
 
 | 
5
 | 
 		    ['r0','R0','radius','Radius',  | 
| 
2689
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 		     'd','dist','distance','Distance'],  | 
| 
2690
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 		    2.0  | 
| 
2691
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 		    );  | 
| 
2692
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
       | 
| 
2693
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     $p->{iu} = _opt($me->{options},  | 
| 
2694
 | 
1
 | 
 
 | 
 
 | 
 
 | 
 
 | 
5
 | 
 		   ['i','iu','image_unit','Image_Unit'],  | 
| 
2695
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 		   'degrees');  | 
| 
2696
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
       | 
| 
2697
 | 
1
 | 
 
 | 
 
 | 
 
 | 
 
 | 
3
 | 
     $p->{tconv} = _uconv($p->{iu});  | 
| 
2698
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2699
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     $p->{mag} = _opt($me->{options},  | 
| 
2700
 | 
1
 | 
 
 | 
 
 | 
 
 | 
 
 | 
5
 | 
 		     ['mag','magnification','Magnification'],  | 
| 
2701
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 		     1.0);  | 
| 
2702
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2703
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     # Regular pointing pseudovector -- make sure there are exactly 3 elements  | 
| 
2704
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     $p->{p} = (topdl(_opt($me->{options},  | 
| 
2705
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 			['p','ptg','pointing','Pointing'],  | 
| 
2706
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 			[0,0,0])  | 
| 
2707
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 		   )  | 
| 
2708
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	       * $p->{tconv}  | 
| 
2709
 | 
1
 | 
 
 | 
 
 | 
 
 | 
 
 | 
5
 | 
 	       )->append(zeroes(3))->(0:2);  | 
| 
2710
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2711
 | 
1
 | 
 
 | 
 
 | 
 
 | 
 
 | 
143
 | 
     $p->{pmat} = _rotmat( (- $p->{p})->list );  | 
| 
2712
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
       | 
| 
2713
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     # Funky camera pointing pseudovector overrides normal pointing option   | 
| 
2714
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     $p->{c} = _opt($me->{options},  | 
| 
2715
 | 
1
 | 
 
 | 
 
 | 
 
 | 
 
 | 
189
 | 
 		   ['c','cam','camera','Camera'],  | 
| 
2716
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 		   undef  | 
| 
2717
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 		   );  | 
| 
2718
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2719
 | 
1
 | 
  
 50
  
 | 
 
 | 
 
 | 
 
 | 
6
 | 
     if(defined($p->{c})) {  | 
| 
2720
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
       $p->{c} = (topdl($p->{c}) * $p->{tconv})->append(zeroes(3))->(0:2);  | 
| 
2721
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2722
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
       $p->{pmat} = ( _rotmat( 0,-$PI/2,0 ) x   | 
| 
2723
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 		     _rotmat( (-$p->{c})->list )   | 
| 
2724
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 		     );  | 
| 
2725
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     }  | 
| 
2726
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2727
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     # Reflect X axis if we're inside the sphere.  | 
| 
2728
 | 
1
 | 
  
 50
  
 | 
 
 | 
 
 | 
 
 | 
3
 | 
     if($p->{r0}<1) {  | 
| 
2729
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
       $p->{pmat} = topdl([[-1,0,0],[0,1,0],[0,0,1]]) x $p->{pmat};  | 
| 
2730
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     }  | 
| 
2731
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2732
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     $p->{f} = ( _opt($me->{options},  | 
| 
2733
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 		     ['f','fov','field_of_view','Field_of_View'],  | 
| 
2734
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 		     topdl($PI*2/3) / $p->{tconv} / $p->{mag} )  | 
| 
2735
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 		* $p->{tconv}  | 
| 
2736
 | 
1
 | 
 
 | 
 
 | 
 
 | 
 
 | 
7
 | 
 		);  | 
| 
2737
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
       | 
| 
2738
 | 
1
 | 
 
 | 
 
 | 
 
 | 
 
 | 
20
 | 
     $me->{otype} = ['Tan X','Tan Y'];  | 
| 
2739
 | 
1
 | 
 
 | 
 
 | 
 
 | 
 
 | 
4
 | 
     $me->{ounit} = [$p->{iu},$p->{iu}];  | 
| 
2740
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2741
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     # "Prefilter" -- subsidiary transform to convert the   | 
| 
2742
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     # spherical coordinates to 3-D coords in the viewer's   | 
| 
2743
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     # reference frame (Y,Z are more-or-less tangent-plane X and Y,  | 
| 
2744
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     # and -X is the direction toward the planet, before rotation   | 
| 
2745
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     # to account for pointing).  | 
| 
2746
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2747
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     $me->{params}->{prefilt} =   | 
| 
2748
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
       t_compose(  | 
| 
2749
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
                 # Offset for the camera pointing.  | 
| 
2750
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 		t_linear(m=>$p->{pmat},  | 
| 
2751
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 			 d=>3),  | 
| 
2752
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2753
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
                 # Rotate the sphere so the correct origin is at the   | 
| 
2754
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 		# maximum-X point, then move the whole thing in the   | 
| 
2755
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 		# -X direction  by r0.  | 
| 
2756
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 		t_linear(m=>(_rotmat($p->{o}->at(0),  | 
| 
2757
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 				     $p->{o}->at(1),  | 
| 
2758
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 				     $p->{roll}->at(0))  | 
| 
2759
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 			     ),  | 
| 
2760
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 			 d=>3,  | 
| 
2761
 | 
1
 | 
 
 | 
 
 | 
 
 | 
 
 | 
5
 | 
 			 post=> topdl( [- $me->{params}->{r0},0,0] )  | 
| 
2762
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 			 ),  | 
| 
2763
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2764
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
                 # Put initial sci. coords into Cartesian space  | 
| 
2765
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 		t_unit_sphere(u=>'radian')    | 
| 
2766
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 		);  | 
| 
2767
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2768
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     # Store the origin of the sphere -- useful for the inverse function  | 
| 
2769
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     $me->{params}->{sph_origin} = (  | 
| 
2770
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 				   topdl([-$me->{params}->{r0},0,0]) x   | 
| 
2771
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 				   $p->{pmat}  | 
| 
2772
 | 
1
 | 
 
 | 
 
 | 
 
 | 
 
 | 
13
 | 
 				   )->(:,(0));  | 
| 
2773
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2774
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     #  | 
| 
2775
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     # Finally, the meat -- the forward function!  | 
| 
2776
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     #  | 
| 
2777
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     $me->{func} = sub {  | 
| 
2778
 | 
8
 | 
 
 | 
 
 | 
  
8
  
 | 
 
 | 
24
 | 
       my($d,$o) = @_;  | 
| 
2779
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2780
 | 
8
 | 
  
 50
  
 | 
 
 | 
 
 | 
 
 | 
47
 | 
       my($out) = $d->is_inplace ? $d : $d->copy;  | 
| 
2781
 | 
8
 | 
 
 | 
 
 | 
 
 | 
 
 | 
45463
 | 
       $out->(0:1) *= $o->{conv};  | 
| 
2782
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2783
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
       # If we're outside the sphere, do hemisphere filtering  | 
| 
2784
 | 
8
 | 
 
 | 
 
 | 
 
 | 
 
 | 
5675
 | 
       my $idx;  | 
| 
2785
 | 
8
 | 
  
 50
  
 | 
 
 | 
 
 | 
 
 | 
48
 | 
       if(abs($o->{r0}) < 1 ) {  | 
| 
2786
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	$idx = null;  | 
| 
2787
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
       } else {  | 
| 
2788
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	# Great-circle distance to origin  | 
| 
2789
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	my($cos_c) = ( sin($o->{o}->((1))) * sin($out->((1)))  | 
| 
2790
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 		     +  | 
| 
2791
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 		     cos($o->{o}->((1))) * cos($out->((1))) *   | 
| 
2792
 | 
8
 | 
 
 | 
 
 | 
 
 | 
 
 | 
48
 | 
 		     cos($out->((0)) - $o->{o}->((0)))  | 
| 
2793
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 		     );  | 
| 
2794
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2795
 | 
8
 | 
 
 | 
 
 | 
 
 | 
 
 | 
127528
 | 
 	my($thresh) = (1.0/$o->{r0});  | 
| 
2796
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	  | 
| 
2797
 | 
8
 | 
  
 50
  
 | 
 
 | 
 
 | 
 
 | 
58
 | 
 	if($o->{m}==1) {  | 
| 
 
 | 
 
 | 
  
  0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2798
 | 
8
 | 
 
 | 
 
 | 
 
 | 
 
 | 
2564
 | 
 	  $idx = whichND($cos_c < $thresh);  | 
| 
2799
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	} elsif($o->{m}==2) {  | 
| 
2800
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	  $idx = whichND($cos_c > $thresh);  | 
| 
2801
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	} else {  | 
| 
2802
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	  $idx = null;  | 
| 
2803
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	}  | 
| 
2804
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
       }	  | 
| 
2805
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2806
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
       ### Transform everything -- just chuck out the bad points at the end.  | 
| 
2807
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2808
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
       ## convert to 3-D viewer coordinates (there's a dimension change!)  | 
| 
2809
 | 
8
 | 
 
 | 
 
 | 
 
 | 
 
 | 
87371
 | 
       my $dc = $out->apply($o->{prefilt});  | 
| 
2810
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2811
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
       ## Apply the tangent-plane transform, and scale by the magnification.  | 
| 
2812
 | 
8
 | 
 
 | 
 
 | 
 
 | 
 
 | 
88
 | 
       my $dcyz = $dc->(1:2);  | 
| 
2813
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2814
 | 
8
 | 
 
 | 
 
 | 
 
 | 
 
 | 
29242
 | 
       my $r = ( $dcyz * $dcyz ) -> sumover -> sqrt ;       | 
| 
2815
 | 
8
 | 
 
 | 
 
 | 
 
 | 
 
 | 
100
 | 
       my $rscale;  | 
| 
2816
 | 
8
 | 
  
 50
  
 | 
 
 | 
 
 | 
 
 | 
55
 | 
       if( $o->{mag} == 1.0 ) {  | 
| 
2817
 | 
8
 | 
 
 | 
 
 | 
 
 | 
 
 | 
59
 | 
 	  $rscale = - 1.0 / $dc->((0));  | 
| 
2818
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
       } else {  | 
| 
2819
 | 
  
0
  
 | 
  
  0
  
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	  print "(using magnification...)\n" if $PDLA::verbose;  | 
| 
2820
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	  $rscale = - tan( $o->{mag} * atan( $r / $dc->((0)) ) ) / $r;  | 
| 
2821
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
       }  | 
| 
2822
 | 
8
 | 
 
 | 
 
 | 
 
 | 
 
 | 
10566
 | 
       $r *= $rscale;  | 
| 
2823
 | 
8
 | 
 
 | 
 
 | 
 
 | 
 
 | 
1809
 | 
       $out->(0:1) .= $dcyz * $rscale->dummy(0,1);  | 
| 
2824
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2825
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
       # Chuck points that are outside the FOV: glue those points  | 
| 
2826
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
       # onto the removal list.   The conditional works around a bug   | 
| 
2827
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
       # in 2.3.4cvs and earlier: null piddles make append() crash.  | 
| 
2828
 | 
8
 | 
 
 | 
 
 | 
 
 | 
 
 | 
10518
 | 
       my $w;  | 
| 
2829
 | 
8
 | 
  
 50
  
 | 
 
 | 
 
 | 
 
 | 
75
 | 
       if(ref $o->{f} eq 'ARRAY') {  | 
| 
2830
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	$w = whichND( ( abs($dcyz->((0))) > $o->{f}->[0] ) |  | 
| 
2831
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 		      ( abs($dcyz->((1))) > $o->{f}->[1] ) |  | 
| 
2832
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 		      ($r < 0)  | 
| 
2833
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 		      );  | 
| 
2834
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
       } else {  | 
| 
2835
 | 
8
 | 
 
 | 
 
 | 
 
 | 
 
 | 
18660
 | 
 	$w = whichND( ($r > $o->{f}) | ($r < 0) );  | 
| 
2836
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
       }  | 
| 
2837
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
       | 
| 
2838
 | 
8
 | 
  
  0
  
 | 
 
 | 
 
 | 
 
 | 
7674
 | 
       $idx = ($idx->nelem) ?  $idx->glue(1,$w)  : $w  | 
| 
 
 | 
 
 | 
  
 50
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2839
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	if($w->nelem);  | 
| 
2840
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2841
 | 
8
 | 
  
 50
  
 | 
 
 | 
 
 | 
 
 | 
37
 | 
       if($idx->nelem) {  | 
| 
2842
 | 
8
 | 
 
 | 
 
 | 
 
 | 
 
 | 
44
 | 
 	$out->((0))->range($idx) .= $o->{bad};  | 
| 
2843
 | 
8
 | 
 
 | 
 
 | 
 
 | 
 
 | 
61853
 | 
 	$out->((1))->range($idx) .= $o->{bad};  | 
| 
2844
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
       }  | 
| 
2845
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2846
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
       ## Scale by the output conversion factor  | 
| 
2847
 | 
8
 | 
 
 | 
 
 | 
 
 | 
 
 | 
62083
 | 
       $out->(0:1) /= $o->{tconv};  | 
| 
2848
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2849
 | 
8
 | 
 
 | 
 
 | 
 
 | 
 
 | 
17153
 | 
       $out;  | 
| 
2850
 | 
1
 | 
 
 | 
 
 | 
 
 | 
 
 | 
120
 | 
     };  | 
| 
2851
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2852
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
       | 
| 
2853
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     #  | 
| 
2854
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     # Inverse function  | 
| 
2855
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     #  | 
| 
2856
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     $me->{inv} = sub {  | 
| 
2857
 | 
  
0
  
 | 
 
 | 
 
 | 
  
0
  
 | 
 
 | 
0
 | 
 	my($d,$o) = @_;  | 
| 
2858
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2859
 | 
  
0
  
 | 
  
  0
  
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	my($out) = $d->is_inplace ? $d : $d->copy;  | 
| 
2860
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	$out->(0:1) *= $o->{tconv};  | 
| 
2861
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2862
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	my $oyz = $out->(0:1) ;  | 
| 
2863
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2864
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	## Inverse-magnify if required  | 
| 
2865
 | 
  
0
  
 | 
  
  0
  
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	if($o->{mag} != 1.0) {  | 
| 
2866
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	  my $r = ($oyz * $oyz)->sumover->sqrt;  | 
| 
2867
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	  my $scale = tan( atan( $r ) / $o->{mag} ) / $r;  | 
| 
2868
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	  $out->(0:1) *= $scale->dummy(0,1);  | 
| 
2869
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	}  | 
| 
2870
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	  | 
| 
2871
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	## Solve for the X coordinate of the surface.    | 
| 
2872
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	## This is a quadratic in the tangent-plane coordinates;  | 
| 
2873
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	## so here we just figure out the coefficients and plug into  | 
| 
2874
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	## the quadratic formula.  $y here is actually -B/2.  | 
| 
2875
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	my $a1 = ($oyz * $oyz)->sumover + 1;  | 
| 
2876
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	my $y = ( $o->{sph_origin}->((0))   | 
| 
2877
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 		  - ($o->{sph_origin}->(1:2) * $oyz)->sumover  | 
| 
2878
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 		  );  | 
| 
2879
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	my $c = topdl($o->{r0}*$o->{r0} - 1);  | 
| 
2880
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	  | 
| 
2881
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	my $x;  | 
| 
2882
 | 
  
0
  
 | 
  
  0
  
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	if($o->{m} == 2) {   | 
| 
2883
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	    # Exceptional case: mask asks for the far hemisphere  | 
| 
2884
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	    $x = - ( $y - sqrt($y*$y - $a1 * $c) ) / $a1;  | 
| 
2885
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	} else {  | 
| 
2886
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	    # normal case: mask asks for the near hemisphere  | 
| 
2887
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	    $x =   - ( $y + sqrt($y*$y - $a1 * $c) ) / $a1;  | 
| 
2888
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	}  | 
| 
2889
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2890
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	## Assemble the 3-space coordinates of the points  | 
| 
2891
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	my $int = $out->(0)->append($out);  | 
| 
2892
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	$int->sever;  | 
| 
2893
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	$int->((0)) .= -1.0;  | 
| 
2894
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	$int->(0:2) *= $x->dummy(0,3);  | 
| 
2895
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2896
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	## convert back to (lon,lat) coordinates...  | 
| 
2897
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	$out .= $int->invert($o->{prefilt});	  | 
| 
2898
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2899
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	# If we're outside the sphere, do hemisphere filtering  | 
| 
2900
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	my $idx;  | 
| 
2901
 | 
  
0
  
 | 
  
  0
  
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	if(abs($o->{r0}) < 1 ) {  | 
| 
2902
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	    $idx = null;  | 
| 
2903
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	} else {  | 
| 
2904
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	    # Great-circle distance to origin  | 
| 
2905
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	    my($cos_c) = ( sin($o->{o}->((1))) * sin($out->((1)))  | 
| 
2906
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 			   +  | 
| 
2907
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 			   cos($o->{o}->((1))) * cos($out->((1))) *   | 
| 
2908
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 			   cos($out->((0)) - $o->{o}->((0)))  | 
| 
2909
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 			   );  | 
| 
2910
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	      | 
| 
2911
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	    my($thresh) = (1.0/$o->{r0});  | 
| 
2912
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	      | 
| 
2913
 | 
  
0
  
 | 
  
  0
  
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	    if($o->{m}==1) {  | 
| 
 
 | 
 
 | 
  
  0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2914
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 		$idx = whichND($cos_c < $thresh);  | 
| 
2915
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	    } elsif($o->{m}==2) {  | 
| 
2916
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 		$idx = whichND($cos_c > $thresh);  | 
| 
2917
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	    }  | 
| 
2918
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	    else {  | 
| 
2919
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 		$idx = null;  | 
| 
2920
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	    }  | 
| 
2921
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	}	  | 
| 
2922
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2923
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	## Convert to the units the user requested  | 
| 
2924
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	$out->(0:1) /= $o->{conv};  | 
| 
2925
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2926
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	## Mark bad values  | 
| 
2927
 | 
  
0
  
 | 
  
  0
  
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	if($idx->nelem) {  | 
| 
2928
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	    $out->((0))->range($idx) .= $o->{bad};  | 
| 
2929
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	    $out->((1))->range($idx) .= $o->{bad};  | 
| 
2930
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	}  | 
| 
2931
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2932
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	$out;  | 
| 
2933
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2934
 | 
1
 | 
 
 | 
 
 | 
 
 | 
 
 | 
6
 | 
     };  | 
| 
2935
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	        | 
| 
2936
 | 
1
 | 
 
 | 
 
 | 
 
 | 
 
 | 
13
 | 
     $me;  | 
| 
2937
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   }  | 
| 
2938
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
2939
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 1;  |