| line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
|
1
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////////// |
|
2
|
|
|
|
|
|
|
// |
|
3
|
|
|
|
|
|
|
// Levenberg - Marquardt non-linear minimization algorithm |
|
4
|
|
|
|
|
|
|
// Copyright (C) 2004-05 Manolis Lourakis (lourakis at ics forth gr) |
|
5
|
|
|
|
|
|
|
// Institute of Computer Science, Foundation for Research & Technology - Hellas |
|
6
|
|
|
|
|
|
|
// Heraklion, Crete, Greece. |
|
7
|
|
|
|
|
|
|
// |
|
8
|
|
|
|
|
|
|
// This program is free software; you can redistribute it and/or modify |
|
9
|
|
|
|
|
|
|
// it under the terms of the GNU General Public License as published by |
|
10
|
|
|
|
|
|
|
// the Free Software Foundation; either version 2 of the License, or |
|
11
|
|
|
|
|
|
|
// (at your option) any later version. |
|
12
|
|
|
|
|
|
|
// |
|
13
|
|
|
|
|
|
|
// This program is distributed in the hope that it will be useful, |
|
14
|
|
|
|
|
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
15
|
|
|
|
|
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|
16
|
|
|
|
|
|
|
// GNU General Public License for more details. |
|
17
|
|
|
|
|
|
|
// |
|
18
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////////// |
|
19
|
|
|
|
|
|
|
|
|
20
|
|
|
|
|
|
|
#ifndef LM_REAL // not included by misc.c |
|
21
|
|
|
|
|
|
|
#error This file should not be compiled directly! |
|
22
|
|
|
|
|
|
|
#endif |
|
23
|
|
|
|
|
|
|
|
|
24
|
|
|
|
|
|
|
|
|
25
|
|
|
|
|
|
|
/* precision-specific definitions */ |
|
26
|
|
|
|
|
|
|
#define LEVMAR_CHKJAC LM_ADD_PREFIX(levmar_chkjac) |
|
27
|
|
|
|
|
|
|
#define LEVMAR_FDIF_FORW_JAC_APPROX LM_ADD_PREFIX(levmar_fdif_forw_jac_approx) |
|
28
|
|
|
|
|
|
|
#define LEVMAR_FDIF_CENT_JAC_APPROX LM_ADD_PREFIX(levmar_fdif_cent_jac_approx) |
|
29
|
|
|
|
|
|
|
#define LEVMAR_TRANS_MAT_MAT_MULT LM_ADD_PREFIX(levmar_trans_mat_mat_mult) |
|
30
|
|
|
|
|
|
|
#define LEVMAR_COVAR LM_ADD_PREFIX(levmar_covar) |
|
31
|
|
|
|
|
|
|
#define LEVMAR_STDDEV LM_ADD_PREFIX(levmar_stddev) |
|
32
|
|
|
|
|
|
|
#define LEVMAR_CORCOEF LM_ADD_PREFIX(levmar_corcoef) |
|
33
|
|
|
|
|
|
|
#define LEVMAR_R2 LM_ADD_PREFIX(levmar_R2) |
|
34
|
|
|
|
|
|
|
#define LEVMAR_BOX_CHECK LM_ADD_PREFIX(levmar_box_check) |
|
35
|
|
|
|
|
|
|
#define LEVMAR_L2NRMXMY LM_ADD_PREFIX(levmar_L2nrmxmy) |
|
36
|
|
|
|
|
|
|
|
|
37
|
|
|
|
|
|
|
#ifdef HAVE_LAPACK |
|
38
|
|
|
|
|
|
|
#define LEVMAR_PSEUDOINVERSE LM_ADD_PREFIX(levmar_pseudoinverse) |
|
39
|
|
|
|
|
|
|
static int LEVMAR_PSEUDOINVERSE(LM_REAL *A, LM_REAL *B, int m); |
|
40
|
|
|
|
|
|
|
|
|
41
|
|
|
|
|
|
|
/* BLAS matrix multiplication & LAPACK SVD routines */ |
|
42
|
|
|
|
|
|
|
#ifdef LM_BLAS_PREFIX |
|
43
|
|
|
|
|
|
|
#define GEMM LM_CAT_(LM_BLAS_PREFIX, LM_ADD_PREFIX(LM_CAT_(gemm, LM_BLAS_SUFFIX))) |
|
44
|
|
|
|
|
|
|
#else |
|
45
|
|
|
|
|
|
|
#define GEMM LM_ADD_PREFIX(LM_CAT_(gemm, LM_BLAS_SUFFIX)) |
|
46
|
|
|
|
|
|
|
#endif |
|
47
|
|
|
|
|
|
|
/* C := alpha*op( A )*op( B ) + beta*C */ |
|
48
|
|
|
|
|
|
|
extern void GEMM(char *transa, char *transb, int *m, int *n, int *k, |
|
49
|
|
|
|
|
|
|
LM_REAL *alpha, LM_REAL *a, int *lda, LM_REAL *b, int *ldb, LM_REAL *beta, LM_REAL *c, int *ldc); |
|
50
|
|
|
|
|
|
|
|
|
51
|
|
|
|
|
|
|
#define GESVD LM_MK_LAPACK_NAME(gesvd) |
|
52
|
|
|
|
|
|
|
#define GESDD LM_MK_LAPACK_NAME(gesdd) |
|
53
|
|
|
|
|
|
|
extern int GESVD(char *jobu, char *jobvt, int *m, int *n, LM_REAL *a, int *lda, LM_REAL *s, LM_REAL *u, int *ldu, |
|
54
|
|
|
|
|
|
|
LM_REAL *vt, int *ldvt, LM_REAL *work, int *lwork, int *info); |
|
55
|
|
|
|
|
|
|
|
|
56
|
|
|
|
|
|
|
/* lapack 3.0 new SVD routine, faster than xgesvd() */ |
|
57
|
|
|
|
|
|
|
extern int GESDD(char *jobz, int *m, int *n, LM_REAL *a, int *lda, LM_REAL *s, LM_REAL *u, int *ldu, LM_REAL *vt, int *ldvt, |
|
58
|
|
|
|
|
|
|
LM_REAL *work, int *lwork, int *iwork, int *info); |
|
59
|
|
|
|
|
|
|
|
|
60
|
|
|
|
|
|
|
/* Cholesky decomposition */ |
|
61
|
|
|
|
|
|
|
#define POTF2 LM_MK_LAPACK_NAME(potf2) |
|
62
|
|
|
|
|
|
|
extern int POTF2(char *uplo, int *n, LM_REAL *a, int *lda, int *info); |
|
63
|
|
|
|
|
|
|
|
|
64
|
|
|
|
|
|
|
#define LEVMAR_CHOLESKY LM_ADD_PREFIX(levmar_chol) |
|
65
|
|
|
|
|
|
|
|
|
66
|
|
|
|
|
|
|
#else |
|
67
|
|
|
|
|
|
|
#define LEVMAR_LUINVERSE LM_ADD_PREFIX(levmar_LUinverse_noLapack) |
|
68
|
|
|
|
|
|
|
|
|
69
|
|
|
|
|
|
|
static int LEVMAR_LUINVERSE(LM_REAL *A, LM_REAL *B, int m); |
|
70
|
|
|
|
|
|
|
#endif /* HAVE_LAPACK */ |
|
71
|
|
|
|
|
|
|
|
|
72
|
|
|
|
|
|
|
/* blocked multiplication of the transpose of the nxm matrix a with itself (i.e. a^T a) |
|
73
|
|
|
|
|
|
|
* using a block size of bsize. The product is returned in b. |
|
74
|
|
|
|
|
|
|
* Since a^T a is symmetric, its computation can be sped up by computing only its |
|
75
|
|
|
|
|
|
|
* upper triangular part and copying it to the lower part. |
|
76
|
|
|
|
|
|
|
* |
|
77
|
|
|
|
|
|
|
* More details on blocking can be found at |
|
78
|
|
|
|
|
|
|
* http://www-2.cs.cmu.edu/afs/cs/academic/class/15213-f02/www/R07/section_a/Recitation07-SectionA.pdf |
|
79
|
|
|
|
|
|
|
*/ |
|
80
|
747
|
|
|
|
|
|
void LEVMAR_TRANS_MAT_MAT_MULT(LM_REAL *a, LM_REAL *b, int n, int m) |
|
81
|
|
|
|
|
|
|
{ |
|
82
|
|
|
|
|
|
|
#ifdef HAVE_LAPACK /* use BLAS matrix multiply */ |
|
83
|
|
|
|
|
|
|
|
|
84
|
|
|
|
|
|
|
LM_REAL alpha=LM_CNST(1.0), beta=LM_CNST(0.0); |
|
85
|
|
|
|
|
|
|
/* Fool BLAS to compute a^T*a avoiding transposing a: a is equivalent to a^T in column major, |
|
86
|
|
|
|
|
|
|
* therefore BLAS computes a*a^T with a and a*a^T in column major, which is equivalent to |
|
87
|
|
|
|
|
|
|
* computing a^T*a in row major! |
|
88
|
|
|
|
|
|
|
*/ |
|
89
|
|
|
|
|
|
|
GEMM("N", "T", &m, &m, &n, &alpha, a, &m, a, &m, &beta, b, &m); |
|
90
|
|
|
|
|
|
|
|
|
91
|
|
|
|
|
|
|
#else /* no LAPACK, use blocking-based multiply */ |
|
92
|
|
|
|
|
|
|
|
|
93
|
|
|
|
|
|
|
register int i, j, k, jj, kk; |
|
94
|
|
|
|
|
|
|
register LM_REAL sum, *bim, *akm; |
|
95
|
747
|
|
|
|
|
|
const int bsize=__BLOCKSZ__; |
|
96
|
|
|
|
|
|
|
|
|
97
|
|
|
|
|
|
|
#define __MIN__(x, y) (((x)<=(y))? (x) : (y)) |
|
98
|
|
|
|
|
|
|
#define __MAX__(x, y) (((x)>=(y))? (x) : (y)) |
|
99
|
|
|
|
|
|
|
|
|
100
|
|
|
|
|
|
|
/* compute upper triangular part using blocking */ |
|
101
|
1494
|
100
|
|
|
|
|
for(jj=0; jj
|
|
|
|
100
|
|
|
|
|
|
|
102
|
2359
|
100
|
|
|
|
|
for(i=0; i
|
|
|
|
100
|
|
|
|
|
|
|
103
|
1612
|
|
|
|
|
|
bim=b+i*m; |
|
104
|
4207
|
100
|
|
|
|
|
for(j=__MAX__(jj, i); j<__MIN__(jj+bsize, m); ++j) |
|
|
|
100
|
|
|
|
|
|
|
105
|
2595
|
|
|
|
|
|
bim[j]=0.0; //b[i*m+j]=0.0; |
|
106
|
|
|
|
|
|
|
} |
|
107
|
|
|
|
|
|
|
|
|
108
|
81569
|
100
|
|
|
|
|
for(kk=0; kk
|
|
|
|
100
|
|
|
|
|
|
|
109
|
253704
|
100
|
|
|
|
|
for(i=0; i
|
|
|
|
100
|
|
|
|
|
|
|
110
|
172882
|
|
|
|
|
|
bim=b+i*m; |
|
111
|
449062
|
100
|
|
|
|
|
for(j=__MAX__(jj, i); j<__MIN__(jj+bsize, m); ++j){ |
|
|
|
100
|
|
|
|
|
|
|
112
|
276180
|
|
|
|
|
|
sum=0.0; |
|
113
|
9058536
|
100
|
|
|
|
|
for(k=kk; k<__MIN__(kk+bsize, n); ++k){ |
|
|
|
100
|
|
|
|
|
|
|
114
|
8782356
|
|
|
|
|
|
akm=a+k*m; |
|
115
|
8782356
|
|
|
|
|
|
sum+=akm[i]*akm[j]; //a[k*m+i]*a[k*m+j]; |
|
116
|
|
|
|
|
|
|
} |
|
117
|
276180
|
|
|
|
|
|
bim[j]+=sum; //b[i*m+j]+=sum; |
|
118
|
|
|
|
|
|
|
} |
|
119
|
|
|
|
|
|
|
} |
|
120
|
|
|
|
|
|
|
} |
|
121
|
|
|
|
|
|
|
} |
|
122
|
|
|
|
|
|
|
|
|
123
|
|
|
|
|
|
|
/* copy upper triangular part to the lower one */ |
|
124
|
2359
|
100
|
|
|
|
|
for(i=0; i
|
|
|
|
100
|
|
|
|
|
|
|
125
|
2595
|
100
|
|
|
|
|
for(j=0; j
|
|
|
|
100
|
|
|
|
|
|
|
126
|
983
|
|
|
|
|
|
b[i*m+j]=b[j*m+i]; |
|
127
|
|
|
|
|
|
|
|
|
128
|
|
|
|
|
|
|
#undef __MIN__ |
|
129
|
|
|
|
|
|
|
#undef __MAX__ |
|
130
|
|
|
|
|
|
|
|
|
131
|
|
|
|
|
|
|
#endif /* HAVE_LAPACK */ |
|
132
|
747
|
|
|
|
|
|
} |
|
133
|
|
|
|
|
|
|
|
|
134
|
|
|
|
|
|
|
/* forward finite difference approximation to the Jacobian of func */ |
|
135
|
15392
|
|
|
|
|
|
void LEVMAR_FDIF_FORW_JAC_APPROX( |
|
136
|
|
|
|
|
|
|
void (*func)(LM_REAL *p, LM_REAL *hx, int m, int n, void *adata), |
|
137
|
|
|
|
|
|
|
/* function to differentiate */ |
|
138
|
|
|
|
|
|
|
LM_REAL *p, /* I: current parameter estimate, mx1 */ |
|
139
|
|
|
|
|
|
|
LM_REAL *hx, /* I: func evaluated at p, i.e. hx=func(p), nx1 */ |
|
140
|
|
|
|
|
|
|
LM_REAL *hxx, /* W/O: work array for evaluating func(p+delta), nx1 */ |
|
141
|
|
|
|
|
|
|
LM_REAL delta, /* increment for computing the Jacobian */ |
|
142
|
|
|
|
|
|
|
LM_REAL *jac, /* O: array for storing approximated Jacobian, nxm */ |
|
143
|
|
|
|
|
|
|
int m, |
|
144
|
|
|
|
|
|
|
int n, |
|
145
|
|
|
|
|
|
|
void *adata) |
|
146
|
|
|
|
|
|
|
{ |
|
147
|
|
|
|
|
|
|
register int i, j; |
|
148
|
|
|
|
|
|
|
LM_REAL tmp; |
|
149
|
|
|
|
|
|
|
register LM_REAL d; |
|
150
|
|
|
|
|
|
|
|
|
151
|
76687
|
100
|
|
|
|
|
for(j=0; j
|
|
|
|
100
|
|
|
|
|
|
|
152
|
|
|
|
|
|
|
/* determine d=max(1E-04*|p[j]|, delta), see HZ */ |
|
153
|
61295
|
|
|
|
|
|
d=LM_CNST(1E-04)*p[j]; // force evaluation |
|
154
|
61295
|
100
|
|
|
|
|
d=FABS(d); |
|
|
|
100
|
|
|
|
|
|
|
155
|
61295
|
100
|
|
|
|
|
if(d
|
|
|
|
100
|
|
|
|
|
|
|
156
|
150
|
|
|
|
|
|
d=delta; |
|
157
|
|
|
|
|
|
|
|
|
158
|
61295
|
|
|
|
|
|
tmp=p[j]; |
|
159
|
61295
|
|
|
|
|
|
p[j]+=d; |
|
160
|
|
|
|
|
|
|
|
|
161
|
61295
|
|
|
|
|
|
(*func)(p, hxx, m, n, adata); |
|
162
|
|
|
|
|
|
|
|
|
163
|
61295
|
|
|
|
|
|
p[j]=tmp; /* restore */ |
|
164
|
|
|
|
|
|
|
|
|
165
|
61295
|
|
|
|
|
|
d=LM_CNST(1.0)/d; /* invert so that divisions can be carried out faster as multiplications */ |
|
166
|
629231
|
100
|
|
|
|
|
for(i=0; i
|
|
|
|
100
|
|
|
|
|
|
|
167
|
567936
|
|
|
|
|
|
jac[i*m+j]=(hxx[i]-hx[i])*d; |
|
168
|
|
|
|
|
|
|
} |
|
169
|
|
|
|
|
|
|
} |
|
170
|
15392
|
|
|
|
|
|
} |
|
171
|
|
|
|
|
|
|
|
|
172
|
|
|
|
|
|
|
/* central finite difference approximation to the Jacobian of func */ |
|
173
|
0
|
|
|
|
|
|
void LEVMAR_FDIF_CENT_JAC_APPROX( |
|
174
|
|
|
|
|
|
|
void (*func)(LM_REAL *p, LM_REAL *hx, int m, int n, void *adata), |
|
175
|
|
|
|
|
|
|
/* function to differentiate */ |
|
176
|
|
|
|
|
|
|
LM_REAL *p, /* I: current parameter estimate, mx1 */ |
|
177
|
|
|
|
|
|
|
LM_REAL *hxm, /* W/O: work array for evaluating func(p-delta), nx1 */ |
|
178
|
|
|
|
|
|
|
LM_REAL *hxp, /* W/O: work array for evaluating func(p+delta), nx1 */ |
|
179
|
|
|
|
|
|
|
LM_REAL delta, /* increment for computing the Jacobian */ |
|
180
|
|
|
|
|
|
|
LM_REAL *jac, /* O: array for storing approximated Jacobian, nxm */ |
|
181
|
|
|
|
|
|
|
int m, |
|
182
|
|
|
|
|
|
|
int n, |
|
183
|
|
|
|
|
|
|
void *adata) |
|
184
|
|
|
|
|
|
|
{ |
|
185
|
|
|
|
|
|
|
register int i, j; |
|
186
|
|
|
|
|
|
|
LM_REAL tmp; |
|
187
|
|
|
|
|
|
|
register LM_REAL d; |
|
188
|
|
|
|
|
|
|
|
|
189
|
0
|
0
|
|
|
|
|
for(j=0; j
|
|
|
|
0
|
|
|
|
|
|
|
190
|
|
|
|
|
|
|
/* determine d=max(1E-04*|p[j]|, delta), see HZ */ |
|
191
|
0
|
|
|
|
|
|
d=LM_CNST(1E-04)*p[j]; // force evaluation |
|
192
|
0
|
0
|
|
|
|
|
d=FABS(d); |
|
|
|
0
|
|
|
|
|
|
|
193
|
0
|
0
|
|
|
|
|
if(d
|
|
|
|
0
|
|
|
|
|
|
|
194
|
0
|
|
|
|
|
|
d=delta; |
|
195
|
|
|
|
|
|
|
|
|
196
|
0
|
|
|
|
|
|
tmp=p[j]; |
|
197
|
0
|
|
|
|
|
|
p[j]-=d; |
|
198
|
0
|
|
|
|
|
|
(*func)(p, hxm, m, n, adata); |
|
199
|
|
|
|
|
|
|
|
|
200
|
0
|
|
|
|
|
|
p[j]=tmp+d; |
|
201
|
0
|
|
|
|
|
|
(*func)(p, hxp, m, n, adata); |
|
202
|
0
|
|
|
|
|
|
p[j]=tmp; /* restore */ |
|
203
|
|
|
|
|
|
|
|
|
204
|
0
|
|
|
|
|
|
d=LM_CNST(0.5)/d; /* invert so that divisions can be carried out faster as multiplications */ |
|
205
|
0
|
0
|
|
|
|
|
for(i=0; i
|
|
|
|
0
|
|
|
|
|
|
|
206
|
0
|
|
|
|
|
|
jac[i*m+j]=(hxp[i]-hxm[i])*d; |
|
207
|
|
|
|
|
|
|
} |
|
208
|
|
|
|
|
|
|
} |
|
209
|
0
|
|
|
|
|
|
} |
|
210
|
|
|
|
|
|
|
|
|
211
|
|
|
|
|
|
|
/* |
|
212
|
|
|
|
|
|
|
* Check the Jacobian of a n-valued nonlinear function in m variables |
|
213
|
|
|
|
|
|
|
* evaluated at a point p, for consistency with the function itself. |
|
214
|
|
|
|
|
|
|
* |
|
215
|
|
|
|
|
|
|
* Based on fortran77 subroutine CHKDER by |
|
216
|
|
|
|
|
|
|
* Burton S. Garbow, Kenneth E. Hillstrom, Jorge J. More |
|
217
|
|
|
|
|
|
|
* Argonne National Laboratory. MINPACK project. March 1980. |
|
218
|
|
|
|
|
|
|
* |
|
219
|
|
|
|
|
|
|
* |
|
220
|
|
|
|
|
|
|
* func points to a function from R^m --> R^n: Given a p in R^m it yields hx in R^n |
|
221
|
|
|
|
|
|
|
* jacf points to a function implementing the Jacobian of func, whose correctness |
|
222
|
|
|
|
|
|
|
* is to be tested. Given a p in R^m, jacf computes into the nxm matrix j the |
|
223
|
|
|
|
|
|
|
* Jacobian of func at p. Note that row i of j corresponds to the gradient of |
|
224
|
|
|
|
|
|
|
* the i-th component of func, evaluated at p. |
|
225
|
|
|
|
|
|
|
* p is an input array of length m containing the point of evaluation. |
|
226
|
|
|
|
|
|
|
* m is the number of variables |
|
227
|
|
|
|
|
|
|
* n is the number of functions |
|
228
|
|
|
|
|
|
|
* adata points to possible additional data and is passed uninterpreted |
|
229
|
|
|
|
|
|
|
* to func, jacf. |
|
230
|
|
|
|
|
|
|
* err is an array of length n. On output, err contains measures |
|
231
|
|
|
|
|
|
|
* of correctness of the respective gradients. if there is |
|
232
|
|
|
|
|
|
|
* no severe loss of significance, then if err[i] is 1.0 the |
|
233
|
|
|
|
|
|
|
* i-th gradient is correct, while if err[i] is 0.0 the i-th |
|
234
|
|
|
|
|
|
|
* gradient is incorrect. For values of err between 0.0 and 1.0, |
|
235
|
|
|
|
|
|
|
* the categorization is less certain. In general, a value of |
|
236
|
|
|
|
|
|
|
* err[i] greater than 0.5 indicates that the i-th gradient is |
|
237
|
|
|
|
|
|
|
* probably correct, while a value of err[i] less than 0.5 |
|
238
|
|
|
|
|
|
|
* indicates that the i-th gradient is probably incorrect. |
|
239
|
|
|
|
|
|
|
* |
|
240
|
|
|
|
|
|
|
* |
|
241
|
|
|
|
|
|
|
* The function does not perform reliably if cancellation or |
|
242
|
|
|
|
|
|
|
* rounding errors cause a severe loss of significance in the |
|
243
|
|
|
|
|
|
|
* evaluation of a function. therefore, none of the components |
|
244
|
|
|
|
|
|
|
* of p should be unusually small (in particular, zero) or any |
|
245
|
|
|
|
|
|
|
* other value which may cause loss of significance. |
|
246
|
|
|
|
|
|
|
*/ |
|
247
|
|
|
|
|
|
|
|
|
248
|
4
|
|
|
|
|
|
void LEVMAR_CHKJAC( |
|
249
|
|
|
|
|
|
|
void (*func)(LM_REAL *p, LM_REAL *hx, int m, int n, void *adata), |
|
250
|
|
|
|
|
|
|
void (*jacf)(LM_REAL *p, LM_REAL *j, int m, int n, void *adata), |
|
251
|
|
|
|
|
|
|
LM_REAL *p, int m, int n, void *adata, LM_REAL *err) |
|
252
|
|
|
|
|
|
|
{ |
|
253
|
4
|
|
|
|
|
|
LM_REAL factor=LM_CNST(100.0); |
|
254
|
4
|
|
|
|
|
|
LM_REAL one=LM_CNST(1.0); |
|
255
|
4
|
|
|
|
|
|
LM_REAL zero=LM_CNST(0.0); |
|
256
|
|
|
|
|
|
|
LM_REAL *fvec, *fjac, *pp, *fvecp, *buf; |
|
257
|
|
|
|
|
|
|
|
|
258
|
|
|
|
|
|
|
register int i, j; |
|
259
|
|
|
|
|
|
|
LM_REAL eps, epsf, temp, epsmch; |
|
260
|
|
|
|
|
|
|
LM_REAL epslog; |
|
261
|
4
|
|
|
|
|
|
int fvec_sz=n, fjac_sz=n*m, pp_sz=m, fvecp_sz=n; |
|
262
|
|
|
|
|
|
|
|
|
263
|
4
|
|
|
|
|
|
epsmch=LM_REAL_EPSILON; |
|
264
|
4
|
|
|
|
|
|
eps=(LM_REAL)sqrt(epsmch); |
|
265
|
|
|
|
|
|
|
|
|
266
|
4
|
|
|
|
|
|
buf=(LM_REAL *)malloc((fvec_sz + fjac_sz + pp_sz + fvecp_sz)*sizeof(LM_REAL)); |
|
267
|
4
|
50
|
|
|
|
|
if(!buf){ |
|
|
|
50
|
|
|
|
|
|
|
268
|
0
|
|
|
|
|
|
fprintf(stderr, LCAT(LEVMAR_CHKJAC, "(): memory allocation request failed\n")); |
|
269
|
0
|
|
|
|
|
|
exit(1); |
|
270
|
|
|
|
|
|
|
} |
|
271
|
4
|
|
|
|
|
|
fvec=buf; |
|
272
|
4
|
|
|
|
|
|
fjac=fvec+fvec_sz; |
|
273
|
4
|
|
|
|
|
|
pp=fjac+fjac_sz; |
|
274
|
4
|
|
|
|
|
|
fvecp=pp+pp_sz; |
|
275
|
|
|
|
|
|
|
|
|
276
|
|
|
|
|
|
|
/* compute fvec=func(p) */ |
|
277
|
4
|
|
|
|
|
|
(*func)(p, fvec, m, n, adata); |
|
278
|
|
|
|
|
|
|
|
|
279
|
|
|
|
|
|
|
/* compute the Jacobian at p */ |
|
280
|
4
|
|
|
|
|
|
(*jacf)(p, fjac, m, n, adata); |
|
281
|
|
|
|
|
|
|
|
|
282
|
|
|
|
|
|
|
/* compute pp */ |
|
283
|
12
|
100
|
|
|
|
|
for(j=0; j
|
|
|
|
100
|
|
|
|
|
|
|
284
|
8
|
50
|
|
|
|
|
temp=eps*FABS(p[j]); |
|
|
|
50
|
|
|
|
|
|
|
285
|
8
|
50
|
|
|
|
|
if(temp==zero) temp=eps; |
|
|
|
50
|
|
|
|
|
|
|
286
|
8
|
|
|
|
|
|
pp[j]=p[j]+temp; |
|
287
|
|
|
|
|
|
|
} |
|
288
|
|
|
|
|
|
|
|
|
289
|
|
|
|
|
|
|
/* compute fvecp=func(pp) */ |
|
290
|
4
|
|
|
|
|
|
(*func)(pp, fvecp, m, n, adata); |
|
291
|
|
|
|
|
|
|
|
|
292
|
4
|
|
|
|
|
|
epsf=factor*epsmch; |
|
293
|
4
|
|
|
|
|
|
epslog=(LM_REAL)log10(eps); |
|
294
|
|
|
|
|
|
|
|
|
295
|
44
|
100
|
|
|
|
|
for(i=0; i
|
|
|
|
100
|
|
|
|
|
|
|
296
|
40
|
|
|
|
|
|
err[i]=zero; |
|
297
|
|
|
|
|
|
|
|
|
298
|
12
|
100
|
|
|
|
|
for(j=0; j
|
|
|
|
100
|
|
|
|
|
|
|
299
|
8
|
50
|
|
|
|
|
temp=FABS(p[j]); |
|
|
|
50
|
|
|
|
|
|
|
300
|
8
|
50
|
|
|
|
|
if(temp==zero) temp=one; |
|
|
|
50
|
|
|
|
|
|
|
301
|
|
|
|
|
|
|
|
|
302
|
88
|
100
|
|
|
|
|
for(i=0; i
|
|
|
|
100
|
|
|
|
|
|
|
303
|
80
|
|
|
|
|
|
err[i]+=temp*fjac[i*m+j]; |
|
304
|
|
|
|
|
|
|
} |
|
305
|
|
|
|
|
|
|
|
|
306
|
44
|
100
|
|
|
|
|
for(i=0; i
|
|
|
|
100
|
|
|
|
|
|
|
307
|
40
|
|
|
|
|
|
temp=one; |
|
308
|
40
|
50
|
|
|
|
|
if(fvec[i]!=zero && fvecp[i]!=zero && FABS(fvecp[i]-fvec[i])>=epsf*FABS(fvec[i])) |
|
|
|
50
|
|
|
|
|
|
|
|
|
100
|
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
|
|
|
100
|
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
|
309
|
40
|
100
|
|
|
|
|
temp=eps*FABS((fvecp[i]-fvec[i])/eps - err[i])/(FABS(fvec[i])+FABS(fvecp[i])); |
|
|
|
50
|
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
|
|
|
100
|
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
|
310
|
40
|
|
|
|
|
|
err[i]=one; |
|
311
|
40
|
100
|
|
|
|
|
if(temp>epsmch && temp
|
|
|
|
50
|
|
|
|
|
|
|
|
|
100
|
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
|
312
|
12
|
|
|
|
|
|
err[i]=((LM_REAL)log10(temp) - epslog)/epslog; |
|
313
|
40
|
50
|
|
|
|
|
if(temp>=eps) err[i]=zero; |
|
|
|
50
|
|
|
|
|
|
|
314
|
|
|
|
|
|
|
} |
|
315
|
|
|
|
|
|
|
|
|
316
|
4
|
|
|
|
|
|
free(buf); |
|
317
|
|
|
|
|
|
|
|
|
318
|
4
|
|
|
|
|
|
return; |
|
319
|
|
|
|
|
|
|
} |
|
320
|
|
|
|
|
|
|
|
|
321
|
|
|
|
|
|
|
#ifdef HAVE_LAPACK |
|
322
|
|
|
|
|
|
|
/* |
|
323
|
|
|
|
|
|
|
* This function computes the pseudoinverse of a square matrix A |
|
324
|
|
|
|
|
|
|
* into B using SVD. A and B can coincide |
|
325
|
|
|
|
|
|
|
* |
|
326
|
|
|
|
|
|
|
* The function returns 0 in case of error (e.g. A is singular), |
|
327
|
|
|
|
|
|
|
* the rank of A if successful |
|
328
|
|
|
|
|
|
|
* |
|
329
|
|
|
|
|
|
|
* A, B are mxm |
|
330
|
|
|
|
|
|
|
* |
|
331
|
|
|
|
|
|
|
*/ |
|
332
|
|
|
|
|
|
|
static int LEVMAR_PSEUDOINVERSE(LM_REAL *A, LM_REAL *B, int m) |
|
333
|
|
|
|
|
|
|
{ |
|
334
|
|
|
|
|
|
|
LM_REAL *buf=NULL; |
|
335
|
|
|
|
|
|
|
int buf_sz=0; |
|
336
|
|
|
|
|
|
|
static LM_REAL eps=LM_CNST(-1.0); |
|
337
|
|
|
|
|
|
|
|
|
338
|
|
|
|
|
|
|
register int i, j; |
|
339
|
|
|
|
|
|
|
LM_REAL *a, *u, *s, *vt, *work; |
|
340
|
|
|
|
|
|
|
int a_sz, u_sz, s_sz, vt_sz, tot_sz; |
|
341
|
|
|
|
|
|
|
LM_REAL thresh, one_over_denom; |
|
342
|
|
|
|
|
|
|
int info, rank, worksz, *iwork, iworksz; |
|
343
|
|
|
|
|
|
|
|
|
344
|
|
|
|
|
|
|
/* calculate required memory size */ |
|
345
|
|
|
|
|
|
|
worksz=5*m; // min worksize for GESVD |
|
346
|
|
|
|
|
|
|
//worksz=m*(7*m+4); // min worksize for GESDD |
|
347
|
|
|
|
|
|
|
iworksz=8*m; |
|
348
|
|
|
|
|
|
|
a_sz=m*m; |
|
349
|
|
|
|
|
|
|
u_sz=m*m; s_sz=m; vt_sz=m*m; |
|
350
|
|
|
|
|
|
|
|
|
351
|
|
|
|
|
|
|
tot_sz=(a_sz + u_sz + s_sz + vt_sz + worksz)*sizeof(LM_REAL) + iworksz*sizeof(int); /* should be arranged in that order for proper doubles alignment */ |
|
352
|
|
|
|
|
|
|
|
|
353
|
|
|
|
|
|
|
buf_sz=tot_sz; |
|
354
|
|
|
|
|
|
|
buf=(LM_REAL *)malloc(buf_sz); |
|
355
|
|
|
|
|
|
|
if(!buf){ |
|
356
|
|
|
|
|
|
|
fprintf(stderr, RCAT("memory allocation in ", LEVMAR_PSEUDOINVERSE) "() failed!\n"); |
|
357
|
|
|
|
|
|
|
return 0; /* error */ |
|
358
|
|
|
|
|
|
|
} |
|
359
|
|
|
|
|
|
|
|
|
360
|
|
|
|
|
|
|
a=buf; |
|
361
|
|
|
|
|
|
|
u=a+a_sz; |
|
362
|
|
|
|
|
|
|
s=u+u_sz; |
|
363
|
|
|
|
|
|
|
vt=s+s_sz; |
|
364
|
|
|
|
|
|
|
work=vt+vt_sz; |
|
365
|
|
|
|
|
|
|
iwork=(int *)(work+worksz); |
|
366
|
|
|
|
|
|
|
|
|
367
|
|
|
|
|
|
|
/* store A (column major!) into a */ |
|
368
|
|
|
|
|
|
|
for(i=0; i
|
|
369
|
|
|
|
|
|
|
for(j=0; j
|
|
370
|
|
|
|
|
|
|
a[i+j*m]=A[i*m+j]; |
|
371
|
|
|
|
|
|
|
|
|
372
|
|
|
|
|
|
|
/* SVD decomposition of A */ |
|
373
|
|
|
|
|
|
|
GESVD("A", "A", (int *)&m, (int *)&m, a, (int *)&m, s, u, (int *)&m, vt, (int *)&m, work, (int *)&worksz, &info); |
|
374
|
|
|
|
|
|
|
//GESDD("A", (int *)&m, (int *)&m, a, (int *)&m, s, u, (int *)&m, vt, (int *)&m, work, (int *)&worksz, iwork, &info); |
|
375
|
|
|
|
|
|
|
|
|
376
|
|
|
|
|
|
|
/* error treatment */ |
|
377
|
|
|
|
|
|
|
if(info!=0){ |
|
378
|
|
|
|
|
|
|
if(info<0){ |
|
379
|
|
|
|
|
|
|
fprintf(stderr, RCAT(RCAT(RCAT("LAPACK error: illegal value for argument %d of ", GESVD), "/" GESDD) " in ", LEVMAR_PSEUDOINVERSE) "()\n", -info); |
|
380
|
|
|
|
|
|
|
} |
|
381
|
|
|
|
|
|
|
else{ |
|
382
|
|
|
|
|
|
|
fprintf(stderr, RCAT("LAPACK error: dgesdd (dbdsdc)/dgesvd (dbdsqr) failed to converge in ", LEVMAR_PSEUDOINVERSE) "() [info=%d]\n", info); |
|
383
|
|
|
|
|
|
|
} |
|
384
|
|
|
|
|
|
|
free(buf); |
|
385
|
|
|
|
|
|
|
return 0; |
|
386
|
|
|
|
|
|
|
} |
|
387
|
|
|
|
|
|
|
|
|
388
|
|
|
|
|
|
|
if(eps<0.0){ |
|
389
|
|
|
|
|
|
|
LM_REAL aux; |
|
390
|
|
|
|
|
|
|
|
|
391
|
|
|
|
|
|
|
/* compute machine epsilon */ |
|
392
|
|
|
|
|
|
|
for(eps=LM_CNST(1.0); aux=eps+LM_CNST(1.0), aux-LM_CNST(1.0)>0.0; eps*=LM_CNST(0.5)) |
|
393
|
|
|
|
|
|
|
; |
|
394
|
|
|
|
|
|
|
eps*=LM_CNST(2.0); |
|
395
|
|
|
|
|
|
|
} |
|
396
|
|
|
|
|
|
|
|
|
397
|
|
|
|
|
|
|
/* compute the pseudoinverse in B */ |
|
398
|
|
|
|
|
|
|
for(i=0; i
|
|
399
|
|
|
|
|
|
|
for(rank=0, thresh=eps*s[0]; rankthresh; rank++){ |
|
400
|
|
|
|
|
|
|
one_over_denom=LM_CNST(1.0)/s[rank]; |
|
401
|
|
|
|
|
|
|
|
|
402
|
|
|
|
|
|
|
for(j=0; j
|
|
403
|
|
|
|
|
|
|
for(i=0; i
|
|
404
|
|
|
|
|
|
|
B[i*m+j]+=vt[rank+i*m]*u[j+rank*m]*one_over_denom; |
|
405
|
|
|
|
|
|
|
} |
|
406
|
|
|
|
|
|
|
|
|
407
|
|
|
|
|
|
|
free(buf); |
|
408
|
|
|
|
|
|
|
|
|
409
|
|
|
|
|
|
|
return rank; |
|
410
|
|
|
|
|
|
|
} |
|
411
|
|
|
|
|
|
|
#else // no LAPACK |
|
412
|
|
|
|
|
|
|
|
|
413
|
|
|
|
|
|
|
/* |
|
414
|
|
|
|
|
|
|
* This function computes the inverse of A in B. A and B can coincide |
|
415
|
|
|
|
|
|
|
* |
|
416
|
|
|
|
|
|
|
* The function employs LAPACK-free LU decomposition of A to solve m linear |
|
417
|
|
|
|
|
|
|
* systems A*B_i=I_i, where B_i and I_i are the i-th columns of B and I. |
|
418
|
|
|
|
|
|
|
* |
|
419
|
|
|
|
|
|
|
* A and B are mxm |
|
420
|
|
|
|
|
|
|
* |
|
421
|
|
|
|
|
|
|
* The function returns 0 in case of error, 1 if successful |
|
422
|
|
|
|
|
|
|
* |
|
423
|
|
|
|
|
|
|
*/ |
|
424
|
159
|
|
|
|
|
|
static int LEVMAR_LUINVERSE(LM_REAL *A, LM_REAL *B, int m) |
|
425
|
|
|
|
|
|
|
{ |
|
426
|
159
|
|
|
|
|
|
void *buf=NULL; |
|
427
|
159
|
|
|
|
|
|
int buf_sz=0; |
|
428
|
|
|
|
|
|
|
|
|
429
|
|
|
|
|
|
|
register int i, j, k, l; |
|
430
|
159
|
|
|
|
|
|
int *idx, maxi=-1, idx_sz, a_sz, x_sz, work_sz, tot_sz; |
|
431
|
|
|
|
|
|
|
LM_REAL *a, *x, *work, max, sum, tmp; |
|
432
|
|
|
|
|
|
|
|
|
433
|
|
|
|
|
|
|
/* calculate required memory size */ |
|
434
|
159
|
|
|
|
|
|
idx_sz=m; |
|
435
|
159
|
|
|
|
|
|
a_sz=m*m; |
|
436
|
159
|
|
|
|
|
|
x_sz=m; |
|
437
|
159
|
|
|
|
|
|
work_sz=m; |
|
438
|
159
|
|
|
|
|
|
tot_sz=(a_sz + x_sz + work_sz)*sizeof(LM_REAL) + idx_sz*sizeof(int); /* should be arranged in that order for proper doubles alignment */ |
|
439
|
|
|
|
|
|
|
|
|
440
|
159
|
|
|
|
|
|
buf_sz=tot_sz; |
|
441
|
159
|
|
|
|
|
|
buf=(void *)malloc(tot_sz); |
|
442
|
159
|
50
|
|
|
|
|
if(!buf){ |
|
|
|
50
|
|
|
|
|
|
|
443
|
0
|
|
|
|
|
|
fprintf(stderr, RCAT("memory allocation in ", LEVMAR_LUINVERSE) "() failed!\n"); |
|
444
|
0
|
|
|
|
|
|
return 0; /* error */ |
|
445
|
|
|
|
|
|
|
} |
|
446
|
|
|
|
|
|
|
|
|
447
|
159
|
|
|
|
|
|
a=buf; |
|
448
|
159
|
|
|
|
|
|
x=a+a_sz; |
|
449
|
159
|
|
|
|
|
|
work=x+x_sz; |
|
450
|
159
|
|
|
|
|
|
idx=(int *)(work+work_sz); |
|
451
|
|
|
|
|
|
|
|
|
452
|
|
|
|
|
|
|
/* avoid destroying A by copying it to a */ |
|
453
|
1058
|
100
|
|
|
|
|
for(i=0; i
|
|
|
|
100
|
|
|
|
|
|
|
454
|
|
|
|
|
|
|
|
|
455
|
|
|
|
|
|
|
/* compute the LU decomposition of a row permutation of matrix a; the permutation itself is saved in idx[] */ |
|
456
|
524
|
100
|
|
|
|
|
for(i=0; i
|
|
|
|
100
|
|
|
|
|
|
|
457
|
365
|
|
|
|
|
|
max=0.0; |
|
458
|
1264
|
100
|
|
|
|
|
for(j=0; j
|
|
|
|
100
|
|
|
|
|
|
|
459
|
899
|
100
|
|
|
|
|
if((tmp=FABS(a[i*m+j]))>max) |
|
|
|
100
|
|
|
|
|
|
|
|
|
100
|
|
|
|
|
|
|
|
|
100
|
|
|
|
|
|
|
460
|
556
|
|
|
|
|
|
max=tmp; |
|
461
|
365
|
50
|
|
|
|
|
if(max==0.0){ |
|
|
|
50
|
|
|
|
|
|
|
462
|
0
|
|
|
|
|
|
fprintf(stderr, RCAT("Singular matrix A in ", LEVMAR_LUINVERSE) "()!\n"); |
|
463
|
0
|
|
|
|
|
|
free(buf); |
|
464
|
|
|
|
|
|
|
|
|
465
|
0
|
|
|
|
|
|
return 0; |
|
466
|
|
|
|
|
|
|
} |
|
467
|
365
|
|
|
|
|
|
work[i]=LM_CNST(1.0)/max; |
|
468
|
|
|
|
|
|
|
} |
|
469
|
|
|
|
|
|
|
|
|
470
|
524
|
100
|
|
|
|
|
for(j=0; j
|
|
|
|
100
|
|
|
|
|
|
|
471
|
632
|
100
|
|
|
|
|
for(i=0; i
|
|
|
|
100
|
|
|
|
|
|
|
472
|
267
|
|
|
|
|
|
sum=a[i*m+j]; |
|
473
|
342
|
100
|
|
|
|
|
for(k=0; k
|
|
|
|
100
|
|
|
|
|
|
|
474
|
75
|
|
|
|
|
|
sum-=a[i*m+k]*a[k*m+j]; |
|
475
|
267
|
|
|
|
|
|
a[i*m+j]=sum; |
|
476
|
|
|
|
|
|
|
} |
|
477
|
365
|
|
|
|
|
|
max=0.0; |
|
478
|
997
|
100
|
|
|
|
|
for(i=j; i
|
|
|
|
100
|
|
|
|
|
|
|
479
|
632
|
|
|
|
|
|
sum=a[i*m+j]; |
|
480
|
974
|
100
|
|
|
|
|
for(k=0; k
|
|
|
|
100
|
|
|
|
|
|
|
481
|
342
|
|
|
|
|
|
sum-=a[i*m+k]*a[k*m+j]; |
|
482
|
632
|
|
|
|
|
|
a[i*m+j]=sum; |
|
483
|
632
|
100
|
|
|
|
|
if((tmp=work[i]*FABS(sum))>=max){ |
|
|
|
100
|
|
|
|
|
|
|
|
|
100
|
|
|
|
|
|
|
|
|
100
|
|
|
|
|
|
|
484
|
458
|
|
|
|
|
|
max=tmp; |
|
485
|
458
|
|
|
|
|
|
maxi=i; |
|
486
|
|
|
|
|
|
|
} |
|
487
|
|
|
|
|
|
|
} |
|
488
|
365
|
100
|
|
|
|
|
if(j!=maxi){ |
|
|
|
100
|
|
|
|
|
|
|
489
|
317
|
100
|
|
|
|
|
for(k=0; k
|
|
|
|
100
|
|
|
|
|
|
|
490
|
226
|
|
|
|
|
|
tmp=a[maxi*m+k]; |
|
491
|
226
|
|
|
|
|
|
a[maxi*m+k]=a[j*m+k]; |
|
492
|
226
|
|
|
|
|
|
a[j*m+k]=tmp; |
|
493
|
|
|
|
|
|
|
} |
|
494
|
91
|
|
|
|
|
|
work[maxi]=work[j]; |
|
495
|
|
|
|
|
|
|
} |
|
496
|
365
|
|
|
|
|
|
idx[j]=maxi; |
|
497
|
365
|
50
|
|
|
|
|
if(a[j*m+j]==0.0) |
|
|
|
100
|
|
|
|
|
|
|
498
|
2
|
|
|
|
|
|
a[j*m+j]=LM_REAL_EPSILON; |
|
499
|
365
|
100
|
|
|
|
|
if(j!=m-1){ |
|
|
|
100
|
|
|
|
|
|
|
500
|
206
|
|
|
|
|
|
tmp=LM_CNST(1.0)/(a[j*m+j]); |
|
501
|
473
|
100
|
|
|
|
|
for(i=j+1; i
|
|
|
|
100
|
|
|
|
|
|
|
502
|
267
|
|
|
|
|
|
a[i*m+j]*=tmp; |
|
503
|
|
|
|
|
|
|
} |
|
504
|
|
|
|
|
|
|
} |
|
505
|
|
|
|
|
|
|
|
|
506
|
|
|
|
|
|
|
/* The decomposition has now replaced a. Solve the m linear systems using |
|
507
|
|
|
|
|
|
|
* forward and back substitution |
|
508
|
|
|
|
|
|
|
*/ |
|
509
|
524
|
100
|
|
|
|
|
for(l=0; l
|
|
|
|
100
|
|
|
|
|
|
|
510
|
1264
|
100
|
|
|
|
|
for(i=0; i
|
|
|
|
100
|
|
|
|
|
|
|
511
|
365
|
|
|
|
|
|
x[l]=LM_CNST(1.0); |
|
512
|
|
|
|
|
|
|
|
|
513
|
1264
|
100
|
|
|
|
|
for(i=k=0; i
|
|
|
|
100
|
|
|
|
|
|
|
514
|
899
|
|
|
|
|
|
j=idx[i]; |
|
515
|
899
|
|
|
|
|
|
sum=x[j]; |
|
516
|
899
|
|
|
|
|
|
x[j]=x[i]; |
|
517
|
899
|
100
|
|
|
|
|
if(k!=0) |
|
|
|
100
|
|
|
|
|
|
|
518
|
609
|
100
|
|
|
|
|
for(j=k-1; j
|
|
|
|
100
|
|
|
|
|
|
|
519
|
342
|
|
|
|
|
|
sum-=a[i*m+j]*x[j]; |
|
520
|
|
|
|
|
|
|
else |
|
521
|
632
|
100
|
|
|
|
|
if(sum!=0.0) |
|
|
|
100
|
|
|
|
|
|
|
522
|
365
|
|
|
|
|
|
k=i+1; |
|
523
|
899
|
|
|
|
|
|
x[i]=sum; |
|
524
|
|
|
|
|
|
|
} |
|
525
|
|
|
|
|
|
|
|
|
526
|
1264
|
100
|
|
|
|
|
for(i=m-1; i>=0; --i){ |
|
|
|
100
|
|
|
|
|
|
|
527
|
899
|
|
|
|
|
|
sum=x[i]; |
|
528
|
1658
|
100
|
|
|
|
|
for(j=i+1; j
|
|
|
|
100
|
|
|
|
|
|
|
529
|
759
|
|
|
|
|
|
sum-=a[i*m+j]*x[j]; |
|
530
|
899
|
|
|
|
|
|
x[i]=sum/a[i*m+i]; |
|
531
|
|
|
|
|
|
|
} |
|
532
|
|
|
|
|
|
|
|
|
533
|
1264
|
100
|
|
|
|
|
for(i=0; i
|
|
|
|
100
|
|
|
|
|
|
|
534
|
899
|
|
|
|
|
|
B[i*m+l]=x[i]; |
|
535
|
|
|
|
|
|
|
} |
|
536
|
|
|
|
|
|
|
|
|
537
|
159
|
|
|
|
|
|
free(buf); |
|
538
|
|
|
|
|
|
|
|
|
539
|
159
|
|
|
|
|
|
return 1; |
|
540
|
|
|
|
|
|
|
} |
|
541
|
|
|
|
|
|
|
#endif /* HAVE_LAPACK */ |
|
542
|
|
|
|
|
|
|
|
|
543
|
|
|
|
|
|
|
/* |
|
544
|
|
|
|
|
|
|
* This function computes in C the covariance matrix corresponding to a least |
|
545
|
|
|
|
|
|
|
* squares fit. JtJ is the approximate Hessian at the solution (i.e. J^T*J, where |
|
546
|
|
|
|
|
|
|
* J is the Jacobian at the solution), sumsq is the sum of squared residuals |
|
547
|
|
|
|
|
|
|
* (i.e. goodnes of fit) at the solution, m is the number of parameters (variables) |
|
548
|
|
|
|
|
|
|
* and n the number of observations. JtJ can coincide with C. |
|
549
|
|
|
|
|
|
|
* |
|
550
|
|
|
|
|
|
|
* if JtJ is of full rank, C is computed as sumsq/(n-m)*(JtJ)^-1 |
|
551
|
|
|
|
|
|
|
* otherwise and if LAPACK is available, C=sumsq/(n-r)*(JtJ)^+ |
|
552
|
|
|
|
|
|
|
* where r is JtJ's rank and ^+ denotes the pseudoinverse |
|
553
|
|
|
|
|
|
|
* The diagonal of C is made up from the estimates of the variances |
|
554
|
|
|
|
|
|
|
* of the estimated regression coefficients. |
|
555
|
|
|
|
|
|
|
* See the documentation of routine E04YCF from the NAG fortran lib |
|
556
|
|
|
|
|
|
|
* |
|
557
|
|
|
|
|
|
|
* The function returns the rank of JtJ if successful, 0 on error |
|
558
|
|
|
|
|
|
|
* |
|
559
|
|
|
|
|
|
|
* A and C are mxm |
|
560
|
|
|
|
|
|
|
* |
|
561
|
|
|
|
|
|
|
*/ |
|
562
|
159
|
|
|
|
|
|
int LEVMAR_COVAR(LM_REAL *JtJ, LM_REAL *C, LM_REAL sumsq, int m, int n) |
|
563
|
|
|
|
|
|
|
{ |
|
564
|
|
|
|
|
|
|
register int i; |
|
565
|
|
|
|
|
|
|
int rnk; |
|
566
|
|
|
|
|
|
|
LM_REAL fact; |
|
567
|
|
|
|
|
|
|
|
|
568
|
|
|
|
|
|
|
#ifdef HAVE_LAPACK |
|
569
|
|
|
|
|
|
|
rnk=LEVMAR_PSEUDOINVERSE(JtJ, C, m); |
|
570
|
|
|
|
|
|
|
if(!rnk) return 0; |
|
571
|
|
|
|
|
|
|
#else |
|
572
|
|
|
|
|
|
|
#ifdef _MSC_VER |
|
573
|
|
|
|
|
|
|
#pragma message("LAPACK not available, LU will be used for matrix inversion when computing the covariance; this might be unstable at times") |
|
574
|
|
|
|
|
|
|
#else |
|
575
|
|
|
|
|
|
|
#warning LAPACK not available, LU will be used for matrix inversion when computing the covariance; this might be unstable at times |
|
576
|
|
|
|
|
|
|
#endif // _MSC_VER |
|
577
|
|
|
|
|
|
|
|
|
578
|
159
|
|
|
|
|
|
rnk=LEVMAR_LUINVERSE(JtJ, C, m); |
|
579
|
159
|
50
|
|
|
|
|
if(!rnk) return 0; |
|
|
|
50
|
|
|
|
|
|
|
580
|
|
|
|
|
|
|
|
|
581
|
159
|
|
|
|
|
|
rnk=m; /* assume full rank */ |
|
582
|
|
|
|
|
|
|
#endif /* HAVE_LAPACK */ |
|
583
|
|
|
|
|
|
|
|
|
584
|
159
|
|
|
|
|
|
fact=sumsq/(LM_REAL)(n-rnk); |
|
585
|
1058
|
100
|
|
|
|
|
for(i=0; i
|
|
|
|
100
|
|
|
|
|
|
|
586
|
899
|
|
|
|
|
|
C[i]*=fact; |
|
587
|
|
|
|
|
|
|
|
|
588
|
159
|
|
|
|
|
|
return rnk; |
|
589
|
|
|
|
|
|
|
} |
|
590
|
|
|
|
|
|
|
|
|
591
|
|
|
|
|
|
|
/* standard deviation of the best-fit parameter i. |
|
592
|
|
|
|
|
|
|
* covar is the mxm covariance matrix of the best-fit parameters (see also LEVMAR_COVAR()). |
|
593
|
|
|
|
|
|
|
* |
|
594
|
|
|
|
|
|
|
* The standard deviation is computed as \sigma_{i} = \sqrt{C_{ii}} |
|
595
|
|
|
|
|
|
|
*/ |
|
596
|
0
|
|
|
|
|
|
LM_REAL LEVMAR_STDDEV(LM_REAL *covar, int m, int i) |
|
597
|
|
|
|
|
|
|
{ |
|
598
|
0
|
|
|
|
|
|
return (LM_REAL)sqrt(covar[i*m+i]); |
|
599
|
|
|
|
|
|
|
} |
|
600
|
|
|
|
|
|
|
|
|
601
|
|
|
|
|
|
|
/* Pearson's correlation coefficient of the best-fit parameters i and j. |
|
602
|
|
|
|
|
|
|
* covar is the mxm covariance matrix of the best-fit parameters (see also LEVMAR_COVAR()). |
|
603
|
|
|
|
|
|
|
* |
|
604
|
|
|
|
|
|
|
* The coefficient is computed as \rho_{ij} = C_{ij} / sqrt(C_{ii} C_{jj}) |
|
605
|
|
|
|
|
|
|
*/ |
|
606
|
0
|
|
|
|
|
|
LM_REAL LEVMAR_CORCOEF(LM_REAL *covar, int m, int i, int j) |
|
607
|
|
|
|
|
|
|
{ |
|
608
|
0
|
|
|
|
|
|
return (LM_REAL)(covar[i*m+j]/sqrt(covar[i*m+i]*covar[j*m+j])); |
|
609
|
|
|
|
|
|
|
} |
|
610
|
|
|
|
|
|
|
|
|
611
|
|
|
|
|
|
|
/* coefficient of determination. |
|
612
|
|
|
|
|
|
|
* see http://en.wikipedia.org/wiki/Coefficient_of_determination |
|
613
|
|
|
|
|
|
|
*/ |
|
614
|
0
|
|
|
|
|
|
LM_REAL LEVMAR_R2(void (*func)(LM_REAL *p, LM_REAL *hx, int m, int n, void *adata), |
|
615
|
|
|
|
|
|
|
LM_REAL *p, LM_REAL *x, int m, int n, void *adata) |
|
616
|
|
|
|
|
|
|
{ |
|
617
|
|
|
|
|
|
|
register int i; |
|
618
|
|
|
|
|
|
|
register LM_REAL tmp; |
|
619
|
|
|
|
|
|
|
LM_REAL SSerr, // sum of squared errors, i.e. residual sum of squares \sum_i (x_i-hx_i)^2 |
|
620
|
|
|
|
|
|
|
SStot, // \sum_i (x_i-xavg)^2 |
|
621
|
|
|
|
|
|
|
*hx, xavg; |
|
622
|
|
|
|
|
|
|
|
|
623
|
|
|
|
|
|
|
|
|
624
|
0
|
0
|
|
|
|
|
if((hx=(LM_REAL *)malloc(n*sizeof(LM_REAL)))==NULL){ |
|
|
|
0
|
|
|
|
|
|
|
625
|
0
|
|
|
|
|
|
fprintf(stderr, RCAT("memory allocation request failed in ", LEVMAR_R2) "()\n"); |
|
626
|
0
|
|
|
|
|
|
exit(1); |
|
627
|
|
|
|
|
|
|
} |
|
628
|
|
|
|
|
|
|
|
|
629
|
|
|
|
|
|
|
/* hx=f(p) */ |
|
630
|
0
|
|
|
|
|
|
(*func)(p, hx, m, n, adata); |
|
631
|
|
|
|
|
|
|
|
|
632
|
0
|
0
|
|
|
|
|
for(i=0, tmp=0.0; i
|
|
|
|
0
|
|
|
|
|
|
|
633
|
0
|
|
|
|
|
|
tmp+=x[i]; |
|
634
|
0
|
|
|
|
|
|
xavg=tmp/(LM_REAL)n; |
|
635
|
|
|
|
|
|
|
|
|
636
|
0
|
0
|
|
|
|
|
for(i=0, SSerr=SStot=0.0; i
|
|
|
|
0
|
|
|
|
|
|
|
637
|
0
|
|
|
|
|
|
tmp=x[i]-hx[i]; |
|
638
|
0
|
|
|
|
|
|
SSerr+=tmp*tmp; |
|
639
|
|
|
|
|
|
|
|
|
640
|
0
|
|
|
|
|
|
tmp=x[i]-xavg; |
|
641
|
0
|
|
|
|
|
|
SStot+=tmp*tmp; |
|
642
|
|
|
|
|
|
|
} |
|
643
|
|
|
|
|
|
|
|
|
644
|
0
|
|
|
|
|
|
free(hx); |
|
645
|
|
|
|
|
|
|
|
|
646
|
0
|
|
|
|
|
|
return LM_CNST(1.0) - SSerr/SStot; |
|
647
|
|
|
|
|
|
|
} |
|
648
|
|
|
|
|
|
|
|
|
649
|
|
|
|
|
|
|
/* check box constraints for consistency */ |
|
650
|
16
|
|
|
|
|
|
int LEVMAR_BOX_CHECK(LM_REAL *lb, LM_REAL *ub, int m) |
|
651
|
|
|
|
|
|
|
{ |
|
652
|
|
|
|
|
|
|
register int i; |
|
653
|
|
|
|
|
|
|
|
|
654
|
16
|
50
|
|
|
|
|
if(!lb || !ub) return 1; |
|
|
|
50
|
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
|
655
|
|
|
|
|
|
|
|
|
656
|
78
|
100
|
|
|
|
|
for(i=0; i
|
|
|
|
100
|
|
|
|
|
|
|
657
|
62
|
50
|
|
|
|
|
if(lb[i]>ub[i]) return 0; |
|
|
|
50
|
|
|
|
|
|
|
658
|
|
|
|
|
|
|
|
|
659
|
16
|
|
|
|
|
|
return 1; |
|
660
|
|
|
|
|
|
|
} |
|
661
|
|
|
|
|
|
|
|
|
662
|
|
|
|
|
|
|
#ifdef HAVE_LAPACK |
|
663
|
|
|
|
|
|
|
|
|
664
|
|
|
|
|
|
|
/* compute the Cholesky decomposition of C in W, s.t. C=W^t W and W is upper triangular */ |
|
665
|
|
|
|
|
|
|
int LEVMAR_CHOLESKY(LM_REAL *C, LM_REAL *W, int m) |
|
666
|
|
|
|
|
|
|
{ |
|
667
|
|
|
|
|
|
|
register int i, j; |
|
668
|
|
|
|
|
|
|
int info; |
|
669
|
|
|
|
|
|
|
|
|
670
|
|
|
|
|
|
|
/* copy weights array C to W so that LAPACK won't destroy it; |
|
671
|
|
|
|
|
|
|
* C is assumed symmetric, hence no transposition is needed |
|
672
|
|
|
|
|
|
|
*/ |
|
673
|
|
|
|
|
|
|
for(i=0, j=m*m; i
|
|
674
|
|
|
|
|
|
|
W[i]=C[i]; |
|
675
|
|
|
|
|
|
|
|
|
676
|
|
|
|
|
|
|
/* Cholesky decomposition */ |
|
677
|
|
|
|
|
|
|
POTF2("U", (int *)&m, W, (int *)&m, (int *)&info); |
|
678
|
|
|
|
|
|
|
/* error treatment */ |
|
679
|
|
|
|
|
|
|
if(info!=0){ |
|
680
|
|
|
|
|
|
|
if(info<0){ |
|
681
|
|
|
|
|
|
|
fprintf(stderr, "LAPACK error: illegal value for argument %d of dpotf2 in %s\n", -info, LCAT(LEVMAR_CHOLESKY, "()")); |
|
682
|
|
|
|
|
|
|
} |
|
683
|
|
|
|
|
|
|
else{ |
|
684
|
|
|
|
|
|
|
fprintf(stderr, "LAPACK error: the leading minor of order %d is not positive definite,\n%s()\n", info, |
|
685
|
|
|
|
|
|
|
RCAT("and the Cholesky factorization could not be completed in ", LEVMAR_CHOLESKY)); |
|
686
|
|
|
|
|
|
|
} |
|
687
|
|
|
|
|
|
|
return LM_ERROR; |
|
688
|
|
|
|
|
|
|
} |
|
689
|
|
|
|
|
|
|
|
|
690
|
|
|
|
|
|
|
/* the decomposition is in the upper part of W (in column-major order!). |
|
691
|
|
|
|
|
|
|
* copying it to the lower part and zeroing the upper transposes |
|
692
|
|
|
|
|
|
|
* W in row-major order |
|
693
|
|
|
|
|
|
|
*/ |
|
694
|
|
|
|
|
|
|
for(i=0; i
|
|
695
|
|
|
|
|
|
|
for(j=0; j
|
|
696
|
|
|
|
|
|
|
W[i+j*m]=W[j+i*m]; |
|
697
|
|
|
|
|
|
|
W[j+i*m]=0.0; |
|
698
|
|
|
|
|
|
|
} |
|
699
|
|
|
|
|
|
|
|
|
700
|
|
|
|
|
|
|
return 0; |
|
701
|
|
|
|
|
|
|
} |
|
702
|
|
|
|
|
|
|
#endif /* HAVE_LAPACK */ |
|
703
|
|
|
|
|
|
|
|
|
704
|
|
|
|
|
|
|
|
|
705
|
|
|
|
|
|
|
/* Compute e=x-y for two n-vectors x and y and return the squared L2 norm of e. |
|
706
|
|
|
|
|
|
|
* e can coincide with either x or y; x can be NULL, in which case it is assumed |
|
707
|
|
|
|
|
|
|
* to be equal to the zero vector. |
|
708
|
|
|
|
|
|
|
* Uses loop unrolling and blocking to reduce bookkeeping overhead & pipeline |
|
709
|
|
|
|
|
|
|
* stalls and increase instruction-level parallelism; see http://www.abarnett.demon.co.uk/tutorial.html |
|
710
|
|
|
|
|
|
|
*/ |
|
711
|
|
|
|
|
|
|
|
|
712
|
232671
|
|
|
|
|
|
LM_REAL LEVMAR_L2NRMXMY(LM_REAL *e, LM_REAL *x, LM_REAL *y, int n) |
|
713
|
|
|
|
|
|
|
{ |
|
714
|
232671
|
|
|
|
|
|
const int blocksize=8, bpwr=3; /* 8=2^3 */ |
|
715
|
|
|
|
|
|
|
register int i; |
|
716
|
|
|
|
|
|
|
int j1, j2, j3, j4, j5, j6, j7; |
|
717
|
|
|
|
|
|
|
int blockn; |
|
718
|
232671
|
|
|
|
|
|
register LM_REAL sum0=0.0, sum1=0.0, sum2=0.0, sum3=0.0; |
|
719
|
|
|
|
|
|
|
|
|
720
|
|
|
|
|
|
|
/* n may not be divisible by blocksize, |
|
721
|
|
|
|
|
|
|
* go as near as we can first, then tidy up. |
|
722
|
|
|
|
|
|
|
*/ |
|
723
|
232671
|
|
|
|
|
|
blockn = (n>>bpwr)<
|
|
724
|
|
|
|
|
|
|
|
|
725
|
|
|
|
|
|
|
/* unroll the loop in blocks of `blocksize'; looping downwards gains some more speed */ |
|
726
|
232671
|
50
|
|
|
|
|
if(x){ |
|
|
|
50
|
|
|
|
|
|
|
727
|
696374
|
100
|
|
|
|
|
for(i=blockn-1; i>0; i-=blocksize){ |
|
|
|
100
|
|
|
|
|
|
|
728
|
463703
|
|
|
|
|
|
e[i ]=x[i ]-y[i ]; sum0+=e[i ]*e[i ]; |
|
729
|
463703
|
|
|
|
|
|
j1=i-1; e[j1]=x[j1]-y[j1]; sum1+=e[j1]*e[j1]; |
|
730
|
463703
|
|
|
|
|
|
j2=i-2; e[j2]=x[j2]-y[j2]; sum2+=e[j2]*e[j2]; |
|
731
|
463703
|
|
|
|
|
|
j3=i-3; e[j3]=x[j3]-y[j3]; sum3+=e[j3]*e[j3]; |
|
732
|
463703
|
|
|
|
|
|
j4=i-4; e[j4]=x[j4]-y[j4]; sum0+=e[j4]*e[j4]; |
|
733
|
463703
|
|
|
|
|
|
j5=i-5; e[j5]=x[j5]-y[j5]; sum1+=e[j5]*e[j5]; |
|
734
|
463703
|
|
|
|
|
|
j6=i-6; e[j6]=x[j6]-y[j6]; sum2+=e[j6]*e[j6]; |
|
735
|
463703
|
|
|
|
|
|
j7=i-7; e[j7]=x[j7]-y[j7]; sum3+=e[j7]*e[j7]; |
|
736
|
|
|
|
|
|
|
} |
|
737
|
|
|
|
|
|
|
|
|
738
|
|
|
|
|
|
|
/* |
|
739
|
|
|
|
|
|
|
* There may be some left to do. |
|
740
|
|
|
|
|
|
|
* This could be done as a simple for() loop, |
|
741
|
|
|
|
|
|
|
* but a switch is faster (and more interesting) |
|
742
|
|
|
|
|
|
|
*/ |
|
743
|
|
|
|
|
|
|
|
|
744
|
232671
|
|
|
|
|
|
i=blockn; |
|
745
|
232671
|
100
|
|
|
|
|
if(i
|
|
|
|
50
|
|
|
|
|
|
|
746
|
|
|
|
|
|
|
/* Jump into the case at the place that will allow |
|
747
|
|
|
|
|
|
|
* us to finish off the appropriate number of items. |
|
748
|
|
|
|
|
|
|
*/ |
|
749
|
|
|
|
|
|
|
|
|
750
|
231536
|
|
|
|
|
|
switch(n - i){ |
|
751
|
0
|
|
|
|
|
|
case 7 : e[i]=x[i]-y[i]; sum0+=e[i]*e[i]; ++i; |
|
752
|
0
|
|
|
|
|
|
case 6 : e[i]=x[i]-y[i]; sum1+=e[i]*e[i]; ++i; |
|
753
|
0
|
|
|
|
|
|
case 5 : e[i]=x[i]-y[i]; sum2+=e[i]*e[i]; ++i; |
|
754
|
191017
|
|
|
|
|
|
case 4 : e[i]=x[i]-y[i]; sum3+=e[i]*e[i]; ++i; |
|
755
|
191334
|
|
|
|
|
|
case 3 : e[i]=x[i]-y[i]; sum0+=e[i]*e[i]; ++i; |
|
756
|
231508
|
|
|
|
|
|
case 2 : e[i]=x[i]-y[i]; sum1+=e[i]*e[i]; ++i; |
|
757
|
232671
|
|
|
|
|
|
case 1 : e[i]=x[i]-y[i]; sum2+=e[i]*e[i]; //++i; |
|
758
|
|
|
|
|
|
|
} |
|
759
|
|
|
|
|
|
|
} |
|
760
|
|
|
|
|
|
|
} |
|
761
|
|
|
|
|
|
|
else{ /* x==0 */ |
|
762
|
0
|
0
|
|
|
|
|
for(i=blockn-1; i>0; i-=blocksize){ |
|
|
|
0
|
|
|
|
|
|
|
763
|
0
|
|
|
|
|
|
e[i ]=-y[i ]; sum0+=e[i ]*e[i ]; |
|
764
|
0
|
|
|
|
|
|
j1=i-1; e[j1]=-y[j1]; sum1+=e[j1]*e[j1]; |
|
765
|
0
|
|
|
|
|
|
j2=i-2; e[j2]=-y[j2]; sum2+=e[j2]*e[j2]; |
|
766
|
0
|
|
|
|
|
|
j3=i-3; e[j3]=-y[j3]; sum3+=e[j3]*e[j3]; |
|
767
|
0
|
|
|
|
|
|
j4=i-4; e[j4]=-y[j4]; sum0+=e[j4]*e[j4]; |
|
768
|
0
|
|
|
|
|
|
j5=i-5; e[j5]=-y[j5]; sum1+=e[j5]*e[j5]; |
|
769
|
0
|
|
|
|
|
|
j6=i-6; e[j6]=-y[j6]; sum2+=e[j6]*e[j6]; |
|
770
|
0
|
|
|
|
|
|
j7=i-7; e[j7]=-y[j7]; sum3+=e[j7]*e[j7]; |
|
771
|
|
|
|
|
|
|
} |
|
772
|
|
|
|
|
|
|
|
|
773
|
|
|
|
|
|
|
/* |
|
774
|
|
|
|
|
|
|
* There may be some left to do. |
|
775
|
|
|
|
|
|
|
* This could be done as a simple for() loop, |
|
776
|
|
|
|
|
|
|
* but a switch is faster (and more interesting) |
|
777
|
|
|
|
|
|
|
*/ |
|
778
|
|
|
|
|
|
|
|
|
779
|
0
|
|
|
|
|
|
i=blockn; |
|
780
|
0
|
0
|
|
|
|
|
if(i
|
|
|
|
0
|
|
|
|
|
|
|
781
|
|
|
|
|
|
|
/* Jump into the case at the place that will allow |
|
782
|
|
|
|
|
|
|
* us to finish off the appropriate number of items. |
|
783
|
|
|
|
|
|
|
*/ |
|
784
|
|
|
|
|
|
|
|
|
785
|
0
|
|
|
|
|
|
switch(n - i){ |
|
786
|
0
|
|
|
|
|
|
case 7 : e[i]=-y[i]; sum0+=e[i]*e[i]; ++i; |
|
787
|
0
|
|
|
|
|
|
case 6 : e[i]=-y[i]; sum1+=e[i]*e[i]; ++i; |
|
788
|
0
|
|
|
|
|
|
case 5 : e[i]=-y[i]; sum2+=e[i]*e[i]; ++i; |
|
789
|
0
|
|
|
|
|
|
case 4 : e[i]=-y[i]; sum3+=e[i]*e[i]; ++i; |
|
790
|
0
|
|
|
|
|
|
case 3 : e[i]=-y[i]; sum0+=e[i]*e[i]; ++i; |
|
791
|
0
|
|
|
|
|
|
case 2 : e[i]=-y[i]; sum1+=e[i]*e[i]; ++i; |
|
792
|
0
|
|
|
|
|
|
case 1 : e[i]=-y[i]; sum2+=e[i]*e[i]; //++i; |
|
793
|
|
|
|
|
|
|
} |
|
794
|
|
|
|
|
|
|
} |
|
795
|
|
|
|
|
|
|
} |
|
796
|
|
|
|
|
|
|
|
|
797
|
232671
|
|
|
|
|
|
return sum0+sum1+sum2+sum3; |
|
798
|
|
|
|
|
|
|
} |
|
799
|
|
|
|
|
|
|
|
|
800
|
|
|
|
|
|
|
/* undefine everything. THIS MUST REMAIN AT THE END OF THE FILE */ |
|
801
|
|
|
|
|
|
|
#undef LEVMAR_PSEUDOINVERSE |
|
802
|
|
|
|
|
|
|
#undef LEVMAR_LUINVERSE |
|
803
|
|
|
|
|
|
|
#undef LEVMAR_BOX_CHECK |
|
804
|
|
|
|
|
|
|
#undef LEVMAR_CHOLESKY |
|
805
|
|
|
|
|
|
|
#undef LEVMAR_COVAR |
|
806
|
|
|
|
|
|
|
#undef LEVMAR_STDDEV |
|
807
|
|
|
|
|
|
|
#undef LEVMAR_CORCOEF |
|
808
|
|
|
|
|
|
|
#undef LEVMAR_R2 |
|
809
|
|
|
|
|
|
|
#undef LEVMAR_CHKJAC |
|
810
|
|
|
|
|
|
|
#undef LEVMAR_FDIF_FORW_JAC_APPROX |
|
811
|
|
|
|
|
|
|
#undef LEVMAR_FDIF_CENT_JAC_APPROX |
|
812
|
|
|
|
|
|
|
#undef LEVMAR_TRANS_MAT_MAT_MULT |
|
813
|
|
|
|
|
|
|
#undef LEVMAR_L2NRMXMY |