| line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
|
1
|
|
|
|
|
|
|
package Net::MachineLearning::Sample; |
|
2
|
|
|
|
|
|
|
|
|
3
|
1
|
|
|
1
|
|
13232
|
use 5.006; |
|
|
1
|
|
|
|
|
3
|
|
|
4
|
1
|
|
|
1
|
|
5
|
use strict; |
|
|
1
|
|
|
|
|
1
|
|
|
|
1
|
|
|
|
|
15
|
|
|
5
|
1
|
|
|
1
|
|
3
|
use warnings; |
|
|
1
|
|
|
|
|
4
|
|
|
|
1
|
|
|
|
|
25
|
|
|
6
|
1
|
|
|
1
|
|
452
|
use utf8; |
|
|
1
|
|
|
|
|
7
|
|
|
|
1
|
|
|
|
|
3
|
|
|
7
|
1
|
|
|
1
|
|
516
|
use JSON; |
|
|
1
|
|
|
|
|
9735
|
|
|
|
1
|
|
|
|
|
4
|
|
|
8
|
1
|
|
|
1
|
|
370
|
use GD; |
|
|
0
|
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
|
9
|
|
|
|
|
|
|
|
|
10
|
|
|
|
|
|
|
=encoding utf8 |
|
11
|
|
|
|
|
|
|
|
|
12
|
|
|
|
|
|
|
=head1 NAME |
|
13
|
|
|
|
|
|
|
|
|
14
|
|
|
|
|
|
|
Net::MachineLearning::Sample - how machine learning works by demo |
|
15
|
|
|
|
|
|
|
|
|
16
|
|
|
|
|
|
|
=head1 VERSION |
|
17
|
|
|
|
|
|
|
|
|
18
|
|
|
|
|
|
|
Version 0.01 |
|
19
|
|
|
|
|
|
|
|
|
20
|
|
|
|
|
|
|
=cut |
|
21
|
|
|
|
|
|
|
|
|
22
|
|
|
|
|
|
|
our $VERSION = '0.01'; |
|
23
|
|
|
|
|
|
|
|
|
24
|
|
|
|
|
|
|
|
|
25
|
|
|
|
|
|
|
=head1 SYNOPSIS |
|
26
|
|
|
|
|
|
|
|
|
27
|
|
|
|
|
|
|
该模块是一个非常粗浅的案例,仅仅展示机器学习如何运作。 |
|
28
|
|
|
|
|
|
|
|
|
29
|
|
|
|
|
|
|
在库文件的同一目录,有0-9共10张数字图片,每张都是10x10像素的灰度PNG格式。 |
|
30
|
|
|
|
|
|
|
|
|
31
|
|
|
|
|
|
|
模块每次随机读取一个图片,将每个像素的值进行变换后,与到目标数字相似的10项权重分别相乘。 |
|
32
|
|
|
|
|
|
|
|
|
33
|
|
|
|
|
|
|
最后将每一项相乘的结果加权汇总,得到图片与目标数字的相似概率,数字越大相似度越高。 |
|
34
|
|
|
|
|
|
|
|
|
35
|
|
|
|
|
|
|
权重参数是一个JSON文件,位于库文件同一目录下的weights.json,通过get_weights.pl这个脚本产生。 |
|
36
|
|
|
|
|
|
|
|
|
37
|
|
|
|
|
|
|
正常来说,权重参数是通过大量的带标注图片,训练出来的,而不是手工调参的结果。 |
|
38
|
|
|
|
|
|
|
|
|
39
|
|
|
|
|
|
|
运行方法: |
|
40
|
|
|
|
|
|
|
|
|
41
|
|
|
|
|
|
|
1. 首先通过cpanm安装该模块: |
|
42
|
|
|
|
|
|
|
|
|
43
|
|
|
|
|
|
|
$ sudo cpanm Net::MachineLearning::Sample |
|
44
|
|
|
|
|
|
|
|
|
45
|
|
|
|
|
|
|
2. 然后通过命令行运行即可: |
|
46
|
|
|
|
|
|
|
|
|
47
|
|
|
|
|
|
|
$ perl -MNet::MachineLearning::Sample -e 'Net::MachineLearning::Sample->new->run' |
|
48
|
|
|
|
|
|
|
input numeric image: 8 |
|
49
|
|
|
|
|
|
|
my best guess: 8 |
|
50
|
|
|
|
|
|
|
|
|
51
|
|
|
|
|
|
|
3. 或者在perl程序里调用: |
|
52
|
|
|
|
|
|
|
|
|
53
|
|
|
|
|
|
|
use Net::MachineLearning::Sample; |
|
54
|
|
|
|
|
|
|
my $ml = Net::MachineLearning::Sample->new; |
|
55
|
|
|
|
|
|
|
$ml->run; |
|
56
|
|
|
|
|
|
|
|
|
57
|
|
|
|
|
|
|
=head1 SUBROUTINES/METHODS |
|
58
|
|
|
|
|
|
|
|
|
59
|
|
|
|
|
|
|
=head2 new |
|
60
|
|
|
|
|
|
|
|
|
61
|
|
|
|
|
|
|
new the object. |
|
62
|
|
|
|
|
|
|
|
|
63
|
|
|
|
|
|
|
=cut |
|
64
|
|
|
|
|
|
|
|
|
65
|
|
|
|
|
|
|
sub new { |
|
66
|
|
|
|
|
|
|
my $class = shift; |
|
67
|
|
|
|
|
|
|
bless {},$class; |
|
68
|
|
|
|
|
|
|
} |
|
69
|
|
|
|
|
|
|
|
|
70
|
|
|
|
|
|
|
=head2 run |
|
71
|
|
|
|
|
|
|
|
|
72
|
|
|
|
|
|
|
run the model. |
|
73
|
|
|
|
|
|
|
|
|
74
|
|
|
|
|
|
|
=cut |
|
75
|
|
|
|
|
|
|
|
|
76
|
|
|
|
|
|
|
sub run { |
|
77
|
|
|
|
|
|
|
|
|
78
|
|
|
|
|
|
|
my $module_dir = $INC{'Net/MachineLearning/Sample.pm'}; |
|
79
|
|
|
|
|
|
|
$module_dir =~ s/Sample\.pm$//; |
|
80
|
|
|
|
|
|
|
|
|
81
|
|
|
|
|
|
|
my $ix = int rand(10); |
|
82
|
|
|
|
|
|
|
my %scores; |
|
83
|
|
|
|
|
|
|
|
|
84
|
|
|
|
|
|
|
open my $fd,"$module_dir/weights.json" or die $!; |
|
85
|
|
|
|
|
|
|
my $json = <$fd>; |
|
86
|
|
|
|
|
|
|
close $fd; |
|
87
|
|
|
|
|
|
|
|
|
88
|
|
|
|
|
|
|
my $wht = from_json($json); |
|
89
|
|
|
|
|
|
|
|
|
90
|
|
|
|
|
|
|
my $myImage = newFromPng GD::Image("$module_dir/gray-$ix.png",0); |
|
91
|
|
|
|
|
|
|
my $pointer = 0; |
|
92
|
|
|
|
|
|
|
|
|
93
|
|
|
|
|
|
|
for my $column (0..9) { |
|
94
|
|
|
|
|
|
|
for my $row (0..9) { |
|
95
|
|
|
|
|
|
|
my $index = $myImage->getPixel($row,$column); |
|
96
|
|
|
|
|
|
|
|
|
97
|
|
|
|
|
|
|
for my $num (0..9) { |
|
98
|
|
|
|
|
|
|
my $weight = $wht->{$num}->[$pointer]; |
|
99
|
|
|
|
|
|
|
$scores{$num} += $weight * (255 - $index); |
|
100
|
|
|
|
|
|
|
} |
|
101
|
|
|
|
|
|
|
|
|
102
|
|
|
|
|
|
|
$pointer ++; |
|
103
|
|
|
|
|
|
|
} |
|
104
|
|
|
|
|
|
|
} |
|
105
|
|
|
|
|
|
|
|
|
106
|
|
|
|
|
|
|
my $bestValue; |
|
107
|
|
|
|
|
|
|
|
|
108
|
|
|
|
|
|
|
for (sort {$scores{$b} <=> $scores{$a} } keys %scores) { |
|
109
|
|
|
|
|
|
|
$bestValue = $_; |
|
110
|
|
|
|
|
|
|
last; |
|
111
|
|
|
|
|
|
|
} |
|
112
|
|
|
|
|
|
|
|
|
113
|
|
|
|
|
|
|
print "input numeric image: $ix\n"; |
|
114
|
|
|
|
|
|
|
print "my best guess: $bestValue\n"; |
|
115
|
|
|
|
|
|
|
} |
|
116
|
|
|
|
|
|
|
|
|
117
|
|
|
|
|
|
|
|
|
118
|
|
|
|
|
|
|
=head1 AUTHOR |
|
119
|
|
|
|
|
|
|
|
|
120
|
|
|
|
|
|
|
Ken Peng, C<< >> |
|
121
|
|
|
|
|
|
|
|
|
122
|
|
|
|
|
|
|
=head1 BUGS |
|
123
|
|
|
|
|
|
|
|
|
124
|
|
|
|
|
|
|
Please report any bugs or feature requests to C, or through |
|
125
|
|
|
|
|
|
|
the web interface at L. I will be notified, and then you'll |
|
126
|
|
|
|
|
|
|
automatically be notified of progress on your bug as I make changes. |
|
127
|
|
|
|
|
|
|
|
|
128
|
|
|
|
|
|
|
|
|
129
|
|
|
|
|
|
|
|
|
130
|
|
|
|
|
|
|
|
|
131
|
|
|
|
|
|
|
=head1 SUPPORT |
|
132
|
|
|
|
|
|
|
|
|
133
|
|
|
|
|
|
|
You can find documentation for this module with the perldoc command. |
|
134
|
|
|
|
|
|
|
|
|
135
|
|
|
|
|
|
|
perldoc Net::MachineLearning::Sample |
|
136
|
|
|
|
|
|
|
|
|
137
|
|
|
|
|
|
|
|
|
138
|
|
|
|
|
|
|
You can also look for information at: |
|
139
|
|
|
|
|
|
|
|
|
140
|
|
|
|
|
|
|
=over 4 |
|
141
|
|
|
|
|
|
|
|
|
142
|
|
|
|
|
|
|
=item * RT: CPAN's request tracker (report bugs here) |
|
143
|
|
|
|
|
|
|
|
|
144
|
|
|
|
|
|
|
L |
|
145
|
|
|
|
|
|
|
|
|
146
|
|
|
|
|
|
|
=item * AnnoCPAN: Annotated CPAN documentation |
|
147
|
|
|
|
|
|
|
|
|
148
|
|
|
|
|
|
|
L |
|
149
|
|
|
|
|
|
|
|
|
150
|
|
|
|
|
|
|
=item * CPAN Ratings |
|
151
|
|
|
|
|
|
|
|
|
152
|
|
|
|
|
|
|
L |
|
153
|
|
|
|
|
|
|
|
|
154
|
|
|
|
|
|
|
=item * Search CPAN |
|
155
|
|
|
|
|
|
|
|
|
156
|
|
|
|
|
|
|
L |
|
157
|
|
|
|
|
|
|
|
|
158
|
|
|
|
|
|
|
=back |
|
159
|
|
|
|
|
|
|
|
|
160
|
|
|
|
|
|
|
|
|
161
|
|
|
|
|
|
|
=head1 ACKNOWLEDGEMENTS |
|
162
|
|
|
|
|
|
|
|
|
163
|
|
|
|
|
|
|
|
|
164
|
|
|
|
|
|
|
=head1 LICENSE AND COPYRIGHT |
|
165
|
|
|
|
|
|
|
|
|
166
|
|
|
|
|
|
|
Copyright 2017 Ken Peng. |
|
167
|
|
|
|
|
|
|
|
|
168
|
|
|
|
|
|
|
This program is free software; you can redistribute it and/or modify it |
|
169
|
|
|
|
|
|
|
under the terms of the the Artistic License (2.0). You may obtain a |
|
170
|
|
|
|
|
|
|
copy of the full license at: |
|
171
|
|
|
|
|
|
|
|
|
172
|
|
|
|
|
|
|
L |
|
173
|
|
|
|
|
|
|
|
|
174
|
|
|
|
|
|
|
Any use, modification, and distribution of the Standard or Modified |
|
175
|
|
|
|
|
|
|
Versions is governed by this Artistic License. By using, modifying or |
|
176
|
|
|
|
|
|
|
distributing the Package, you accept this license. Do not use, modify, |
|
177
|
|
|
|
|
|
|
or distribute the Package, if you do not accept this license. |
|
178
|
|
|
|
|
|
|
|
|
179
|
|
|
|
|
|
|
If your Modified Version has been derived from a Modified Version made |
|
180
|
|
|
|
|
|
|
by someone other than you, you are nevertheless required to ensure that |
|
181
|
|
|
|
|
|
|
your Modified Version complies with the requirements of this license. |
|
182
|
|
|
|
|
|
|
|
|
183
|
|
|
|
|
|
|
This license does not grant you the right to use any trademark, service |
|
184
|
|
|
|
|
|
|
mark, tradename, or logo of the Copyright Holder. |
|
185
|
|
|
|
|
|
|
|
|
186
|
|
|
|
|
|
|
This license includes the non-exclusive, worldwide, free-of-charge |
|
187
|
|
|
|
|
|
|
patent license to make, have made, use, offer to sell, sell, import and |
|
188
|
|
|
|
|
|
|
otherwise transfer the Package with respect to any patent claims |
|
189
|
|
|
|
|
|
|
licensable by the Copyright Holder that are necessarily infringed by the |
|
190
|
|
|
|
|
|
|
Package. If you institute patent litigation (including a cross-claim or |
|
191
|
|
|
|
|
|
|
counterclaim) against any party alleging that the Package constitutes |
|
192
|
|
|
|
|
|
|
direct or contributory patent infringement, then this Artistic License |
|
193
|
|
|
|
|
|
|
to you shall terminate on the date that such litigation is filed. |
|
194
|
|
|
|
|
|
|
|
|
195
|
|
|
|
|
|
|
Disclaimer of Warranty: THE PACKAGE IS PROVIDED BY THE COPYRIGHT HOLDER |
|
196
|
|
|
|
|
|
|
AND CONTRIBUTORS "AS IS' AND WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES. |
|
197
|
|
|
|
|
|
|
THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR |
|
198
|
|
|
|
|
|
|
PURPOSE, OR NON-INFRINGEMENT ARE DISCLAIMED TO THE EXTENT PERMITTED BY |
|
199
|
|
|
|
|
|
|
YOUR LOCAL LAW. UNLESS REQUIRED BY LAW, NO COPYRIGHT HOLDER OR |
|
200
|
|
|
|
|
|
|
CONTRIBUTOR WILL BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, OR |
|
201
|
|
|
|
|
|
|
CONSEQUENTIAL DAMAGES ARISING IN ANY WAY OUT OF THE USE OF THE PACKAGE, |
|
202
|
|
|
|
|
|
|
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
|
203
|
|
|
|
|
|
|
|
|
204
|
|
|
|
|
|
|
|
|
205
|
|
|
|
|
|
|
=cut |
|
206
|
|
|
|
|
|
|
|
|
207
|
|
|
|
|
|
|
1; # End of Net::MachineLearning::Sample |