line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
1
|
|
|
|
|
|
|
|
2
|
|
|
|
|
|
|
# |
3
|
|
|
|
|
|
|
# GENERATED WITH PDL::PP! Don't modify! |
4
|
|
|
|
|
|
|
# |
5
|
|
|
|
|
|
|
package PDL::CCS::MatrixOps; |
6
|
|
|
|
|
|
|
|
7
|
|
|
|
|
|
|
@EXPORT_OK = qw( PDL::PP ccs_matmult2d_sdd PDL::PP ccs_matmult2d_zdd PDL::PP ccs_vnorm ccs_vcos_zdd PDL::PP _ccs_vcos_zdd PDL::PP ccs_vcos_pzd ); |
8
|
|
|
|
|
|
|
%EXPORT_TAGS = (Func=>[@EXPORT_OK]); |
9
|
|
|
|
|
|
|
|
10
|
4
|
|
|
4
|
|
26
|
use PDL::Core; |
|
4
|
|
|
|
|
8
|
|
|
4
|
|
|
|
|
27
|
|
11
|
4
|
|
|
4
|
|
930
|
use PDL::Exporter; |
|
4
|
|
|
|
|
8
|
|
|
4
|
|
|
|
|
22
|
|
12
|
4
|
|
|
4
|
|
121
|
use DynaLoader; |
|
4
|
|
|
|
|
8
|
|
|
4
|
|
|
|
|
297
|
|
13
|
|
|
|
|
|
|
|
14
|
|
|
|
|
|
|
|
15
|
|
|
|
|
|
|
|
16
|
|
|
|
|
|
|
$PDL::CCS::MatrixOps::VERSION = 1.23.12; |
17
|
|
|
|
|
|
|
@ISA = ( 'PDL::Exporter','DynaLoader' ); |
18
|
|
|
|
|
|
|
push @PDL::Core::PP, __PACKAGE__; |
19
|
|
|
|
|
|
|
bootstrap PDL::CCS::MatrixOps $VERSION; |
20
|
|
|
|
|
|
|
|
21
|
|
|
|
|
|
|
|
22
|
|
|
|
|
|
|
|
23
|
|
|
|
|
|
|
|
24
|
|
|
|
|
|
|
|
25
|
|
|
|
|
|
|
#use PDL::CCS::Version; |
26
|
4
|
|
|
4
|
|
23
|
use strict; |
|
4
|
|
|
|
|
7
|
|
|
4
|
|
|
|
|
1688
|
|
27
|
|
|
|
|
|
|
|
28
|
|
|
|
|
|
|
=pod |
29
|
|
|
|
|
|
|
|
30
|
|
|
|
|
|
|
=head1 NAME |
31
|
|
|
|
|
|
|
|
32
|
|
|
|
|
|
|
PDL::CCS::MatrixOps - Low-level matrix operations for compressed storage sparse PDLs |
33
|
|
|
|
|
|
|
|
34
|
|
|
|
|
|
|
=head1 SYNOPSIS |
35
|
|
|
|
|
|
|
|
36
|
|
|
|
|
|
|
use PDL; |
37
|
|
|
|
|
|
|
use PDL::CCS::MatrixOps; |
38
|
|
|
|
|
|
|
|
39
|
|
|
|
|
|
|
##--------------------------------------------------------------------- |
40
|
|
|
|
|
|
|
## ... stuff happens |
41
|
|
|
|
|
|
|
|
42
|
|
|
|
|
|
|
=cut |
43
|
|
|
|
|
|
|
|
44
|
|
|
|
|
|
|
|
45
|
|
|
|
|
|
|
|
46
|
|
|
|
|
|
|
|
47
|
|
|
|
|
|
|
|
48
|
|
|
|
|
|
|
|
49
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
|
=head1 FUNCTIONS |
51
|
|
|
|
|
|
|
|
52
|
|
|
|
|
|
|
|
53
|
|
|
|
|
|
|
|
54
|
|
|
|
|
|
|
=cut |
55
|
|
|
|
|
|
|
|
56
|
|
|
|
|
|
|
|
57
|
|
|
|
|
|
|
|
58
|
|
|
|
|
|
|
|
59
|
|
|
|
|
|
|
*ccs_indx = \&PDL::indx; ##-- typecasting for CCS indices |
60
|
|
|
|
|
|
|
|
61
|
|
|
|
|
|
|
|
62
|
|
|
|
|
|
|
|
63
|
|
|
|
|
|
|
|
64
|
|
|
|
|
|
|
=head2 ccs_matmult2d_sdd |
65
|
|
|
|
|
|
|
|
66
|
|
|
|
|
|
|
=for sig |
67
|
|
|
|
|
|
|
|
68
|
|
|
|
|
|
|
Signature: ( |
69
|
|
|
|
|
|
|
indx ixa(NdimsA,NnzA); nza(NnzA); missinga(); |
70
|
|
|
|
|
|
|
b(O,M); |
71
|
|
|
|
|
|
|
zc(O); |
72
|
|
|
|
|
|
|
[o]c(O,N) |
73
|
|
|
|
|
|
|
) |
74
|
|
|
|
|
|
|
|
75
|
|
|
|
|
|
|
|
76
|
|
|
|
|
|
|
Two-dimensional matrix multiplication of a sparse index-encoded PDL |
77
|
|
|
|
|
|
|
$a() with a dense pdl $b(), with output to a dense pdl $c(). |
78
|
|
|
|
|
|
|
|
79
|
|
|
|
|
|
|
The sparse input PDL $a() should be passed here with 0th |
80
|
|
|
|
|
|
|
dimension "M" and 1st dimension "N", just as for the |
81
|
|
|
|
|
|
|
built-in PDL::Primitive::matmult(). |
82
|
|
|
|
|
|
|
|
83
|
|
|
|
|
|
|
"Missing" values in $a() are treated as $missinga(), which shouldn't |
84
|
|
|
|
|
|
|
be BAD or infinite, but otherwise ought to be handled correctly. |
85
|
|
|
|
|
|
|
The input pdl $zc() is used to pass the cached contribution of |
86
|
|
|
|
|
|
|
a $missinga()-row ("M") to an output column ("O"), i.e. |
87
|
|
|
|
|
|
|
|
88
|
|
|
|
|
|
|
$zc = ((zeroes($M,1)+$missinga) x $b)->flat; |
89
|
|
|
|
|
|
|
|
90
|
|
|
|
|
|
|
$SIZE(Ndimsa) is assumed to be 2. |
91
|
|
|
|
|
|
|
|
92
|
|
|
|
|
|
|
|
93
|
|
|
|
|
|
|
=for bad |
94
|
|
|
|
|
|
|
|
95
|
|
|
|
|
|
|
ccs_matmult2d_sdd does not process bad values. |
96
|
|
|
|
|
|
|
It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles. |
97
|
|
|
|
|
|
|
|
98
|
|
|
|
|
|
|
|
99
|
|
|
|
|
|
|
=cut |
100
|
|
|
|
|
|
|
|
101
|
|
|
|
|
|
|
|
102
|
|
|
|
|
|
|
|
103
|
|
|
|
|
|
|
|
104
|
|
|
|
|
|
|
|
105
|
|
|
|
|
|
|
|
106
|
|
|
|
|
|
|
*ccs_matmult2d_sdd = \&PDL::ccs_matmult2d_sdd; |
107
|
|
|
|
|
|
|
|
108
|
|
|
|
|
|
|
|
109
|
|
|
|
|
|
|
|
110
|
|
|
|
|
|
|
|
111
|
|
|
|
|
|
|
|
112
|
|
|
|
|
|
|
=head2 ccs_matmult2d_zdd |
113
|
|
|
|
|
|
|
|
114
|
|
|
|
|
|
|
=for sig |
115
|
|
|
|
|
|
|
|
116
|
|
|
|
|
|
|
Signature: ( |
117
|
|
|
|
|
|
|
indx ixa(Ndimsa,NnzA); nza(NnzA); |
118
|
|
|
|
|
|
|
b(O,M); |
119
|
|
|
|
|
|
|
[o]c(O,N) |
120
|
|
|
|
|
|
|
) |
121
|
|
|
|
|
|
|
|
122
|
|
|
|
|
|
|
|
123
|
|
|
|
|
|
|
Two-dimensional matrix multiplication of a sparse index-encoded PDL |
124
|
|
|
|
|
|
|
$a() with a dense pdl $b(), with output to a dense pdl $c(). |
125
|
|
|
|
|
|
|
|
126
|
|
|
|
|
|
|
The sparse input PDL $a() should be passed here with 0th |
127
|
|
|
|
|
|
|
dimension "M" and 1st dimension "N", just as for the |
128
|
|
|
|
|
|
|
built-in PDL::Primitive::matmult(). |
129
|
|
|
|
|
|
|
|
130
|
|
|
|
|
|
|
"Missing" values in $a() are treated as zero. |
131
|
|
|
|
|
|
|
$SIZE(Ndimsa) is assumed to be 2. |
132
|
|
|
|
|
|
|
|
133
|
|
|
|
|
|
|
|
134
|
|
|
|
|
|
|
=for bad |
135
|
|
|
|
|
|
|
|
136
|
|
|
|
|
|
|
ccs_matmult2d_zdd does not process bad values. |
137
|
|
|
|
|
|
|
It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles. |
138
|
|
|
|
|
|
|
|
139
|
|
|
|
|
|
|
|
140
|
|
|
|
|
|
|
=cut |
141
|
|
|
|
|
|
|
|
142
|
|
|
|
|
|
|
|
143
|
|
|
|
|
|
|
|
144
|
|
|
|
|
|
|
|
145
|
|
|
|
|
|
|
|
146
|
|
|
|
|
|
|
|
147
|
|
|
|
|
|
|
*ccs_matmult2d_zdd = \&PDL::ccs_matmult2d_zdd; |
148
|
|
|
|
|
|
|
|
149
|
|
|
|
|
|
|
|
150
|
|
|
|
|
|
|
|
151
|
|
|
|
|
|
|
|
152
|
|
|
|
|
|
|
|
153
|
|
|
|
|
|
|
=head2 ccs_vnorm |
154
|
|
|
|
|
|
|
|
155
|
|
|
|
|
|
|
=for sig |
156
|
|
|
|
|
|
|
|
157
|
|
|
|
|
|
|
Signature: ( |
158
|
|
|
|
|
|
|
indx acols(NnzA); avals(NnzA); |
159
|
|
|
|
|
|
|
float+ [o]vnorm(M); |
160
|
|
|
|
|
|
|
; int sizeM=>M) |
161
|
|
|
|
|
|
|
|
162
|
|
|
|
|
|
|
|
163
|
|
|
|
|
|
|
Computes the Euclidean lengths of each column-vector $a(i,*) of a sparse index-encoded pdl $a() |
164
|
|
|
|
|
|
|
of logical dimensions (M,N), with output to a dense piddle $vnorm(). |
165
|
|
|
|
|
|
|
"Missing" values in $a() are treated as zero, |
166
|
|
|
|
|
|
|
and $acols() specifies the (unsorted) indices along the logical dimension M of the corresponding non-missing |
167
|
|
|
|
|
|
|
values in $avals(). |
168
|
|
|
|
|
|
|
This is basically the same thing as: |
169
|
|
|
|
|
|
|
|
170
|
|
|
|
|
|
|
$vnorm = ($a**2)->xchg(0,1)->sumover->sqrt; |
171
|
|
|
|
|
|
|
|
172
|
|
|
|
|
|
|
... but should be must faster to compute for sparse index-encoded piddles. |
173
|
|
|
|
|
|
|
|
174
|
|
|
|
|
|
|
|
175
|
|
|
|
|
|
|
|
176
|
|
|
|
|
|
|
=for bad |
177
|
|
|
|
|
|
|
|
178
|
|
|
|
|
|
|
ccs_vnorm() always clears the bad-status flag on $vnorm(). |
179
|
|
|
|
|
|
|
|
180
|
|
|
|
|
|
|
=cut |
181
|
|
|
|
|
|
|
|
182
|
|
|
|
|
|
|
|
183
|
|
|
|
|
|
|
|
184
|
|
|
|
|
|
|
|
185
|
|
|
|
|
|
|
|
186
|
|
|
|
|
|
|
|
187
|
|
|
|
|
|
|
*ccs_vnorm = \&PDL::ccs_vnorm; |
188
|
|
|
|
|
|
|
|
189
|
|
|
|
|
|
|
|
190
|
|
|
|
|
|
|
|
191
|
|
|
|
|
|
|
|
192
|
|
|
|
|
|
|
=pod |
193
|
|
|
|
|
|
|
|
194
|
|
|
|
|
|
|
=head2 ccs_vcos_zdd |
195
|
|
|
|
|
|
|
|
196
|
|
|
|
|
|
|
=for sig |
197
|
|
|
|
|
|
|
|
198
|
|
|
|
|
|
|
Signature: ( |
199
|
|
|
|
|
|
|
indx ixa(2,NnzA); nza(NnzA); |
200
|
|
|
|
|
|
|
b(N); |
201
|
|
|
|
|
|
|
float+ [o]vcos(M); |
202
|
|
|
|
|
|
|
float+ [t]anorm(M); |
203
|
|
|
|
|
|
|
int sizeM=>M; |
204
|
|
|
|
|
|
|
) |
205
|
|
|
|
|
|
|
|
206
|
|
|
|
|
|
|
|
207
|
|
|
|
|
|
|
Computes the vector cosine similarity of a dense row-vector $b(N) with respect to each column $a(i,*) |
208
|
|
|
|
|
|
|
of a sparse index-encoded PDL $a() of logical dimensions (M,N), with output to a dense piddle |
209
|
|
|
|
|
|
|
$vcos(M). |
210
|
|
|
|
|
|
|
"Missing" values in $a() are treated as zero, |
211
|
|
|
|
|
|
|
and magnitudes for $a() are passed in the optional parameter $anorm(), which will be implicitly |
212
|
|
|
|
|
|
|
computed using L if the $anorm() parameter is omitted or empty. |
213
|
|
|
|
|
|
|
This is basically the same thing as: |
214
|
|
|
|
|
|
|
|
215
|
|
|
|
|
|
|
$anorm //= ($a**2)->xchg(0,1)->sumover->sqrt; |
216
|
|
|
|
|
|
|
$vcos = ($a * $b->slice("*1,"))->xchg(0,1)->sumover / ($anorm * ($b**2)->sumover->sqrt); |
217
|
|
|
|
|
|
|
|
218
|
|
|
|
|
|
|
... but should be must faster to compute. |
219
|
|
|
|
|
|
|
|
220
|
|
|
|
|
|
|
Output values in $vcos() are cosine similarities in the range [-1,1], |
221
|
|
|
|
|
|
|
except for zero-magnitude vectors which will result in NaN values in $vcos(). |
222
|
|
|
|
|
|
|
If you need non-negative distances, follow this up with a: |
223
|
|
|
|
|
|
|
|
224
|
|
|
|
|
|
|
$vcos->minus(1,$vcos,1) |
225
|
|
|
|
|
|
|
$vcos->inplace->setnantobad->inplace->setbadtoval(0); ##-- minimum distance for NaN values |
226
|
|
|
|
|
|
|
|
227
|
|
|
|
|
|
|
to get distances values in the range [0,2]. You can use PDL threading to batch-compute distances for |
228
|
|
|
|
|
|
|
multiple $b() vectors simultaneously: |
229
|
|
|
|
|
|
|
|
230
|
|
|
|
|
|
|
$bx = random($N, $NB); ##-- get $NB random vectors of size $N |
231
|
|
|
|
|
|
|
$vcos = ccs_vcos_zdd($ixa,$nza, $bx, $M); ##-- $vcos is now ($M,$NB) |
232
|
|
|
|
|
|
|
|
233
|
|
|
|
|
|
|
|
234
|
|
|
|
|
|
|
=for bad |
235
|
|
|
|
|
|
|
|
236
|
|
|
|
|
|
|
ccs_vcos_zdd() always clears the bad status flag on the output piddle $vcos. |
237
|
|
|
|
|
|
|
|
238
|
|
|
|
|
|
|
=cut |
239
|
|
|
|
|
|
|
|
240
|
|
|
|
|
|
|
sub ccs_vcos_zdd { |
241
|
0
|
|
|
0
|
1
|
|
my ($ixa,$nza,$b) = @_; |
242
|
0
|
0
|
|
|
|
|
barf("Usage: ccs_vcos_zdd(ixa, nza, b, vcos?, anorm?, M?)") if (grep {!defined($_)} ($ixa,$nza,$b)); |
|
0
|
|
|
|
|
|
|
243
|
|
|
|
|
|
|
|
244
|
0
|
|
|
|
|
|
my ($anorm,$vcos,$M); |
245
|
0
|
|
|
|
|
|
foreach (@_[3..$#_]) { |
246
|
0
|
0
|
0
|
|
|
|
if (!defined($M) && !UNIVERSAL::isa($_,"PDL")) { $M=$_; } |
|
0
|
0
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
247
|
0
|
|
|
|
|
|
elsif (!defined($vcos)) { $vcos = $_; } ##-- compat: pass $vcos() in first |
248
|
0
|
|
|
|
|
|
elsif (!defined($anorm)) { $anorm = $_; } |
249
|
|
|
|
|
|
|
} |
250
|
|
|
|
|
|
|
|
251
|
|
|
|
|
|
|
##-- get M |
252
|
0
|
0
|
0
|
|
|
|
$M = $vcos->dim(0) if (!defined($M) && defined($vcos) && !$vcos->isempty); |
|
|
|
0
|
|
|
|
|
253
|
0
|
0
|
0
|
|
|
|
$M = $anorm->dim(0) if (!defined($M) && defined($anorm) && !$anorm->isempty); |
|
|
|
0
|
|
|
|
|
254
|
0
|
0
|
|
|
|
|
$M = $ixa->slice("(0),")->max+1 if (!defined($M)); |
255
|
|
|
|
|
|
|
|
256
|
|
|
|
|
|
|
##-- compat: create output piddles, implicitly computing anorm() if required |
257
|
0
|
0
|
0
|
|
|
|
$anorm = $ixa->slice("(0),")->ccs_vnorm($nza, $M) if (!defined($anorm) || $anorm->isempty); |
258
|
0
|
0
|
0
|
|
|
|
$vcos = PDL->zeroes($anorm->type, $M, ($b->dims)[1..$b->ndims-1]) if (!defined($vcos) || $vcos->isempty); |
259
|
|
|
|
|
|
|
|
260
|
|
|
|
|
|
|
##-- guts |
261
|
0
|
|
|
|
|
|
$ixa->_ccs_vcos_zdd($nza,$b, $anorm, $vcos); |
262
|
0
|
|
|
|
|
|
return $vcos; |
263
|
|
|
|
|
|
|
} |
264
|
|
|
|
|
|
|
|
265
|
|
|
|
|
|
|
*PDL::ccs_vcos_zdd = \&ccs_vcos_zdd; |
266
|
|
|
|
|
|
|
|
267
|
|
|
|
|
|
|
|
268
|
|
|
|
|
|
|
|
269
|
|
|
|
|
|
|
|
270
|
|
|
|
|
|
|
|
271
|
|
|
|
|
|
|
=head2 _ccs_vcos_zdd |
272
|
|
|
|
|
|
|
|
273
|
|
|
|
|
|
|
=for sig |
274
|
|
|
|
|
|
|
|
275
|
|
|
|
|
|
|
Signature: ( |
276
|
|
|
|
|
|
|
indx ixa(Two,NnzA); nza(NnzA); |
277
|
|
|
|
|
|
|
b(N); |
278
|
|
|
|
|
|
|
float+ anorm(M); |
279
|
|
|
|
|
|
|
float+ [o]vcos(M);) |
280
|
|
|
|
|
|
|
|
281
|
|
|
|
|
|
|
=for ref |
282
|
|
|
|
|
|
|
|
283
|
|
|
|
|
|
|
Guts for L, with slightly different calling conventions. |
284
|
|
|
|
|
|
|
|
285
|
|
|
|
|
|
|
=for bad |
286
|
|
|
|
|
|
|
|
287
|
|
|
|
|
|
|
Always clears the bad status flag on the output piddle $vcos. |
288
|
|
|
|
|
|
|
|
289
|
|
|
|
|
|
|
=cut |
290
|
|
|
|
|
|
|
|
291
|
|
|
|
|
|
|
|
292
|
|
|
|
|
|
|
|
293
|
|
|
|
|
|
|
|
294
|
|
|
|
|
|
|
|
295
|
|
|
|
|
|
|
|
296
|
|
|
|
|
|
|
*_ccs_vcos_zdd = \&PDL::_ccs_vcos_zdd; |
297
|
|
|
|
|
|
|
|
298
|
|
|
|
|
|
|
|
299
|
|
|
|
|
|
|
|
300
|
|
|
|
|
|
|
|
301
|
|
|
|
|
|
|
|
302
|
|
|
|
|
|
|
=head2 ccs_vcos_pzd |
303
|
|
|
|
|
|
|
|
304
|
|
|
|
|
|
|
=for sig |
305
|
|
|
|
|
|
|
|
306
|
|
|
|
|
|
|
Signature: ( |
307
|
|
|
|
|
|
|
indx aptr(Nplus1); indx acols(NnzA); avals(NnzA); |
308
|
|
|
|
|
|
|
indx brows(NnzB); bvals(NnzB); |
309
|
|
|
|
|
|
|
anorm(M); |
310
|
|
|
|
|
|
|
float+ [o]vcos(M);) |
311
|
|
|
|
|
|
|
|
312
|
|
|
|
|
|
|
|
313
|
|
|
|
|
|
|
Computes the vector cosine similarity of a sparse index-encoded row-vector $b() of logical dimension (N) |
314
|
|
|
|
|
|
|
with respect to each column $a(i,*) a sparse Harwell-Boeing row-encoded PDL $a() of logical dimensions (M,N), |
315
|
|
|
|
|
|
|
with output to a dense piddle $vcos(M). |
316
|
|
|
|
|
|
|
"Missing" values in $a() are treated as zero, |
317
|
|
|
|
|
|
|
and magnitudes for $a() are passed in the obligatory parameter $anorm(). |
318
|
|
|
|
|
|
|
Usually much faster than L if a CRS pointer over logical dimension (N) is available |
319
|
|
|
|
|
|
|
for $a(). |
320
|
|
|
|
|
|
|
|
321
|
|
|
|
|
|
|
|
322
|
|
|
|
|
|
|
=for bad |
323
|
|
|
|
|
|
|
|
324
|
|
|
|
|
|
|
ccs_vcos_pzd() always clears the bad status flag on the output piddle $vcos. |
325
|
|
|
|
|
|
|
|
326
|
|
|
|
|
|
|
=cut |
327
|
|
|
|
|
|
|
|
328
|
|
|
|
|
|
|
|
329
|
|
|
|
|
|
|
|
330
|
|
|
|
|
|
|
|
331
|
|
|
|
|
|
|
|
332
|
|
|
|
|
|
|
|
333
|
|
|
|
|
|
|
*ccs_vcos_pzd = \&PDL::ccs_vcos_pzd; |
334
|
|
|
|
|
|
|
|
335
|
|
|
|
|
|
|
|
336
|
|
|
|
|
|
|
|
337
|
|
|
|
|
|
|
|
338
|
|
|
|
|
|
|
##--------------------------------------------------------------------- |
339
|
|
|
|
|
|
|
=pod |
340
|
|
|
|
|
|
|
|
341
|
|
|
|
|
|
|
=head1 ACKNOWLEDGEMENTS |
342
|
|
|
|
|
|
|
|
343
|
|
|
|
|
|
|
Perl by Larry Wall. |
344
|
|
|
|
|
|
|
|
345
|
|
|
|
|
|
|
PDL by Karl Glazebrook, Tuomas J. Lukka, Christian Soeller, and others. |
346
|
|
|
|
|
|
|
|
347
|
|
|
|
|
|
|
=cut |
348
|
|
|
|
|
|
|
|
349
|
|
|
|
|
|
|
##---------------------------------------------------------------------- |
350
|
|
|
|
|
|
|
=pod |
351
|
|
|
|
|
|
|
|
352
|
|
|
|
|
|
|
=head1 KNOWN BUGS |
353
|
|
|
|
|
|
|
|
354
|
|
|
|
|
|
|
We should really implement matrix multiplication in terms of |
355
|
|
|
|
|
|
|
inner product, and have a good sparse-matrix only implementation |
356
|
|
|
|
|
|
|
of the former. |
357
|
|
|
|
|
|
|
|
358
|
|
|
|
|
|
|
=cut |
359
|
|
|
|
|
|
|
|
360
|
|
|
|
|
|
|
|
361
|
|
|
|
|
|
|
##--------------------------------------------------------------------- |
362
|
|
|
|
|
|
|
=pod |
363
|
|
|
|
|
|
|
|
364
|
|
|
|
|
|
|
=head1 AUTHOR |
365
|
|
|
|
|
|
|
|
366
|
|
|
|
|
|
|
Bryan Jurish Emoocow@cpan.orgE |
367
|
|
|
|
|
|
|
|
368
|
|
|
|
|
|
|
=head2 Copyright Policy |
369
|
|
|
|
|
|
|
|
370
|
|
|
|
|
|
|
All other parts Copyright (C) 2009-2015, Bryan Jurish. All rights reserved. |
371
|
|
|
|
|
|
|
|
372
|
|
|
|
|
|
|
This package is free software, and entirely without warranty. |
373
|
|
|
|
|
|
|
You may redistribute it and/or modify it under the same terms |
374
|
|
|
|
|
|
|
as Perl itself. |
375
|
|
|
|
|
|
|
|
376
|
|
|
|
|
|
|
=head1 SEE ALSO |
377
|
|
|
|
|
|
|
|
378
|
|
|
|
|
|
|
perl(1), PDL(3perl) |
379
|
|
|
|
|
|
|
|
380
|
|
|
|
|
|
|
=cut |
381
|
|
|
|
|
|
|
|
382
|
|
|
|
|
|
|
|
383
|
|
|
|
|
|
|
|
384
|
|
|
|
|
|
|
; |
385
|
|
|
|
|
|
|
|
386
|
|
|
|
|
|
|
|
387
|
|
|
|
|
|
|
|
388
|
|
|
|
|
|
|
# Exit with OK status |
389
|
|
|
|
|
|
|
|
390
|
|
|
|
|
|
|
1; |
391
|
|
|
|
|
|
|
|
392
|
|
|
|
|
|
|
|