line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
1
|
|
|
|
|
|
|
package Net::Twitter::Role::RateLimit; |
2
|
|
|
|
|
|
|
$Net::Twitter::Role::RateLimit::VERSION = '4.01043'; |
3
|
3
|
|
|
3
|
|
1634
|
use Moose::Role; |
|
3
|
|
|
|
|
6
|
|
|
3
|
|
|
|
|
20
|
|
4
|
3
|
|
|
3
|
|
12779
|
use namespace::autoclean; |
|
3
|
|
|
|
|
6
|
|
|
3
|
|
|
|
|
24
|
|
5
|
3
|
|
|
3
|
|
215
|
use Try::Tiny; |
|
3
|
|
|
|
|
5
|
|
|
3
|
|
|
|
|
176
|
|
6
|
3
|
|
|
3
|
|
16
|
use Scalar::Util qw/weaken/; |
|
3
|
|
|
|
|
4
|
|
|
3
|
|
|
|
|
1808
|
|
7
|
|
|
|
|
|
|
|
8
|
|
|
|
|
|
|
=head1 NAME |
9
|
|
|
|
|
|
|
|
10
|
|
|
|
|
|
|
Net::Twitter::Role::RateLimit - Rate limit features for Net::Twitter |
11
|
|
|
|
|
|
|
|
12
|
|
|
|
|
|
|
=head1 VERSION |
13
|
|
|
|
|
|
|
|
14
|
|
|
|
|
|
|
version 4.01043 |
15
|
|
|
|
|
|
|
|
16
|
|
|
|
|
|
|
=head1 SYNOPSIS |
17
|
|
|
|
|
|
|
|
18
|
|
|
|
|
|
|
use Net::Twitter; |
19
|
|
|
|
|
|
|
my $nt = Net::Twitter->new( |
20
|
|
|
|
|
|
|
traits => [qw/API::REST RateLimit/], |
21
|
|
|
|
|
|
|
%other_options, |
22
|
|
|
|
|
|
|
); |
23
|
|
|
|
|
|
|
|
24
|
|
|
|
|
|
|
#...later |
25
|
|
|
|
|
|
|
|
26
|
|
|
|
|
|
|
sleep $nt->until_rate(1.0) || $minimum_wait; |
27
|
|
|
|
|
|
|
|
28
|
|
|
|
|
|
|
=head1 NOTE! |
29
|
|
|
|
|
|
|
|
30
|
|
|
|
|
|
|
RateLimit only works with Twitter API v1. The rate limiting strategy of Twitter |
31
|
|
|
|
|
|
|
API v1.1 is very different. A v1.1 compatible RateLimit role may be coming, but |
32
|
|
|
|
|
|
|
isn't available, yet. It's interface will necessarily be different. |
33
|
|
|
|
|
|
|
|
34
|
|
|
|
|
|
|
=head1 DESCRIPTION |
35
|
|
|
|
|
|
|
|
36
|
|
|
|
|
|
|
This provides utility methods that return information about the current |
37
|
|
|
|
|
|
|
rate limit status. |
38
|
|
|
|
|
|
|
|
39
|
|
|
|
|
|
|
=cut |
40
|
|
|
|
|
|
|
|
41
|
|
|
|
|
|
|
requires qw/ua rate_limit_status/; |
42
|
|
|
|
|
|
|
|
43
|
|
|
|
|
|
|
|
44
|
|
|
|
|
|
|
excludes 'Net::Twitter::Role::API::RESTv1_1'; |
45
|
|
|
|
|
|
|
|
46
|
|
|
|
|
|
|
has _rate_limit_status => ( |
47
|
|
|
|
|
|
|
isa => 'HashRef[Int]', |
48
|
|
|
|
|
|
|
is => 'rw', |
49
|
|
|
|
|
|
|
init_arg => undef, |
50
|
|
|
|
|
|
|
lazy => 1, |
51
|
|
|
|
|
|
|
default => sub { my %h; @h{qw/rate_limit rate_reset rate_remaining/} = (0,0,0); \%h }, |
52
|
|
|
|
|
|
|
); |
53
|
|
|
|
|
|
|
|
54
|
|
|
|
|
|
|
around rate_limit_status => sub { |
55
|
|
|
|
|
|
|
my $orig = shift; |
56
|
|
|
|
|
|
|
my $self = shift; |
57
|
|
|
|
|
|
|
|
58
|
|
|
|
|
|
|
my $r = $self->$orig(@_) || return; |
59
|
|
|
|
|
|
|
|
60
|
|
|
|
|
|
|
@{$self->_rate_limit_status}{qw/rate_remaining rate_reset rate_limit/} = |
61
|
|
|
|
|
|
|
@{$r}{qw/remaining_hits reset_time_in_seconds hourly_limit/}; |
62
|
|
|
|
|
|
|
|
63
|
|
|
|
|
|
|
return $r; |
64
|
|
|
|
|
|
|
}; |
65
|
|
|
|
|
|
|
|
66
|
|
|
|
|
|
|
for my $method ( qw/rate_remaining rate_limit/ ) { |
67
|
|
|
|
|
|
|
around $method => sub { |
68
|
|
|
|
|
|
|
my $orig = shift; |
69
|
|
|
|
|
|
|
my $self = shift; |
70
|
|
|
|
|
|
|
|
71
|
|
|
|
|
|
|
$self->rate_reset; |
72
|
|
|
|
|
|
|
|
73
|
|
|
|
|
|
|
return $self->$orig(@_); |
74
|
|
|
|
|
|
|
}; |
75
|
|
|
|
|
|
|
} |
76
|
|
|
|
|
|
|
|
77
|
|
|
|
|
|
|
after BUILD => sub { |
78
|
|
|
|
|
|
|
my $self = shift; |
79
|
|
|
|
|
|
|
|
80
|
|
|
|
|
|
|
weaken $self; |
81
|
|
|
|
|
|
|
|
82
|
|
|
|
|
|
|
$self->ua->add_handler(response_done => sub { |
83
|
|
|
|
|
|
|
my $res = shift; |
84
|
|
|
|
|
|
|
|
85
|
|
|
|
|
|
|
my @values = map { $res->header($_) } |
86
|
|
|
|
|
|
|
qw/x-ratelimit-remaining x-ratelimit-reset x-ratelimit-limit/; |
87
|
|
|
|
|
|
|
|
88
|
|
|
|
|
|
|
return unless @values == 3; |
89
|
|
|
|
|
|
|
|
90
|
|
|
|
|
|
|
@{$self->_rate_limit_status}{qw/rate_remaining rate_reset rate_limit/} = @values; |
91
|
|
|
|
|
|
|
}); |
92
|
|
|
|
|
|
|
}; |
93
|
|
|
|
|
|
|
|
94
|
|
|
|
|
|
|
=head1 METHODS |
95
|
|
|
|
|
|
|
|
96
|
|
|
|
|
|
|
If current rate limit data is not resident, these methods will force a call to |
97
|
|
|
|
|
|
|
C<rate_limit_status>. Therefore, any of these methods can throw an error. |
98
|
|
|
|
|
|
|
|
99
|
|
|
|
|
|
|
=over 4 |
100
|
|
|
|
|
|
|
|
101
|
|
|
|
|
|
|
=item rate_remaining |
102
|
|
|
|
|
|
|
|
103
|
|
|
|
|
|
|
Returns the number of API calls available before the next reset. |
104
|
|
|
|
|
|
|
|
105
|
|
|
|
|
|
|
=cut |
106
|
|
|
|
|
|
|
|
107
|
4
|
|
|
4
|
1
|
102
|
sub rate_remaining { shift->_rate_limit_status->{rate_remaining} } |
108
|
|
|
|
|
|
|
|
109
|
|
|
|
|
|
|
=item rate_reset |
110
|
|
|
|
|
|
|
|
111
|
|
|
|
|
|
|
Returns the Unix epoch time of the next reset. |
112
|
|
|
|
|
|
|
|
113
|
|
|
|
|
|
|
=cut |
114
|
|
|
|
|
|
|
|
115
|
|
|
|
|
|
|
sub rate_reset { |
116
|
11
|
|
|
11
|
1
|
15
|
my $self = shift; |
117
|
|
|
|
|
|
|
|
118
|
|
|
|
|
|
|
|
119
|
11
|
100
|
|
|
|
332
|
$self->rate_limit_status if $self->_rate_limit_status->{rate_reset} < time; |
120
|
|
|
|
|
|
|
|
121
|
|
|
|
|
|
|
|
122
|
11
|
|
|
|
|
14
|
my $time = time; |
123
|
11
|
100
|
|
|
|
286
|
if ( $self->_rate_limit_status->{rate_reset} < $time ) { |
124
|
1
|
|
|
|
|
28
|
$self->_rate_limit_status->{rate_reset} = $time + 1; |
125
|
|
|
|
|
|
|
} |
126
|
|
|
|
|
|
|
|
127
|
11
|
|
|
|
|
280
|
return $self->_rate_limit_status->{rate_reset}; |
128
|
|
|
|
|
|
|
} |
129
|
|
|
|
|
|
|
|
130
|
|
|
|
|
|
|
=item rate_limit |
131
|
|
|
|
|
|
|
|
132
|
|
|
|
|
|
|
Returns the current hourly rate limit. |
133
|
|
|
|
|
|
|
|
134
|
|
|
|
|
|
|
=cut |
135
|
|
|
|
|
|
|
|
136
|
3
|
|
|
3
|
1
|
78
|
sub rate_limit { shift->_rate_limit_status->{rate_limit} } |
137
|
|
|
|
|
|
|
|
138
|
|
|
|
|
|
|
=item rate_ratio |
139
|
|
|
|
|
|
|
|
140
|
|
|
|
|
|
|
Returns remaining API call limit, divided by the time remaining before the next |
141
|
|
|
|
|
|
|
reset, as a ratio of the total rate limit per hour. |
142
|
|
|
|
|
|
|
|
143
|
|
|
|
|
|
|
For example, if C<rate_limit> is 150, the total rate is 150 API calls per hour. |
144
|
|
|
|
|
|
|
If C<rate_remaining> is 75, and there 1800 seconds (1/2 hour) remaining before |
145
|
|
|
|
|
|
|
the next reset, C<rate_ratio> returns 1.0, because there are exactly enough |
146
|
|
|
|
|
|
|
API calls remaining to maintain he full rate of 150 calls per hour. |
147
|
|
|
|
|
|
|
|
148
|
|
|
|
|
|
|
If C<rate_remaining> is 30 and there are 360 seconds remaining before reset, |
149
|
|
|
|
|
|
|
C<rate_ratio> returns 2.0, because there are enough API calls remaining |
150
|
|
|
|
|
|
|
to maintain twice the full rate of 150 calls per hour. |
151
|
|
|
|
|
|
|
|
152
|
|
|
|
|
|
|
As a final example, if C<rate_remaining> is 15, and there are 7200 seconds |
153
|
|
|
|
|
|
|
remaining before reset, C<rate_ratio> returns 0.5, because there are only |
154
|
|
|
|
|
|
|
enough API calls remaining to maintain half the full rate of 150 calls per |
155
|
|
|
|
|
|
|
hour. |
156
|
|
|
|
|
|
|
|
157
|
|
|
|
|
|
|
=cut |
158
|
|
|
|
|
|
|
|
159
|
|
|
|
|
|
|
sub rate_ratio { |
160
|
1
|
|
|
1
|
1
|
602
|
my $self = shift; |
161
|
|
|
|
|
|
|
|
162
|
1
|
|
|
|
|
4
|
my $full_rate = $self->rate_limit / 3600; |
163
|
1
|
|
50
|
1
|
|
7
|
my $current_rate = try { $self->rate_remaining / ($self->rate_reset - time) } || 0; |
|
1
|
|
|
|
|
26
|
|
164
|
1
|
|
|
|
|
15
|
return $current_rate / $full_rate; |
165
|
|
|
|
|
|
|
} |
166
|
|
|
|
|
|
|
|
167
|
|
|
|
|
|
|
=item until_rate($target_ratio) |
168
|
|
|
|
|
|
|
|
169
|
|
|
|
|
|
|
Returns the number of seconds to wait before making another rate limited API |
170
|
|
|
|
|
|
|
call such that C<$target_ratio> of the full rate would be available. It |
171
|
|
|
|
|
|
|
always returns a number greater than, or equal to zero. |
172
|
|
|
|
|
|
|
|
173
|
|
|
|
|
|
|
Use a target rate of 1.0 in a timeline polling loop to get a steady polling |
174
|
|
|
|
|
|
|
rate, using all the allocated calls, and adjusted for other API calls as they |
175
|
|
|
|
|
|
|
occur. |
176
|
|
|
|
|
|
|
|
177
|
|
|
|
|
|
|
Use a target rate E<lt> 1.0 to allow a process to make calls as fast as |
178
|
|
|
|
|
|
|
possible but not consume all of the calls available, too soon. For example, if |
179
|
|
|
|
|
|
|
you have a process building a large social graph, you may want to allow it make |
180
|
|
|
|
|
|
|
as many calls as possible, with no wait, until 20% of the available rate |
181
|
|
|
|
|
|
|
remains. Use a value of 0.2 for that purpose. |
182
|
|
|
|
|
|
|
|
183
|
|
|
|
|
|
|
A target rate E<gt> than 1.0 can be used for a process that should only use |
184
|
|
|
|
|
|
|
"extra" available API calls. This is useful for an application that requires |
185
|
|
|
|
|
|
|
most of it's rate limit for normal operation. |
186
|
|
|
|
|
|
|
|
187
|
|
|
|
|
|
|
=cut |
188
|
|
|
|
|
|
|
|
189
|
|
|
|
|
|
|
sub until_rate { |
190
|
1
|
|
|
1
|
1
|
348
|
my ( $self, $target_rate ) = @_; |
191
|
|
|
|
|
|
|
|
192
|
1
|
|
|
|
|
2
|
my $s = $self->rate_reset - time - 3600 * $self->rate_remaining / $target_rate / $self->rate_limit; |
193
|
1
|
50
|
|
|
|
5
|
return $s > 0 ? $s : 0; |
194
|
|
|
|
|
|
|
}; |
195
|
|
|
|
|
|
|
|
196
|
|
|
|
|
|
|
1; |
197
|
|
|
|
|
|
|
|
198
|
|
|
|
|
|
|
__END__ |
199
|
|
|
|
|
|
|
|
200
|
|
|
|
|
|
|
=back |
201
|
|
|
|
|
|
|
|
202
|
|
|
|
|
|
|
=head1 AUTHOR |
203
|
|
|
|
|
|
|
|
204
|
|
|
|
|
|
|
Marc Mims <marc@questright.com> |
205
|
|
|
|
|
|
|
|
206
|
|
|
|
|
|
|
=head1 LICENSE |
207
|
|
|
|
|
|
|
|
208
|
|
|
|
|
|
|
Copyright (c) 2016 Marc Mims |
209
|
|
|
|
|
|
|
|
210
|
|
|
|
|
|
|
This library is free software; you can redistribute it and/or modify it under the same terms as Perl itself. |
211
|
|
|
|
|
|
|
|
212
|
|
|
|
|
|
|
=cut |
213
|
|
|
|
|
|
|
|