line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
1
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////////// |
2
|
|
|
|
|
|
|
// |
3
|
|
|
|
|
|
|
// Levenberg - Marquardt non-linear minimization algorithm |
4
|
|
|
|
|
|
|
// Copyright (C) 2004-05 Manolis Lourakis (lourakis at ics forth gr) |
5
|
|
|
|
|
|
|
// Institute of Computer Science, Foundation for Research & Technology - Hellas |
6
|
|
|
|
|
|
|
// Heraklion, Crete, Greece. |
7
|
|
|
|
|
|
|
// |
8
|
|
|
|
|
|
|
// This program is free software; you can redistribute it and/or modify |
9
|
|
|
|
|
|
|
// it under the terms of the GNU General Public License as published by |
10
|
|
|
|
|
|
|
// the Free Software Foundation; either version 2 of the License, or |
11
|
|
|
|
|
|
|
// (at your option) any later version. |
12
|
|
|
|
|
|
|
// |
13
|
|
|
|
|
|
|
// This program is distributed in the hope that it will be useful, |
14
|
|
|
|
|
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of |
15
|
|
|
|
|
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
16
|
|
|
|
|
|
|
// GNU General Public License for more details. |
17
|
|
|
|
|
|
|
// |
18
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////////// |
19
|
|
|
|
|
|
|
|
20
|
|
|
|
|
|
|
#ifndef LM_REAL // not included by lmbc.c |
21
|
|
|
|
|
|
|
#error This file should not be compiled directly! |
22
|
|
|
|
|
|
|
#endif |
23
|
|
|
|
|
|
|
|
24
|
|
|
|
|
|
|
|
25
|
|
|
|
|
|
|
/* precision-specific definitions */ |
26
|
|
|
|
|
|
|
#define FUNC_STATE LM_ADD_PREFIX(func_state) |
27
|
|
|
|
|
|
|
#define LNSRCH LM_ADD_PREFIX(lnsrch) |
28
|
|
|
|
|
|
|
#define BOXPROJECT LM_ADD_PREFIX(boxProject) |
29
|
|
|
|
|
|
|
#define LEVMAR_BOX_CHECK LM_ADD_PREFIX(levmar_box_check) |
30
|
|
|
|
|
|
|
#define LEVMAR_BC_DER LM_ADD_PREFIX(levmar_bc_der) |
31
|
|
|
|
|
|
|
#define LEVMAR_BC_DIF LM_ADD_PREFIX(levmar_bc_dif) |
32
|
|
|
|
|
|
|
#define LEVMAR_FDIF_FORW_JAC_APPROX LM_ADD_PREFIX(levmar_fdif_forw_jac_approx) |
33
|
|
|
|
|
|
|
#define LEVMAR_FDIF_CENT_JAC_APPROX LM_ADD_PREFIX(levmar_fdif_cent_jac_approx) |
34
|
|
|
|
|
|
|
#define LEVMAR_TRANS_MAT_MAT_MULT LM_ADD_PREFIX(levmar_trans_mat_mat_mult) |
35
|
|
|
|
|
|
|
#define LEVMAR_L2NRMXMY LM_ADD_PREFIX(levmar_L2nrmxmy) |
36
|
|
|
|
|
|
|
#define LEVMAR_COVAR LM_ADD_PREFIX(levmar_covar) |
37
|
|
|
|
|
|
|
#define LMBC_DIF_DATA LM_ADD_PREFIX(lmbc_dif_data) |
38
|
|
|
|
|
|
|
#define LMBC_DIF_FUNC LM_ADD_PREFIX(lmbc_dif_func) |
39
|
|
|
|
|
|
|
#define LMBC_DIF_JACF LM_ADD_PREFIX(lmbc_dif_jacf) |
40
|
|
|
|
|
|
|
|
41
|
|
|
|
|
|
|
#ifdef HAVE_LAPACK |
42
|
|
|
|
|
|
|
#define AX_EQ_B_LU LM_ADD_PREFIX(Ax_eq_b_LU) |
43
|
|
|
|
|
|
|
#define AX_EQ_B_CHOL LM_ADD_PREFIX(Ax_eq_b_Chol) |
44
|
|
|
|
|
|
|
#define AX_EQ_B_QR LM_ADD_PREFIX(Ax_eq_b_QR) |
45
|
|
|
|
|
|
|
#define AX_EQ_B_QRLS LM_ADD_PREFIX(Ax_eq_b_QRLS) |
46
|
|
|
|
|
|
|
#define AX_EQ_B_SVD LM_ADD_PREFIX(Ax_eq_b_SVD) |
47
|
|
|
|
|
|
|
#define AX_EQ_B_BK LM_ADD_PREFIX(Ax_eq_b_BK) |
48
|
|
|
|
|
|
|
#else |
49
|
|
|
|
|
|
|
#define AX_EQ_B_LU LM_ADD_PREFIX(Ax_eq_b_LU_noLapack) |
50
|
|
|
|
|
|
|
#endif /* HAVE_LAPACK */ |
51
|
|
|
|
|
|
|
|
52
|
|
|
|
|
|
|
/* find the median of 3 numbers */ |
53
|
|
|
|
|
|
|
#define __MEDIAN3(a, b, c) ( ((a) >= (b))?\ |
54
|
|
|
|
|
|
|
( ((c) >= (a))? (a) : ( ((c) <= (b))? (b) : (c) ) ) : \ |
55
|
|
|
|
|
|
|
( ((c) >= (b))? (b) : ( ((c) <= (a))? (a) : (c) ) ) ) |
56
|
|
|
|
|
|
|
|
57
|
|
|
|
|
|
|
#define _POW_ LM_CNST(2.1) |
58
|
|
|
|
|
|
|
|
59
|
|
|
|
|
|
|
#define __LSITMAX 150 // max #iterations for line search |
60
|
|
|
|
|
|
|
|
61
|
|
|
|
|
|
|
struct FUNC_STATE{ |
62
|
|
|
|
|
|
|
int n, *nfev; |
63
|
|
|
|
|
|
|
LM_REAL *hx, *x; |
64
|
|
|
|
|
|
|
void *adata; |
65
|
|
|
|
|
|
|
}; |
66
|
|
|
|
|
|
|
|
67
|
|
|
|
|
|
|
static void |
68
|
2757
|
|
|
|
|
|
LNSRCH(int m, LM_REAL *x, LM_REAL f, LM_REAL *g, LM_REAL *p, LM_REAL alpha, LM_REAL *xpls, |
69
|
|
|
|
|
|
|
LM_REAL *ffpls, void (*func)(LM_REAL *p, LM_REAL *hx, int m, int n, void *adata), struct FUNC_STATE state, |
70
|
|
|
|
|
|
|
int *mxtake, int *iretcd, LM_REAL stepmx, LM_REAL steptl, LM_REAL *sx) |
71
|
|
|
|
|
|
|
{ |
72
|
|
|
|
|
|
|
/* Find a next newton iterate by backtracking line search. |
73
|
|
|
|
|
|
|
* Specifically, finds a \lambda such that for a fixed alpha<0.5 (usually 1e-4), |
74
|
|
|
|
|
|
|
* f(x + \lambda*p) <= f(x) + alpha * \lambda * g^T*p |
75
|
|
|
|
|
|
|
* |
76
|
|
|
|
|
|
|
* Translated (with minor changes) from Schnabel, Koontz & Weiss uncmin.f, v1.3 |
77
|
|
|
|
|
|
|
|
78
|
|
|
|
|
|
|
* PARAMETERS : |
79
|
|
|
|
|
|
|
|
80
|
|
|
|
|
|
|
* m --> dimension of problem (i.e. number of variables) |
81
|
|
|
|
|
|
|
* x(m) --> old iterate: x[k-1] |
82
|
|
|
|
|
|
|
* f --> function value at old iterate, f(x) |
83
|
|
|
|
|
|
|
* g(m) --> gradient at old iterate, g(x), or approximate |
84
|
|
|
|
|
|
|
* p(m) --> non-zero newton step |
85
|
|
|
|
|
|
|
* alpha --> fixed constant < 0.5 for line search (see above) |
86
|
|
|
|
|
|
|
* xpls(m) <-- new iterate x[k] |
87
|
|
|
|
|
|
|
* ffpls <-- function value at new iterate, f(xpls) |
88
|
|
|
|
|
|
|
* func --> name of subroutine to evaluate function |
89
|
|
|
|
|
|
|
* state <--> information other than x and m that func requires. |
90
|
|
|
|
|
|
|
* state is not modified in xlnsrch (but can be modified by func). |
91
|
|
|
|
|
|
|
* iretcd <-- return code |
92
|
|
|
|
|
|
|
* mxtake <-- boolean flag indicating step of maximum length used |
93
|
|
|
|
|
|
|
* stepmx --> maximum allowable step size |
94
|
|
|
|
|
|
|
* steptl --> relative step size at which successive iterates |
95
|
|
|
|
|
|
|
* considered close enough to terminate algorithm |
96
|
|
|
|
|
|
|
* sx(m) --> diagonal scaling matrix for x, can be NULL |
97
|
|
|
|
|
|
|
|
98
|
|
|
|
|
|
|
* internal variables |
99
|
|
|
|
|
|
|
|
100
|
|
|
|
|
|
|
* sln newton length |
101
|
|
|
|
|
|
|
* rln relative length of newton step |
102
|
|
|
|
|
|
|
*/ |
103
|
|
|
|
|
|
|
|
104
|
|
|
|
|
|
|
register int i, j; |
105
|
2757
|
|
|
|
|
|
int firstback = 1; |
106
|
|
|
|
|
|
|
LM_REAL disc; |
107
|
|
|
|
|
|
|
LM_REAL a3, b; |
108
|
|
|
|
|
|
|
LM_REAL t1, t2, t3, lambda, tlmbda, rmnlmb; |
109
|
|
|
|
|
|
|
LM_REAL scl, rln, sln, slp; |
110
|
|
|
|
|
|
|
LM_REAL tmp1, tmp2; |
111
|
2757
|
|
|
|
|
|
LM_REAL fpls, pfpls = 0., plmbda = 0.; /* -Wall */ |
112
|
|
|
|
|
|
|
|
113
|
2757
|
|
|
|
|
|
f*=LM_CNST(0.5); |
114
|
2757
|
|
|
|
|
|
*mxtake = 0; |
115
|
2757
|
|
|
|
|
|
*iretcd = 2; |
116
|
2757
|
|
|
|
|
|
tmp1 = 0.; |
117
|
2757
|
50
|
|
|
|
|
if(!sx) /* no scaling */ |
|
|
50
|
|
|
|
|
|
118
|
13785
|
100
|
|
|
|
|
for (i = 0; i < m; ++i) |
|
|
100
|
|
|
|
|
|
119
|
11028
|
|
|
|
|
|
tmp1 += p[i] * p[i]; |
120
|
|
|
|
|
|
|
else |
121
|
0
|
0
|
|
|
|
|
for (i = 0; i < m; ++i) |
|
|
0
|
|
|
|
|
|
122
|
0
|
|
|
|
|
|
tmp1 += sx[i] * sx[i] * p[i] * p[i]; |
123
|
2757
|
|
|
|
|
|
sln = (LM_REAL)sqrt(tmp1); |
124
|
2757
|
50
|
|
|
|
|
if (sln > stepmx) { |
|
|
50
|
|
|
|
|
|
125
|
|
|
|
|
|
|
/* newton step longer than maximum allowed */ |
126
|
0
|
|
|
|
|
|
scl = stepmx / sln; |
127
|
0
|
0
|
|
|
|
|
for(i=0; i
|
|
|
0
|
|
|
|
|
|
128
|
0
|
|
|
|
|
|
p[i]*=scl; |
129
|
0
|
|
|
|
|
|
sln = stepmx; |
130
|
|
|
|
|
|
|
} |
131
|
13785
|
100
|
|
|
|
|
for(i=0, slp=0.; i
|
|
|
100
|
|
|
|
|
|
132
|
11028
|
|
|
|
|
|
slp+=g[i]*p[i]; |
133
|
2757
|
|
|
|
|
|
rln = 0.; |
134
|
2757
|
50
|
|
|
|
|
if(!sx) /* no scaling */ |
|
|
50
|
|
|
|
|
|
135
|
13785
|
100
|
|
|
|
|
for (i = 0; i < m; ++i) { |
|
|
100
|
|
|
|
|
|
136
|
11028
|
50
|
|
|
|
|
tmp1 = (FABS(x[i])>=LM_CNST(1.))? FABS(x[i]) : LM_CNST(1.); |
|
|
50
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
137
|
11028
|
100
|
|
|
|
|
tmp2 = FABS(p[i])/tmp1; |
|
|
100
|
|
|
|
|
|
138
|
11028
|
100
|
|
|
|
|
if(rln < tmp2) rln = tmp2; |
|
|
100
|
|
|
|
|
|
139
|
|
|
|
|
|
|
} |
140
|
|
|
|
|
|
|
else |
141
|
0
|
0
|
|
|
|
|
for (i = 0; i < m; ++i) { |
|
|
0
|
|
|
|
|
|
142
|
0
|
0
|
|
|
|
|
tmp1 = (FABS(x[i])>=LM_CNST(1.)/sx[i])? FABS(x[i]) : LM_CNST(1.)/sx[i]; |
|
|
0
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
143
|
0
|
0
|
|
|
|
|
tmp2 = FABS(p[i])/tmp1; |
|
|
0
|
|
|
|
|
|
144
|
0
|
0
|
|
|
|
|
if(rln < tmp2) rln = tmp2; |
|
|
0
|
|
|
|
|
|
145
|
|
|
|
|
|
|
} |
146
|
2757
|
|
|
|
|
|
rmnlmb = steptl / rln; |
147
|
2757
|
|
|
|
|
|
lambda = LM_CNST(1.0); |
148
|
|
|
|
|
|
|
|
149
|
|
|
|
|
|
|
/* check if new iterate satisfactory. generate new lambda if necessary. */ |
150
|
|
|
|
|
|
|
|
151
|
13336
|
50
|
|
|
|
|
for(j=__LSITMAX; j>=0; --j) { |
|
|
50
|
|
|
|
|
|
152
|
66680
|
100
|
|
|
|
|
for (i = 0; i < m; ++i) |
|
|
100
|
|
|
|
|
|
153
|
53344
|
|
|
|
|
|
xpls[i] = x[i] + lambda * p[i]; |
154
|
|
|
|
|
|
|
|
155
|
|
|
|
|
|
|
/* evaluate function at new point */ |
156
|
13336
|
|
|
|
|
|
(*func)(xpls, state.hx, m, state.n, state.adata); ++(*(state.nfev)); |
157
|
|
|
|
|
|
|
/* ### state.hx=state.x-state.hx, tmp1=||state.hx|| */ |
158
|
|
|
|
|
|
|
#if 1 |
159
|
13336
|
|
|
|
|
|
tmp1=LEVMAR_L2NRMXMY(state.hx, state.x, state.hx, state.n); |
160
|
|
|
|
|
|
|
#else |
161
|
|
|
|
|
|
|
for(i=0, tmp1=0.0; i
|
162
|
|
|
|
|
|
|
state.hx[i]=tmp2=state.x[i]-state.hx[i]; |
163
|
|
|
|
|
|
|
tmp1+=tmp2*tmp2; |
164
|
|
|
|
|
|
|
} |
165
|
|
|
|
|
|
|
#endif |
166
|
13336
|
|
|
|
|
|
fpls=LM_CNST(0.5)*tmp1; *ffpls=tmp1; |
167
|
|
|
|
|
|
|
|
168
|
13336
|
|
|
|
|
|
if (fpls <= f + slp * alpha * lambda) { /* solution found */ |
169
|
2139
|
|
|
|
|
|
*iretcd = 0; |
170
|
2139
|
50
|
|
|
|
|
if (lambda == LM_CNST(1.) && sln > stepmx * LM_CNST(.99)) *mxtake = 1; |
|
|
0
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
171
|
2139
|
|
|
|
|
|
return; |
172
|
|
|
|
|
|
|
} |
173
|
|
|
|
|
|
|
|
174
|
|
|
|
|
|
|
/* else : solution not (yet) found */ |
175
|
|
|
|
|
|
|
|
176
|
|
|
|
|
|
|
/* First find a point with a finite value */ |
177
|
|
|
|
|
|
|
|
178
|
11197
|
100
|
|
|
|
|
if (lambda < rmnlmb) { |
|
|
100
|
|
|
|
|
|
179
|
|
|
|
|
|
|
/* no satisfactory xpls found sufficiently distinct from x */ |
180
|
|
|
|
|
|
|
|
181
|
618
|
|
|
|
|
|
*iretcd = 1; |
182
|
618
|
|
|
|
|
|
return; |
183
|
|
|
|
|
|
|
} |
184
|
|
|
|
|
|
|
else { /* calculate new lambda */ |
185
|
|
|
|
|
|
|
|
186
|
|
|
|
|
|
|
/* modifications to cover non-finite values */ |
187
|
10579
|
50
|
|
|
|
|
if (!LM_FINITE(fpls)) { |
|
|
50
|
|
|
|
|
|
188
|
0
|
|
|
|
|
|
lambda *= LM_CNST(0.1); |
189
|
0
|
|
|
|
|
|
firstback = 1; |
190
|
|
|
|
|
|
|
} |
191
|
|
|
|
|
|
|
else { |
192
|
10579
|
100
|
|
|
|
|
if (firstback) { /* first backtrack: quadratic fit */ |
|
|
50
|
|
|
|
|
|
193
|
2732
|
|
|
|
|
|
tlmbda = -lambda * slp / ((fpls - f - slp) * LM_CNST(2.)); |
194
|
2732
|
|
|
|
|
|
firstback = 0; |
195
|
|
|
|
|
|
|
} |
196
|
|
|
|
|
|
|
else { /* all subsequent backtracks: cubic fit */ |
197
|
7847
|
|
|
|
|
|
t1 = fpls - f - lambda * slp; |
198
|
7847
|
|
|
|
|
|
t2 = pfpls - f - plmbda * slp; |
199
|
7847
|
|
|
|
|
|
t3 = LM_CNST(1.) / (lambda - plmbda); |
200
|
15694
|
|
|
|
|
|
a3 = LM_CNST(3.) * t3 * (t1 / (lambda * lambda) |
201
|
7847
|
|
|
|
|
|
- t2 / (plmbda * plmbda)); |
202
|
15694
|
|
|
|
|
|
b = t3 * (t2 * lambda / (plmbda * plmbda) |
203
|
7847
|
|
|
|
|
|
- t1 * plmbda / (lambda * lambda)); |
204
|
7847
|
|
|
|
|
|
disc = b * b - a3 * slp; |
205
|
7847
|
100
|
|
|
|
|
if (disc > b * b) |
|
|
0
|
|
|
|
|
|
206
|
|
|
|
|
|
|
/* only one positive critical point, must be minimum */ |
207
|
8
|
50
|
|
|
|
|
tlmbda = (-b + ((a3 < 0)? -(LM_REAL)sqrt(disc): (LM_REAL)sqrt(disc))) /a3; |
|
|
0
|
|
|
|
|
|
208
|
|
|
|
|
|
|
else |
209
|
|
|
|
|
|
|
/* both critical points positive, first is minimum */ |
210
|
7839
|
50
|
|
|
|
|
tlmbda = (-b + ((a3 < 0)? (LM_REAL)sqrt(disc): -(LM_REAL)sqrt(disc))) /a3; |
|
|
0
|
|
|
|
|
|
211
|
|
|
|
|
|
|
|
212
|
7847
|
50
|
|
|
|
|
if (tlmbda > lambda * LM_CNST(.5)) |
|
|
0
|
|
|
|
|
|
213
|
0
|
|
|
|
|
|
tlmbda = lambda * LM_CNST(.5); |
214
|
|
|
|
|
|
|
} |
215
|
10579
|
|
|
|
|
|
plmbda = lambda; |
216
|
10579
|
|
|
|
|
|
pfpls = fpls; |
217
|
10579
|
100
|
|
|
|
|
if (tlmbda < lambda * LM_CNST(.1)) |
|
|
100
|
|
|
|
|
|
218
|
9011
|
|
|
|
|
|
lambda *= LM_CNST(.1); |
219
|
|
|
|
|
|
|
else |
220
|
1568
|
|
|
|
|
|
lambda = tlmbda; |
221
|
|
|
|
|
|
|
} |
222
|
|
|
|
|
|
|
} |
223
|
|
|
|
|
|
|
} |
224
|
|
|
|
|
|
|
/* this point is reached when the iterations limit is exceeded */ |
225
|
0
|
|
|
|
|
|
*iretcd = 1; /* failed */ |
226
|
0
|
|
|
|
|
|
return; |
227
|
|
|
|
|
|
|
} /* LNSRCH */ |
228
|
|
|
|
|
|
|
|
229
|
|
|
|
|
|
|
/* Projections to feasible set \Omega: P_{\Omega}(y) := arg min { ||x - y|| : x \in \Omega}, y \in R^m */ |
230
|
|
|
|
|
|
|
|
231
|
|
|
|
|
|
|
/* project vector p to a box shaped feasible set. p is a mx1 vector. |
232
|
|
|
|
|
|
|
* Either lb, ub can be NULL. If not NULL, they are mx1 vectors |
233
|
|
|
|
|
|
|
*/ |
234
|
177472
|
|
|
|
|
|
static void BOXPROJECT(LM_REAL *p, LM_REAL *lb, LM_REAL *ub, int m) |
235
|
|
|
|
|
|
|
{ |
236
|
|
|
|
|
|
|
register int i; |
237
|
|
|
|
|
|
|
|
238
|
177472
|
50
|
|
|
|
|
if(!lb){ /* no lower bounds */ |
|
|
50
|
|
|
|
|
|
239
|
0
|
0
|
|
|
|
|
if(!ub) /* no upper bounds */ |
|
|
0
|
|
|
|
|
|
240
|
0
|
|
|
|
|
|
return; |
241
|
|
|
|
|
|
|
else{ /* upper bounds only */ |
242
|
0
|
0
|
|
|
|
|
for(i=0; i
|
|
|
0
|
|
|
|
|
|
243
|
0
|
0
|
|
|
|
|
if(p[i]>ub[i]) p[i]=ub[i]; |
|
|
0
|
|
|
|
|
|
244
|
|
|
|
|
|
|
} |
245
|
|
|
|
|
|
|
} |
246
|
|
|
|
|
|
|
else |
247
|
177472
|
50
|
|
|
|
|
if(!ub){ /* lower bounds only */ |
|
|
50
|
|
|
|
|
|
248
|
0
|
0
|
|
|
|
|
for(i=0; i
|
|
|
0
|
|
|
|
|
|
249
|
0
|
0
|
|
|
|
|
if(p[i]
|
|
|
0
|
|
|
|
|
|
250
|
|
|
|
|
|
|
} |
251
|
|
|
|
|
|
|
else /* box bounds */ |
252
|
887350
|
100
|
|
|
|
|
for(i=0; i
|
|
|
100
|
|
|
|
|
|
253
|
709878
|
50
|
|
|
|
|
p[i]=__MEDIAN3(lb[i], p[i], ub[i]); |
|
|
0
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
|
100
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
|
100
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
254
|
|
|
|
|
|
|
} |
255
|
|
|
|
|
|
|
|
256
|
|
|
|
|
|
|
/* |
257
|
|
|
|
|
|
|
* This function seeks the parameter vector p that best describes the measurements |
258
|
|
|
|
|
|
|
* vector x under box constraints. |
259
|
|
|
|
|
|
|
* More precisely, given a vector function func : R^m --> R^n with n>=m, |
260
|
|
|
|
|
|
|
* it finds p s.t. func(p) ~= x, i.e. the squared second order (i.e. L2) norm of |
261
|
|
|
|
|
|
|
* e=x-func(p) is minimized under the constraints lb[i]<=p[i]<=ub[i]. |
262
|
|
|
|
|
|
|
* If no lower bound constraint applies for p[i], use -DBL_MAX/-FLT_MAX for lb[i]; |
263
|
|
|
|
|
|
|
* If no upper bound constraint applies for p[i], use DBL_MAX/FLT_MAX for ub[i]. |
264
|
|
|
|
|
|
|
* |
265
|
|
|
|
|
|
|
* This function requires an analytic Jacobian. In case the latter is unavailable, |
266
|
|
|
|
|
|
|
* use LEVMAR_BC_DIF() bellow |
267
|
|
|
|
|
|
|
* |
268
|
|
|
|
|
|
|
* Returns the number of iterations (>=0) if successful, LM_ERROR if failed |
269
|
|
|
|
|
|
|
* |
270
|
|
|
|
|
|
|
* For details, see C. Kanzow, N. Yamashita and M. Fukushima: "Levenberg-Marquardt |
271
|
|
|
|
|
|
|
* methods for constrained nonlinear equations with strong local convergence properties", |
272
|
|
|
|
|
|
|
* Journal of Computational and Applied Mathematics 172, 2004, pp. 375-397. |
273
|
|
|
|
|
|
|
* Also, see K. Madsen, H.B. Nielsen and O. Tingleff's lecture notes on |
274
|
|
|
|
|
|
|
* unconstrained Levenberg-Marquardt at http://www.imm.dtu.dk/pubdb/views/edoc_download.php/3215/pdf/imm3215.pdf |
275
|
|
|
|
|
|
|
*/ |
276
|
|
|
|
|
|
|
|
277
|
16
|
|
|
|
|
|
int LEVMAR_BC_DER( |
278
|
|
|
|
|
|
|
void (*func)(LM_REAL *p, LM_REAL *hx, int m, int n, void *adata), /* functional relation describing measurements. A p \in R^m yields a \hat{x} \in R^n */ |
279
|
|
|
|
|
|
|
void (*jacf)(LM_REAL *p, LM_REAL *j, int m, int n, void *adata), /* function to evaluate the Jacobian \part x / \part p */ |
280
|
|
|
|
|
|
|
LM_REAL *p, /* I/O: initial parameter estimates. On output has the estimated solution */ |
281
|
|
|
|
|
|
|
LM_REAL *x, /* I: measurement vector. NULL implies a zero vector */ |
282
|
|
|
|
|
|
|
int m, /* I: parameter vector dimension (i.e. #unknowns) */ |
283
|
|
|
|
|
|
|
int n, /* I: measurement vector dimension */ |
284
|
|
|
|
|
|
|
LM_REAL *lb, /* I: vector of lower bounds. If NULL, no lower bounds apply */ |
285
|
|
|
|
|
|
|
LM_REAL *ub, /* I: vector of upper bounds. If NULL, no upper bounds apply */ |
286
|
|
|
|
|
|
|
int itmax, /* I: maximum number of iterations */ |
287
|
|
|
|
|
|
|
LM_REAL opts[4], /* I: minim. options [\mu, \epsilon1, \epsilon2, \epsilon3]. Respectively the scale factor for initial \mu, |
288
|
|
|
|
|
|
|
* stopping thresholds for ||J^T e||_inf, ||Dp||_2 and ||e||_2. Set to NULL for defaults to be used. |
289
|
|
|
|
|
|
|
* Note that ||J^T e||_inf is computed on free (not equal to lb[i] or ub[i]) variables only. |
290
|
|
|
|
|
|
|
*/ |
291
|
|
|
|
|
|
|
LM_REAL info[LM_INFO_SZ], |
292
|
|
|
|
|
|
|
/* O: information regarding the minimization. Set to NULL if don't care |
293
|
|
|
|
|
|
|
* info[0]= ||e||_2 at initial p. |
294
|
|
|
|
|
|
|
* info[1-4]=[ ||e||_2, ||J^T e||_inf, ||Dp||_2, mu/max[J^T J]_ii ], all computed at estimated p. |
295
|
|
|
|
|
|
|
* info[5]= # iterations, |
296
|
|
|
|
|
|
|
* info[6]=reason for terminating: 1 - stopped by small gradient J^T e |
297
|
|
|
|
|
|
|
* 2 - stopped by small Dp |
298
|
|
|
|
|
|
|
* 3 - stopped by itmax |
299
|
|
|
|
|
|
|
* 4 - singular matrix. Restart from current p with increased mu |
300
|
|
|
|
|
|
|
* 5 - no further error reduction is possible. Restart with increased mu |
301
|
|
|
|
|
|
|
* 6 - stopped by small ||e||_2 |
302
|
|
|
|
|
|
|
* 7 - stopped by invalid (i.e. NaN or Inf) "func" values. This is a user error |
303
|
|
|
|
|
|
|
* info[7]= # function evaluations |
304
|
|
|
|
|
|
|
* info[8]= # Jacobian evaluations |
305
|
|
|
|
|
|
|
* info[9]= # linear systems solved, i.e. # attempts for reducing error |
306
|
|
|
|
|
|
|
*/ |
307
|
|
|
|
|
|
|
LM_REAL *work, /* working memory at least LM_BC_DER_WORKSZ() reals large, allocated if NULL */ |
308
|
|
|
|
|
|
|
LM_REAL *covar, /* O: Covariance matrix corresponding to LS solution; mxm. Set to NULL if not needed. */ |
309
|
|
|
|
|
|
|
void *adata) /* pointer to possibly additional data, passed uninterpreted to func & jacf. |
310
|
|
|
|
|
|
|
* Set to NULL if not needed |
311
|
|
|
|
|
|
|
*/ |
312
|
|
|
|
|
|
|
{ |
313
|
|
|
|
|
|
|
register int i, j, k, l; |
314
|
16
|
|
|
|
|
|
int worksz, freework=0, issolved; |
315
|
|
|
|
|
|
|
/* temp work arrays */ |
316
|
|
|
|
|
|
|
LM_REAL *e, /* nx1 */ |
317
|
|
|
|
|
|
|
*hx, /* \hat{x}_i, nx1 */ |
318
|
|
|
|
|
|
|
*jacTe, /* J^T e_i mx1 */ |
319
|
|
|
|
|
|
|
*jac, /* nxm */ |
320
|
|
|
|
|
|
|
*jacTjac, /* mxm */ |
321
|
|
|
|
|
|
|
*Dp, /* mx1 */ |
322
|
|
|
|
|
|
|
*diag_jacTjac, /* diagonal of J^T J, mx1 */ |
323
|
|
|
|
|
|
|
*pDp; /* p + Dp, mx1 */ |
324
|
|
|
|
|
|
|
|
325
|
|
|
|
|
|
|
register LM_REAL mu, /* damping constant */ |
326
|
|
|
|
|
|
|
tmp; /* mainly used in matrix & vector multiplications */ |
327
|
|
|
|
|
|
|
LM_REAL p_eL2, jacTe_inf, pDp_eL2; /* ||e(p)||_2, ||J^T e||_inf, ||e(p+Dp)||_2 */ |
328
|
16
|
|
|
|
|
|
LM_REAL p_L2, Dp_L2=LM_REAL_MAX, dF, dL; |
329
|
|
|
|
|
|
|
LM_REAL tau, eps1, eps2, eps2_sq, eps3; |
330
|
|
|
|
|
|
|
LM_REAL init_p_eL2; |
331
|
16
|
|
|
|
|
|
int nu=2, nu2, stop=0, nfev, njev=0, nlss=0; |
332
|
16
|
|
|
|
|
|
const int nm=n*m; |
333
|
|
|
|
|
|
|
|
334
|
|
|
|
|
|
|
/* variables for constrained LM */ |
335
|
|
|
|
|
|
|
struct FUNC_STATE fstate; |
336
|
16
|
|
|
|
|
|
LM_REAL alpha=LM_CNST(1e-4), beta=LM_CNST(0.9), gamma=LM_CNST(0.99995), gamma_sq=gamma*gamma, rho=LM_CNST(1e-8); |
337
|
|
|
|
|
|
|
LM_REAL t, t0; |
338
|
16
|
|
|
|
|
|
LM_REAL steptl=LM_CNST(1e3)*(LM_REAL)sqrt(LM_REAL_EPSILON), jacTeDp; |
339
|
16
|
|
|
|
|
|
LM_REAL tmin=LM_CNST(1e-12), tming=LM_CNST(1e-18); /* minimum step length for LS and PG steps */ |
340
|
16
|
|
|
|
|
|
const LM_REAL tini=LM_CNST(1.0); /* initial step length for LS and PG steps */ |
341
|
16
|
|
|
|
|
|
int nLMsteps=0, nLSsteps=0, nPGsteps=0, gprevtaken=0; |
342
|
|
|
|
|
|
|
int numactive; |
343
|
16
|
|
|
|
|
|
int (*linsolver)(LM_REAL *A, LM_REAL *B, LM_REAL *x, int m)=NULL; |
344
|
|
|
|
|
|
|
|
345
|
16
|
|
|
|
|
|
mu=jacTe_inf=t=0.0; tmin=tmin; /* -Wall */ |
346
|
|
|
|
|
|
|
|
347
|
16
|
50
|
|
|
|
|
if(n
|
|
|
50
|
|
|
|
|
|
348
|
0
|
|
|
|
|
|
fprintf(stderr, LCAT(LEVMAR_BC_DER, "(): cannot solve a problem with fewer measurements [%d] than unknowns [%d]\n"), n, m); |
349
|
0
|
|
|
|
|
|
return LM_ERROR; |
350
|
|
|
|
|
|
|
} |
351
|
|
|
|
|
|
|
|
352
|
16
|
50
|
|
|
|
|
if(!jacf){ |
|
|
50
|
|
|
|
|
|
353
|
0
|
|
|
|
|
|
fprintf(stderr, RCAT("No function specified for computing the Jacobian in ", LEVMAR_BC_DER) |
354
|
|
|
|
|
|
|
RCAT("().\nIf no such function is available, use ", LEVMAR_BC_DIF) RCAT("() rather than ", LEVMAR_BC_DER) "()\n"); |
355
|
0
|
|
|
|
|
|
return LM_ERROR; |
356
|
|
|
|
|
|
|
} |
357
|
|
|
|
|
|
|
|
358
|
16
|
50
|
|
|
|
|
if(!LEVMAR_BOX_CHECK(lb, ub, m)){ |
|
|
50
|
|
|
|
|
|
359
|
0
|
|
|
|
|
|
fprintf(stderr, LCAT(LEVMAR_BC_DER, "(): at least one lower bound exceeds the upper one\n")); |
360
|
0
|
|
|
|
|
|
return LM_ERROR; |
361
|
|
|
|
|
|
|
} |
362
|
|
|
|
|
|
|
|
363
|
16
|
50
|
|
|
|
|
if(opts){ |
|
|
50
|
|
|
|
|
|
364
|
16
|
|
|
|
|
|
tau=opts[0]; |
365
|
16
|
|
|
|
|
|
eps1=opts[1]; |
366
|
16
|
|
|
|
|
|
eps2=opts[2]; |
367
|
16
|
|
|
|
|
|
eps2_sq=opts[2]*opts[2]; |
368
|
16
|
|
|
|
|
|
eps3=opts[3]; |
369
|
|
|
|
|
|
|
} |
370
|
|
|
|
|
|
|
else{ // use default values |
371
|
0
|
|
|
|
|
|
tau=LM_CNST(LM_INIT_MU); |
372
|
0
|
|
|
|
|
|
eps1=LM_CNST(LM_STOP_THRESH); |
373
|
0
|
|
|
|
|
|
eps2=LM_CNST(LM_STOP_THRESH); |
374
|
0
|
|
|
|
|
|
eps2_sq=LM_CNST(LM_STOP_THRESH)*LM_CNST(LM_STOP_THRESH); |
375
|
0
|
|
|
|
|
|
eps3=LM_CNST(LM_STOP_THRESH); |
376
|
|
|
|
|
|
|
} |
377
|
|
|
|
|
|
|
|
378
|
16
|
50
|
|
|
|
|
if(!work){ |
|
|
50
|
|
|
|
|
|
379
|
0
|
|
|
|
|
|
worksz=LM_BC_DER_WORKSZ(m, n); //2*n+4*m + n*m + m*m; |
380
|
0
|
|
|
|
|
|
work=(LM_REAL *)malloc(worksz*sizeof(LM_REAL)); /* allocate a big chunk in one step */ |
381
|
0
|
0
|
|
|
|
|
if(!work){ |
|
|
0
|
|
|
|
|
|
382
|
0
|
|
|
|
|
|
fprintf(stderr, LCAT(LEVMAR_BC_DER, "(): memory allocation request failed\n")); |
383
|
0
|
|
|
|
|
|
return LM_ERROR; |
384
|
|
|
|
|
|
|
} |
385
|
0
|
|
|
|
|
|
freework=1; |
386
|
|
|
|
|
|
|
} |
387
|
|
|
|
|
|
|
|
388
|
|
|
|
|
|
|
/* set up work arrays */ |
389
|
16
|
|
|
|
|
|
e=work; |
390
|
16
|
|
|
|
|
|
hx=e + n; |
391
|
16
|
|
|
|
|
|
jacTe=hx + n; |
392
|
16
|
|
|
|
|
|
jac=jacTe + m; |
393
|
16
|
|
|
|
|
|
jacTjac=jac + nm; |
394
|
16
|
|
|
|
|
|
Dp=jacTjac + m*m; |
395
|
16
|
|
|
|
|
|
diag_jacTjac=Dp + m; |
396
|
16
|
|
|
|
|
|
pDp=diag_jacTjac + m; |
397
|
|
|
|
|
|
|
|
398
|
16
|
|
|
|
|
|
fstate.n=n; |
399
|
16
|
|
|
|
|
|
fstate.hx=hx; |
400
|
16
|
|
|
|
|
|
fstate.x=x; |
401
|
16
|
|
|
|
|
|
fstate.adata=adata; |
402
|
16
|
|
|
|
|
|
fstate.nfev=&nfev; |
403
|
|
|
|
|
|
|
|
404
|
|
|
|
|
|
|
/* see if starting point is within the feasile set */ |
405
|
78
|
100
|
|
|
|
|
for(i=0; i
|
|
|
100
|
|
|
|
|
|
406
|
62
|
|
|
|
|
|
pDp[i]=p[i]; |
407
|
16
|
|
|
|
|
|
BOXPROJECT(p, lb, ub, m); /* project to feasible set */ |
408
|
|
|
|
|
|
|
// for(i=0; i
|
409
|
|
|
|
|
|
|
// if(pDp[i]!=p[i]) |
410
|
|
|
|
|
|
|
// fprintf(stderr, RCAT("Warning: component %d of starting point not feasible in ", LEVMAR_BC_DER) "()! [%g projected to %g]\n", |
411
|
|
|
|
|
|
|
// i, pDp[i], p[i]); |
412
|
|
|
|
|
|
|
|
413
|
|
|
|
|
|
|
/* compute e=x - f(p) and its L2 norm */ |
414
|
16
|
|
|
|
|
|
(*func)(p, hx, m, n, adata); nfev=1; |
415
|
|
|
|
|
|
|
/* ### e=x-hx, p_eL2=||e|| */ |
416
|
|
|
|
|
|
|
#if 1 |
417
|
16
|
|
|
|
|
|
p_eL2=LEVMAR_L2NRMXMY(e, x, hx, n); |
418
|
|
|
|
|
|
|
#else |
419
|
|
|
|
|
|
|
for(i=0, p_eL2=0.0; i
|
420
|
|
|
|
|
|
|
e[i]=tmp=x[i]-hx[i]; |
421
|
|
|
|
|
|
|
p_eL2+=tmp*tmp; |
422
|
|
|
|
|
|
|
} |
423
|
|
|
|
|
|
|
#endif |
424
|
16
|
|
|
|
|
|
init_p_eL2=p_eL2; |
425
|
16
|
50
|
|
|
|
|
if(!LM_FINITE(p_eL2)) stop=7; |
|
|
50
|
|
|
|
|
|
426
|
|
|
|
|
|
|
|
427
|
60496
|
100
|
|
|
|
|
for(k=0; k
|
|
|
50
|
|
|
|
|
|
|
|
100
|
|
|
|
|
|
|
|
100
|
|
|
|
|
|
428
|
|
|
|
|
|
|
/* Note that p and e have been updated at a previous iteration */ |
429
|
|
|
|
|
|
|
|
430
|
60482
|
100
|
|
|
|
|
if(p_eL2<=eps3){ /* error is small */ |
|
|
50
|
|
|
|
|
|
431
|
2
|
|
|
|
|
|
stop=6; |
432
|
2
|
|
|
|
|
|
break; |
433
|
|
|
|
|
|
|
} |
434
|
|
|
|
|
|
|
|
435
|
|
|
|
|
|
|
/* Compute the Jacobian J at p, J^T J, J^T e, ||J^T e||_inf and ||p||^2. |
436
|
|
|
|
|
|
|
* Since J^T J is symmetric, its computation can be sped up by computing |
437
|
|
|
|
|
|
|
* only its upper triangular part and copying it to the lower part |
438
|
|
|
|
|
|
|
*/ |
439
|
|
|
|
|
|
|
|
440
|
60480
|
|
|
|
|
|
(*jacf)(p, jac, m, n, adata); ++njev; |
441
|
|
|
|
|
|
|
|
442
|
|
|
|
|
|
|
/* J^T J, J^T e */ |
443
|
60480
|
|
|
|
|
|
if(nm<__BLOCKSZ__SQ){ // this is a small problem |
444
|
|
|
|
|
|
|
/* J^T*J_ij = \sum_l J^T_il * J_lj = \sum_l J_li * J_lj. |
445
|
|
|
|
|
|
|
* Thus, the product J^T J can be computed using an outer loop for |
446
|
|
|
|
|
|
|
* l that adds J_li*J_lj to each element ij of the result. Note that |
447
|
|
|
|
|
|
|
* with this scheme, the accesses to J and JtJ are always along rows, |
448
|
|
|
|
|
|
|
* therefore induces less cache misses compared to the straightforward |
449
|
|
|
|
|
|
|
* algorithm for computing the product (i.e., l loop is innermost one). |
450
|
|
|
|
|
|
|
* A similar scheme applies to the computation of J^T e. |
451
|
|
|
|
|
|
|
* However, for large minimization problems (i.e., involving a large number |
452
|
|
|
|
|
|
|
* of unknowns and measurements) for which J/J^T J rows are too large to |
453
|
|
|
|
|
|
|
* fit in the L1 cache, even this scheme incures many cache misses. In |
454
|
|
|
|
|
|
|
* such cases, a cache-efficient blocking scheme is preferable. |
455
|
|
|
|
|
|
|
* |
456
|
|
|
|
|
|
|
* Thanks to John Nitao of Lawrence Livermore Lab for pointing out this |
457
|
|
|
|
|
|
|
* performance problem. |
458
|
|
|
|
|
|
|
* |
459
|
|
|
|
|
|
|
* Note that the non-blocking algorithm is faster on small |
460
|
|
|
|
|
|
|
* problems since in this case it avoids the overheads of blocking. |
461
|
|
|
|
|
|
|
*/ |
462
|
|
|
|
|
|
|
register int l, im; |
463
|
|
|
|
|
|
|
register LM_REAL alpha, *jaclm; |
464
|
|
|
|
|
|
|
|
465
|
|
|
|
|
|
|
/* looping downwards saves a few computations */ |
466
|
1028024
|
100
|
|
|
|
|
for(i=m*m; i-->0; ) |
|
|
100
|
|
|
|
|
|
467
|
967552
|
|
|
|
|
|
jacTjac[i]=0.0; |
468
|
302360
|
100
|
|
|
|
|
for(i=m; i-->0; ) |
|
|
100
|
|
|
|
|
|
469
|
241888
|
|
|
|
|
|
jacTe[i]=0.0; |
470
|
|
|
|
|
|
|
|
471
|
302360
|
100
|
|
|
|
|
for(l=n; l-->0; ){ |
|
|
100
|
|
|
|
|
|
472
|
241888
|
|
|
|
|
|
jaclm=jac+l*m; |
473
|
1209440
|
100
|
|
|
|
|
for(i=m; i-->0; ){ |
|
|
100
|
|
|
|
|
|
474
|
967552
|
|
|
|
|
|
im=i*m; |
475
|
967552
|
|
|
|
|
|
alpha=jaclm[i]; //jac[l*m+i]; |
476
|
3386432
|
100
|
|
|
|
|
for(j=i+1; j-->0; ) /* j<=i computes lower triangular part only */ |
|
|
100
|
|
|
|
|
|
477
|
2418880
|
|
|
|
|
|
jacTjac[im+j]+=jaclm[j]*alpha; //jac[l*m+j] |
478
|
|
|
|
|
|
|
|
479
|
|
|
|
|
|
|
/* J^T e */ |
480
|
967552
|
|
|
|
|
|
jacTe[i]+=alpha*e[l]; |
481
|
|
|
|
|
|
|
} |
482
|
|
|
|
|
|
|
} |
483
|
|
|
|
|
|
|
|
484
|
302360
|
100
|
|
|
|
|
for(i=m; i-->0; ) /* copy to upper part */ |
|
|
100
|
|
|
|
|
|
485
|
604720
|
100
|
|
|
|
|
for(j=i+1; j
|
|
|
100
|
|
|
|
|
|
486
|
362832
|
|
|
|
|
|
jacTjac[i*m+j]=jacTjac[j*m+i]; |
487
|
|
|
|
|
|
|
} |
488
|
|
|
|
|
|
|
else{ // this is a large problem |
489
|
|
|
|
|
|
|
/* Cache efficient computation of J^T J based on blocking |
490
|
|
|
|
|
|
|
*/ |
491
|
8
|
|
|
|
|
|
LEVMAR_TRANS_MAT_MAT_MULT(jac, jacTjac, n, m); |
492
|
|
|
|
|
|
|
|
493
|
|
|
|
|
|
|
/* cache efficient computation of J^T e */ |
494
|
32
|
100
|
|
|
|
|
for(i=0; i
|
|
|
0
|
|
|
|
|
|
495
|
24
|
|
|
|
|
|
jacTe[i]=0.0; |
496
|
|
|
|
|
|
|
|
497
|
8008
|
100
|
|
|
|
|
for(i=0; i
|
|
|
0
|
|
|
|
|
|
498
|
|
|
|
|
|
|
register LM_REAL *jacrow; |
499
|
|
|
|
|
|
|
|
500
|
32000
|
100
|
|
|
|
|
for(l=0, jacrow=jac+i*m, tmp=e[i]; l
|
|
|
0
|
|
|
|
|
|
501
|
24000
|
|
|
|
|
|
jacTe[l]+=jacrow[l]*tmp; |
502
|
|
|
|
|
|
|
} |
503
|
|
|
|
|
|
|
} |
504
|
|
|
|
|
|
|
|
505
|
|
|
|
|
|
|
/* Compute ||J^T e||_inf and ||p||^2. Note that ||J^T e||_inf |
506
|
|
|
|
|
|
|
* is computed for free (i.e. inactive) variables only. |
507
|
|
|
|
|
|
|
* At a local minimum, if p[i]==ub[i] then g[i]>0; |
508
|
|
|
|
|
|
|
* if p[i]==lb[i] g[i]<0; otherwise g[i]=0 |
509
|
|
|
|
|
|
|
*/ |
510
|
302392
|
100
|
|
|
|
|
for(i=j=numactive=0, p_L2=jacTe_inf=0.0; i
|
|
|
100
|
|
|
|
|
|
511
|
241912
|
50
|
|
|
|
|
if(ub && p[i]==ub[i]){ ++numactive; if(jacTe[i]>0.0) ++j; } |
|
|
100
|
|
|
|
|
|
|
|
100
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
|
|
100
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
512
|
181466
|
50
|
|
|
|
|
else if(lb && p[i]==lb[i]){ ++numactive; if(jacTe[i]<0.0) ++j; } |
|
|
50
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
513
|
181466
|
100
|
|
|
|
|
else if(jacTe_inf < (tmp=FABS(jacTe[i]))) jacTe_inf=tmp; |
|
|
100
|
|
|
|
|
|
|
|
100
|
|
|
|
|
|
|
|
100
|
|
|
|
|
|
514
|
|
|
|
|
|
|
|
515
|
241912
|
|
|
|
|
|
diag_jacTjac[i]=jacTjac[i*m+i]; /* save diagonal entries so that augmentation can be later canceled */ |
516
|
241912
|
|
|
|
|
|
p_L2+=p[i]*p[i]; |
517
|
|
|
|
|
|
|
} |
518
|
|
|
|
|
|
|
//p_L2=sqrt(p_L2); |
519
|
|
|
|
|
|
|
|
520
|
|
|
|
|
|
|
#if 0 |
521
|
|
|
|
|
|
|
if(!(k%100)){ |
522
|
|
|
|
|
|
|
printf("Current estimate: "); |
523
|
|
|
|
|
|
|
for(i=0; i
|
524
|
|
|
|
|
|
|
printf("%.9g ", p[i]); |
525
|
|
|
|
|
|
|
printf("-- errors %.9g %0.9g, #active %d [%d]\n", jacTe_inf, p_eL2, numactive, j); |
526
|
|
|
|
|
|
|
} |
527
|
|
|
|
|
|
|
#endif |
528
|
|
|
|
|
|
|
|
529
|
|
|
|
|
|
|
/* check for convergence */ |
530
|
60480
|
100
|
|
|
|
|
if(j==numactive && (jacTe_inf <= eps1)){ |
|
|
50
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
531
|
0
|
|
|
|
|
|
Dp_L2=0.0; /* no increment for p in this case */ |
532
|
0
|
|
|
|
|
|
stop=1; |
533
|
0
|
|
|
|
|
|
break; |
534
|
|
|
|
|
|
|
} |
535
|
|
|
|
|
|
|
|
536
|
|
|
|
|
|
|
/* compute initial damping factor */ |
537
|
60480
|
100
|
|
|
|
|
if(k==0){ |
|
|
100
|
|
|
|
|
|
538
|
16
|
50
|
|
|
|
|
if(!lb && !ub){ /* no bounds */ |
|
|
0
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
539
|
0
|
0
|
|
|
|
|
for(i=0, tmp=LM_REAL_MIN; i
|
|
|
0
|
|
|
|
|
|
540
|
0
|
0
|
|
|
|
|
if(diag_jacTjac[i]>tmp) tmp=diag_jacTjac[i]; /* find max diagonal element */ |
|
|
0
|
|
|
|
|
|
541
|
0
|
|
|
|
|
|
mu=tau*tmp; |
542
|
|
|
|
|
|
|
} |
543
|
|
|
|
|
|
|
else |
544
|
16
|
|
|
|
|
|
mu=LM_CNST(0.5)*tau*p_eL2; /* use Kanzow's starting mu */ |
545
|
|
|
|
|
|
|
} |
546
|
|
|
|
|
|
|
|
547
|
|
|
|
|
|
|
/* determine increment using a combination of adaptive damping, line search and projected gradient search */ |
548
|
|
|
|
|
|
|
while(1){ |
549
|
|
|
|
|
|
|
/* augment normal equations */ |
550
|
302392
|
100
|
|
|
|
|
for(i=0; i
|
|
|
100
|
|
|
|
|
|
551
|
241912
|
|
|
|
|
|
jacTjac[i*m+i]+=mu; |
552
|
|
|
|
|
|
|
|
553
|
|
|
|
|
|
|
/* solve augmented equations */ |
554
|
|
|
|
|
|
|
#ifdef HAVE_LAPACK |
555
|
|
|
|
|
|
|
/* 6 alternatives are available: LU, Cholesky, 2 variants of QR decomposition, SVD and LDLt. |
556
|
|
|
|
|
|
|
* Cholesky is the fastest but might be inaccurate; QR is slower but more accurate; |
557
|
|
|
|
|
|
|
* SVD is the slowest but most accurate; LU offers a tradeoff between accuracy and speed |
558
|
|
|
|
|
|
|
*/ |
559
|
|
|
|
|
|
|
|
560
|
|
|
|
|
|
|
issolved=AX_EQ_B_BK(jacTjac, jacTe, Dp, m); ++nlss; linsolver=AX_EQ_B_BK; |
561
|
|
|
|
|
|
|
//issolved=AX_EQ_B_LU(jacTjac, jacTe, Dp, m); ++nlss; linsolver=AX_EQ_B_LU; |
562
|
|
|
|
|
|
|
//issolved=AX_EQ_B_CHOL(jacTjac, jacTe, Dp, m); ++nlss; linsolver=AX_EQ_B_CHOL; |
563
|
|
|
|
|
|
|
//issolved=AX_EQ_B_QR(jacTjac, jacTe, Dp, m); ++nlss; linsolver=AX_EQ_B_QR; |
564
|
|
|
|
|
|
|
//issolved=AX_EQ_B_QRLS(jacTjac, jacTe, Dp, m, m); ++nlss; linsolver=(int (*)(LM_REAL *A, LM_REAL *B, LM_REAL *x, int m))AX_EQ_B_QRLS; |
565
|
|
|
|
|
|
|
//issolved=AX_EQ_B_SVD(jacTjac, jacTe, Dp, m); ++nlss; linsolver=AX_EQ_B_SVD; |
566
|
|
|
|
|
|
|
|
567
|
|
|
|
|
|
|
#else |
568
|
|
|
|
|
|
|
/* use the LU included with levmar */ |
569
|
60480
|
|
|
|
|
|
issolved=AX_EQ_B_LU(jacTjac, jacTe, Dp, m); ++nlss; linsolver=AX_EQ_B_LU; |
570
|
|
|
|
|
|
|
#endif /* HAVE_LAPACK */ |
571
|
|
|
|
|
|
|
|
572
|
60480
|
|
|
|
|
|
if(issolved){ |
573
|
302392
|
100
|
|
|
|
|
for(i=0; i
|
|
|
100
|
|
|
|
|
|
574
|
241912
|
|
|
|
|
|
pDp[i]=p[i] + Dp[i]; |
575
|
|
|
|
|
|
|
|
576
|
|
|
|
|
|
|
/* compute p's new estimate and ||Dp||^2 */ |
577
|
60480
|
|
|
|
|
|
BOXPROJECT(pDp, lb, ub, m); /* project to feasible set */ |
578
|
302392
|
100
|
|
|
|
|
for(i=0, Dp_L2=0.0; i
|
|
|
100
|
|
|
|
|
|
579
|
241912
|
|
|
|
|
|
Dp[i]=tmp=pDp[i]-p[i]; |
580
|
241912
|
|
|
|
|
|
Dp_L2+=tmp*tmp; |
581
|
|
|
|
|
|
|
} |
582
|
|
|
|
|
|
|
//Dp_L2=sqrt(Dp_L2); |
583
|
|
|
|
|
|
|
|
584
|
60480
|
50
|
|
|
|
|
if(Dp_L2<=eps2_sq*p_L2){ /* relative change in p is small, stop */ |
|
|
50
|
|
|
|
|
|
585
|
0
|
|
|
|
|
|
stop=2; |
586
|
0
|
|
|
|
|
|
break; |
587
|
|
|
|
|
|
|
} |
588
|
|
|
|
|
|
|
|
589
|
60480
|
50
|
|
|
|
|
if(Dp_L2>=(p_L2+eps2)/(LM_CNST(EPSILON)*LM_CNST(EPSILON))){ /* almost singular */ |
|
|
50
|
|
|
|
|
|
590
|
0
|
|
|
|
|
|
stop=4; |
591
|
0
|
|
|
|
|
|
break; |
592
|
|
|
|
|
|
|
} |
593
|
|
|
|
|
|
|
|
594
|
60480
|
|
|
|
|
|
(*func)(pDp, hx, m, n, adata); ++nfev; /* evaluate function at p + Dp */ |
595
|
|
|
|
|
|
|
/* ### hx=x-hx, pDp_eL2=||hx|| */ |
596
|
|
|
|
|
|
|
#if 1 |
597
|
60480
|
|
|
|
|
|
pDp_eL2=LEVMAR_L2NRMXMY(hx, x, hx, n); |
598
|
|
|
|
|
|
|
#else |
599
|
|
|
|
|
|
|
for(i=0, pDp_eL2=0.0; i
|
600
|
|
|
|
|
|
|
hx[i]=tmp=x[i]-hx[i]; |
601
|
|
|
|
|
|
|
pDp_eL2+=tmp*tmp; |
602
|
|
|
|
|
|
|
} |
603
|
|
|
|
|
|
|
#endif |
604
|
60480
|
|
|
|
|
|
if(!LM_FINITE(pDp_eL2)){ |
605
|
0
|
|
|
|
|
|
stop=7; |
606
|
0
|
|
|
|
|
|
break; |
607
|
|
|
|
|
|
|
} |
608
|
|
|
|
|
|
|
|
609
|
60480
|
100
|
|
|
|
|
if(pDp_eL2<=gamma_sq*p_eL2){ |
|
|
100
|
|
|
|
|
|
610
|
172
|
100
|
|
|
|
|
for(i=0, dL=0.0; i
|
|
|
100
|
|
|
|
|
|
611
|
136
|
|
|
|
|
|
dL+=Dp[i]*(mu*Dp[i]+jacTe[i]); |
612
|
|
|
|
|
|
|
|
613
|
|
|
|
|
|
|
#if 1 |
614
|
36
|
50
|
|
|
|
|
if(dL>0.0){ |
|
|
50
|
|
|
|
|
|
615
|
36
|
|
|
|
|
|
dF=p_eL2-pDp_eL2; |
616
|
36
|
|
|
|
|
|
tmp=(LM_CNST(2.0)*dF/dL-LM_CNST(1.0)); |
617
|
36
|
|
|
|
|
|
tmp=LM_CNST(1.0)-tmp*tmp*tmp; |
618
|
36
|
100
|
|
|
|
|
mu=mu*( (tmp>=LM_CNST(ONE_THIRD))? tmp : LM_CNST(ONE_THIRD) ); |
|
|
50
|
|
|
|
|
|
619
|
|
|
|
|
|
|
} |
620
|
|
|
|
|
|
|
else |
621
|
0
|
0
|
|
|
|
|
mu=(mu>=pDp_eL2)? pDp_eL2 : mu; /* pDp_eL2 is the new pDp_eL2 */ |
|
|
0
|
|
|
|
|
|
622
|
|
|
|
|
|
|
#else |
623
|
|
|
|
|
|
|
|
624
|
|
|
|
|
|
|
mu=(mu>=pDp_eL2)? pDp_eL2 : mu; /* pDp_eL2 is the new pDp_eL2 */ |
625
|
|
|
|
|
|
|
#endif |
626
|
|
|
|
|
|
|
|
627
|
36
|
|
|
|
|
|
nu=2; |
628
|
|
|
|
|
|
|
|
629
|
172
|
100
|
|
|
|
|
for(i=0 ; i
|
|
|
100
|
|
|
|
|
|
630
|
136
|
|
|
|
|
|
p[i]=pDp[i]; |
631
|
|
|
|
|
|
|
|
632
|
8148
|
100
|
|
|
|
|
for(i=0; i
|
|
|
100
|
|
|
|
|
|
633
|
8112
|
|
|
|
|
|
e[i]=hx[i]; |
634
|
36
|
|
|
|
|
|
p_eL2=pDp_eL2; |
635
|
36
|
|
|
|
|
|
++nLMsteps; |
636
|
36
|
|
|
|
|
|
gprevtaken=0; |
637
|
36
|
|
|
|
|
|
break; |
638
|
|
|
|
|
|
|
} |
639
|
|
|
|
|
|
|
} |
640
|
|
|
|
|
|
|
else{ |
641
|
|
|
|
|
|
|
|
642
|
|
|
|
|
|
|
/* the augmented linear system could not be solved, increase mu */ |
643
|
|
|
|
|
|
|
|
644
|
0
|
|
|
|
|
|
mu*=nu; |
645
|
0
|
|
|
|
|
|
nu2=nu<<1; // 2*nu; |
646
|
0
|
0
|
|
|
|
|
if(nu2<=nu){ /* nu has wrapped around (overflown). Thanks to Frank Jordan for spotting this case */ |
|
|
0
|
|
|
|
|
|
647
|
0
|
|
|
|
|
|
stop=5; |
648
|
0
|
|
|
|
|
|
break; |
649
|
|
|
|
|
|
|
} |
650
|
0
|
|
|
|
|
|
nu=nu2; |
651
|
|
|
|
|
|
|
|
652
|
0
|
0
|
|
|
|
|
for(i=0; i
|
|
|
0
|
|
|
|
|
|
653
|
0
|
|
|
|
|
|
jacTjac[i*m+i]=diag_jacTjac[i]; |
654
|
|
|
|
|
|
|
|
655
|
0
|
|
|
|
|
|
continue; /* solve again with increased nu */ |
656
|
|
|
|
|
|
|
} |
657
|
|
|
|
|
|
|
|
658
|
|
|
|
|
|
|
/* if this point is reached, the LM step did not reduce the error; |
659
|
|
|
|
|
|
|
* see if it is a descent direction |
660
|
|
|
|
|
|
|
*/ |
661
|
|
|
|
|
|
|
|
662
|
|
|
|
|
|
|
/* negate jacTe (i.e. g) & compute g^T * Dp */ |
663
|
302220
|
100
|
|
|
|
|
for(i=0, jacTeDp=0.0; i
|
|
|
100
|
|
|
|
|
|
664
|
241776
|
|
|
|
|
|
jacTe[i]=-jacTe[i]; |
665
|
241776
|
|
|
|
|
|
jacTeDp+=jacTe[i]*Dp[i]; |
666
|
|
|
|
|
|
|
} |
667
|
|
|
|
|
|
|
|
668
|
60444
|
100
|
|
|
|
|
if(jacTeDp<=-rho*pow(Dp_L2, _POW_/LM_CNST(2.0))){ |
|
|
100
|
|
|
|
|
|
669
|
|
|
|
|
|
|
/* Dp is a descent direction; do a line search along it */ |
670
|
|
|
|
|
|
|
int mxtake, iretcd; |
671
|
|
|
|
|
|
|
LM_REAL stepmx; |
672
|
|
|
|
|
|
|
|
673
|
2757
|
50
|
|
|
|
|
tmp=(LM_REAL)sqrt(p_L2); stepmx=LM_CNST(1e3)*( (tmp>=LM_CNST(1.0))? tmp : LM_CNST(1.0) ); |
|
|
50
|
|
|
|
|
|
674
|
|
|
|
|
|
|
|
675
|
|
|
|
|
|
|
#if 1 |
676
|
|
|
|
|
|
|
/* use Schnabel's backtracking line search; it requires fewer "func" evaluations */ |
677
|
2757
|
|
|
|
|
|
LNSRCH(m, p, p_eL2, jacTe, Dp, alpha, pDp, &pDp_eL2, func, fstate, |
678
|
|
|
|
|
|
|
&mxtake, &iretcd, stepmx, steptl, NULL); /* NOTE: LNSRCH() updates hx */ |
679
|
2757
|
100
|
|
|
|
|
if(iretcd!=0) goto gradproj; /* rather inelegant but effective way to handle LNSRCH() failures... */ |
|
|
100
|
|
|
|
|
|
680
|
|
|
|
|
|
|
#else |
681
|
|
|
|
|
|
|
/* use the simpler (but slower!) line search described by Kanzow et al */ |
682
|
|
|
|
|
|
|
for(t=tini; t>tmin; t*=beta){ |
683
|
|
|
|
|
|
|
for(i=0; i
|
684
|
|
|
|
|
|
|
pDp[i]=p[i] + t*Dp[i]; |
685
|
|
|
|
|
|
|
//pDp[i]=__MEDIAN3(lb[i], pDp[i], ub[i]); /* project to feasible set */ |
686
|
|
|
|
|
|
|
} |
687
|
|
|
|
|
|
|
|
688
|
|
|
|
|
|
|
(*func)(pDp, hx, m, n, adata); ++nfev; /* evaluate function at p + t*Dp */ |
689
|
|
|
|
|
|
|
for(i=0, pDp_eL2=0.0; i
|
690
|
|
|
|
|
|
|
hx[i]=tmp=x[i]-hx[i]; |
691
|
|
|
|
|
|
|
pDp_eL2+=tmp*tmp; |
692
|
|
|
|
|
|
|
} |
693
|
|
|
|
|
|
|
if(!LM_FINITE(pDp_eL2)) goto gradproj; /* treat as line search failure */ |
694
|
|
|
|
|
|
|
|
695
|
|
|
|
|
|
|
//if(LM_CNST(0.5)*pDp_eL2<=LM_CNST(0.5)*p_eL2 + t*alpha*jacTeDp) break; |
696
|
|
|
|
|
|
|
if(pDp_eL2<=p_eL2 + LM_CNST(2.0)*t*alpha*jacTeDp) break; |
697
|
|
|
|
|
|
|
} |
698
|
|
|
|
|
|
|
#endif |
699
|
2139
|
|
|
|
|
|
++nLSsteps; |
700
|
2139
|
|
|
|
|
|
gprevtaken=0; |
701
|
|
|
|
|
|
|
|
702
|
|
|
|
|
|
|
/* NOTE: new estimate for p is in pDp, associated error in hx and its norm in pDp_eL2. |
703
|
|
|
|
|
|
|
* These values are used below to update their corresponding variables |
704
|
|
|
|
|
|
|
*/ |
705
|
|
|
|
|
|
|
} |
706
|
|
|
|
|
|
|
else{ |
707
|
|
|
|
|
|
|
gradproj: /* Note that this point can also be reached via a goto when LNSRCH() fails */ |
708
|
|
|
|
|
|
|
|
709
|
|
|
|
|
|
|
/* jacTe is a descent direction; make a projected gradient step */ |
710
|
|
|
|
|
|
|
|
711
|
|
|
|
|
|
|
/* if the previous step was along the gradient descent, try to use the t employed in that step */ |
712
|
|
|
|
|
|
|
/* compute ||g|| */ |
713
|
291525
|
100
|
|
|
|
|
for(i=0, tmp=0.0; i
|
|
|
100
|
|
|
|
|
|
714
|
233220
|
|
|
|
|
|
tmp+=jacTe[i]*jacTe[i]; |
715
|
58305
|
|
|
|
|
|
tmp=(LM_REAL)sqrt(tmp); |
716
|
58305
|
|
|
|
|
|
tmp=LM_CNST(100.0)/(LM_CNST(1.0)+tmp); |
717
|
58305
|
50
|
|
|
|
|
t0=(tmp<=tini)? tmp : tini; /* guard against poor scaling & large steps; see (3.50) in C.T. Kelley's book */ |
|
|
50
|
|
|
|
|
|
718
|
|
|
|
|
|
|
|
719
|
116976
|
100
|
|
|
|
|
for(t=(gprevtaken)? t : t0; t>tming; t*=beta){ |
|
|
50
|
|
|
|
|
|
|
|
100
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
720
|
584880
|
100
|
|
|
|
|
for(i=0; i
|
|
|
100
|
|
|
|
|
|
721
|
467904
|
|
|
|
|
|
pDp[i]=p[i] - t*jacTe[i]; |
722
|
116976
|
|
|
|
|
|
BOXPROJECT(pDp, lb, ub, m); /* project to feasible set */ |
723
|
584880
|
100
|
|
|
|
|
for(i=0; i
|
|
|
100
|
|
|
|
|
|
724
|
467904
|
|
|
|
|
|
Dp[i]=pDp[i]-p[i]; |
725
|
|
|
|
|
|
|
|
726
|
116976
|
|
|
|
|
|
(*func)(pDp, hx, m, n, adata); ++nfev; /* evaluate function at p - t*g */ |
727
|
|
|
|
|
|
|
/* compute ||e(pDp)||_2 */ |
728
|
|
|
|
|
|
|
/* ### hx=x-hx, pDp_eL2=||hx|| */ |
729
|
|
|
|
|
|
|
#if 1 |
730
|
116976
|
|
|
|
|
|
pDp_eL2=LEVMAR_L2NRMXMY(hx, x, hx, n); |
731
|
|
|
|
|
|
|
#else |
732
|
|
|
|
|
|
|
for(i=0, pDp_eL2=0.0; i
|
733
|
|
|
|
|
|
|
hx[i]=tmp=x[i]-hx[i]; |
734
|
|
|
|
|
|
|
pDp_eL2+=tmp*tmp; |
735
|
|
|
|
|
|
|
} |
736
|
|
|
|
|
|
|
#endif |
737
|
116976
|
|
|
|
|
|
if(!LM_FINITE(pDp_eL2)){ |
738
|
0
|
|
|
|
|
|
stop=7; |
739
|
0
|
|
|
|
|
|
goto breaknested; |
740
|
|
|
|
|
|
|
} |
741
|
|
|
|
|
|
|
|
742
|
584880
|
100
|
|
|
|
|
for(i=0, tmp=0.0; i
|
|
|
100
|
|
|
|
|
|
743
|
467904
|
|
|
|
|
|
tmp+=jacTe[i]*Dp[i]; |
744
|
|
|
|
|
|
|
|
745
|
116976
|
100
|
|
|
|
|
if(gprevtaken && pDp_eL2<=p_eL2 + LM_CNST(2.0)*LM_CNST(0.99999)*tmp){ /* starting t too small */ |
|
|
100
|
|
|
|
|
|
|
|
100
|
|
|
|
|
|
|
|
100
|
|
|
|
|
|
746
|
52369
|
|
|
|
|
|
t=t0; |
747
|
52369
|
|
|
|
|
|
gprevtaken=0; |
748
|
52369
|
|
|
|
|
|
continue; |
749
|
|
|
|
|
|
|
} |
750
|
|
|
|
|
|
|
//if(LM_CNST(0.5)*pDp_eL2<=LM_CNST(0.5)*p_eL2 + alpha*tmp) break; |
751
|
64607
|
100
|
|
|
|
|
if(pDp_eL2<=p_eL2 + LM_CNST(2.0)*alpha*tmp) break; |
|
|
100
|
|
|
|
|
|
752
|
|
|
|
|
|
|
} |
753
|
|
|
|
|
|
|
|
754
|
58305
|
|
|
|
|
|
++nPGsteps; |
755
|
58305
|
|
|
|
|
|
gprevtaken=1; |
756
|
|
|
|
|
|
|
/* NOTE: new estimate for p is in pDp, associated error in hx and its norm in pDp_eL2 */ |
757
|
|
|
|
|
|
|
} |
758
|
|
|
|
|
|
|
|
759
|
|
|
|
|
|
|
/* update using computed values */ |
760
|
|
|
|
|
|
|
|
761
|
302220
|
100
|
|
|
|
|
for(i=0, Dp_L2=0.0; i
|
|
|
100
|
|
|
|
|
|
762
|
241776
|
|
|
|
|
|
tmp=pDp[i]-p[i]; |
763
|
241776
|
|
|
|
|
|
Dp_L2+=tmp*tmp; |
764
|
|
|
|
|
|
|
} |
765
|
|
|
|
|
|
|
//Dp_L2=sqrt(Dp_L2); |
766
|
|
|
|
|
|
|
|
767
|
60444
|
50
|
|
|
|
|
if(Dp_L2<=eps2_sq*p_L2){ /* relative change in p is small, stop */ |
|
|
100
|
|
|
|
|
|
768
|
2
|
|
|
|
|
|
stop=2; |
769
|
2
|
|
|
|
|
|
break; |
770
|
|
|
|
|
|
|
} |
771
|
|
|
|
|
|
|
|
772
|
302210
|
100
|
|
|
|
|
for(i=0 ; i
|
|
|
100
|
|
|
|
|
|
773
|
241768
|
|
|
|
|
|
p[i]=pDp[i]; |
774
|
|
|
|
|
|
|
|
775
|
302210
|
100
|
|
|
|
|
for(i=0; i
|
|
|
100
|
|
|
|
|
|
776
|
241768
|
|
|
|
|
|
e[i]=hx[i]; |
777
|
60442
|
|
|
|
|
|
p_eL2=pDp_eL2; |
778
|
60442
|
|
|
|
|
|
break; |
779
|
0
|
|
|
|
|
|
} /* inner loop */ |
780
|
|
|
|
|
|
|
} |
781
|
|
|
|
|
|
|
|
782
|
|
|
|
|
|
|
breaknested: /* NOTE: this point is also reached via an explicit goto! */ |
783
|
|
|
|
|
|
|
|
784
|
16
|
100
|
|
|
|
|
if(k>=itmax) stop=3; |
|
|
100
|
|
|
|
|
|
785
|
|
|
|
|
|
|
|
786
|
78
|
100
|
|
|
|
|
for(i=0; i
|
|
|
100
|
|
|
|
|
|
787
|
62
|
|
|
|
|
|
jacTjac[i*m+i]=diag_jacTjac[i]; |
788
|
|
|
|
|
|
|
|
789
|
16
|
50
|
|
|
|
|
if(info){ |
|
|
50
|
|
|
|
|
|
790
|
16
|
|
|
|
|
|
info[0]=init_p_eL2; |
791
|
16
|
|
|
|
|
|
info[1]=p_eL2; |
792
|
16
|
|
|
|
|
|
info[2]=jacTe_inf; |
793
|
16
|
|
|
|
|
|
info[3]=Dp_L2; |
794
|
78
|
100
|
|
|
|
|
for(i=0, tmp=LM_REAL_MIN; i
|
|
|
100
|
|
|
|
|
|
795
|
62
|
100
|
|
|
|
|
if(tmp
|
|
|
100
|
|
|
|
|
|
796
|
16
|
|
|
|
|
|
info[4]=mu/tmp; |
797
|
16
|
|
|
|
|
|
info[5]=(LM_REAL)k; |
798
|
16
|
|
|
|
|
|
info[6]=(LM_REAL)stop; |
799
|
16
|
|
|
|
|
|
info[7]=(LM_REAL)nfev; |
800
|
16
|
|
|
|
|
|
info[8]=(LM_REAL)njev; |
801
|
16
|
|
|
|
|
|
info[9]=(LM_REAL)nlss; |
802
|
|
|
|
|
|
|
} |
803
|
|
|
|
|
|
|
|
804
|
|
|
|
|
|
|
/* covariance matrix */ |
805
|
16
|
50
|
|
|
|
|
if(covar){ |
|
|
50
|
|
|
|
|
|
806
|
16
|
|
|
|
|
|
LEVMAR_COVAR(jacTjac, covar, p_eL2, m, n); |
807
|
|
|
|
|
|
|
} |
808
|
|
|
|
|
|
|
|
809
|
16
|
50
|
|
|
|
|
if(freework) free(work); |
|
|
50
|
|
|
|
|
|
810
|
|
|
|
|
|
|
|
811
|
|
|
|
|
|
|
#ifdef LINSOLVERS_RETAIN_MEMORY |
812
|
16
|
50
|
|
|
|
|
if(linsolver) (*linsolver)(NULL, NULL, NULL, 0); |
|
|
50
|
|
|
|
|
|
813
|
|
|
|
|
|
|
#endif |
814
|
|
|
|
|
|
|
|
815
|
|
|
|
|
|
|
#if 0 |
816
|
|
|
|
|
|
|
printf("%d LM steps, %d line search, %d projected gradient\n", nLMsteps, nLSsteps, nPGsteps); |
817
|
|
|
|
|
|
|
#endif |
818
|
|
|
|
|
|
|
|
819
|
16
|
50
|
|
|
|
|
return (stop!=4 && stop!=7)? k : LM_ERROR; |
|
|
50
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
820
|
|
|
|
|
|
|
} |
821
|
|
|
|
|
|
|
|
822
|
|
|
|
|
|
|
/* following struct & LMBC_DIF_XXX functions won't be necessary if a true secant |
823
|
|
|
|
|
|
|
* version of LEVMAR_BC_DIF() is implemented... |
824
|
|
|
|
|
|
|
*/ |
825
|
|
|
|
|
|
|
struct LMBC_DIF_DATA{ |
826
|
|
|
|
|
|
|
int ffdif; // nonzero if forward differencing is used |
827
|
|
|
|
|
|
|
void (*func)(LM_REAL *p, LM_REAL *hx, int m, int n, void *adata); |
828
|
|
|
|
|
|
|
LM_REAL *hx, *hxx; |
829
|
|
|
|
|
|
|
void *adata; |
830
|
|
|
|
|
|
|
LM_REAL delta; |
831
|
|
|
|
|
|
|
}; |
832
|
|
|
|
|
|
|
|
833
|
49939
|
|
|
|
|
|
static void LMBC_DIF_FUNC(LM_REAL *p, LM_REAL *hx, int m, int n, void *data) |
834
|
|
|
|
|
|
|
{ |
835
|
49939
|
|
|
|
|
|
struct LMBC_DIF_DATA *dta=(struct LMBC_DIF_DATA *)data; |
836
|
|
|
|
|
|
|
|
837
|
|
|
|
|
|
|
/* call user-supplied function passing it the user-supplied data */ |
838
|
49939
|
|
|
|
|
|
(*(dta->func))(p, hx, m, n, dta->adata); |
839
|
49939
|
|
|
|
|
|
} |
840
|
|
|
|
|
|
|
|
841
|
15254
|
|
|
|
|
|
static void LMBC_DIF_JACF(LM_REAL *p, LM_REAL *jac, int m, int n, void *data) |
842
|
|
|
|
|
|
|
{ |
843
|
15254
|
|
|
|
|
|
struct LMBC_DIF_DATA *dta=(struct LMBC_DIF_DATA *)data; |
844
|
|
|
|
|
|
|
|
845
|
15254
|
50
|
|
|
|
|
if(dta->ffdif){ |
|
|
50
|
|
|
|
|
|
846
|
|
|
|
|
|
|
/* evaluate user-supplied function at p */ |
847
|
15254
|
|
|
|
|
|
(*(dta->func))(p, dta->hx, m, n, dta->adata); |
848
|
15254
|
|
|
|
|
|
LEVMAR_FDIF_FORW_JAC_APPROX(dta->func, p, dta->hx, dta->hxx, dta->delta, jac, m, n, dta->adata); |
849
|
|
|
|
|
|
|
} |
850
|
|
|
|
|
|
|
else |
851
|
0
|
|
|
|
|
|
LEVMAR_FDIF_CENT_JAC_APPROX(dta->func, p, dta->hx, dta->hxx, dta->delta, jac, m, n, dta->adata); |
852
|
15254
|
|
|
|
|
|
} |
853
|
|
|
|
|
|
|
|
854
|
|
|
|
|
|
|
|
855
|
|
|
|
|
|
|
/* No Jacobian version of the LEVMAR_BC_DER() function above: the Jacobian is approximated with |
856
|
|
|
|
|
|
|
* the aid of finite differences (forward or central, see the comment for the opts argument) |
857
|
|
|
|
|
|
|
* Ideally, this function should be implemented with a secant approach. Currently, it just calls |
858
|
|
|
|
|
|
|
* LEVMAR_BC_DER() |
859
|
|
|
|
|
|
|
*/ |
860
|
5
|
|
|
|
|
|
int LEVMAR_BC_DIF( |
861
|
|
|
|
|
|
|
void (*func)(LM_REAL *p, LM_REAL *hx, int m, int n, void *adata), /* functional relation describing measurements. A p \in R^m yields a \hat{x} \in R^n */ |
862
|
|
|
|
|
|
|
LM_REAL *p, /* I/O: initial parameter estimates. On output has the estimated solution */ |
863
|
|
|
|
|
|
|
LM_REAL *x, /* I: measurement vector. NULL implies a zero vector */ |
864
|
|
|
|
|
|
|
int m, /* I: parameter vector dimension (i.e. #unknowns) */ |
865
|
|
|
|
|
|
|
int n, /* I: measurement vector dimension */ |
866
|
|
|
|
|
|
|
LM_REAL *lb, /* I: vector of lower bounds. If NULL, no lower bounds apply */ |
867
|
|
|
|
|
|
|
LM_REAL *ub, /* I: vector of upper bounds. If NULL, no upper bounds apply */ |
868
|
|
|
|
|
|
|
int itmax, /* I: maximum number of iterations */ |
869
|
|
|
|
|
|
|
LM_REAL opts[5], /* I: opts[0-4] = minim. options [\mu, \epsilon1, \epsilon2, \epsilon3, \delta]. Respectively the |
870
|
|
|
|
|
|
|
* scale factor for initial \mu, stopping thresholds for ||J^T e||_inf, ||Dp||_2 and ||e||_2 and |
871
|
|
|
|
|
|
|
* the step used in difference approximation to the Jacobian. Set to NULL for defaults to be used. |
872
|
|
|
|
|
|
|
* If \delta<0, the Jacobian is approximated with central differences which are more accurate |
873
|
|
|
|
|
|
|
* (but slower!) compared to the forward differences employed by default. |
874
|
|
|
|
|
|
|
*/ |
875
|
|
|
|
|
|
|
LM_REAL info[LM_INFO_SZ], |
876
|
|
|
|
|
|
|
/* O: information regarding the minimization. Set to NULL if don't care |
877
|
|
|
|
|
|
|
* info[0]= ||e||_2 at initial p. |
878
|
|
|
|
|
|
|
* info[1-4]=[ ||e||_2, ||J^T e||_inf, ||Dp||_2, mu/max[J^T J]_ii ], all computed at estimated p. |
879
|
|
|
|
|
|
|
* info[5]= # iterations, |
880
|
|
|
|
|
|
|
* info[6]=reason for terminating: 1 - stopped by small gradient J^T e |
881
|
|
|
|
|
|
|
* 2 - stopped by small Dp |
882
|
|
|
|
|
|
|
* 3 - stopped by itmax |
883
|
|
|
|
|
|
|
* 4 - singular matrix. Restart from current p with increased mu |
884
|
|
|
|
|
|
|
* 5 - no further error reduction is possible. Restart with increased mu |
885
|
|
|
|
|
|
|
* 6 - stopped by small ||e||_2 |
886
|
|
|
|
|
|
|
* 7 - stopped by invalid (i.e. NaN or Inf) "func" values. This is a user error |
887
|
|
|
|
|
|
|
* info[7]= # function evaluations |
888
|
|
|
|
|
|
|
* info[8]= # Jacobian evaluations |
889
|
|
|
|
|
|
|
* info[9]= # linear systems solved, i.e. # attempts for reducing error |
890
|
|
|
|
|
|
|
*/ |
891
|
|
|
|
|
|
|
LM_REAL *work, /* working memory at least LM_BC_DIF_WORKSZ() reals large, allocated if NULL */ |
892
|
|
|
|
|
|
|
LM_REAL *covar, /* O: Covariance matrix corresponding to LS solution; mxm. Set to NULL if not needed. */ |
893
|
|
|
|
|
|
|
void *adata) /* pointer to possibly additional data, passed uninterpreted to func. |
894
|
|
|
|
|
|
|
* Set to NULL if not needed |
895
|
|
|
|
|
|
|
*/ |
896
|
|
|
|
|
|
|
{ |
897
|
|
|
|
|
|
|
struct LMBC_DIF_DATA data; |
898
|
|
|
|
|
|
|
int ret; |
899
|
|
|
|
|
|
|
|
900
|
|
|
|
|
|
|
//fprintf(stderr, RCAT("\nWarning: current implementation of ", LEVMAR_BC_DIF) "() does not use a secant approach!\n\n"); |
901
|
|
|
|
|
|
|
|
902
|
5
|
50
|
|
|
|
|
data.ffdif=!opts || opts[4]>=0.0; |
|
|
50
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
903
|
|
|
|
|
|
|
|
904
|
5
|
|
|
|
|
|
data.func=func; |
905
|
5
|
|
|
|
|
|
data.hx=(LM_REAL *)malloc(2*n*sizeof(LM_REAL)); /* allocate a big chunk in one step */ |
906
|
5
|
50
|
|
|
|
|
if(!data.hx){ |
|
|
50
|
|
|
|
|
|
907
|
0
|
|
|
|
|
|
fprintf(stderr, LCAT(LEVMAR_BC_DIF, "(): memory allocation request failed\n")); |
908
|
0
|
|
|
|
|
|
return LM_ERROR; |
909
|
|
|
|
|
|
|
} |
910
|
5
|
|
|
|
|
|
data.hxx=data.hx+n; |
911
|
5
|
|
|
|
|
|
data.adata=adata; |
912
|
5
|
50
|
|
|
|
|
data.delta=(opts)? FABS(opts[4]) : (LM_REAL)LM_DIFF_DELTA; |
|
|
50
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
913
|
|
|
|
|
|
|
|
914
|
5
|
|
|
|
|
|
ret=LEVMAR_BC_DER(LMBC_DIF_FUNC, LMBC_DIF_JACF, p, x, m, n, lb, ub, itmax, opts, info, work, covar, (void *)&data); |
915
|
|
|
|
|
|
|
|
916
|
5
|
|
|
|
|
|
if(info){ /* correct the number of function calls */ |
917
|
5
|
50
|
|
|
|
|
if(data.ffdif) |
|
|
50
|
|
|
|
|
|
918
|
5
|
|
|
|
|
|
info[7]+=info[8]*(m+1); /* each Jacobian evaluation costs m+1 function calls */ |
919
|
|
|
|
|
|
|
else |
920
|
0
|
|
|
|
|
|
info[7]+=info[8]*(2*m); /* each Jacobian evaluation costs 2*m function calls */ |
921
|
|
|
|
|
|
|
} |
922
|
|
|
|
|
|
|
|
923
|
5
|
|
|
|
|
|
free(data.hx); |
924
|
|
|
|
|
|
|
|
925
|
5
|
|
|
|
|
|
return ret; |
926
|
|
|
|
|
|
|
} |
927
|
|
|
|
|
|
|
|
928
|
|
|
|
|
|
|
/* undefine everything. THIS MUST REMAIN AT THE END OF THE FILE */ |
929
|
|
|
|
|
|
|
#undef FUNC_STATE |
930
|
|
|
|
|
|
|
#undef LNSRCH |
931
|
|
|
|
|
|
|
#undef BOXPROJECT |
932
|
|
|
|
|
|
|
#undef LEVMAR_BOX_CHECK |
933
|
|
|
|
|
|
|
#undef LEVMAR_BC_DER |
934
|
|
|
|
|
|
|
#undef LMBC_DIF_DATA |
935
|
|
|
|
|
|
|
#undef LMBC_DIF_FUNC |
936
|
|
|
|
|
|
|
#undef LMBC_DIF_JACF |
937
|
|
|
|
|
|
|
#undef LEVMAR_BC_DIF |
938
|
|
|
|
|
|
|
#undef LEVMAR_FDIF_FORW_JAC_APPROX |
939
|
|
|
|
|
|
|
#undef LEVMAR_FDIF_CENT_JAC_APPROX |
940
|
|
|
|
|
|
|
#undef LEVMAR_COVAR |
941
|
|
|
|
|
|
|
#undef LEVMAR_TRANS_MAT_MAT_MULT |
942
|
|
|
|
|
|
|
#undef LEVMAR_L2NRMXMY |
943
|
|
|
|
|
|
|
#undef AX_EQ_B_LU |
944
|
|
|
|
|
|
|
#undef AX_EQ_B_CHOL |
945
|
|
|
|
|
|
|
#undef AX_EQ_B_QR |
946
|
|
|
|
|
|
|
#undef AX_EQ_B_QRLS |
947
|
|
|
|
|
|
|
#undef AX_EQ_B_SVD |
948
|
|
|
|
|
|
|
#undef AX_EQ_B_BK |