line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
1
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////////// |
2
|
|
|
|
|
|
|
// |
3
|
|
|
|
|
|
|
// Levenberg - Marquardt non-linear minimization algorithm |
4
|
|
|
|
|
|
|
// Copyright (C) 2004-05 Manolis Lourakis (lourakis at ics forth gr) |
5
|
|
|
|
|
|
|
// Institute of Computer Science, Foundation for Research & Technology - Hellas |
6
|
|
|
|
|
|
|
// Heraklion, Crete, Greece. |
7
|
|
|
|
|
|
|
// |
8
|
|
|
|
|
|
|
// This program is free software; you can redistribute it and/or modify |
9
|
|
|
|
|
|
|
// it under the terms of the GNU General Public License as published by |
10
|
|
|
|
|
|
|
// the Free Software Foundation; either version 2 of the License, or |
11
|
|
|
|
|
|
|
// (at your option) any later version. |
12
|
|
|
|
|
|
|
// |
13
|
|
|
|
|
|
|
// This program is distributed in the hope that it will be useful, |
14
|
|
|
|
|
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of |
15
|
|
|
|
|
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
16
|
|
|
|
|
|
|
// GNU General Public License for more details. |
17
|
|
|
|
|
|
|
// |
18
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////////// |
19
|
|
|
|
|
|
|
|
20
|
|
|
|
|
|
|
#ifndef LM_REAL // not included by misc.c |
21
|
|
|
|
|
|
|
#error This file should not be compiled directly! |
22
|
|
|
|
|
|
|
#endif |
23
|
|
|
|
|
|
|
|
24
|
|
|
|
|
|
|
|
25
|
|
|
|
|
|
|
/* precision-specific definitions */ |
26
|
|
|
|
|
|
|
#define LEVMAR_CHKJAC LM_ADD_PREFIX(levmar_chkjac) |
27
|
|
|
|
|
|
|
#define LEVMAR_FDIF_FORW_JAC_APPROX LM_ADD_PREFIX(levmar_fdif_forw_jac_approx) |
28
|
|
|
|
|
|
|
#define LEVMAR_FDIF_CENT_JAC_APPROX LM_ADD_PREFIX(levmar_fdif_cent_jac_approx) |
29
|
|
|
|
|
|
|
#define LEVMAR_TRANS_MAT_MAT_MULT LM_ADD_PREFIX(levmar_trans_mat_mat_mult) |
30
|
|
|
|
|
|
|
#define LEVMAR_COVAR LM_ADD_PREFIX(levmar_covar) |
31
|
|
|
|
|
|
|
#define LEVMAR_STDDEV LM_ADD_PREFIX(levmar_stddev) |
32
|
|
|
|
|
|
|
#define LEVMAR_CORCOEF LM_ADD_PREFIX(levmar_corcoef) |
33
|
|
|
|
|
|
|
#define LEVMAR_R2 LM_ADD_PREFIX(levmar_R2) |
34
|
|
|
|
|
|
|
#define LEVMAR_BOX_CHECK LM_ADD_PREFIX(levmar_box_check) |
35
|
|
|
|
|
|
|
#define LEVMAR_L2NRMXMY LM_ADD_PREFIX(levmar_L2nrmxmy) |
36
|
|
|
|
|
|
|
|
37
|
|
|
|
|
|
|
#ifdef HAVE_LAPACK |
38
|
|
|
|
|
|
|
#define LEVMAR_PSEUDOINVERSE LM_ADD_PREFIX(levmar_pseudoinverse) |
39
|
|
|
|
|
|
|
static int LEVMAR_PSEUDOINVERSE(LM_REAL *A, LM_REAL *B, int m); |
40
|
|
|
|
|
|
|
|
41
|
|
|
|
|
|
|
/* BLAS matrix multiplication & LAPACK SVD routines */ |
42
|
|
|
|
|
|
|
#ifdef LM_BLAS_PREFIX |
43
|
|
|
|
|
|
|
#define GEMM LM_CAT_(LM_BLAS_PREFIX, LM_ADD_PREFIX(LM_CAT_(gemm, LM_BLAS_SUFFIX))) |
44
|
|
|
|
|
|
|
#else |
45
|
|
|
|
|
|
|
#define GEMM LM_ADD_PREFIX(LM_CAT_(gemm, LM_BLAS_SUFFIX)) |
46
|
|
|
|
|
|
|
#endif |
47
|
|
|
|
|
|
|
/* C := alpha*op( A )*op( B ) + beta*C */ |
48
|
|
|
|
|
|
|
extern void GEMM(char *transa, char *transb, int *m, int *n, int *k, |
49
|
|
|
|
|
|
|
LM_REAL *alpha, LM_REAL *a, int *lda, LM_REAL *b, int *ldb, LM_REAL *beta, LM_REAL *c, int *ldc); |
50
|
|
|
|
|
|
|
|
51
|
|
|
|
|
|
|
#define GESVD LM_MK_LAPACK_NAME(gesvd) |
52
|
|
|
|
|
|
|
#define GESDD LM_MK_LAPACK_NAME(gesdd) |
53
|
|
|
|
|
|
|
extern int GESVD(char *jobu, char *jobvt, int *m, int *n, LM_REAL *a, int *lda, LM_REAL *s, LM_REAL *u, int *ldu, |
54
|
|
|
|
|
|
|
LM_REAL *vt, int *ldvt, LM_REAL *work, int *lwork, int *info); |
55
|
|
|
|
|
|
|
|
56
|
|
|
|
|
|
|
/* lapack 3.0 new SVD routine, faster than xgesvd() */ |
57
|
|
|
|
|
|
|
extern int GESDD(char *jobz, int *m, int *n, LM_REAL *a, int *lda, LM_REAL *s, LM_REAL *u, int *ldu, LM_REAL *vt, int *ldvt, |
58
|
|
|
|
|
|
|
LM_REAL *work, int *lwork, int *iwork, int *info); |
59
|
|
|
|
|
|
|
|
60
|
|
|
|
|
|
|
/* Cholesky decomposition */ |
61
|
|
|
|
|
|
|
#define POTF2 LM_MK_LAPACK_NAME(potf2) |
62
|
|
|
|
|
|
|
extern int POTF2(char *uplo, int *n, LM_REAL *a, int *lda, int *info); |
63
|
|
|
|
|
|
|
|
64
|
|
|
|
|
|
|
#define LEVMAR_CHOLESKY LM_ADD_PREFIX(levmar_chol) |
65
|
|
|
|
|
|
|
|
66
|
|
|
|
|
|
|
#else |
67
|
|
|
|
|
|
|
#define LEVMAR_LUINVERSE LM_ADD_PREFIX(levmar_LUinverse_noLapack) |
68
|
|
|
|
|
|
|
|
69
|
|
|
|
|
|
|
static int LEVMAR_LUINVERSE(LM_REAL *A, LM_REAL *B, int m); |
70
|
|
|
|
|
|
|
#endif /* HAVE_LAPACK */ |
71
|
|
|
|
|
|
|
|
72
|
|
|
|
|
|
|
/* blocked multiplication of the transpose of the nxm matrix a with itself (i.e. a^T a) |
73
|
|
|
|
|
|
|
* using a block size of bsize. The product is returned in b. |
74
|
|
|
|
|
|
|
* Since a^T a is symmetric, its computation can be sped up by computing only its |
75
|
|
|
|
|
|
|
* upper triangular part and copying it to the lower part. |
76
|
|
|
|
|
|
|
* |
77
|
|
|
|
|
|
|
* More details on blocking can be found at |
78
|
|
|
|
|
|
|
* http://www-2.cs.cmu.edu/afs/cs/academic/class/15213-f02/www/R07/section_a/Recitation07-SectionA.pdf |
79
|
|
|
|
|
|
|
*/ |
80
|
747
|
|
|
|
|
|
void LEVMAR_TRANS_MAT_MAT_MULT(LM_REAL *a, LM_REAL *b, int n, int m) |
81
|
|
|
|
|
|
|
{ |
82
|
|
|
|
|
|
|
#ifdef HAVE_LAPACK /* use BLAS matrix multiply */ |
83
|
|
|
|
|
|
|
|
84
|
|
|
|
|
|
|
LM_REAL alpha=LM_CNST(1.0), beta=LM_CNST(0.0); |
85
|
|
|
|
|
|
|
/* Fool BLAS to compute a^T*a avoiding transposing a: a is equivalent to a^T in column major, |
86
|
|
|
|
|
|
|
* therefore BLAS computes a*a^T with a and a*a^T in column major, which is equivalent to |
87
|
|
|
|
|
|
|
* computing a^T*a in row major! |
88
|
|
|
|
|
|
|
*/ |
89
|
|
|
|
|
|
|
GEMM("N", "T", &m, &m, &n, &alpha, a, &m, a, &m, &beta, b, &m); |
90
|
|
|
|
|
|
|
|
91
|
|
|
|
|
|
|
#else /* no LAPACK, use blocking-based multiply */ |
92
|
|
|
|
|
|
|
|
93
|
|
|
|
|
|
|
register int i, j, k, jj, kk; |
94
|
|
|
|
|
|
|
register LM_REAL sum, *bim, *akm; |
95
|
747
|
|
|
|
|
|
const int bsize=__BLOCKSZ__; |
96
|
|
|
|
|
|
|
|
97
|
|
|
|
|
|
|
#define __MIN__(x, y) (((x)<=(y))? (x) : (y)) |
98
|
|
|
|
|
|
|
#define __MAX__(x, y) (((x)>=(y))? (x) : (y)) |
99
|
|
|
|
|
|
|
|
100
|
|
|
|
|
|
|
/* compute upper triangular part using blocking */ |
101
|
1494
|
100
|
|
|
|
|
for(jj=0; jj
|
|
|
100
|
|
|
|
|
|
102
|
2359
|
100
|
|
|
|
|
for(i=0; i
|
|
|
100
|
|
|
|
|
|
103
|
1612
|
|
|
|
|
|
bim=b+i*m; |
104
|
4207
|
100
|
|
|
|
|
for(j=__MAX__(jj, i); j<__MIN__(jj+bsize, m); ++j) |
|
|
100
|
|
|
|
|
|
105
|
2595
|
|
|
|
|
|
bim[j]=0.0; //b[i*m+j]=0.0; |
106
|
|
|
|
|
|
|
} |
107
|
|
|
|
|
|
|
|
108
|
81569
|
100
|
|
|
|
|
for(kk=0; kk
|
|
|
100
|
|
|
|
|
|
109
|
253704
|
100
|
|
|
|
|
for(i=0; i
|
|
|
100
|
|
|
|
|
|
110
|
172882
|
|
|
|
|
|
bim=b+i*m; |
111
|
449062
|
100
|
|
|
|
|
for(j=__MAX__(jj, i); j<__MIN__(jj+bsize, m); ++j){ |
|
|
100
|
|
|
|
|
|
112
|
276180
|
|
|
|
|
|
sum=0.0; |
113
|
9058536
|
100
|
|
|
|
|
for(k=kk; k<__MIN__(kk+bsize, n); ++k){ |
|
|
100
|
|
|
|
|
|
114
|
8782356
|
|
|
|
|
|
akm=a+k*m; |
115
|
8782356
|
|
|
|
|
|
sum+=akm[i]*akm[j]; //a[k*m+i]*a[k*m+j]; |
116
|
|
|
|
|
|
|
} |
117
|
276180
|
|
|
|
|
|
bim[j]+=sum; //b[i*m+j]+=sum; |
118
|
|
|
|
|
|
|
} |
119
|
|
|
|
|
|
|
} |
120
|
|
|
|
|
|
|
} |
121
|
|
|
|
|
|
|
} |
122
|
|
|
|
|
|
|
|
123
|
|
|
|
|
|
|
/* copy upper triangular part to the lower one */ |
124
|
2359
|
100
|
|
|
|
|
for(i=0; i
|
|
|
100
|
|
|
|
|
|
125
|
2595
|
100
|
|
|
|
|
for(j=0; j
|
|
|
100
|
|
|
|
|
|
126
|
983
|
|
|
|
|
|
b[i*m+j]=b[j*m+i]; |
127
|
|
|
|
|
|
|
|
128
|
|
|
|
|
|
|
#undef __MIN__ |
129
|
|
|
|
|
|
|
#undef __MAX__ |
130
|
|
|
|
|
|
|
|
131
|
|
|
|
|
|
|
#endif /* HAVE_LAPACK */ |
132
|
747
|
|
|
|
|
|
} |
133
|
|
|
|
|
|
|
|
134
|
|
|
|
|
|
|
/* forward finite difference approximation to the Jacobian of func */ |
135
|
15392
|
|
|
|
|
|
void LEVMAR_FDIF_FORW_JAC_APPROX( |
136
|
|
|
|
|
|
|
void (*func)(LM_REAL *p, LM_REAL *hx, int m, int n, void *adata), |
137
|
|
|
|
|
|
|
/* function to differentiate */ |
138
|
|
|
|
|
|
|
LM_REAL *p, /* I: current parameter estimate, mx1 */ |
139
|
|
|
|
|
|
|
LM_REAL *hx, /* I: func evaluated at p, i.e. hx=func(p), nx1 */ |
140
|
|
|
|
|
|
|
LM_REAL *hxx, /* W/O: work array for evaluating func(p+delta), nx1 */ |
141
|
|
|
|
|
|
|
LM_REAL delta, /* increment for computing the Jacobian */ |
142
|
|
|
|
|
|
|
LM_REAL *jac, /* O: array for storing approximated Jacobian, nxm */ |
143
|
|
|
|
|
|
|
int m, |
144
|
|
|
|
|
|
|
int n, |
145
|
|
|
|
|
|
|
void *adata) |
146
|
|
|
|
|
|
|
{ |
147
|
|
|
|
|
|
|
register int i, j; |
148
|
|
|
|
|
|
|
LM_REAL tmp; |
149
|
|
|
|
|
|
|
register LM_REAL d; |
150
|
|
|
|
|
|
|
|
151
|
76687
|
100
|
|
|
|
|
for(j=0; j
|
|
|
100
|
|
|
|
|
|
152
|
|
|
|
|
|
|
/* determine d=max(1E-04*|p[j]|, delta), see HZ */ |
153
|
61295
|
|
|
|
|
|
d=LM_CNST(1E-04)*p[j]; // force evaluation |
154
|
61295
|
100
|
|
|
|
|
d=FABS(d); |
|
|
100
|
|
|
|
|
|
155
|
61295
|
100
|
|
|
|
|
if(d
|
|
|
100
|
|
|
|
|
|
156
|
150
|
|
|
|
|
|
d=delta; |
157
|
|
|
|
|
|
|
|
158
|
61295
|
|
|
|
|
|
tmp=p[j]; |
159
|
61295
|
|
|
|
|
|
p[j]+=d; |
160
|
|
|
|
|
|
|
|
161
|
61295
|
|
|
|
|
|
(*func)(p, hxx, m, n, adata); |
162
|
|
|
|
|
|
|
|
163
|
61295
|
|
|
|
|
|
p[j]=tmp; /* restore */ |
164
|
|
|
|
|
|
|
|
165
|
61295
|
|
|
|
|
|
d=LM_CNST(1.0)/d; /* invert so that divisions can be carried out faster as multiplications */ |
166
|
629231
|
100
|
|
|
|
|
for(i=0; i
|
|
|
100
|
|
|
|
|
|
167
|
567936
|
|
|
|
|
|
jac[i*m+j]=(hxx[i]-hx[i])*d; |
168
|
|
|
|
|
|
|
} |
169
|
|
|
|
|
|
|
} |
170
|
15392
|
|
|
|
|
|
} |
171
|
|
|
|
|
|
|
|
172
|
|
|
|
|
|
|
/* central finite difference approximation to the Jacobian of func */ |
173
|
0
|
|
|
|
|
|
void LEVMAR_FDIF_CENT_JAC_APPROX( |
174
|
|
|
|
|
|
|
void (*func)(LM_REAL *p, LM_REAL *hx, int m, int n, void *adata), |
175
|
|
|
|
|
|
|
/* function to differentiate */ |
176
|
|
|
|
|
|
|
LM_REAL *p, /* I: current parameter estimate, mx1 */ |
177
|
|
|
|
|
|
|
LM_REAL *hxm, /* W/O: work array for evaluating func(p-delta), nx1 */ |
178
|
|
|
|
|
|
|
LM_REAL *hxp, /* W/O: work array for evaluating func(p+delta), nx1 */ |
179
|
|
|
|
|
|
|
LM_REAL delta, /* increment for computing the Jacobian */ |
180
|
|
|
|
|
|
|
LM_REAL *jac, /* O: array for storing approximated Jacobian, nxm */ |
181
|
|
|
|
|
|
|
int m, |
182
|
|
|
|
|
|
|
int n, |
183
|
|
|
|
|
|
|
void *adata) |
184
|
|
|
|
|
|
|
{ |
185
|
|
|
|
|
|
|
register int i, j; |
186
|
|
|
|
|
|
|
LM_REAL tmp; |
187
|
|
|
|
|
|
|
register LM_REAL d; |
188
|
|
|
|
|
|
|
|
189
|
0
|
0
|
|
|
|
|
for(j=0; j
|
|
|
0
|
|
|
|
|
|
190
|
|
|
|
|
|
|
/* determine d=max(1E-04*|p[j]|, delta), see HZ */ |
191
|
0
|
|
|
|
|
|
d=LM_CNST(1E-04)*p[j]; // force evaluation |
192
|
0
|
0
|
|
|
|
|
d=FABS(d); |
|
|
0
|
|
|
|
|
|
193
|
0
|
0
|
|
|
|
|
if(d
|
|
|
0
|
|
|
|
|
|
194
|
0
|
|
|
|
|
|
d=delta; |
195
|
|
|
|
|
|
|
|
196
|
0
|
|
|
|
|
|
tmp=p[j]; |
197
|
0
|
|
|
|
|
|
p[j]-=d; |
198
|
0
|
|
|
|
|
|
(*func)(p, hxm, m, n, adata); |
199
|
|
|
|
|
|
|
|
200
|
0
|
|
|
|
|
|
p[j]=tmp+d; |
201
|
0
|
|
|
|
|
|
(*func)(p, hxp, m, n, adata); |
202
|
0
|
|
|
|
|
|
p[j]=tmp; /* restore */ |
203
|
|
|
|
|
|
|
|
204
|
0
|
|
|
|
|
|
d=LM_CNST(0.5)/d; /* invert so that divisions can be carried out faster as multiplications */ |
205
|
0
|
0
|
|
|
|
|
for(i=0; i
|
|
|
0
|
|
|
|
|
|
206
|
0
|
|
|
|
|
|
jac[i*m+j]=(hxp[i]-hxm[i])*d; |
207
|
|
|
|
|
|
|
} |
208
|
|
|
|
|
|
|
} |
209
|
0
|
|
|
|
|
|
} |
210
|
|
|
|
|
|
|
|
211
|
|
|
|
|
|
|
/* |
212
|
|
|
|
|
|
|
* Check the Jacobian of a n-valued nonlinear function in m variables |
213
|
|
|
|
|
|
|
* evaluated at a point p, for consistency with the function itself. |
214
|
|
|
|
|
|
|
* |
215
|
|
|
|
|
|
|
* Based on fortran77 subroutine CHKDER by |
216
|
|
|
|
|
|
|
* Burton S. Garbow, Kenneth E. Hillstrom, Jorge J. More |
217
|
|
|
|
|
|
|
* Argonne National Laboratory. MINPACK project. March 1980. |
218
|
|
|
|
|
|
|
* |
219
|
|
|
|
|
|
|
* |
220
|
|
|
|
|
|
|
* func points to a function from R^m --> R^n: Given a p in R^m it yields hx in R^n |
221
|
|
|
|
|
|
|
* jacf points to a function implementing the Jacobian of func, whose correctness |
222
|
|
|
|
|
|
|
* is to be tested. Given a p in R^m, jacf computes into the nxm matrix j the |
223
|
|
|
|
|
|
|
* Jacobian of func at p. Note that row i of j corresponds to the gradient of |
224
|
|
|
|
|
|
|
* the i-th component of func, evaluated at p. |
225
|
|
|
|
|
|
|
* p is an input array of length m containing the point of evaluation. |
226
|
|
|
|
|
|
|
* m is the number of variables |
227
|
|
|
|
|
|
|
* n is the number of functions |
228
|
|
|
|
|
|
|
* adata points to possible additional data and is passed uninterpreted |
229
|
|
|
|
|
|
|
* to func, jacf. |
230
|
|
|
|
|
|
|
* err is an array of length n. On output, err contains measures |
231
|
|
|
|
|
|
|
* of correctness of the respective gradients. if there is |
232
|
|
|
|
|
|
|
* no severe loss of significance, then if err[i] is 1.0 the |
233
|
|
|
|
|
|
|
* i-th gradient is correct, while if err[i] is 0.0 the i-th |
234
|
|
|
|
|
|
|
* gradient is incorrect. For values of err between 0.0 and 1.0, |
235
|
|
|
|
|
|
|
* the categorization is less certain. In general, a value of |
236
|
|
|
|
|
|
|
* err[i] greater than 0.5 indicates that the i-th gradient is |
237
|
|
|
|
|
|
|
* probably correct, while a value of err[i] less than 0.5 |
238
|
|
|
|
|
|
|
* indicates that the i-th gradient is probably incorrect. |
239
|
|
|
|
|
|
|
* |
240
|
|
|
|
|
|
|
* |
241
|
|
|
|
|
|
|
* The function does not perform reliably if cancellation or |
242
|
|
|
|
|
|
|
* rounding errors cause a severe loss of significance in the |
243
|
|
|
|
|
|
|
* evaluation of a function. therefore, none of the components |
244
|
|
|
|
|
|
|
* of p should be unusually small (in particular, zero) or any |
245
|
|
|
|
|
|
|
* other value which may cause loss of significance. |
246
|
|
|
|
|
|
|
*/ |
247
|
|
|
|
|
|
|
|
248
|
4
|
|
|
|
|
|
void LEVMAR_CHKJAC( |
249
|
|
|
|
|
|
|
void (*func)(LM_REAL *p, LM_REAL *hx, int m, int n, void *adata), |
250
|
|
|
|
|
|
|
void (*jacf)(LM_REAL *p, LM_REAL *j, int m, int n, void *adata), |
251
|
|
|
|
|
|
|
LM_REAL *p, int m, int n, void *adata, LM_REAL *err) |
252
|
|
|
|
|
|
|
{ |
253
|
4
|
|
|
|
|
|
LM_REAL factor=LM_CNST(100.0); |
254
|
4
|
|
|
|
|
|
LM_REAL one=LM_CNST(1.0); |
255
|
4
|
|
|
|
|
|
LM_REAL zero=LM_CNST(0.0); |
256
|
|
|
|
|
|
|
LM_REAL *fvec, *fjac, *pp, *fvecp, *buf; |
257
|
|
|
|
|
|
|
|
258
|
|
|
|
|
|
|
register int i, j; |
259
|
|
|
|
|
|
|
LM_REAL eps, epsf, temp, epsmch; |
260
|
|
|
|
|
|
|
LM_REAL epslog; |
261
|
4
|
|
|
|
|
|
int fvec_sz=n, fjac_sz=n*m, pp_sz=m, fvecp_sz=n; |
262
|
|
|
|
|
|
|
|
263
|
4
|
|
|
|
|
|
epsmch=LM_REAL_EPSILON; |
264
|
4
|
|
|
|
|
|
eps=(LM_REAL)sqrt(epsmch); |
265
|
|
|
|
|
|
|
|
266
|
4
|
|
|
|
|
|
buf=(LM_REAL *)malloc((fvec_sz + fjac_sz + pp_sz + fvecp_sz)*sizeof(LM_REAL)); |
267
|
4
|
50
|
|
|
|
|
if(!buf){ |
|
|
50
|
|
|
|
|
|
268
|
0
|
|
|
|
|
|
fprintf(stderr, LCAT(LEVMAR_CHKJAC, "(): memory allocation request failed\n")); |
269
|
0
|
|
|
|
|
|
exit(1); |
270
|
|
|
|
|
|
|
} |
271
|
4
|
|
|
|
|
|
fvec=buf; |
272
|
4
|
|
|
|
|
|
fjac=fvec+fvec_sz; |
273
|
4
|
|
|
|
|
|
pp=fjac+fjac_sz; |
274
|
4
|
|
|
|
|
|
fvecp=pp+pp_sz; |
275
|
|
|
|
|
|
|
|
276
|
|
|
|
|
|
|
/* compute fvec=func(p) */ |
277
|
4
|
|
|
|
|
|
(*func)(p, fvec, m, n, adata); |
278
|
|
|
|
|
|
|
|
279
|
|
|
|
|
|
|
/* compute the Jacobian at p */ |
280
|
4
|
|
|
|
|
|
(*jacf)(p, fjac, m, n, adata); |
281
|
|
|
|
|
|
|
|
282
|
|
|
|
|
|
|
/* compute pp */ |
283
|
12
|
100
|
|
|
|
|
for(j=0; j
|
|
|
100
|
|
|
|
|
|
284
|
8
|
50
|
|
|
|
|
temp=eps*FABS(p[j]); |
|
|
50
|
|
|
|
|
|
285
|
8
|
50
|
|
|
|
|
if(temp==zero) temp=eps; |
|
|
50
|
|
|
|
|
|
286
|
8
|
|
|
|
|
|
pp[j]=p[j]+temp; |
287
|
|
|
|
|
|
|
} |
288
|
|
|
|
|
|
|
|
289
|
|
|
|
|
|
|
/* compute fvecp=func(pp) */ |
290
|
4
|
|
|
|
|
|
(*func)(pp, fvecp, m, n, adata); |
291
|
|
|
|
|
|
|
|
292
|
4
|
|
|
|
|
|
epsf=factor*epsmch; |
293
|
4
|
|
|
|
|
|
epslog=(LM_REAL)log10(eps); |
294
|
|
|
|
|
|
|
|
295
|
44
|
100
|
|
|
|
|
for(i=0; i
|
|
|
100
|
|
|
|
|
|
296
|
40
|
|
|
|
|
|
err[i]=zero; |
297
|
|
|
|
|
|
|
|
298
|
12
|
100
|
|
|
|
|
for(j=0; j
|
|
|
100
|
|
|
|
|
|
299
|
8
|
50
|
|
|
|
|
temp=FABS(p[j]); |
|
|
50
|
|
|
|
|
|
300
|
8
|
50
|
|
|
|
|
if(temp==zero) temp=one; |
|
|
50
|
|
|
|
|
|
301
|
|
|
|
|
|
|
|
302
|
88
|
100
|
|
|
|
|
for(i=0; i
|
|
|
100
|
|
|
|
|
|
303
|
80
|
|
|
|
|
|
err[i]+=temp*fjac[i*m+j]; |
304
|
|
|
|
|
|
|
} |
305
|
|
|
|
|
|
|
|
306
|
44
|
100
|
|
|
|
|
for(i=0; i
|
|
|
100
|
|
|
|
|
|
307
|
40
|
|
|
|
|
|
temp=one; |
308
|
40
|
50
|
|
|
|
|
if(fvec[i]!=zero && fvecp[i]!=zero && FABS(fvecp[i]-fvec[i])>=epsf*FABS(fvec[i])) |
|
|
50
|
|
|
|
|
|
|
|
100
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
|
|
100
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
309
|
40
|
100
|
|
|
|
|
temp=eps*FABS((fvecp[i]-fvec[i])/eps - err[i])/(FABS(fvec[i])+FABS(fvecp[i])); |
|
|
50
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
|
|
100
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
310
|
40
|
|
|
|
|
|
err[i]=one; |
311
|
40
|
100
|
|
|
|
|
if(temp>epsmch && temp
|
|
|
50
|
|
|
|
|
|
|
|
100
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
312
|
12
|
|
|
|
|
|
err[i]=((LM_REAL)log10(temp) - epslog)/epslog; |
313
|
40
|
50
|
|
|
|
|
if(temp>=eps) err[i]=zero; |
|
|
50
|
|
|
|
|
|
314
|
|
|
|
|
|
|
} |
315
|
|
|
|
|
|
|
|
316
|
4
|
|
|
|
|
|
free(buf); |
317
|
|
|
|
|
|
|
|
318
|
4
|
|
|
|
|
|
return; |
319
|
|
|
|
|
|
|
} |
320
|
|
|
|
|
|
|
|
321
|
|
|
|
|
|
|
#ifdef HAVE_LAPACK |
322
|
|
|
|
|
|
|
/* |
323
|
|
|
|
|
|
|
* This function computes the pseudoinverse of a square matrix A |
324
|
|
|
|
|
|
|
* into B using SVD. A and B can coincide |
325
|
|
|
|
|
|
|
* |
326
|
|
|
|
|
|
|
* The function returns 0 in case of error (e.g. A is singular), |
327
|
|
|
|
|
|
|
* the rank of A if successful |
328
|
|
|
|
|
|
|
* |
329
|
|
|
|
|
|
|
* A, B are mxm |
330
|
|
|
|
|
|
|
* |
331
|
|
|
|
|
|
|
*/ |
332
|
|
|
|
|
|
|
static int LEVMAR_PSEUDOINVERSE(LM_REAL *A, LM_REAL *B, int m) |
333
|
|
|
|
|
|
|
{ |
334
|
|
|
|
|
|
|
LM_REAL *buf=NULL; |
335
|
|
|
|
|
|
|
int buf_sz=0; |
336
|
|
|
|
|
|
|
static LM_REAL eps=LM_CNST(-1.0); |
337
|
|
|
|
|
|
|
|
338
|
|
|
|
|
|
|
register int i, j; |
339
|
|
|
|
|
|
|
LM_REAL *a, *u, *s, *vt, *work; |
340
|
|
|
|
|
|
|
int a_sz, u_sz, s_sz, vt_sz, tot_sz; |
341
|
|
|
|
|
|
|
LM_REAL thresh, one_over_denom; |
342
|
|
|
|
|
|
|
int info, rank, worksz, *iwork, iworksz; |
343
|
|
|
|
|
|
|
|
344
|
|
|
|
|
|
|
/* calculate required memory size */ |
345
|
|
|
|
|
|
|
worksz=5*m; // min worksize for GESVD |
346
|
|
|
|
|
|
|
//worksz=m*(7*m+4); // min worksize for GESDD |
347
|
|
|
|
|
|
|
iworksz=8*m; |
348
|
|
|
|
|
|
|
a_sz=m*m; |
349
|
|
|
|
|
|
|
u_sz=m*m; s_sz=m; vt_sz=m*m; |
350
|
|
|
|
|
|
|
|
351
|
|
|
|
|
|
|
tot_sz=(a_sz + u_sz + s_sz + vt_sz + worksz)*sizeof(LM_REAL) + iworksz*sizeof(int); /* should be arranged in that order for proper doubles alignment */ |
352
|
|
|
|
|
|
|
|
353
|
|
|
|
|
|
|
buf_sz=tot_sz; |
354
|
|
|
|
|
|
|
buf=(LM_REAL *)malloc(buf_sz); |
355
|
|
|
|
|
|
|
if(!buf){ |
356
|
|
|
|
|
|
|
fprintf(stderr, RCAT("memory allocation in ", LEVMAR_PSEUDOINVERSE) "() failed!\n"); |
357
|
|
|
|
|
|
|
return 0; /* error */ |
358
|
|
|
|
|
|
|
} |
359
|
|
|
|
|
|
|
|
360
|
|
|
|
|
|
|
a=buf; |
361
|
|
|
|
|
|
|
u=a+a_sz; |
362
|
|
|
|
|
|
|
s=u+u_sz; |
363
|
|
|
|
|
|
|
vt=s+s_sz; |
364
|
|
|
|
|
|
|
work=vt+vt_sz; |
365
|
|
|
|
|
|
|
iwork=(int *)(work+worksz); |
366
|
|
|
|
|
|
|
|
367
|
|
|
|
|
|
|
/* store A (column major!) into a */ |
368
|
|
|
|
|
|
|
for(i=0; i
|
369
|
|
|
|
|
|
|
for(j=0; j
|
370
|
|
|
|
|
|
|
a[i+j*m]=A[i*m+j]; |
371
|
|
|
|
|
|
|
|
372
|
|
|
|
|
|
|
/* SVD decomposition of A */ |
373
|
|
|
|
|
|
|
GESVD("A", "A", (int *)&m, (int *)&m, a, (int *)&m, s, u, (int *)&m, vt, (int *)&m, work, (int *)&worksz, &info); |
374
|
|
|
|
|
|
|
//GESDD("A", (int *)&m, (int *)&m, a, (int *)&m, s, u, (int *)&m, vt, (int *)&m, work, (int *)&worksz, iwork, &info); |
375
|
|
|
|
|
|
|
|
376
|
|
|
|
|
|
|
/* error treatment */ |
377
|
|
|
|
|
|
|
if(info!=0){ |
378
|
|
|
|
|
|
|
if(info<0){ |
379
|
|
|
|
|
|
|
fprintf(stderr, RCAT(RCAT(RCAT("LAPACK error: illegal value for argument %d of ", GESVD), "/" GESDD) " in ", LEVMAR_PSEUDOINVERSE) "()\n", -info); |
380
|
|
|
|
|
|
|
} |
381
|
|
|
|
|
|
|
else{ |
382
|
|
|
|
|
|
|
fprintf(stderr, RCAT("LAPACK error: dgesdd (dbdsdc)/dgesvd (dbdsqr) failed to converge in ", LEVMAR_PSEUDOINVERSE) "() [info=%d]\n", info); |
383
|
|
|
|
|
|
|
} |
384
|
|
|
|
|
|
|
free(buf); |
385
|
|
|
|
|
|
|
return 0; |
386
|
|
|
|
|
|
|
} |
387
|
|
|
|
|
|
|
|
388
|
|
|
|
|
|
|
if(eps<0.0){ |
389
|
|
|
|
|
|
|
LM_REAL aux; |
390
|
|
|
|
|
|
|
|
391
|
|
|
|
|
|
|
/* compute machine epsilon */ |
392
|
|
|
|
|
|
|
for(eps=LM_CNST(1.0); aux=eps+LM_CNST(1.0), aux-LM_CNST(1.0)>0.0; eps*=LM_CNST(0.5)) |
393
|
|
|
|
|
|
|
; |
394
|
|
|
|
|
|
|
eps*=LM_CNST(2.0); |
395
|
|
|
|
|
|
|
} |
396
|
|
|
|
|
|
|
|
397
|
|
|
|
|
|
|
/* compute the pseudoinverse in B */ |
398
|
|
|
|
|
|
|
for(i=0; i
|
399
|
|
|
|
|
|
|
for(rank=0, thresh=eps*s[0]; rankthresh; rank++){ |
400
|
|
|
|
|
|
|
one_over_denom=LM_CNST(1.0)/s[rank]; |
401
|
|
|
|
|
|
|
|
402
|
|
|
|
|
|
|
for(j=0; j
|
403
|
|
|
|
|
|
|
for(i=0; i
|
404
|
|
|
|
|
|
|
B[i*m+j]+=vt[rank+i*m]*u[j+rank*m]*one_over_denom; |
405
|
|
|
|
|
|
|
} |
406
|
|
|
|
|
|
|
|
407
|
|
|
|
|
|
|
free(buf); |
408
|
|
|
|
|
|
|
|
409
|
|
|
|
|
|
|
return rank; |
410
|
|
|
|
|
|
|
} |
411
|
|
|
|
|
|
|
#else // no LAPACK |
412
|
|
|
|
|
|
|
|
413
|
|
|
|
|
|
|
/* |
414
|
|
|
|
|
|
|
* This function computes the inverse of A in B. A and B can coincide |
415
|
|
|
|
|
|
|
* |
416
|
|
|
|
|
|
|
* The function employs LAPACK-free LU decomposition of A to solve m linear |
417
|
|
|
|
|
|
|
* systems A*B_i=I_i, where B_i and I_i are the i-th columns of B and I. |
418
|
|
|
|
|
|
|
* |
419
|
|
|
|
|
|
|
* A and B are mxm |
420
|
|
|
|
|
|
|
* |
421
|
|
|
|
|
|
|
* The function returns 0 in case of error, 1 if successful |
422
|
|
|
|
|
|
|
* |
423
|
|
|
|
|
|
|
*/ |
424
|
159
|
|
|
|
|
|
static int LEVMAR_LUINVERSE(LM_REAL *A, LM_REAL *B, int m) |
425
|
|
|
|
|
|
|
{ |
426
|
159
|
|
|
|
|
|
void *buf=NULL; |
427
|
159
|
|
|
|
|
|
int buf_sz=0; |
428
|
|
|
|
|
|
|
|
429
|
|
|
|
|
|
|
register int i, j, k, l; |
430
|
159
|
|
|
|
|
|
int *idx, maxi=-1, idx_sz, a_sz, x_sz, work_sz, tot_sz; |
431
|
|
|
|
|
|
|
LM_REAL *a, *x, *work, max, sum, tmp; |
432
|
|
|
|
|
|
|
|
433
|
|
|
|
|
|
|
/* calculate required memory size */ |
434
|
159
|
|
|
|
|
|
idx_sz=m; |
435
|
159
|
|
|
|
|
|
a_sz=m*m; |
436
|
159
|
|
|
|
|
|
x_sz=m; |
437
|
159
|
|
|
|
|
|
work_sz=m; |
438
|
159
|
|
|
|
|
|
tot_sz=(a_sz + x_sz + work_sz)*sizeof(LM_REAL) + idx_sz*sizeof(int); /* should be arranged in that order for proper doubles alignment */ |
439
|
|
|
|
|
|
|
|
440
|
159
|
|
|
|
|
|
buf_sz=tot_sz; |
441
|
159
|
|
|
|
|
|
buf=(void *)malloc(tot_sz); |
442
|
159
|
50
|
|
|
|
|
if(!buf){ |
|
|
50
|
|
|
|
|
|
443
|
0
|
|
|
|
|
|
fprintf(stderr, RCAT("memory allocation in ", LEVMAR_LUINVERSE) "() failed!\n"); |
444
|
0
|
|
|
|
|
|
return 0; /* error */ |
445
|
|
|
|
|
|
|
} |
446
|
|
|
|
|
|
|
|
447
|
159
|
|
|
|
|
|
a=buf; |
448
|
159
|
|
|
|
|
|
x=a+a_sz; |
449
|
159
|
|
|
|
|
|
work=x+x_sz; |
450
|
159
|
|
|
|
|
|
idx=(int *)(work+work_sz); |
451
|
|
|
|
|
|
|
|
452
|
|
|
|
|
|
|
/* avoid destroying A by copying it to a */ |
453
|
1058
|
100
|
|
|
|
|
for(i=0; i
|
|
|
100
|
|
|
|
|
|
454
|
|
|
|
|
|
|
|
455
|
|
|
|
|
|
|
/* compute the LU decomposition of a row permutation of matrix a; the permutation itself is saved in idx[] */ |
456
|
524
|
100
|
|
|
|
|
for(i=0; i
|
|
|
100
|
|
|
|
|
|
457
|
365
|
|
|
|
|
|
max=0.0; |
458
|
1264
|
100
|
|
|
|
|
for(j=0; j
|
|
|
100
|
|
|
|
|
|
459
|
899
|
100
|
|
|
|
|
if((tmp=FABS(a[i*m+j]))>max) |
|
|
100
|
|
|
|
|
|
|
|
100
|
|
|
|
|
|
|
|
100
|
|
|
|
|
|
460
|
556
|
|
|
|
|
|
max=tmp; |
461
|
365
|
50
|
|
|
|
|
if(max==0.0){ |
|
|
50
|
|
|
|
|
|
462
|
0
|
|
|
|
|
|
fprintf(stderr, RCAT("Singular matrix A in ", LEVMAR_LUINVERSE) "()!\n"); |
463
|
0
|
|
|
|
|
|
free(buf); |
464
|
|
|
|
|
|
|
|
465
|
0
|
|
|
|
|
|
return 0; |
466
|
|
|
|
|
|
|
} |
467
|
365
|
|
|
|
|
|
work[i]=LM_CNST(1.0)/max; |
468
|
|
|
|
|
|
|
} |
469
|
|
|
|
|
|
|
|
470
|
524
|
100
|
|
|
|
|
for(j=0; j
|
|
|
100
|
|
|
|
|
|
471
|
632
|
100
|
|
|
|
|
for(i=0; i
|
|
|
100
|
|
|
|
|
|
472
|
267
|
|
|
|
|
|
sum=a[i*m+j]; |
473
|
342
|
100
|
|
|
|
|
for(k=0; k
|
|
|
100
|
|
|
|
|
|
474
|
75
|
|
|
|
|
|
sum-=a[i*m+k]*a[k*m+j]; |
475
|
267
|
|
|
|
|
|
a[i*m+j]=sum; |
476
|
|
|
|
|
|
|
} |
477
|
365
|
|
|
|
|
|
max=0.0; |
478
|
997
|
100
|
|
|
|
|
for(i=j; i
|
|
|
100
|
|
|
|
|
|
479
|
632
|
|
|
|
|
|
sum=a[i*m+j]; |
480
|
974
|
100
|
|
|
|
|
for(k=0; k
|
|
|
100
|
|
|
|
|
|
481
|
342
|
|
|
|
|
|
sum-=a[i*m+k]*a[k*m+j]; |
482
|
632
|
|
|
|
|
|
a[i*m+j]=sum; |
483
|
632
|
100
|
|
|
|
|
if((tmp=work[i]*FABS(sum))>=max){ |
|
|
100
|
|
|
|
|
|
|
|
100
|
|
|
|
|
|
|
|
100
|
|
|
|
|
|
484
|
458
|
|
|
|
|
|
max=tmp; |
485
|
458
|
|
|
|
|
|
maxi=i; |
486
|
|
|
|
|
|
|
} |
487
|
|
|
|
|
|
|
} |
488
|
365
|
100
|
|
|
|
|
if(j!=maxi){ |
|
|
100
|
|
|
|
|
|
489
|
317
|
100
|
|
|
|
|
for(k=0; k
|
|
|
100
|
|
|
|
|
|
490
|
226
|
|
|
|
|
|
tmp=a[maxi*m+k]; |
491
|
226
|
|
|
|
|
|
a[maxi*m+k]=a[j*m+k]; |
492
|
226
|
|
|
|
|
|
a[j*m+k]=tmp; |
493
|
|
|
|
|
|
|
} |
494
|
91
|
|
|
|
|
|
work[maxi]=work[j]; |
495
|
|
|
|
|
|
|
} |
496
|
365
|
|
|
|
|
|
idx[j]=maxi; |
497
|
365
|
50
|
|
|
|
|
if(a[j*m+j]==0.0) |
|
|
100
|
|
|
|
|
|
498
|
2
|
|
|
|
|
|
a[j*m+j]=LM_REAL_EPSILON; |
499
|
365
|
100
|
|
|
|
|
if(j!=m-1){ |
|
|
100
|
|
|
|
|
|
500
|
206
|
|
|
|
|
|
tmp=LM_CNST(1.0)/(a[j*m+j]); |
501
|
473
|
100
|
|
|
|
|
for(i=j+1; i
|
|
|
100
|
|
|
|
|
|
502
|
267
|
|
|
|
|
|
a[i*m+j]*=tmp; |
503
|
|
|
|
|
|
|
} |
504
|
|
|
|
|
|
|
} |
505
|
|
|
|
|
|
|
|
506
|
|
|
|
|
|
|
/* The decomposition has now replaced a. Solve the m linear systems using |
507
|
|
|
|
|
|
|
* forward and back substitution |
508
|
|
|
|
|
|
|
*/ |
509
|
524
|
100
|
|
|
|
|
for(l=0; l
|
|
|
100
|
|
|
|
|
|
510
|
1264
|
100
|
|
|
|
|
for(i=0; i
|
|
|
100
|
|
|
|
|
|
511
|
365
|
|
|
|
|
|
x[l]=LM_CNST(1.0); |
512
|
|
|
|
|
|
|
|
513
|
1264
|
100
|
|
|
|
|
for(i=k=0; i
|
|
|
100
|
|
|
|
|
|
514
|
899
|
|
|
|
|
|
j=idx[i]; |
515
|
899
|
|
|
|
|
|
sum=x[j]; |
516
|
899
|
|
|
|
|
|
x[j]=x[i]; |
517
|
899
|
100
|
|
|
|
|
if(k!=0) |
|
|
100
|
|
|
|
|
|
518
|
609
|
100
|
|
|
|
|
for(j=k-1; j
|
|
|
100
|
|
|
|
|
|
519
|
342
|
|
|
|
|
|
sum-=a[i*m+j]*x[j]; |
520
|
|
|
|
|
|
|
else |
521
|
632
|
100
|
|
|
|
|
if(sum!=0.0) |
|
|
100
|
|
|
|
|
|
522
|
365
|
|
|
|
|
|
k=i+1; |
523
|
899
|
|
|
|
|
|
x[i]=sum; |
524
|
|
|
|
|
|
|
} |
525
|
|
|
|
|
|
|
|
526
|
1264
|
100
|
|
|
|
|
for(i=m-1; i>=0; --i){ |
|
|
100
|
|
|
|
|
|
527
|
899
|
|
|
|
|
|
sum=x[i]; |
528
|
1658
|
100
|
|
|
|
|
for(j=i+1; j
|
|
|
100
|
|
|
|
|
|
529
|
759
|
|
|
|
|
|
sum-=a[i*m+j]*x[j]; |
530
|
899
|
|
|
|
|
|
x[i]=sum/a[i*m+i]; |
531
|
|
|
|
|
|
|
} |
532
|
|
|
|
|
|
|
|
533
|
1264
|
100
|
|
|
|
|
for(i=0; i
|
|
|
100
|
|
|
|
|
|
534
|
899
|
|
|
|
|
|
B[i*m+l]=x[i]; |
535
|
|
|
|
|
|
|
} |
536
|
|
|
|
|
|
|
|
537
|
159
|
|
|
|
|
|
free(buf); |
538
|
|
|
|
|
|
|
|
539
|
159
|
|
|
|
|
|
return 1; |
540
|
|
|
|
|
|
|
} |
541
|
|
|
|
|
|
|
#endif /* HAVE_LAPACK */ |
542
|
|
|
|
|
|
|
|
543
|
|
|
|
|
|
|
/* |
544
|
|
|
|
|
|
|
* This function computes in C the covariance matrix corresponding to a least |
545
|
|
|
|
|
|
|
* squares fit. JtJ is the approximate Hessian at the solution (i.e. J^T*J, where |
546
|
|
|
|
|
|
|
* J is the Jacobian at the solution), sumsq is the sum of squared residuals |
547
|
|
|
|
|
|
|
* (i.e. goodnes of fit) at the solution, m is the number of parameters (variables) |
548
|
|
|
|
|
|
|
* and n the number of observations. JtJ can coincide with C. |
549
|
|
|
|
|
|
|
* |
550
|
|
|
|
|
|
|
* if JtJ is of full rank, C is computed as sumsq/(n-m)*(JtJ)^-1 |
551
|
|
|
|
|
|
|
* otherwise and if LAPACK is available, C=sumsq/(n-r)*(JtJ)^+ |
552
|
|
|
|
|
|
|
* where r is JtJ's rank and ^+ denotes the pseudoinverse |
553
|
|
|
|
|
|
|
* The diagonal of C is made up from the estimates of the variances |
554
|
|
|
|
|
|
|
* of the estimated regression coefficients. |
555
|
|
|
|
|
|
|
* See the documentation of routine E04YCF from the NAG fortran lib |
556
|
|
|
|
|
|
|
* |
557
|
|
|
|
|
|
|
* The function returns the rank of JtJ if successful, 0 on error |
558
|
|
|
|
|
|
|
* |
559
|
|
|
|
|
|
|
* A and C are mxm |
560
|
|
|
|
|
|
|
* |
561
|
|
|
|
|
|
|
*/ |
562
|
159
|
|
|
|
|
|
int LEVMAR_COVAR(LM_REAL *JtJ, LM_REAL *C, LM_REAL sumsq, int m, int n) |
563
|
|
|
|
|
|
|
{ |
564
|
|
|
|
|
|
|
register int i; |
565
|
|
|
|
|
|
|
int rnk; |
566
|
|
|
|
|
|
|
LM_REAL fact; |
567
|
|
|
|
|
|
|
|
568
|
|
|
|
|
|
|
#ifdef HAVE_LAPACK |
569
|
|
|
|
|
|
|
rnk=LEVMAR_PSEUDOINVERSE(JtJ, C, m); |
570
|
|
|
|
|
|
|
if(!rnk) return 0; |
571
|
|
|
|
|
|
|
#else |
572
|
|
|
|
|
|
|
#ifdef _MSC_VER |
573
|
|
|
|
|
|
|
#pragma message("LAPACK not available, LU will be used for matrix inversion when computing the covariance; this might be unstable at times") |
574
|
|
|
|
|
|
|
#else |
575
|
|
|
|
|
|
|
#warning LAPACK not available, LU will be used for matrix inversion when computing the covariance; this might be unstable at times |
576
|
|
|
|
|
|
|
#endif // _MSC_VER |
577
|
|
|
|
|
|
|
|
578
|
159
|
|
|
|
|
|
rnk=LEVMAR_LUINVERSE(JtJ, C, m); |
579
|
159
|
50
|
|
|
|
|
if(!rnk) return 0; |
|
|
50
|
|
|
|
|
|
580
|
|
|
|
|
|
|
|
581
|
159
|
|
|
|
|
|
rnk=m; /* assume full rank */ |
582
|
|
|
|
|
|
|
#endif /* HAVE_LAPACK */ |
583
|
|
|
|
|
|
|
|
584
|
159
|
|
|
|
|
|
fact=sumsq/(LM_REAL)(n-rnk); |
585
|
1058
|
100
|
|
|
|
|
for(i=0; i
|
|
|
100
|
|
|
|
|
|
586
|
899
|
|
|
|
|
|
C[i]*=fact; |
587
|
|
|
|
|
|
|
|
588
|
159
|
|
|
|
|
|
return rnk; |
589
|
|
|
|
|
|
|
} |
590
|
|
|
|
|
|
|
|
591
|
|
|
|
|
|
|
/* standard deviation of the best-fit parameter i. |
592
|
|
|
|
|
|
|
* covar is the mxm covariance matrix of the best-fit parameters (see also LEVMAR_COVAR()). |
593
|
|
|
|
|
|
|
* |
594
|
|
|
|
|
|
|
* The standard deviation is computed as \sigma_{i} = \sqrt{C_{ii}} |
595
|
|
|
|
|
|
|
*/ |
596
|
0
|
|
|
|
|
|
LM_REAL LEVMAR_STDDEV(LM_REAL *covar, int m, int i) |
597
|
|
|
|
|
|
|
{ |
598
|
0
|
|
|
|
|
|
return (LM_REAL)sqrt(covar[i*m+i]); |
599
|
|
|
|
|
|
|
} |
600
|
|
|
|
|
|
|
|
601
|
|
|
|
|
|
|
/* Pearson's correlation coefficient of the best-fit parameters i and j. |
602
|
|
|
|
|
|
|
* covar is the mxm covariance matrix of the best-fit parameters (see also LEVMAR_COVAR()). |
603
|
|
|
|
|
|
|
* |
604
|
|
|
|
|
|
|
* The coefficient is computed as \rho_{ij} = C_{ij} / sqrt(C_{ii} C_{jj}) |
605
|
|
|
|
|
|
|
*/ |
606
|
0
|
|
|
|
|
|
LM_REAL LEVMAR_CORCOEF(LM_REAL *covar, int m, int i, int j) |
607
|
|
|
|
|
|
|
{ |
608
|
0
|
|
|
|
|
|
return (LM_REAL)(covar[i*m+j]/sqrt(covar[i*m+i]*covar[j*m+j])); |
609
|
|
|
|
|
|
|
} |
610
|
|
|
|
|
|
|
|
611
|
|
|
|
|
|
|
/* coefficient of determination. |
612
|
|
|
|
|
|
|
* see http://en.wikipedia.org/wiki/Coefficient_of_determination |
613
|
|
|
|
|
|
|
*/ |
614
|
0
|
|
|
|
|
|
LM_REAL LEVMAR_R2(void (*func)(LM_REAL *p, LM_REAL *hx, int m, int n, void *adata), |
615
|
|
|
|
|
|
|
LM_REAL *p, LM_REAL *x, int m, int n, void *adata) |
616
|
|
|
|
|
|
|
{ |
617
|
|
|
|
|
|
|
register int i; |
618
|
|
|
|
|
|
|
register LM_REAL tmp; |
619
|
|
|
|
|
|
|
LM_REAL SSerr, // sum of squared errors, i.e. residual sum of squares \sum_i (x_i-hx_i)^2 |
620
|
|
|
|
|
|
|
SStot, // \sum_i (x_i-xavg)^2 |
621
|
|
|
|
|
|
|
*hx, xavg; |
622
|
|
|
|
|
|
|
|
623
|
|
|
|
|
|
|
|
624
|
0
|
0
|
|
|
|
|
if((hx=(LM_REAL *)malloc(n*sizeof(LM_REAL)))==NULL){ |
|
|
0
|
|
|
|
|
|
625
|
0
|
|
|
|
|
|
fprintf(stderr, RCAT("memory allocation request failed in ", LEVMAR_R2) "()\n"); |
626
|
0
|
|
|
|
|
|
exit(1); |
627
|
|
|
|
|
|
|
} |
628
|
|
|
|
|
|
|
|
629
|
|
|
|
|
|
|
/* hx=f(p) */ |
630
|
0
|
|
|
|
|
|
(*func)(p, hx, m, n, adata); |
631
|
|
|
|
|
|
|
|
632
|
0
|
0
|
|
|
|
|
for(i=0, tmp=0.0; i
|
|
|
0
|
|
|
|
|
|
633
|
0
|
|
|
|
|
|
tmp+=x[i]; |
634
|
0
|
|
|
|
|
|
xavg=tmp/(LM_REAL)n; |
635
|
|
|
|
|
|
|
|
636
|
0
|
0
|
|
|
|
|
for(i=0, SSerr=SStot=0.0; i
|
|
|
0
|
|
|
|
|
|
637
|
0
|
|
|
|
|
|
tmp=x[i]-hx[i]; |
638
|
0
|
|
|
|
|
|
SSerr+=tmp*tmp; |
639
|
|
|
|
|
|
|
|
640
|
0
|
|
|
|
|
|
tmp=x[i]-xavg; |
641
|
0
|
|
|
|
|
|
SStot+=tmp*tmp; |
642
|
|
|
|
|
|
|
} |
643
|
|
|
|
|
|
|
|
644
|
0
|
|
|
|
|
|
free(hx); |
645
|
|
|
|
|
|
|
|
646
|
0
|
|
|
|
|
|
return LM_CNST(1.0) - SSerr/SStot; |
647
|
|
|
|
|
|
|
} |
648
|
|
|
|
|
|
|
|
649
|
|
|
|
|
|
|
/* check box constraints for consistency */ |
650
|
16
|
|
|
|
|
|
int LEVMAR_BOX_CHECK(LM_REAL *lb, LM_REAL *ub, int m) |
651
|
|
|
|
|
|
|
{ |
652
|
|
|
|
|
|
|
register int i; |
653
|
|
|
|
|
|
|
|
654
|
16
|
50
|
|
|
|
|
if(!lb || !ub) return 1; |
|
|
50
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
655
|
|
|
|
|
|
|
|
656
|
78
|
100
|
|
|
|
|
for(i=0; i
|
|
|
100
|
|
|
|
|
|
657
|
62
|
50
|
|
|
|
|
if(lb[i]>ub[i]) return 0; |
|
|
50
|
|
|
|
|
|
658
|
|
|
|
|
|
|
|
659
|
16
|
|
|
|
|
|
return 1; |
660
|
|
|
|
|
|
|
} |
661
|
|
|
|
|
|
|
|
662
|
|
|
|
|
|
|
#ifdef HAVE_LAPACK |
663
|
|
|
|
|
|
|
|
664
|
|
|
|
|
|
|
/* compute the Cholesky decomposition of C in W, s.t. C=W^t W and W is upper triangular */ |
665
|
|
|
|
|
|
|
int LEVMAR_CHOLESKY(LM_REAL *C, LM_REAL *W, int m) |
666
|
|
|
|
|
|
|
{ |
667
|
|
|
|
|
|
|
register int i, j; |
668
|
|
|
|
|
|
|
int info; |
669
|
|
|
|
|
|
|
|
670
|
|
|
|
|
|
|
/* copy weights array C to W so that LAPACK won't destroy it; |
671
|
|
|
|
|
|
|
* C is assumed symmetric, hence no transposition is needed |
672
|
|
|
|
|
|
|
*/ |
673
|
|
|
|
|
|
|
for(i=0, j=m*m; i
|
674
|
|
|
|
|
|
|
W[i]=C[i]; |
675
|
|
|
|
|
|
|
|
676
|
|
|
|
|
|
|
/* Cholesky decomposition */ |
677
|
|
|
|
|
|
|
POTF2("U", (int *)&m, W, (int *)&m, (int *)&info); |
678
|
|
|
|
|
|
|
/* error treatment */ |
679
|
|
|
|
|
|
|
if(info!=0){ |
680
|
|
|
|
|
|
|
if(info<0){ |
681
|
|
|
|
|
|
|
fprintf(stderr, "LAPACK error: illegal value for argument %d of dpotf2 in %s\n", -info, LCAT(LEVMAR_CHOLESKY, "()")); |
682
|
|
|
|
|
|
|
} |
683
|
|
|
|
|
|
|
else{ |
684
|
|
|
|
|
|
|
fprintf(stderr, "LAPACK error: the leading minor of order %d is not positive definite,\n%s()\n", info, |
685
|
|
|
|
|
|
|
RCAT("and the Cholesky factorization could not be completed in ", LEVMAR_CHOLESKY)); |
686
|
|
|
|
|
|
|
} |
687
|
|
|
|
|
|
|
return LM_ERROR; |
688
|
|
|
|
|
|
|
} |
689
|
|
|
|
|
|
|
|
690
|
|
|
|
|
|
|
/* the decomposition is in the upper part of W (in column-major order!). |
691
|
|
|
|
|
|
|
* copying it to the lower part and zeroing the upper transposes |
692
|
|
|
|
|
|
|
* W in row-major order |
693
|
|
|
|
|
|
|
*/ |
694
|
|
|
|
|
|
|
for(i=0; i
|
695
|
|
|
|
|
|
|
for(j=0; j
|
696
|
|
|
|
|
|
|
W[i+j*m]=W[j+i*m]; |
697
|
|
|
|
|
|
|
W[j+i*m]=0.0; |
698
|
|
|
|
|
|
|
} |
699
|
|
|
|
|
|
|
|
700
|
|
|
|
|
|
|
return 0; |
701
|
|
|
|
|
|
|
} |
702
|
|
|
|
|
|
|
#endif /* HAVE_LAPACK */ |
703
|
|
|
|
|
|
|
|
704
|
|
|
|
|
|
|
|
705
|
|
|
|
|
|
|
/* Compute e=x-y for two n-vectors x and y and return the squared L2 norm of e. |
706
|
|
|
|
|
|
|
* e can coincide with either x or y; x can be NULL, in which case it is assumed |
707
|
|
|
|
|
|
|
* to be equal to the zero vector. |
708
|
|
|
|
|
|
|
* Uses loop unrolling and blocking to reduce bookkeeping overhead & pipeline |
709
|
|
|
|
|
|
|
* stalls and increase instruction-level parallelism; see http://www.abarnett.demon.co.uk/tutorial.html |
710
|
|
|
|
|
|
|
*/ |
711
|
|
|
|
|
|
|
|
712
|
232671
|
|
|
|
|
|
LM_REAL LEVMAR_L2NRMXMY(LM_REAL *e, LM_REAL *x, LM_REAL *y, int n) |
713
|
|
|
|
|
|
|
{ |
714
|
232671
|
|
|
|
|
|
const int blocksize=8, bpwr=3; /* 8=2^3 */ |
715
|
|
|
|
|
|
|
register int i; |
716
|
|
|
|
|
|
|
int j1, j2, j3, j4, j5, j6, j7; |
717
|
|
|
|
|
|
|
int blockn; |
718
|
232671
|
|
|
|
|
|
register LM_REAL sum0=0.0, sum1=0.0, sum2=0.0, sum3=0.0; |
719
|
|
|
|
|
|
|
|
720
|
|
|
|
|
|
|
/* n may not be divisible by blocksize, |
721
|
|
|
|
|
|
|
* go as near as we can first, then tidy up. |
722
|
|
|
|
|
|
|
*/ |
723
|
232671
|
|
|
|
|
|
blockn = (n>>bpwr)<
|
724
|
|
|
|
|
|
|
|
725
|
|
|
|
|
|
|
/* unroll the loop in blocks of `blocksize'; looping downwards gains some more speed */ |
726
|
232671
|
50
|
|
|
|
|
if(x){ |
|
|
50
|
|
|
|
|
|
727
|
696374
|
100
|
|
|
|
|
for(i=blockn-1; i>0; i-=blocksize){ |
|
|
100
|
|
|
|
|
|
728
|
463703
|
|
|
|
|
|
e[i ]=x[i ]-y[i ]; sum0+=e[i ]*e[i ]; |
729
|
463703
|
|
|
|
|
|
j1=i-1; e[j1]=x[j1]-y[j1]; sum1+=e[j1]*e[j1]; |
730
|
463703
|
|
|
|
|
|
j2=i-2; e[j2]=x[j2]-y[j2]; sum2+=e[j2]*e[j2]; |
731
|
463703
|
|
|
|
|
|
j3=i-3; e[j3]=x[j3]-y[j3]; sum3+=e[j3]*e[j3]; |
732
|
463703
|
|
|
|
|
|
j4=i-4; e[j4]=x[j4]-y[j4]; sum0+=e[j4]*e[j4]; |
733
|
463703
|
|
|
|
|
|
j5=i-5; e[j5]=x[j5]-y[j5]; sum1+=e[j5]*e[j5]; |
734
|
463703
|
|
|
|
|
|
j6=i-6; e[j6]=x[j6]-y[j6]; sum2+=e[j6]*e[j6]; |
735
|
463703
|
|
|
|
|
|
j7=i-7; e[j7]=x[j7]-y[j7]; sum3+=e[j7]*e[j7]; |
736
|
|
|
|
|
|
|
} |
737
|
|
|
|
|
|
|
|
738
|
|
|
|
|
|
|
/* |
739
|
|
|
|
|
|
|
* There may be some left to do. |
740
|
|
|
|
|
|
|
* This could be done as a simple for() loop, |
741
|
|
|
|
|
|
|
* but a switch is faster (and more interesting) |
742
|
|
|
|
|
|
|
*/ |
743
|
|
|
|
|
|
|
|
744
|
232671
|
|
|
|
|
|
i=blockn; |
745
|
232671
|
100
|
|
|
|
|
if(i
|
|
|
50
|
|
|
|
|
|
746
|
|
|
|
|
|
|
/* Jump into the case at the place that will allow |
747
|
|
|
|
|
|
|
* us to finish off the appropriate number of items. |
748
|
|
|
|
|
|
|
*/ |
749
|
|
|
|
|
|
|
|
750
|
231536
|
|
|
|
|
|
switch(n - i){ |
751
|
0
|
|
|
|
|
|
case 7 : e[i]=x[i]-y[i]; sum0+=e[i]*e[i]; ++i; |
752
|
0
|
|
|
|
|
|
case 6 : e[i]=x[i]-y[i]; sum1+=e[i]*e[i]; ++i; |
753
|
0
|
|
|
|
|
|
case 5 : e[i]=x[i]-y[i]; sum2+=e[i]*e[i]; ++i; |
754
|
191017
|
|
|
|
|
|
case 4 : e[i]=x[i]-y[i]; sum3+=e[i]*e[i]; ++i; |
755
|
191334
|
|
|
|
|
|
case 3 : e[i]=x[i]-y[i]; sum0+=e[i]*e[i]; ++i; |
756
|
231508
|
|
|
|
|
|
case 2 : e[i]=x[i]-y[i]; sum1+=e[i]*e[i]; ++i; |
757
|
232671
|
|
|
|
|
|
case 1 : e[i]=x[i]-y[i]; sum2+=e[i]*e[i]; //++i; |
758
|
|
|
|
|
|
|
} |
759
|
|
|
|
|
|
|
} |
760
|
|
|
|
|
|
|
} |
761
|
|
|
|
|
|
|
else{ /* x==0 */ |
762
|
0
|
0
|
|
|
|
|
for(i=blockn-1; i>0; i-=blocksize){ |
|
|
0
|
|
|
|
|
|
763
|
0
|
|
|
|
|
|
e[i ]=-y[i ]; sum0+=e[i ]*e[i ]; |
764
|
0
|
|
|
|
|
|
j1=i-1; e[j1]=-y[j1]; sum1+=e[j1]*e[j1]; |
765
|
0
|
|
|
|
|
|
j2=i-2; e[j2]=-y[j2]; sum2+=e[j2]*e[j2]; |
766
|
0
|
|
|
|
|
|
j3=i-3; e[j3]=-y[j3]; sum3+=e[j3]*e[j3]; |
767
|
0
|
|
|
|
|
|
j4=i-4; e[j4]=-y[j4]; sum0+=e[j4]*e[j4]; |
768
|
0
|
|
|
|
|
|
j5=i-5; e[j5]=-y[j5]; sum1+=e[j5]*e[j5]; |
769
|
0
|
|
|
|
|
|
j6=i-6; e[j6]=-y[j6]; sum2+=e[j6]*e[j6]; |
770
|
0
|
|
|
|
|
|
j7=i-7; e[j7]=-y[j7]; sum3+=e[j7]*e[j7]; |
771
|
|
|
|
|
|
|
} |
772
|
|
|
|
|
|
|
|
773
|
|
|
|
|
|
|
/* |
774
|
|
|
|
|
|
|
* There may be some left to do. |
775
|
|
|
|
|
|
|
* This could be done as a simple for() loop, |
776
|
|
|
|
|
|
|
* but a switch is faster (and more interesting) |
777
|
|
|
|
|
|
|
*/ |
778
|
|
|
|
|
|
|
|
779
|
0
|
|
|
|
|
|
i=blockn; |
780
|
0
|
0
|
|
|
|
|
if(i
|
|
|
0
|
|
|
|
|
|
781
|
|
|
|
|
|
|
/* Jump into the case at the place that will allow |
782
|
|
|
|
|
|
|
* us to finish off the appropriate number of items. |
783
|
|
|
|
|
|
|
*/ |
784
|
|
|
|
|
|
|
|
785
|
0
|
|
|
|
|
|
switch(n - i){ |
786
|
0
|
|
|
|
|
|
case 7 : e[i]=-y[i]; sum0+=e[i]*e[i]; ++i; |
787
|
0
|
|
|
|
|
|
case 6 : e[i]=-y[i]; sum1+=e[i]*e[i]; ++i; |
788
|
0
|
|
|
|
|
|
case 5 : e[i]=-y[i]; sum2+=e[i]*e[i]; ++i; |
789
|
0
|
|
|
|
|
|
case 4 : e[i]=-y[i]; sum3+=e[i]*e[i]; ++i; |
790
|
0
|
|
|
|
|
|
case 3 : e[i]=-y[i]; sum0+=e[i]*e[i]; ++i; |
791
|
0
|
|
|
|
|
|
case 2 : e[i]=-y[i]; sum1+=e[i]*e[i]; ++i; |
792
|
0
|
|
|
|
|
|
case 1 : e[i]=-y[i]; sum2+=e[i]*e[i]; //++i; |
793
|
|
|
|
|
|
|
} |
794
|
|
|
|
|
|
|
} |
795
|
|
|
|
|
|
|
} |
796
|
|
|
|
|
|
|
|
797
|
232671
|
|
|
|
|
|
return sum0+sum1+sum2+sum3; |
798
|
|
|
|
|
|
|
} |
799
|
|
|
|
|
|
|
|
800
|
|
|
|
|
|
|
/* undefine everything. THIS MUST REMAIN AT THE END OF THE FILE */ |
801
|
|
|
|
|
|
|
#undef LEVMAR_PSEUDOINVERSE |
802
|
|
|
|
|
|
|
#undef LEVMAR_LUINVERSE |
803
|
|
|
|
|
|
|
#undef LEVMAR_BOX_CHECK |
804
|
|
|
|
|
|
|
#undef LEVMAR_CHOLESKY |
805
|
|
|
|
|
|
|
#undef LEVMAR_COVAR |
806
|
|
|
|
|
|
|
#undef LEVMAR_STDDEV |
807
|
|
|
|
|
|
|
#undef LEVMAR_CORCOEF |
808
|
|
|
|
|
|
|
#undef LEVMAR_R2 |
809
|
|
|
|
|
|
|
#undef LEVMAR_CHKJAC |
810
|
|
|
|
|
|
|
#undef LEVMAR_FDIF_FORW_JAC_APPROX |
811
|
|
|
|
|
|
|
#undef LEVMAR_FDIF_CENT_JAC_APPROX |
812
|
|
|
|
|
|
|
#undef LEVMAR_TRANS_MAT_MAT_MULT |
813
|
|
|
|
|
|
|
#undef LEVMAR_L2NRMXMY |