line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
1
|
|
|
|
|
|
|
/* Copyright 2014, Kenneth MacKay. Licensed under the BSD 2-clause license. */ |
2
|
|
|
|
|
|
|
|
3
|
|
|
|
|
|
|
#include "uECC.h" |
4
|
|
|
|
|
|
|
#include "uECC_vli.h" |
5
|
|
|
|
|
|
|
|
6
|
|
|
|
|
|
|
#ifndef uECC_RNG_MAX_TRIES |
7
|
|
|
|
|
|
|
#define uECC_RNG_MAX_TRIES 64 |
8
|
|
|
|
|
|
|
#endif |
9
|
|
|
|
|
|
|
|
10
|
|
|
|
|
|
|
#if uECC_ENABLE_VLI_API |
11
|
|
|
|
|
|
|
#define uECC_VLI_API |
12
|
|
|
|
|
|
|
#else |
13
|
|
|
|
|
|
|
#define uECC_VLI_API static |
14
|
|
|
|
|
|
|
#endif |
15
|
|
|
|
|
|
|
|
16
|
|
|
|
|
|
|
#define CONCATX(a, ...) a ## __VA_ARGS__ |
17
|
|
|
|
|
|
|
#define CONCAT(a, ...) CONCATX(a, __VA_ARGS__) |
18
|
|
|
|
|
|
|
|
19
|
|
|
|
|
|
|
#define STRX(a) #a |
20
|
|
|
|
|
|
|
#define STR(a) STRX(a) |
21
|
|
|
|
|
|
|
|
22
|
|
|
|
|
|
|
#define EVAL(...) EVAL1(EVAL1(EVAL1(EVAL1(__VA_ARGS__)))) |
23
|
|
|
|
|
|
|
#define EVAL1(...) EVAL2(EVAL2(EVAL2(EVAL2(__VA_ARGS__)))) |
24
|
|
|
|
|
|
|
#define EVAL2(...) EVAL3(EVAL3(EVAL3(EVAL3(__VA_ARGS__)))) |
25
|
|
|
|
|
|
|
#define EVAL3(...) EVAL4(EVAL4(EVAL4(EVAL4(__VA_ARGS__)))) |
26
|
|
|
|
|
|
|
#define EVAL4(...) __VA_ARGS__ |
27
|
|
|
|
|
|
|
|
28
|
|
|
|
|
|
|
#define DEC_1 0 |
29
|
|
|
|
|
|
|
#define DEC_2 1 |
30
|
|
|
|
|
|
|
#define DEC_3 2 |
31
|
|
|
|
|
|
|
#define DEC_4 3 |
32
|
|
|
|
|
|
|
#define DEC_5 4 |
33
|
|
|
|
|
|
|
#define DEC_6 5 |
34
|
|
|
|
|
|
|
#define DEC_7 6 |
35
|
|
|
|
|
|
|
#define DEC_8 7 |
36
|
|
|
|
|
|
|
#define DEC_9 8 |
37
|
|
|
|
|
|
|
#define DEC_10 9 |
38
|
|
|
|
|
|
|
#define DEC_11 10 |
39
|
|
|
|
|
|
|
#define DEC_12 11 |
40
|
|
|
|
|
|
|
#define DEC_13 12 |
41
|
|
|
|
|
|
|
#define DEC_14 13 |
42
|
|
|
|
|
|
|
#define DEC_15 14 |
43
|
|
|
|
|
|
|
#define DEC_16 15 |
44
|
|
|
|
|
|
|
#define DEC_17 16 |
45
|
|
|
|
|
|
|
#define DEC_18 17 |
46
|
|
|
|
|
|
|
#define DEC_19 18 |
47
|
|
|
|
|
|
|
#define DEC_20 19 |
48
|
|
|
|
|
|
|
#define DEC_21 20 |
49
|
|
|
|
|
|
|
#define DEC_22 21 |
50
|
|
|
|
|
|
|
#define DEC_23 22 |
51
|
|
|
|
|
|
|
#define DEC_24 23 |
52
|
|
|
|
|
|
|
#define DEC_25 24 |
53
|
|
|
|
|
|
|
#define DEC_26 25 |
54
|
|
|
|
|
|
|
#define DEC_27 26 |
55
|
|
|
|
|
|
|
#define DEC_28 27 |
56
|
|
|
|
|
|
|
#define DEC_29 28 |
57
|
|
|
|
|
|
|
#define DEC_30 29 |
58
|
|
|
|
|
|
|
#define DEC_31 30 |
59
|
|
|
|
|
|
|
#define DEC_32 31 |
60
|
|
|
|
|
|
|
|
61
|
|
|
|
|
|
|
#define DEC(N) CONCAT(DEC_, N) |
62
|
|
|
|
|
|
|
|
63
|
|
|
|
|
|
|
#define SECOND_ARG(_, val, ...) val |
64
|
|
|
|
|
|
|
#define SOME_CHECK_0 ~, 0 |
65
|
|
|
|
|
|
|
#define GET_SECOND_ARG(...) SECOND_ARG(__VA_ARGS__, SOME,) |
66
|
|
|
|
|
|
|
#define SOME_OR_0(N) GET_SECOND_ARG(CONCAT(SOME_CHECK_, N)) |
67
|
|
|
|
|
|
|
|
68
|
|
|
|
|
|
|
#define EMPTY(...) |
69
|
|
|
|
|
|
|
#define DEFER(...) __VA_ARGS__ EMPTY() |
70
|
|
|
|
|
|
|
|
71
|
|
|
|
|
|
|
#define REPEAT_NAME_0() REPEAT_0 |
72
|
|
|
|
|
|
|
#define REPEAT_NAME_SOME() REPEAT_SOME |
73
|
|
|
|
|
|
|
#define REPEAT_0(...) |
74
|
|
|
|
|
|
|
#define REPEAT_SOME(N, stuff) DEFER(CONCAT(REPEAT_NAME_, SOME_OR_0(DEC(N))))()(DEC(N), stuff) stuff |
75
|
|
|
|
|
|
|
#define REPEAT(N, stuff) EVAL(REPEAT_SOME(N, stuff)) |
76
|
|
|
|
|
|
|
|
77
|
|
|
|
|
|
|
#define REPEATM_NAME_0() REPEATM_0 |
78
|
|
|
|
|
|
|
#define REPEATM_NAME_SOME() REPEATM_SOME |
79
|
|
|
|
|
|
|
#define REPEATM_0(...) |
80
|
|
|
|
|
|
|
#define REPEATM_SOME(N, macro) macro(N) \ |
81
|
|
|
|
|
|
|
DEFER(CONCAT(REPEATM_NAME_, SOME_OR_0(DEC(N))))()(DEC(N), macro) |
82
|
|
|
|
|
|
|
#define REPEATM(N, macro) EVAL(REPEATM_SOME(N, macro)) |
83
|
|
|
|
|
|
|
|
84
|
|
|
|
|
|
|
#include "platform-specific.inc" |
85
|
|
|
|
|
|
|
|
86
|
|
|
|
|
|
|
#if (uECC_WORD_SIZE == 1) |
87
|
|
|
|
|
|
|
#if uECC_SUPPORTS_secp160r1 |
88
|
|
|
|
|
|
|
#define uECC_MAX_WORDS 21 /* Due to the size of curve_n. */ |
89
|
|
|
|
|
|
|
#endif |
90
|
|
|
|
|
|
|
#if uECC_SUPPORTS_secp192r1 |
91
|
|
|
|
|
|
|
#undef uECC_MAX_WORDS |
92
|
|
|
|
|
|
|
#define uECC_MAX_WORDS 24 |
93
|
|
|
|
|
|
|
#endif |
94
|
|
|
|
|
|
|
#if uECC_SUPPORTS_secp224r1 |
95
|
|
|
|
|
|
|
#undef uECC_MAX_WORDS |
96
|
|
|
|
|
|
|
#define uECC_MAX_WORDS 28 |
97
|
|
|
|
|
|
|
#endif |
98
|
|
|
|
|
|
|
#if (uECC_SUPPORTS_secp256r1 || uECC_SUPPORTS_secp256k1) |
99
|
|
|
|
|
|
|
#undef uECC_MAX_WORDS |
100
|
|
|
|
|
|
|
#define uECC_MAX_WORDS 32 |
101
|
|
|
|
|
|
|
#endif |
102
|
|
|
|
|
|
|
#elif (uECC_WORD_SIZE == 4) |
103
|
|
|
|
|
|
|
#if uECC_SUPPORTS_secp160r1 |
104
|
|
|
|
|
|
|
#define uECC_MAX_WORDS 6 /* Due to the size of curve_n. */ |
105
|
|
|
|
|
|
|
#endif |
106
|
|
|
|
|
|
|
#if uECC_SUPPORTS_secp192r1 |
107
|
|
|
|
|
|
|
#undef uECC_MAX_WORDS |
108
|
|
|
|
|
|
|
#define uECC_MAX_WORDS 6 |
109
|
|
|
|
|
|
|
#endif |
110
|
|
|
|
|
|
|
#if uECC_SUPPORTS_secp224r1 |
111
|
|
|
|
|
|
|
#undef uECC_MAX_WORDS |
112
|
|
|
|
|
|
|
#define uECC_MAX_WORDS 7 |
113
|
|
|
|
|
|
|
#endif |
114
|
|
|
|
|
|
|
#if (uECC_SUPPORTS_secp256r1 || uECC_SUPPORTS_secp256k1) |
115
|
|
|
|
|
|
|
#undef uECC_MAX_WORDS |
116
|
|
|
|
|
|
|
#define uECC_MAX_WORDS 8 |
117
|
|
|
|
|
|
|
#endif |
118
|
|
|
|
|
|
|
#elif (uECC_WORD_SIZE == 8) |
119
|
|
|
|
|
|
|
#if uECC_SUPPORTS_secp160r1 |
120
|
|
|
|
|
|
|
#define uECC_MAX_WORDS 3 |
121
|
|
|
|
|
|
|
#endif |
122
|
|
|
|
|
|
|
#if uECC_SUPPORTS_secp192r1 |
123
|
|
|
|
|
|
|
#undef uECC_MAX_WORDS |
124
|
|
|
|
|
|
|
#define uECC_MAX_WORDS 3 |
125
|
|
|
|
|
|
|
#endif |
126
|
|
|
|
|
|
|
#if uECC_SUPPORTS_secp224r1 |
127
|
|
|
|
|
|
|
#undef uECC_MAX_WORDS |
128
|
|
|
|
|
|
|
#define uECC_MAX_WORDS 4 |
129
|
|
|
|
|
|
|
#endif |
130
|
|
|
|
|
|
|
#if (uECC_SUPPORTS_secp256r1 || uECC_SUPPORTS_secp256k1) |
131
|
|
|
|
|
|
|
#undef uECC_MAX_WORDS |
132
|
|
|
|
|
|
|
#define uECC_MAX_WORDS 4 |
133
|
|
|
|
|
|
|
#endif |
134
|
|
|
|
|
|
|
#endif /* uECC_WORD_SIZE */ |
135
|
|
|
|
|
|
|
|
136
|
|
|
|
|
|
|
#define BITS_TO_WORDS(num_bits) ((num_bits + ((uECC_WORD_SIZE * 8) - 1)) / (uECC_WORD_SIZE * 8)) |
137
|
|
|
|
|
|
|
#define BITS_TO_BYTES(num_bits) ((num_bits + 7) / 8) |
138
|
|
|
|
|
|
|
|
139
|
|
|
|
|
|
|
struct uECC_Curve_t { |
140
|
|
|
|
|
|
|
wordcount_t num_words; |
141
|
|
|
|
|
|
|
wordcount_t num_bytes; |
142
|
|
|
|
|
|
|
bitcount_t num_n_bits; |
143
|
|
|
|
|
|
|
uECC_word_t p[uECC_MAX_WORDS]; |
144
|
|
|
|
|
|
|
uECC_word_t n[uECC_MAX_WORDS]; |
145
|
|
|
|
|
|
|
uECC_word_t G[uECC_MAX_WORDS * 2]; |
146
|
|
|
|
|
|
|
uECC_word_t b[uECC_MAX_WORDS]; |
147
|
|
|
|
|
|
|
void (*double_jacobian)(uECC_word_t * X1, |
148
|
|
|
|
|
|
|
uECC_word_t * Y1, |
149
|
|
|
|
|
|
|
uECC_word_t * Z1, |
150
|
|
|
|
|
|
|
uECC_Curve curve); |
151
|
|
|
|
|
|
|
#if uECC_SUPPORT_COMPRESSED_POINT |
152
|
|
|
|
|
|
|
void (*mod_sqrt)(uECC_word_t *a, uECC_Curve curve); |
153
|
|
|
|
|
|
|
#endif |
154
|
|
|
|
|
|
|
void (*x_side)(uECC_word_t *result, const uECC_word_t *x, uECC_Curve curve); |
155
|
|
|
|
|
|
|
#if (uECC_OPTIMIZATION_LEVEL > 0) |
156
|
|
|
|
|
|
|
void (*mmod_fast)(uECC_word_t *result, uECC_word_t *product); |
157
|
|
|
|
|
|
|
#endif |
158
|
|
|
|
|
|
|
}; |
159
|
|
|
|
|
|
|
|
160
|
|
|
|
|
|
|
#if uECC_VLI_NATIVE_LITTLE_ENDIAN |
161
|
|
|
|
|
|
|
static void bcopy(uint8_t *dst, |
162
|
|
|
|
|
|
|
const uint8_t *src, |
163
|
|
|
|
|
|
|
unsigned num_bytes) { |
164
|
|
|
|
|
|
|
while (0 != num_bytes) { |
165
|
|
|
|
|
|
|
num_bytes--; |
166
|
|
|
|
|
|
|
dst[num_bytes] = src[num_bytes]; |
167
|
|
|
|
|
|
|
} |
168
|
|
|
|
|
|
|
} |
169
|
|
|
|
|
|
|
#endif |
170
|
|
|
|
|
|
|
|
171
|
|
|
|
|
|
|
static cmpresult_t uECC_vli_cmp_unsafe(const uECC_word_t *left, |
172
|
|
|
|
|
|
|
const uECC_word_t *right, |
173
|
|
|
|
|
|
|
wordcount_t num_words); |
174
|
|
|
|
|
|
|
|
175
|
|
|
|
|
|
|
#if (uECC_PLATFORM == uECC_arm || uECC_PLATFORM == uECC_arm_thumb || \ |
176
|
|
|
|
|
|
|
uECC_PLATFORM == uECC_arm_thumb2) |
177
|
|
|
|
|
|
|
#include "asm_arm.inc" |
178
|
|
|
|
|
|
|
#endif |
179
|
|
|
|
|
|
|
|
180
|
|
|
|
|
|
|
#if (uECC_PLATFORM == uECC_avr) |
181
|
|
|
|
|
|
|
#include "asm_avr.inc" |
182
|
|
|
|
|
|
|
#endif |
183
|
|
|
|
|
|
|
|
184
|
|
|
|
|
|
|
#if default_RNG_defined |
185
|
|
|
|
|
|
|
static uECC_RNG_Function g_rng_function = &default_RNG; |
186
|
|
|
|
|
|
|
#else |
187
|
|
|
|
|
|
|
static uECC_RNG_Function g_rng_function = 0; |
188
|
|
|
|
|
|
|
#endif |
189
|
|
|
|
|
|
|
|
190
|
0
|
|
|
|
|
|
void uECC_set_rng(uECC_RNG_Function rng_function) { |
191
|
0
|
|
|
|
|
|
g_rng_function = rng_function; |
192
|
0
|
|
|
|
|
|
} |
193
|
|
|
|
|
|
|
|
194
|
0
|
|
|
|
|
|
uECC_RNG_Function uECC_get_rng(void) { |
195
|
0
|
|
|
|
|
|
return g_rng_function; |
196
|
|
|
|
|
|
|
} |
197
|
|
|
|
|
|
|
|
198
|
0
|
|
|
|
|
|
int uECC_curve_private_key_size(uECC_Curve curve) { |
199
|
0
|
|
|
|
|
|
return BITS_TO_BYTES(curve->num_n_bits); |
200
|
|
|
|
|
|
|
} |
201
|
|
|
|
|
|
|
|
202
|
0
|
|
|
|
|
|
int uECC_curve_public_key_size(uECC_Curve curve) { |
203
|
0
|
|
|
|
|
|
return 2 * curve->num_bytes; |
204
|
|
|
|
|
|
|
} |
205
|
|
|
|
|
|
|
|
206
|
|
|
|
|
|
|
#if !asm_clear |
207
|
0
|
|
|
|
|
|
uECC_VLI_API void uECC_vli_clear(uECC_word_t *vli, wordcount_t num_words) { |
208
|
|
|
|
|
|
|
wordcount_t i; |
209
|
0
|
0
|
|
|
|
|
for (i = 0; i < num_words; ++i) { |
210
|
0
|
|
|
|
|
|
vli[i] = 0; |
211
|
|
|
|
|
|
|
} |
212
|
0
|
|
|
|
|
|
} |
213
|
|
|
|
|
|
|
#endif /* !asm_clear */ |
214
|
|
|
|
|
|
|
|
215
|
|
|
|
|
|
|
/* Constant-time comparison to zero - secure way to compare long integers */ |
216
|
|
|
|
|
|
|
/* Returns 1 if vli == 0, 0 otherwise. */ |
217
|
0
|
|
|
|
|
|
uECC_VLI_API uECC_word_t uECC_vli_isZero(const uECC_word_t *vli, wordcount_t num_words) { |
218
|
0
|
|
|
|
|
|
uECC_word_t bits = 0; |
219
|
|
|
|
|
|
|
wordcount_t i; |
220
|
0
|
0
|
|
|
|
|
for (i = 0; i < num_words; ++i) { |
221
|
0
|
|
|
|
|
|
bits |= vli[i]; |
222
|
|
|
|
|
|
|
} |
223
|
0
|
|
|
|
|
|
return (bits == 0); |
224
|
|
|
|
|
|
|
} |
225
|
|
|
|
|
|
|
|
226
|
|
|
|
|
|
|
/* Returns nonzero if bit 'bit' of vli is set. */ |
227
|
0
|
|
|
|
|
|
uECC_VLI_API uECC_word_t uECC_vli_testBit(const uECC_word_t *vli, bitcount_t bit) { |
228
|
0
|
|
|
|
|
|
return (vli[bit >> uECC_WORD_BITS_SHIFT] & ((uECC_word_t)1 << (bit & uECC_WORD_BITS_MASK))); |
229
|
|
|
|
|
|
|
} |
230
|
|
|
|
|
|
|
|
231
|
|
|
|
|
|
|
/* Counts the number of words in vli. */ |
232
|
0
|
|
|
|
|
|
static wordcount_t vli_numDigits(const uECC_word_t *vli, const wordcount_t max_words) { |
233
|
|
|
|
|
|
|
wordcount_t i; |
234
|
|
|
|
|
|
|
/* Search from the end until we find a non-zero digit. |
235
|
|
|
|
|
|
|
We do it in reverse because we expect that most digits will be nonzero. */ |
236
|
0
|
0
|
|
|
|
|
for (i = max_words - 1; i >= 0 && vli[i] == 0; --i) { |
|
|
0
|
|
|
|
|
|
237
|
|
|
|
|
|
|
} |
238
|
|
|
|
|
|
|
|
239
|
0
|
|
|
|
|
|
return (i + 1); |
240
|
|
|
|
|
|
|
} |
241
|
|
|
|
|
|
|
|
242
|
|
|
|
|
|
|
/* Counts the number of bits required to represent vli. */ |
243
|
0
|
|
|
|
|
|
uECC_VLI_API bitcount_t uECC_vli_numBits(const uECC_word_t *vli, const wordcount_t max_words) { |
244
|
|
|
|
|
|
|
uECC_word_t i; |
245
|
|
|
|
|
|
|
uECC_word_t digit; |
246
|
|
|
|
|
|
|
|
247
|
0
|
|
|
|
|
|
wordcount_t num_digits = vli_numDigits(vli, max_words); |
248
|
0
|
0
|
|
|
|
|
if (num_digits == 0) { |
249
|
0
|
|
|
|
|
|
return 0; |
250
|
|
|
|
|
|
|
} |
251
|
|
|
|
|
|
|
|
252
|
0
|
|
|
|
|
|
digit = vli[num_digits - 1]; |
253
|
0
|
0
|
|
|
|
|
for (i = 0; digit; ++i) { |
254
|
0
|
|
|
|
|
|
digit >>= 1; |
255
|
|
|
|
|
|
|
} |
256
|
|
|
|
|
|
|
|
257
|
0
|
|
|
|
|
|
return (((bitcount_t)(num_digits - 1) << uECC_WORD_BITS_SHIFT) + i); |
258
|
|
|
|
|
|
|
} |
259
|
|
|
|
|
|
|
|
260
|
|
|
|
|
|
|
/* Sets dest = src. */ |
261
|
|
|
|
|
|
|
#if !asm_set |
262
|
0
|
|
|
|
|
|
uECC_VLI_API void uECC_vli_set(uECC_word_t *dest, const uECC_word_t *src, wordcount_t num_words) { |
263
|
|
|
|
|
|
|
wordcount_t i; |
264
|
0
|
0
|
|
|
|
|
for (i = 0; i < num_words; ++i) { |
265
|
0
|
|
|
|
|
|
dest[i] = src[i]; |
266
|
|
|
|
|
|
|
} |
267
|
0
|
|
|
|
|
|
} |
268
|
|
|
|
|
|
|
#endif /* !asm_set */ |
269
|
|
|
|
|
|
|
|
270
|
|
|
|
|
|
|
/* Returns sign of left - right. */ |
271
|
0
|
|
|
|
|
|
static cmpresult_t uECC_vli_cmp_unsafe(const uECC_word_t *left, |
272
|
|
|
|
|
|
|
const uECC_word_t *right, |
273
|
|
|
|
|
|
|
wordcount_t num_words) { |
274
|
|
|
|
|
|
|
wordcount_t i; |
275
|
0
|
0
|
|
|
|
|
for (i = num_words - 1; i >= 0; --i) { |
276
|
0
|
0
|
|
|
|
|
if (left[i] > right[i]) { |
277
|
0
|
|
|
|
|
|
return 1; |
278
|
0
|
0
|
|
|
|
|
} else if (left[i] < right[i]) { |
279
|
0
|
|
|
|
|
|
return -1; |
280
|
|
|
|
|
|
|
} |
281
|
|
|
|
|
|
|
} |
282
|
0
|
|
|
|
|
|
return 0; |
283
|
|
|
|
|
|
|
} |
284
|
|
|
|
|
|
|
|
285
|
|
|
|
|
|
|
/* Constant-time comparison function - secure way to compare long integers */ |
286
|
|
|
|
|
|
|
/* Returns one if left == right, zero otherwise. */ |
287
|
0
|
|
|
|
|
|
uECC_VLI_API uECC_word_t uECC_vli_equal(const uECC_word_t *left, |
288
|
|
|
|
|
|
|
const uECC_word_t *right, |
289
|
|
|
|
|
|
|
wordcount_t num_words) { |
290
|
0
|
|
|
|
|
|
uECC_word_t diff = 0; |
291
|
|
|
|
|
|
|
wordcount_t i; |
292
|
0
|
0
|
|
|
|
|
for (i = num_words - 1; i >= 0; --i) { |
293
|
0
|
|
|
|
|
|
diff |= (left[i] ^ right[i]); |
294
|
|
|
|
|
|
|
} |
295
|
0
|
|
|
|
|
|
return (diff == 0); |
296
|
|
|
|
|
|
|
} |
297
|
|
|
|
|
|
|
|
298
|
|
|
|
|
|
|
uECC_VLI_API uECC_word_t uECC_vli_sub(uECC_word_t *result, |
299
|
|
|
|
|
|
|
const uECC_word_t *left, |
300
|
|
|
|
|
|
|
const uECC_word_t *right, |
301
|
|
|
|
|
|
|
wordcount_t num_words); |
302
|
|
|
|
|
|
|
|
303
|
|
|
|
|
|
|
/* Returns sign of left - right, in constant time. */ |
304
|
0
|
|
|
|
|
|
uECC_VLI_API cmpresult_t uECC_vli_cmp(const uECC_word_t *left, |
305
|
|
|
|
|
|
|
const uECC_word_t *right, |
306
|
|
|
|
|
|
|
wordcount_t num_words) { |
307
|
|
|
|
|
|
|
uECC_word_t tmp[uECC_MAX_WORDS]; |
308
|
0
|
|
|
|
|
|
uECC_word_t neg = !!uECC_vli_sub(tmp, left, right, num_words); |
309
|
0
|
|
|
|
|
|
uECC_word_t equal = uECC_vli_isZero(tmp, num_words); |
310
|
0
|
|
|
|
|
|
return (!equal - 2 * neg); |
311
|
|
|
|
|
|
|
} |
312
|
|
|
|
|
|
|
|
313
|
|
|
|
|
|
|
/* Computes vli = vli >> 1. */ |
314
|
|
|
|
|
|
|
#if !asm_rshift1 |
315
|
0
|
|
|
|
|
|
uECC_VLI_API void uECC_vli_rshift1(uECC_word_t *vli, wordcount_t num_words) { |
316
|
0
|
|
|
|
|
|
uECC_word_t *end = vli; |
317
|
0
|
|
|
|
|
|
uECC_word_t carry = 0; |
318
|
|
|
|
|
|
|
|
319
|
0
|
|
|
|
|
|
vli += num_words; |
320
|
0
|
0
|
|
|
|
|
while (vli-- > end) { |
321
|
0
|
|
|
|
|
|
uECC_word_t temp = *vli; |
322
|
0
|
|
|
|
|
|
*vli = (temp >> 1) | carry; |
323
|
0
|
|
|
|
|
|
carry = temp << (uECC_WORD_BITS - 1); |
324
|
|
|
|
|
|
|
} |
325
|
0
|
|
|
|
|
|
} |
326
|
|
|
|
|
|
|
#endif /* !asm_rshift1 */ |
327
|
|
|
|
|
|
|
|
328
|
|
|
|
|
|
|
/* Computes result = left + right, returning carry. Can modify in place. */ |
329
|
|
|
|
|
|
|
#if !asm_add |
330
|
0
|
|
|
|
|
|
uECC_VLI_API uECC_word_t uECC_vli_add(uECC_word_t *result, |
331
|
|
|
|
|
|
|
const uECC_word_t *left, |
332
|
|
|
|
|
|
|
const uECC_word_t *right, |
333
|
|
|
|
|
|
|
wordcount_t num_words) { |
334
|
0
|
|
|
|
|
|
uECC_word_t carry = 0; |
335
|
|
|
|
|
|
|
wordcount_t i; |
336
|
0
|
0
|
|
|
|
|
for (i = 0; i < num_words; ++i) { |
337
|
0
|
|
|
|
|
|
uECC_word_t sum = left[i] + right[i] + carry; |
338
|
0
|
0
|
|
|
|
|
if (sum != left[i]) { |
339
|
0
|
|
|
|
|
|
carry = (sum < left[i]); |
340
|
|
|
|
|
|
|
} |
341
|
0
|
|
|
|
|
|
result[i] = sum; |
342
|
|
|
|
|
|
|
} |
343
|
0
|
|
|
|
|
|
return carry; |
344
|
|
|
|
|
|
|
} |
345
|
|
|
|
|
|
|
#endif /* !asm_add */ |
346
|
|
|
|
|
|
|
|
347
|
|
|
|
|
|
|
/* Computes result = left - right, returning borrow. Can modify in place. */ |
348
|
|
|
|
|
|
|
#if !asm_sub |
349
|
0
|
|
|
|
|
|
uECC_VLI_API uECC_word_t uECC_vli_sub(uECC_word_t *result, |
350
|
|
|
|
|
|
|
const uECC_word_t *left, |
351
|
|
|
|
|
|
|
const uECC_word_t *right, |
352
|
|
|
|
|
|
|
wordcount_t num_words) { |
353
|
0
|
|
|
|
|
|
uECC_word_t borrow = 0; |
354
|
|
|
|
|
|
|
wordcount_t i; |
355
|
0
|
0
|
|
|
|
|
for (i = 0; i < num_words; ++i) { |
356
|
0
|
|
|
|
|
|
uECC_word_t diff = left[i] - right[i] - borrow; |
357
|
0
|
0
|
|
|
|
|
if (diff != left[i]) { |
358
|
0
|
|
|
|
|
|
borrow = (diff > left[i]); |
359
|
|
|
|
|
|
|
} |
360
|
0
|
|
|
|
|
|
result[i] = diff; |
361
|
|
|
|
|
|
|
} |
362
|
0
|
|
|
|
|
|
return borrow; |
363
|
|
|
|
|
|
|
} |
364
|
|
|
|
|
|
|
#endif /* !asm_sub */ |
365
|
|
|
|
|
|
|
|
366
|
|
|
|
|
|
|
#if !asm_mult || (uECC_SQUARE_FUNC && !asm_square) || \ |
367
|
|
|
|
|
|
|
(uECC_SUPPORTS_secp256k1 && (uECC_OPTIMIZATION_LEVEL > 0) && \ |
368
|
|
|
|
|
|
|
((uECC_WORD_SIZE == 1) || (uECC_WORD_SIZE == 8))) |
369
|
0
|
|
|
|
|
|
static void muladd(uECC_word_t a, |
370
|
|
|
|
|
|
|
uECC_word_t b, |
371
|
|
|
|
|
|
|
uECC_word_t *r0, |
372
|
|
|
|
|
|
|
uECC_word_t *r1, |
373
|
|
|
|
|
|
|
uECC_word_t *r2) { |
374
|
|
|
|
|
|
|
#if uECC_WORD_SIZE == 8 && !SUPPORTS_INT128 |
375
|
|
|
|
|
|
|
uint64_t a0 = a & 0xffffffffull; |
376
|
|
|
|
|
|
|
uint64_t a1 = a >> 32; |
377
|
|
|
|
|
|
|
uint64_t b0 = b & 0xffffffffull; |
378
|
|
|
|
|
|
|
uint64_t b1 = b >> 32; |
379
|
|
|
|
|
|
|
|
380
|
|
|
|
|
|
|
uint64_t i0 = a0 * b0; |
381
|
|
|
|
|
|
|
uint64_t i1 = a0 * b1; |
382
|
|
|
|
|
|
|
uint64_t i2 = a1 * b0; |
383
|
|
|
|
|
|
|
uint64_t i3 = a1 * b1; |
384
|
|
|
|
|
|
|
|
385
|
|
|
|
|
|
|
uint64_t p0, p1; |
386
|
|
|
|
|
|
|
|
387
|
|
|
|
|
|
|
i2 += (i0 >> 32); |
388
|
|
|
|
|
|
|
i2 += i1; |
389
|
|
|
|
|
|
|
if (i2 < i1) { /* overflow */ |
390
|
|
|
|
|
|
|
i3 += 0x100000000ull; |
391
|
|
|
|
|
|
|
} |
392
|
|
|
|
|
|
|
|
393
|
|
|
|
|
|
|
p0 = (i0 & 0xffffffffull) | (i2 << 32); |
394
|
|
|
|
|
|
|
p1 = i3 + (i2 >> 32); |
395
|
|
|
|
|
|
|
|
396
|
|
|
|
|
|
|
*r0 += p0; |
397
|
|
|
|
|
|
|
*r1 += (p1 + (*r0 < p0)); |
398
|
|
|
|
|
|
|
*r2 += ((*r1 < p1) || (*r1 == p1 && *r0 < p0)); |
399
|
|
|
|
|
|
|
#else |
400
|
0
|
|
|
|
|
|
uECC_dword_t p = (uECC_dword_t)a * b; |
401
|
0
|
|
|
|
|
|
uECC_dword_t r01 = ((uECC_dword_t)(*r1) << uECC_WORD_BITS) | *r0; |
402
|
0
|
|
|
|
|
|
r01 += p; |
403
|
0
|
|
|
|
|
|
*r2 += (r01 < p); |
404
|
0
|
|
|
|
|
|
*r1 = r01 >> uECC_WORD_BITS; |
405
|
0
|
|
|
|
|
|
*r0 = (uECC_word_t)r01; |
406
|
|
|
|
|
|
|
#endif |
407
|
0
|
|
|
|
|
|
} |
408
|
|
|
|
|
|
|
#endif /* muladd needed */ |
409
|
|
|
|
|
|
|
|
410
|
|
|
|
|
|
|
#if !asm_mult |
411
|
0
|
|
|
|
|
|
uECC_VLI_API void uECC_vli_mult(uECC_word_t *result, |
412
|
|
|
|
|
|
|
const uECC_word_t *left, |
413
|
|
|
|
|
|
|
const uECC_word_t *right, |
414
|
|
|
|
|
|
|
wordcount_t num_words) { |
415
|
0
|
|
|
|
|
|
uECC_word_t r0 = 0; |
416
|
0
|
|
|
|
|
|
uECC_word_t r1 = 0; |
417
|
0
|
|
|
|
|
|
uECC_word_t r2 = 0; |
418
|
|
|
|
|
|
|
wordcount_t i, k; |
419
|
|
|
|
|
|
|
|
420
|
|
|
|
|
|
|
/* Compute each digit of result in sequence, maintaining the carries. */ |
421
|
0
|
0
|
|
|
|
|
for (k = 0; k < num_words; ++k) { |
422
|
0
|
0
|
|
|
|
|
for (i = 0; i <= k; ++i) { |
423
|
0
|
|
|
|
|
|
muladd(left[i], right[k - i], &r0, &r1, &r2); |
424
|
|
|
|
|
|
|
} |
425
|
0
|
|
|
|
|
|
result[k] = r0; |
426
|
0
|
|
|
|
|
|
r0 = r1; |
427
|
0
|
|
|
|
|
|
r1 = r2; |
428
|
0
|
|
|
|
|
|
r2 = 0; |
429
|
|
|
|
|
|
|
} |
430
|
0
|
0
|
|
|
|
|
for (k = num_words; k < num_words * 2 - 1; ++k) { |
431
|
0
|
0
|
|
|
|
|
for (i = (k + 1) - num_words; i < num_words; ++i) { |
432
|
0
|
|
|
|
|
|
muladd(left[i], right[k - i], &r0, &r1, &r2); |
433
|
|
|
|
|
|
|
} |
434
|
0
|
|
|
|
|
|
result[k] = r0; |
435
|
0
|
|
|
|
|
|
r0 = r1; |
436
|
0
|
|
|
|
|
|
r1 = r2; |
437
|
0
|
|
|
|
|
|
r2 = 0; |
438
|
|
|
|
|
|
|
} |
439
|
0
|
|
|
|
|
|
result[num_words * 2 - 1] = r0; |
440
|
0
|
|
|
|
|
|
} |
441
|
|
|
|
|
|
|
#endif /* !asm_mult */ |
442
|
|
|
|
|
|
|
|
443
|
|
|
|
|
|
|
#if uECC_SQUARE_FUNC |
444
|
|
|
|
|
|
|
|
445
|
|
|
|
|
|
|
#if !asm_square |
446
|
|
|
|
|
|
|
static void mul2add(uECC_word_t a, |
447
|
|
|
|
|
|
|
uECC_word_t b, |
448
|
|
|
|
|
|
|
uECC_word_t *r0, |
449
|
|
|
|
|
|
|
uECC_word_t *r1, |
450
|
|
|
|
|
|
|
uECC_word_t *r2) { |
451
|
|
|
|
|
|
|
#if uECC_WORD_SIZE == 8 && !SUPPORTS_INT128 |
452
|
|
|
|
|
|
|
uint64_t a0 = a & 0xffffffffull; |
453
|
|
|
|
|
|
|
uint64_t a1 = a >> 32; |
454
|
|
|
|
|
|
|
uint64_t b0 = b & 0xffffffffull; |
455
|
|
|
|
|
|
|
uint64_t b1 = b >> 32; |
456
|
|
|
|
|
|
|
|
457
|
|
|
|
|
|
|
uint64_t i0 = a0 * b0; |
458
|
|
|
|
|
|
|
uint64_t i1 = a0 * b1; |
459
|
|
|
|
|
|
|
uint64_t i2 = a1 * b0; |
460
|
|
|
|
|
|
|
uint64_t i3 = a1 * b1; |
461
|
|
|
|
|
|
|
|
462
|
|
|
|
|
|
|
uint64_t p0, p1; |
463
|
|
|
|
|
|
|
|
464
|
|
|
|
|
|
|
i2 += (i0 >> 32); |
465
|
|
|
|
|
|
|
i2 += i1; |
466
|
|
|
|
|
|
|
if (i2 < i1) |
467
|
|
|
|
|
|
|
{ /* overflow */ |
468
|
|
|
|
|
|
|
i3 += 0x100000000ull; |
469
|
|
|
|
|
|
|
} |
470
|
|
|
|
|
|
|
|
471
|
|
|
|
|
|
|
p0 = (i0 & 0xffffffffull) | (i2 << 32); |
472
|
|
|
|
|
|
|
p1 = i3 + (i2 >> 32); |
473
|
|
|
|
|
|
|
|
474
|
|
|
|
|
|
|
*r2 += (p1 >> 63); |
475
|
|
|
|
|
|
|
p1 = (p1 << 1) | (p0 >> 63); |
476
|
|
|
|
|
|
|
p0 <<= 1; |
477
|
|
|
|
|
|
|
|
478
|
|
|
|
|
|
|
*r0 += p0; |
479
|
|
|
|
|
|
|
*r1 += (p1 + (*r0 < p0)); |
480
|
|
|
|
|
|
|
*r2 += ((*r1 < p1) || (*r1 == p1 && *r0 < p0)); |
481
|
|
|
|
|
|
|
#else |
482
|
|
|
|
|
|
|
uECC_dword_t p = (uECC_dword_t)a * b; |
483
|
|
|
|
|
|
|
uECC_dword_t r01 = ((uECC_dword_t)(*r1) << uECC_WORD_BITS) | *r0; |
484
|
|
|
|
|
|
|
*r2 += (p >> (uECC_WORD_BITS * 2 - 1)); |
485
|
|
|
|
|
|
|
p *= 2; |
486
|
|
|
|
|
|
|
r01 += p; |
487
|
|
|
|
|
|
|
*r2 += (r01 < p); |
488
|
|
|
|
|
|
|
*r1 = r01 >> uECC_WORD_BITS; |
489
|
|
|
|
|
|
|
*r0 = (uECC_word_t)r01; |
490
|
|
|
|
|
|
|
#endif |
491
|
|
|
|
|
|
|
} |
492
|
|
|
|
|
|
|
|
493
|
|
|
|
|
|
|
uECC_VLI_API void uECC_vli_square(uECC_word_t *result, |
494
|
|
|
|
|
|
|
const uECC_word_t *left, |
495
|
|
|
|
|
|
|
wordcount_t num_words) { |
496
|
|
|
|
|
|
|
uECC_word_t r0 = 0; |
497
|
|
|
|
|
|
|
uECC_word_t r1 = 0; |
498
|
|
|
|
|
|
|
uECC_word_t r2 = 0; |
499
|
|
|
|
|
|
|
|
500
|
|
|
|
|
|
|
wordcount_t i, k; |
501
|
|
|
|
|
|
|
|
502
|
|
|
|
|
|
|
for (k = 0; k < num_words * 2 - 1; ++k) { |
503
|
|
|
|
|
|
|
uECC_word_t min = (k < num_words ? 0 : (k + 1) - num_words); |
504
|
|
|
|
|
|
|
for (i = min; i <= k && i <= k - i; ++i) { |
505
|
|
|
|
|
|
|
if (i < k-i) { |
506
|
|
|
|
|
|
|
mul2add(left[i], left[k - i], &r0, &r1, &r2); |
507
|
|
|
|
|
|
|
} else { |
508
|
|
|
|
|
|
|
muladd(left[i], left[k - i], &r0, &r1, &r2); |
509
|
|
|
|
|
|
|
} |
510
|
|
|
|
|
|
|
} |
511
|
|
|
|
|
|
|
result[k] = r0; |
512
|
|
|
|
|
|
|
r0 = r1; |
513
|
|
|
|
|
|
|
r1 = r2; |
514
|
|
|
|
|
|
|
r2 = 0; |
515
|
|
|
|
|
|
|
} |
516
|
|
|
|
|
|
|
|
517
|
|
|
|
|
|
|
result[num_words * 2 - 1] = r0; |
518
|
|
|
|
|
|
|
} |
519
|
|
|
|
|
|
|
#endif /* !asm_square */ |
520
|
|
|
|
|
|
|
|
521
|
|
|
|
|
|
|
#else /* uECC_SQUARE_FUNC */ |
522
|
|
|
|
|
|
|
|
523
|
|
|
|
|
|
|
#if uECC_ENABLE_VLI_API |
524
|
|
|
|
|
|
|
uECC_VLI_API void uECC_vli_square(uECC_word_t *result, |
525
|
|
|
|
|
|
|
const uECC_word_t *left, |
526
|
|
|
|
|
|
|
wordcount_t num_words) { |
527
|
|
|
|
|
|
|
uECC_vli_mult(result, left, left, num_words); |
528
|
|
|
|
|
|
|
} |
529
|
|
|
|
|
|
|
#endif /* uECC_ENABLE_VLI_API */ |
530
|
|
|
|
|
|
|
|
531
|
|
|
|
|
|
|
#endif /* uECC_SQUARE_FUNC */ |
532
|
|
|
|
|
|
|
|
533
|
|
|
|
|
|
|
/* Computes result = (left + right) % mod. |
534
|
|
|
|
|
|
|
Assumes that left < mod and right < mod, and that result does not overlap mod. */ |
535
|
0
|
|
|
|
|
|
uECC_VLI_API void uECC_vli_modAdd(uECC_word_t *result, |
536
|
|
|
|
|
|
|
const uECC_word_t *left, |
537
|
|
|
|
|
|
|
const uECC_word_t *right, |
538
|
|
|
|
|
|
|
const uECC_word_t *mod, |
539
|
|
|
|
|
|
|
wordcount_t num_words) { |
540
|
0
|
|
|
|
|
|
uECC_word_t carry = uECC_vli_add(result, left, right, num_words); |
541
|
0
|
0
|
|
|
|
|
if (carry || uECC_vli_cmp_unsafe(mod, result, num_words) != 1) { |
|
|
0
|
|
|
|
|
|
542
|
|
|
|
|
|
|
/* result > mod (result = mod + remainder), so subtract mod to get remainder. */ |
543
|
0
|
|
|
|
|
|
uECC_vli_sub(result, result, mod, num_words); |
544
|
|
|
|
|
|
|
} |
545
|
0
|
|
|
|
|
|
} |
546
|
|
|
|
|
|
|
|
547
|
|
|
|
|
|
|
/* Computes result = (left - right) % mod. |
548
|
|
|
|
|
|
|
Assumes that left < mod and right < mod, and that result does not overlap mod. */ |
549
|
0
|
|
|
|
|
|
uECC_VLI_API void uECC_vli_modSub(uECC_word_t *result, |
550
|
|
|
|
|
|
|
const uECC_word_t *left, |
551
|
|
|
|
|
|
|
const uECC_word_t *right, |
552
|
|
|
|
|
|
|
const uECC_word_t *mod, |
553
|
|
|
|
|
|
|
wordcount_t num_words) { |
554
|
0
|
|
|
|
|
|
uECC_word_t l_borrow = uECC_vli_sub(result, left, right, num_words); |
555
|
0
|
0
|
|
|
|
|
if (l_borrow) { |
556
|
|
|
|
|
|
|
/* In this case, result == -diff == (max int) - diff. Since -x % d == d - x, |
557
|
|
|
|
|
|
|
we can get the correct result from result + mod (with overflow). */ |
558
|
0
|
|
|
|
|
|
uECC_vli_add(result, result, mod, num_words); |
559
|
|
|
|
|
|
|
} |
560
|
0
|
|
|
|
|
|
} |
561
|
|
|
|
|
|
|
|
562
|
|
|
|
|
|
|
/* Computes result = product % mod, where product is 2N words long. */ |
563
|
|
|
|
|
|
|
/* Currently only designed to work for curve_p or curve_n. */ |
564
|
0
|
|
|
|
|
|
uECC_VLI_API void uECC_vli_mmod(uECC_word_t *result, |
565
|
|
|
|
|
|
|
uECC_word_t *product, |
566
|
|
|
|
|
|
|
const uECC_word_t *mod, |
567
|
|
|
|
|
|
|
wordcount_t num_words) { |
568
|
|
|
|
|
|
|
uECC_word_t mod_multiple[2 * uECC_MAX_WORDS]; |
569
|
|
|
|
|
|
|
uECC_word_t tmp[2 * uECC_MAX_WORDS]; |
570
|
0
|
|
|
|
|
|
uECC_word_t *v[2] = {tmp, product}; |
571
|
|
|
|
|
|
|
uECC_word_t index; |
572
|
|
|
|
|
|
|
|
573
|
|
|
|
|
|
|
/* Shift mod so its highest set bit is at the maximum position. */ |
574
|
0
|
|
|
|
|
|
bitcount_t shift = (num_words * 2 * uECC_WORD_BITS) - uECC_vli_numBits(mod, num_words); |
575
|
0
|
|
|
|
|
|
wordcount_t word_shift = shift / uECC_WORD_BITS; |
576
|
0
|
|
|
|
|
|
wordcount_t bit_shift = shift % uECC_WORD_BITS; |
577
|
0
|
|
|
|
|
|
uECC_word_t carry = 0; |
578
|
0
|
|
|
|
|
|
uECC_vli_clear(mod_multiple, word_shift); |
579
|
0
|
0
|
|
|
|
|
if (bit_shift > 0) { |
580
|
0
|
0
|
|
|
|
|
for(index = 0; index < (uECC_word_t)num_words; ++index) { |
581
|
0
|
|
|
|
|
|
mod_multiple[word_shift + index] = (mod[index] << bit_shift) | carry; |
582
|
0
|
|
|
|
|
|
carry = mod[index] >> (uECC_WORD_BITS - bit_shift); |
583
|
|
|
|
|
|
|
} |
584
|
|
|
|
|
|
|
} else { |
585
|
0
|
|
|
|
|
|
uECC_vli_set(mod_multiple + word_shift, mod, num_words); |
586
|
|
|
|
|
|
|
} |
587
|
|
|
|
|
|
|
|
588
|
0
|
0
|
|
|
|
|
for (index = 1; shift >= 0; --shift) { |
589
|
0
|
|
|
|
|
|
uECC_word_t borrow = 0; |
590
|
|
|
|
|
|
|
wordcount_t i; |
591
|
0
|
0
|
|
|
|
|
for (i = 0; i < num_words * 2; ++i) { |
592
|
0
|
|
|
|
|
|
uECC_word_t diff = v[index][i] - mod_multiple[i] - borrow; |
593
|
0
|
0
|
|
|
|
|
if (diff != v[index][i]) { |
594
|
0
|
|
|
|
|
|
borrow = (diff > v[index][i]); |
595
|
|
|
|
|
|
|
} |
596
|
0
|
|
|
|
|
|
v[1 - index][i] = diff; |
597
|
|
|
|
|
|
|
} |
598
|
0
|
|
|
|
|
|
index = !(index ^ borrow); /* Swap the index if there was no borrow */ |
599
|
0
|
|
|
|
|
|
uECC_vli_rshift1(mod_multiple, num_words); |
600
|
0
|
|
|
|
|
|
mod_multiple[num_words - 1] |= mod_multiple[num_words] << (uECC_WORD_BITS - 1); |
601
|
0
|
|
|
|
|
|
uECC_vli_rshift1(mod_multiple + num_words, num_words); |
602
|
|
|
|
|
|
|
} |
603
|
0
|
|
|
|
|
|
uECC_vli_set(result, v[index], num_words); |
604
|
0
|
|
|
|
|
|
} |
605
|
|
|
|
|
|
|
|
606
|
|
|
|
|
|
|
/* Computes result = (left * right) % mod. */ |
607
|
0
|
|
|
|
|
|
uECC_VLI_API void uECC_vli_modMult(uECC_word_t *result, |
608
|
|
|
|
|
|
|
const uECC_word_t *left, |
609
|
|
|
|
|
|
|
const uECC_word_t *right, |
610
|
|
|
|
|
|
|
const uECC_word_t *mod, |
611
|
|
|
|
|
|
|
wordcount_t num_words) { |
612
|
|
|
|
|
|
|
uECC_word_t product[2 * uECC_MAX_WORDS]; |
613
|
0
|
|
|
|
|
|
uECC_vli_mult(product, left, right, num_words); |
614
|
0
|
|
|
|
|
|
uECC_vli_mmod(result, product, mod, num_words); |
615
|
0
|
|
|
|
|
|
} |
616
|
|
|
|
|
|
|
|
617
|
0
|
|
|
|
|
|
uECC_VLI_API void uECC_vli_modMult_fast(uECC_word_t *result, |
618
|
|
|
|
|
|
|
const uECC_word_t *left, |
619
|
|
|
|
|
|
|
const uECC_word_t *right, |
620
|
|
|
|
|
|
|
uECC_Curve curve) { |
621
|
|
|
|
|
|
|
uECC_word_t product[2 * uECC_MAX_WORDS]; |
622
|
0
|
|
|
|
|
|
uECC_vli_mult(product, left, right, curve->num_words); |
623
|
|
|
|
|
|
|
#if (uECC_OPTIMIZATION_LEVEL > 0) |
624
|
0
|
|
|
|
|
|
curve->mmod_fast(result, product); |
625
|
|
|
|
|
|
|
#else |
626
|
|
|
|
|
|
|
uECC_vli_mmod(result, product, curve->p, curve->num_words); |
627
|
|
|
|
|
|
|
#endif |
628
|
0
|
|
|
|
|
|
} |
629
|
|
|
|
|
|
|
|
630
|
|
|
|
|
|
|
#if uECC_SQUARE_FUNC |
631
|
|
|
|
|
|
|
|
632
|
|
|
|
|
|
|
#if uECC_ENABLE_VLI_API |
633
|
|
|
|
|
|
|
/* Computes result = left^2 % mod. */ |
634
|
|
|
|
|
|
|
uECC_VLI_API void uECC_vli_modSquare(uECC_word_t *result, |
635
|
|
|
|
|
|
|
const uECC_word_t *left, |
636
|
|
|
|
|
|
|
const uECC_word_t *mod, |
637
|
|
|
|
|
|
|
wordcount_t num_words) { |
638
|
|
|
|
|
|
|
uECC_word_t product[2 * uECC_MAX_WORDS]; |
639
|
|
|
|
|
|
|
uECC_vli_square(product, left, num_words); |
640
|
|
|
|
|
|
|
uECC_vli_mmod(result, product, mod, num_words); |
641
|
|
|
|
|
|
|
} |
642
|
|
|
|
|
|
|
#endif /* uECC_ENABLE_VLI_API */ |
643
|
|
|
|
|
|
|
|
644
|
|
|
|
|
|
|
uECC_VLI_API void uECC_vli_modSquare_fast(uECC_word_t *result, |
645
|
|
|
|
|
|
|
const uECC_word_t *left, |
646
|
|
|
|
|
|
|
uECC_Curve curve) { |
647
|
|
|
|
|
|
|
uECC_word_t product[2 * uECC_MAX_WORDS]; |
648
|
|
|
|
|
|
|
uECC_vli_square(product, left, curve->num_words); |
649
|
|
|
|
|
|
|
#if (uECC_OPTIMIZATION_LEVEL > 0) |
650
|
|
|
|
|
|
|
curve->mmod_fast(result, product); |
651
|
|
|
|
|
|
|
#else |
652
|
|
|
|
|
|
|
uECC_vli_mmod(result, product, curve->p, curve->num_words); |
653
|
|
|
|
|
|
|
#endif |
654
|
|
|
|
|
|
|
} |
655
|
|
|
|
|
|
|
|
656
|
|
|
|
|
|
|
#else /* uECC_SQUARE_FUNC */ |
657
|
|
|
|
|
|
|
|
658
|
|
|
|
|
|
|
#if uECC_ENABLE_VLI_API |
659
|
|
|
|
|
|
|
uECC_VLI_API void uECC_vli_modSquare(uECC_word_t *result, |
660
|
|
|
|
|
|
|
const uECC_word_t *left, |
661
|
|
|
|
|
|
|
const uECC_word_t *mod, |
662
|
|
|
|
|
|
|
wordcount_t num_words) { |
663
|
|
|
|
|
|
|
uECC_vli_modMult(result, left, left, mod, num_words); |
664
|
|
|
|
|
|
|
} |
665
|
|
|
|
|
|
|
#endif /* uECC_ENABLE_VLI_API */ |
666
|
|
|
|
|
|
|
|
667
|
0
|
|
|
|
|
|
uECC_VLI_API void uECC_vli_modSquare_fast(uECC_word_t *result, |
668
|
|
|
|
|
|
|
const uECC_word_t *left, |
669
|
|
|
|
|
|
|
uECC_Curve curve) { |
670
|
0
|
|
|
|
|
|
uECC_vli_modMult_fast(result, left, left, curve); |
671
|
0
|
|
|
|
|
|
} |
672
|
|
|
|
|
|
|
|
673
|
|
|
|
|
|
|
#endif /* uECC_SQUARE_FUNC */ |
674
|
|
|
|
|
|
|
|
675
|
|
|
|
|
|
|
#define EVEN(vli) (!(vli[0] & 1)) |
676
|
0
|
|
|
|
|
|
static void vli_modInv_update(uECC_word_t *uv, |
677
|
|
|
|
|
|
|
const uECC_word_t *mod, |
678
|
|
|
|
|
|
|
wordcount_t num_words) { |
679
|
0
|
|
|
|
|
|
uECC_word_t carry = 0; |
680
|
0
|
0
|
|
|
|
|
if (!EVEN(uv)) { |
681
|
0
|
|
|
|
|
|
carry = uECC_vli_add(uv, uv, mod, num_words); |
682
|
|
|
|
|
|
|
} |
683
|
0
|
|
|
|
|
|
uECC_vli_rshift1(uv, num_words); |
684
|
0
|
0
|
|
|
|
|
if (carry) { |
685
|
0
|
|
|
|
|
|
uv[num_words - 1] |= HIGH_BIT_SET; |
686
|
|
|
|
|
|
|
} |
687
|
0
|
|
|
|
|
|
} |
688
|
|
|
|
|
|
|
|
689
|
|
|
|
|
|
|
/* Computes result = (1 / input) % mod. All VLIs are the same size. |
690
|
|
|
|
|
|
|
See "From Euclid's GCD to Montgomery Multiplication to the Great Divide" */ |
691
|
0
|
|
|
|
|
|
uECC_VLI_API void uECC_vli_modInv(uECC_word_t *result, |
692
|
|
|
|
|
|
|
const uECC_word_t *input, |
693
|
|
|
|
|
|
|
const uECC_word_t *mod, |
694
|
|
|
|
|
|
|
wordcount_t num_words) { |
695
|
|
|
|
|
|
|
uECC_word_t a[uECC_MAX_WORDS], b[uECC_MAX_WORDS], u[uECC_MAX_WORDS], v[uECC_MAX_WORDS]; |
696
|
|
|
|
|
|
|
cmpresult_t cmpResult; |
697
|
|
|
|
|
|
|
|
698
|
0
|
0
|
|
|
|
|
if (uECC_vli_isZero(input, num_words)) { |
699
|
0
|
|
|
|
|
|
uECC_vli_clear(result, num_words); |
700
|
0
|
|
|
|
|
|
return; |
701
|
|
|
|
|
|
|
} |
702
|
|
|
|
|
|
|
|
703
|
0
|
|
|
|
|
|
uECC_vli_set(a, input, num_words); |
704
|
0
|
|
|
|
|
|
uECC_vli_set(b, mod, num_words); |
705
|
0
|
|
|
|
|
|
uECC_vli_clear(u, num_words); |
706
|
0
|
|
|
|
|
|
u[0] = 1; |
707
|
0
|
|
|
|
|
|
uECC_vli_clear(v, num_words); |
708
|
0
|
0
|
|
|
|
|
while ((cmpResult = uECC_vli_cmp_unsafe(a, b, num_words)) != 0) { |
709
|
0
|
0
|
|
|
|
|
if (EVEN(a)) { |
710
|
0
|
|
|
|
|
|
uECC_vli_rshift1(a, num_words); |
711
|
0
|
|
|
|
|
|
vli_modInv_update(u, mod, num_words); |
712
|
0
|
0
|
|
|
|
|
} else if (EVEN(b)) { |
713
|
0
|
|
|
|
|
|
uECC_vli_rshift1(b, num_words); |
714
|
0
|
|
|
|
|
|
vli_modInv_update(v, mod, num_words); |
715
|
0
|
0
|
|
|
|
|
} else if (cmpResult > 0) { |
716
|
0
|
|
|
|
|
|
uECC_vli_sub(a, a, b, num_words); |
717
|
0
|
|
|
|
|
|
uECC_vli_rshift1(a, num_words); |
718
|
0
|
0
|
|
|
|
|
if (uECC_vli_cmp_unsafe(u, v, num_words) < 0) { |
719
|
0
|
|
|
|
|
|
uECC_vli_add(u, u, mod, num_words); |
720
|
|
|
|
|
|
|
} |
721
|
0
|
|
|
|
|
|
uECC_vli_sub(u, u, v, num_words); |
722
|
0
|
|
|
|
|
|
vli_modInv_update(u, mod, num_words); |
723
|
|
|
|
|
|
|
} else { |
724
|
0
|
|
|
|
|
|
uECC_vli_sub(b, b, a, num_words); |
725
|
0
|
|
|
|
|
|
uECC_vli_rshift1(b, num_words); |
726
|
0
|
0
|
|
|
|
|
if (uECC_vli_cmp_unsafe(v, u, num_words) < 0) { |
727
|
0
|
|
|
|
|
|
uECC_vli_add(v, v, mod, num_words); |
728
|
|
|
|
|
|
|
} |
729
|
0
|
|
|
|
|
|
uECC_vli_sub(v, v, u, num_words); |
730
|
0
|
|
|
|
|
|
vli_modInv_update(v, mod, num_words); |
731
|
|
|
|
|
|
|
} |
732
|
|
|
|
|
|
|
} |
733
|
0
|
|
|
|
|
|
uECC_vli_set(result, u, num_words); |
734
|
|
|
|
|
|
|
} |
735
|
|
|
|
|
|
|
|
736
|
|
|
|
|
|
|
/* ------ Point operations ------ */ |
737
|
|
|
|
|
|
|
|
738
|
|
|
|
|
|
|
#include "curve-specific.inc" |
739
|
|
|
|
|
|
|
|
740
|
|
|
|
|
|
|
/* Returns 1 if 'point' is the point at infinity, 0 otherwise. */ |
741
|
|
|
|
|
|
|
#define EccPoint_isZero(point, curve) uECC_vli_isZero((point), (curve)->num_words * 2) |
742
|
|
|
|
|
|
|
|
743
|
|
|
|
|
|
|
/* Point multiplication algorithm using Montgomery's ladder with co-Z coordinates. |
744
|
|
|
|
|
|
|
From http://eprint.iacr.org/2011/338.pdf |
745
|
|
|
|
|
|
|
*/ |
746
|
|
|
|
|
|
|
|
747
|
|
|
|
|
|
|
/* Modify (x1, y1) => (x1 * z^2, y1 * z^3) */ |
748
|
0
|
|
|
|
|
|
static void apply_z(uECC_word_t * X1, |
749
|
|
|
|
|
|
|
uECC_word_t * Y1, |
750
|
|
|
|
|
|
|
const uECC_word_t * const Z, |
751
|
|
|
|
|
|
|
uECC_Curve curve) { |
752
|
|
|
|
|
|
|
uECC_word_t t1[uECC_MAX_WORDS]; |
753
|
|
|
|
|
|
|
|
754
|
0
|
|
|
|
|
|
uECC_vli_modSquare_fast(t1, Z, curve); /* z^2 */ |
755
|
0
|
|
|
|
|
|
uECC_vli_modMult_fast(X1, X1, t1, curve); /* x1 * z^2 */ |
756
|
0
|
|
|
|
|
|
uECC_vli_modMult_fast(t1, t1, Z, curve); /* z^3 */ |
757
|
0
|
|
|
|
|
|
uECC_vli_modMult_fast(Y1, Y1, t1, curve); /* y1 * z^3 */ |
758
|
0
|
|
|
|
|
|
} |
759
|
|
|
|
|
|
|
|
760
|
|
|
|
|
|
|
/* P = (x1, y1) => 2P, (x2, y2) => P' */ |
761
|
0
|
|
|
|
|
|
static void XYcZ_initial_double(uECC_word_t * X1, |
762
|
|
|
|
|
|
|
uECC_word_t * Y1, |
763
|
|
|
|
|
|
|
uECC_word_t * X2, |
764
|
|
|
|
|
|
|
uECC_word_t * Y2, |
765
|
|
|
|
|
|
|
const uECC_word_t * const initial_Z, |
766
|
|
|
|
|
|
|
uECC_Curve curve) { |
767
|
|
|
|
|
|
|
uECC_word_t z[uECC_MAX_WORDS]; |
768
|
0
|
|
|
|
|
|
wordcount_t num_words = curve->num_words; |
769
|
0
|
0
|
|
|
|
|
if (initial_Z) { |
770
|
0
|
|
|
|
|
|
uECC_vli_set(z, initial_Z, num_words); |
771
|
|
|
|
|
|
|
} else { |
772
|
0
|
|
|
|
|
|
uECC_vli_clear(z, num_words); |
773
|
0
|
|
|
|
|
|
z[0] = 1; |
774
|
|
|
|
|
|
|
} |
775
|
|
|
|
|
|
|
|
776
|
0
|
|
|
|
|
|
uECC_vli_set(X2, X1, num_words); |
777
|
0
|
|
|
|
|
|
uECC_vli_set(Y2, Y1, num_words); |
778
|
|
|
|
|
|
|
|
779
|
0
|
|
|
|
|
|
apply_z(X1, Y1, z, curve); |
780
|
0
|
|
|
|
|
|
curve->double_jacobian(X1, Y1, z, curve); |
781
|
0
|
|
|
|
|
|
apply_z(X2, Y2, z, curve); |
782
|
0
|
|
|
|
|
|
} |
783
|
|
|
|
|
|
|
|
784
|
|
|
|
|
|
|
/* Input P = (x1, y1, Z), Q = (x2, y2, Z) |
785
|
|
|
|
|
|
|
Output P' = (x1', y1', Z3), P + Q = (x3, y3, Z3) |
786
|
|
|
|
|
|
|
or P => P', Q => P + Q |
787
|
|
|
|
|
|
|
*/ |
788
|
0
|
|
|
|
|
|
static void XYcZ_add(uECC_word_t * X1, |
789
|
|
|
|
|
|
|
uECC_word_t * Y1, |
790
|
|
|
|
|
|
|
uECC_word_t * X2, |
791
|
|
|
|
|
|
|
uECC_word_t * Y2, |
792
|
|
|
|
|
|
|
uECC_Curve curve) { |
793
|
|
|
|
|
|
|
/* t1 = X1, t2 = Y1, t3 = X2, t4 = Y2 */ |
794
|
|
|
|
|
|
|
uECC_word_t t5[uECC_MAX_WORDS]; |
795
|
0
|
|
|
|
|
|
wordcount_t num_words = curve->num_words; |
796
|
|
|
|
|
|
|
|
797
|
0
|
|
|
|
|
|
uECC_vli_modSub(t5, X2, X1, curve->p, num_words); /* t5 = x2 - x1 */ |
798
|
0
|
|
|
|
|
|
uECC_vli_modSquare_fast(t5, t5, curve); /* t5 = (x2 - x1)^2 = A */ |
799
|
0
|
|
|
|
|
|
uECC_vli_modMult_fast(X1, X1, t5, curve); /* t1 = x1*A = B */ |
800
|
0
|
|
|
|
|
|
uECC_vli_modMult_fast(X2, X2, t5, curve); /* t3 = x2*A = C */ |
801
|
0
|
|
|
|
|
|
uECC_vli_modSub(Y2, Y2, Y1, curve->p, num_words); /* t4 = y2 - y1 */ |
802
|
0
|
|
|
|
|
|
uECC_vli_modSquare_fast(t5, Y2, curve); /* t5 = (y2 - y1)^2 = D */ |
803
|
|
|
|
|
|
|
|
804
|
0
|
|
|
|
|
|
uECC_vli_modSub(t5, t5, X1, curve->p, num_words); /* t5 = D - B */ |
805
|
0
|
|
|
|
|
|
uECC_vli_modSub(t5, t5, X2, curve->p, num_words); /* t5 = D - B - C = x3 */ |
806
|
0
|
|
|
|
|
|
uECC_vli_modSub(X2, X2, X1, curve->p, num_words); /* t3 = C - B */ |
807
|
0
|
|
|
|
|
|
uECC_vli_modMult_fast(Y1, Y1, X2, curve); /* t2 = y1*(C - B) */ |
808
|
0
|
|
|
|
|
|
uECC_vli_modSub(X2, X1, t5, curve->p, num_words); /* t3 = B - x3 */ |
809
|
0
|
|
|
|
|
|
uECC_vli_modMult_fast(Y2, Y2, X2, curve); /* t4 = (y2 - y1)*(B - x3) */ |
810
|
0
|
|
|
|
|
|
uECC_vli_modSub(Y2, Y2, Y1, curve->p, num_words); /* t4 = y3 */ |
811
|
|
|
|
|
|
|
|
812
|
0
|
|
|
|
|
|
uECC_vli_set(X2, t5, num_words); |
813
|
0
|
|
|
|
|
|
} |
814
|
|
|
|
|
|
|
|
815
|
|
|
|
|
|
|
/* Input P = (x1, y1, Z), Q = (x2, y2, Z) |
816
|
|
|
|
|
|
|
Output P + Q = (x3, y3, Z3), P - Q = (x3', y3', Z3) |
817
|
|
|
|
|
|
|
or P => P - Q, Q => P + Q |
818
|
|
|
|
|
|
|
*/ |
819
|
0
|
|
|
|
|
|
static void XYcZ_addC(uECC_word_t * X1, |
820
|
|
|
|
|
|
|
uECC_word_t * Y1, |
821
|
|
|
|
|
|
|
uECC_word_t * X2, |
822
|
|
|
|
|
|
|
uECC_word_t * Y2, |
823
|
|
|
|
|
|
|
uECC_Curve curve) { |
824
|
|
|
|
|
|
|
/* t1 = X1, t2 = Y1, t3 = X2, t4 = Y2 */ |
825
|
|
|
|
|
|
|
uECC_word_t t5[uECC_MAX_WORDS]; |
826
|
|
|
|
|
|
|
uECC_word_t t6[uECC_MAX_WORDS]; |
827
|
|
|
|
|
|
|
uECC_word_t t7[uECC_MAX_WORDS]; |
828
|
0
|
|
|
|
|
|
wordcount_t num_words = curve->num_words; |
829
|
|
|
|
|
|
|
|
830
|
0
|
|
|
|
|
|
uECC_vli_modSub(t5, X2, X1, curve->p, num_words); /* t5 = x2 - x1 */ |
831
|
0
|
|
|
|
|
|
uECC_vli_modSquare_fast(t5, t5, curve); /* t5 = (x2 - x1)^2 = A */ |
832
|
0
|
|
|
|
|
|
uECC_vli_modMult_fast(X1, X1, t5, curve); /* t1 = x1*A = B */ |
833
|
0
|
|
|
|
|
|
uECC_vli_modMult_fast(X2, X2, t5, curve); /* t3 = x2*A = C */ |
834
|
0
|
|
|
|
|
|
uECC_vli_modAdd(t5, Y2, Y1, curve->p, num_words); /* t5 = y2 + y1 */ |
835
|
0
|
|
|
|
|
|
uECC_vli_modSub(Y2, Y2, Y1, curve->p, num_words); /* t4 = y2 - y1 */ |
836
|
|
|
|
|
|
|
|
837
|
0
|
|
|
|
|
|
uECC_vli_modSub(t6, X2, X1, curve->p, num_words); /* t6 = C - B */ |
838
|
0
|
|
|
|
|
|
uECC_vli_modMult_fast(Y1, Y1, t6, curve); /* t2 = y1 * (C - B) = E */ |
839
|
0
|
|
|
|
|
|
uECC_vli_modAdd(t6, X1, X2, curve->p, num_words); /* t6 = B + C */ |
840
|
0
|
|
|
|
|
|
uECC_vli_modSquare_fast(X2, Y2, curve); /* t3 = (y2 - y1)^2 = D */ |
841
|
0
|
|
|
|
|
|
uECC_vli_modSub(X2, X2, t6, curve->p, num_words); /* t3 = D - (B + C) = x3 */ |
842
|
|
|
|
|
|
|
|
843
|
0
|
|
|
|
|
|
uECC_vli_modSub(t7, X1, X2, curve->p, num_words); /* t7 = B - x3 */ |
844
|
0
|
|
|
|
|
|
uECC_vli_modMult_fast(Y2, Y2, t7, curve); /* t4 = (y2 - y1)*(B - x3) */ |
845
|
0
|
|
|
|
|
|
uECC_vli_modSub(Y2, Y2, Y1, curve->p, num_words); /* t4 = (y2 - y1)*(B - x3) - E = y3 */ |
846
|
|
|
|
|
|
|
|
847
|
0
|
|
|
|
|
|
uECC_vli_modSquare_fast(t7, t5, curve); /* t7 = (y2 + y1)^2 = F */ |
848
|
0
|
|
|
|
|
|
uECC_vli_modSub(t7, t7, t6, curve->p, num_words); /* t7 = F - (B + C) = x3' */ |
849
|
0
|
|
|
|
|
|
uECC_vli_modSub(t6, t7, X1, curve->p, num_words); /* t6 = x3' - B */ |
850
|
0
|
|
|
|
|
|
uECC_vli_modMult_fast(t6, t6, t5, curve); /* t6 = (y2+y1)*(x3' - B) */ |
851
|
0
|
|
|
|
|
|
uECC_vli_modSub(Y1, t6, Y1, curve->p, num_words); /* t2 = (y2+y1)*(x3' - B) - E = y3' */ |
852
|
|
|
|
|
|
|
|
853
|
0
|
|
|
|
|
|
uECC_vli_set(X1, t7, num_words); |
854
|
0
|
|
|
|
|
|
} |
855
|
|
|
|
|
|
|
|
856
|
|
|
|
|
|
|
/* result may overlap point. */ |
857
|
0
|
|
|
|
|
|
static void EccPoint_mult(uECC_word_t * result, |
858
|
|
|
|
|
|
|
const uECC_word_t * point, |
859
|
|
|
|
|
|
|
const uECC_word_t * scalar, |
860
|
|
|
|
|
|
|
const uECC_word_t * initial_Z, |
861
|
|
|
|
|
|
|
bitcount_t num_bits, |
862
|
|
|
|
|
|
|
uECC_Curve curve) { |
863
|
|
|
|
|
|
|
/* R0 and R1 */ |
864
|
|
|
|
|
|
|
uECC_word_t Rx[2][uECC_MAX_WORDS]; |
865
|
|
|
|
|
|
|
uECC_word_t Ry[2][uECC_MAX_WORDS]; |
866
|
|
|
|
|
|
|
uECC_word_t z[uECC_MAX_WORDS]; |
867
|
|
|
|
|
|
|
bitcount_t i; |
868
|
|
|
|
|
|
|
uECC_word_t nb; |
869
|
0
|
|
|
|
|
|
wordcount_t num_words = curve->num_words; |
870
|
|
|
|
|
|
|
|
871
|
0
|
|
|
|
|
|
uECC_vli_set(Rx[1], point, num_words); |
872
|
0
|
|
|
|
|
|
uECC_vli_set(Ry[1], point + num_words, num_words); |
873
|
|
|
|
|
|
|
|
874
|
0
|
|
|
|
|
|
XYcZ_initial_double(Rx[1], Ry[1], Rx[0], Ry[0], initial_Z, curve); |
875
|
|
|
|
|
|
|
|
876
|
0
|
0
|
|
|
|
|
for (i = num_bits - 2; i > 0; --i) { |
877
|
0
|
|
|
|
|
|
nb = !uECC_vli_testBit(scalar, i); |
878
|
0
|
|
|
|
|
|
XYcZ_addC(Rx[1 - nb], Ry[1 - nb], Rx[nb], Ry[nb], curve); |
879
|
0
|
|
|
|
|
|
XYcZ_add(Rx[nb], Ry[nb], Rx[1 - nb], Ry[1 - nb], curve); |
880
|
|
|
|
|
|
|
} |
881
|
|
|
|
|
|
|
|
882
|
0
|
|
|
|
|
|
nb = !uECC_vli_testBit(scalar, 0); |
883
|
0
|
|
|
|
|
|
XYcZ_addC(Rx[1 - nb], Ry[1 - nb], Rx[nb], Ry[nb], curve); |
884
|
|
|
|
|
|
|
|
885
|
|
|
|
|
|
|
/* Find final 1/Z value. */ |
886
|
0
|
|
|
|
|
|
uECC_vli_modSub(z, Rx[1], Rx[0], curve->p, num_words); /* X1 - X0 */ |
887
|
0
|
|
|
|
|
|
uECC_vli_modMult_fast(z, z, Ry[1 - nb], curve); /* Yb * (X1 - X0) */ |
888
|
0
|
|
|
|
|
|
uECC_vli_modMult_fast(z, z, point, curve); /* xP * Yb * (X1 - X0) */ |
889
|
0
|
|
|
|
|
|
uECC_vli_modInv(z, z, curve->p, num_words); /* 1 / (xP * Yb * (X1 - X0)) */ |
890
|
|
|
|
|
|
|
/* yP / (xP * Yb * (X1 - X0)) */ |
891
|
0
|
|
|
|
|
|
uECC_vli_modMult_fast(z, z, point + num_words, curve); |
892
|
0
|
|
|
|
|
|
uECC_vli_modMult_fast(z, z, Rx[1 - nb], curve); /* Xb * yP / (xP * Yb * (X1 - X0)) */ |
893
|
|
|
|
|
|
|
/* End 1/Z calculation */ |
894
|
|
|
|
|
|
|
|
895
|
0
|
|
|
|
|
|
XYcZ_add(Rx[nb], Ry[nb], Rx[1 - nb], Ry[1 - nb], curve); |
896
|
0
|
|
|
|
|
|
apply_z(Rx[0], Ry[0], z, curve); |
897
|
|
|
|
|
|
|
|
898
|
0
|
|
|
|
|
|
uECC_vli_set(result, Rx[0], num_words); |
899
|
0
|
|
|
|
|
|
uECC_vli_set(result + num_words, Ry[0], num_words); |
900
|
0
|
|
|
|
|
|
} |
901
|
|
|
|
|
|
|
|
902
|
0
|
|
|
|
|
|
static uECC_word_t regularize_k(const uECC_word_t * const k, |
903
|
|
|
|
|
|
|
uECC_word_t *k0, |
904
|
|
|
|
|
|
|
uECC_word_t *k1, |
905
|
|
|
|
|
|
|
uECC_Curve curve) { |
906
|
0
|
|
|
|
|
|
wordcount_t num_n_words = BITS_TO_WORDS(curve->num_n_bits); |
907
|
0
|
|
|
|
|
|
bitcount_t num_n_bits = curve->num_n_bits; |
908
|
0
|
0
|
|
|
|
|
uECC_word_t carry = uECC_vli_add(k0, k, curve->n, num_n_words) || |
|
|
0
|
|
|
|
|
|
909
|
0
|
0
|
|
|
|
|
(num_n_bits < ((bitcount_t)num_n_words * uECC_WORD_SIZE * 8) && |
910
|
0
|
|
|
|
|
|
uECC_vli_testBit(k0, num_n_bits)); |
911
|
0
|
|
|
|
|
|
uECC_vli_add(k1, k0, curve->n, num_n_words); |
912
|
0
|
|
|
|
|
|
return carry; |
913
|
|
|
|
|
|
|
} |
914
|
|
|
|
|
|
|
|
915
|
0
|
|
|
|
|
|
static uECC_word_t EccPoint_compute_public_key(uECC_word_t *result, |
916
|
|
|
|
|
|
|
uECC_word_t *private_key, |
917
|
|
|
|
|
|
|
uECC_Curve curve) { |
918
|
|
|
|
|
|
|
uECC_word_t tmp1[uECC_MAX_WORDS]; |
919
|
|
|
|
|
|
|
uECC_word_t tmp2[uECC_MAX_WORDS]; |
920
|
0
|
|
|
|
|
|
uECC_word_t *p2[2] = {tmp1, tmp2}; |
921
|
|
|
|
|
|
|
uECC_word_t carry; |
922
|
|
|
|
|
|
|
|
923
|
|
|
|
|
|
|
/* Regularize the bitcount for the private key so that attackers cannot use a side channel |
924
|
|
|
|
|
|
|
attack to learn the number of leading zeros. */ |
925
|
0
|
|
|
|
|
|
carry = regularize_k(private_key, tmp1, tmp2, curve); |
926
|
|
|
|
|
|
|
|
927
|
0
|
|
|
|
|
|
EccPoint_mult(result, curve->G, p2[!carry], 0, curve->num_n_bits + 1, curve); |
928
|
|
|
|
|
|
|
|
929
|
0
|
0
|
|
|
|
|
if (EccPoint_isZero(result, curve)) { |
930
|
0
|
|
|
|
|
|
return 0; |
931
|
|
|
|
|
|
|
} |
932
|
0
|
|
|
|
|
|
return 1; |
933
|
|
|
|
|
|
|
} |
934
|
|
|
|
|
|
|
|
935
|
|
|
|
|
|
|
#if uECC_WORD_SIZE == 1 |
936
|
|
|
|
|
|
|
|
937
|
|
|
|
|
|
|
uECC_VLI_API void uECC_vli_nativeToBytes(uint8_t *bytes, |
938
|
|
|
|
|
|
|
int num_bytes, |
939
|
|
|
|
|
|
|
const uint8_t *native) { |
940
|
|
|
|
|
|
|
wordcount_t i; |
941
|
|
|
|
|
|
|
for (i = 0; i < num_bytes; ++i) { |
942
|
|
|
|
|
|
|
bytes[i] = native[(num_bytes - 1) - i]; |
943
|
|
|
|
|
|
|
} |
944
|
|
|
|
|
|
|
} |
945
|
|
|
|
|
|
|
|
946
|
|
|
|
|
|
|
uECC_VLI_API void uECC_vli_bytesToNative(uint8_t *native, |
947
|
|
|
|
|
|
|
const uint8_t *bytes, |
948
|
|
|
|
|
|
|
int num_bytes) { |
949
|
|
|
|
|
|
|
uECC_vli_nativeToBytes(native, num_bytes, bytes); |
950
|
|
|
|
|
|
|
} |
951
|
|
|
|
|
|
|
|
952
|
|
|
|
|
|
|
#else |
953
|
|
|
|
|
|
|
|
954
|
0
|
|
|
|
|
|
uECC_VLI_API void uECC_vli_nativeToBytes(uint8_t *bytes, |
955
|
|
|
|
|
|
|
int num_bytes, |
956
|
|
|
|
|
|
|
const uECC_word_t *native) { |
957
|
|
|
|
|
|
|
wordcount_t i; |
958
|
0
|
0
|
|
|
|
|
for (i = 0; i < num_bytes; ++i) { |
959
|
0
|
|
|
|
|
|
unsigned b = num_bytes - 1 - i; |
960
|
0
|
|
|
|
|
|
bytes[i] = native[b / uECC_WORD_SIZE] >> (8 * (b % uECC_WORD_SIZE)); |
961
|
|
|
|
|
|
|
} |
962
|
0
|
|
|
|
|
|
} |
963
|
|
|
|
|
|
|
|
964
|
0
|
|
|
|
|
|
uECC_VLI_API void uECC_vli_bytesToNative(uECC_word_t *native, |
965
|
|
|
|
|
|
|
const uint8_t *bytes, |
966
|
|
|
|
|
|
|
int num_bytes) { |
967
|
|
|
|
|
|
|
wordcount_t i; |
968
|
0
|
|
|
|
|
|
uECC_vli_clear(native, (num_bytes + (uECC_WORD_SIZE - 1)) / uECC_WORD_SIZE); |
969
|
0
|
0
|
|
|
|
|
for (i = 0; i < num_bytes; ++i) { |
970
|
0
|
|
|
|
|
|
unsigned b = num_bytes - 1 - i; |
971
|
0
|
|
|
|
|
|
native[b / uECC_WORD_SIZE] |= |
972
|
0
|
|
|
|
|
|
(uECC_word_t)bytes[i] << (8 * (b % uECC_WORD_SIZE)); |
973
|
|
|
|
|
|
|
} |
974
|
0
|
|
|
|
|
|
} |
975
|
|
|
|
|
|
|
|
976
|
|
|
|
|
|
|
#endif /* uECC_WORD_SIZE */ |
977
|
|
|
|
|
|
|
|
978
|
|
|
|
|
|
|
/* Generates a random integer in the range 0 < random < top. |
979
|
|
|
|
|
|
|
Both random and top have num_words words. */ |
980
|
0
|
|
|
|
|
|
uECC_VLI_API int uECC_generate_random_int(uECC_word_t *random, |
981
|
|
|
|
|
|
|
const uECC_word_t *top, |
982
|
|
|
|
|
|
|
wordcount_t num_words) { |
983
|
0
|
|
|
|
|
|
uECC_word_t mask = (uECC_word_t)-1; |
984
|
|
|
|
|
|
|
uECC_word_t tries; |
985
|
0
|
|
|
|
|
|
bitcount_t num_bits = uECC_vli_numBits(top, num_words); |
986
|
|
|
|
|
|
|
|
987
|
0
|
0
|
|
|
|
|
if (!g_rng_function) { |
988
|
0
|
|
|
|
|
|
return 0; |
989
|
|
|
|
|
|
|
} |
990
|
|
|
|
|
|
|
|
991
|
0
|
0
|
|
|
|
|
for (tries = 0; tries < uECC_RNG_MAX_TRIES; ++tries) { |
992
|
0
|
0
|
|
|
|
|
if (!g_rng_function((uint8_t *)random, num_words * uECC_WORD_SIZE)) { |
993
|
0
|
|
|
|
|
|
return 0; |
994
|
|
|
|
|
|
|
} |
995
|
0
|
|
|
|
|
|
random[num_words - 1] &= mask >> ((bitcount_t)(num_words * uECC_WORD_SIZE * 8 - num_bits)); |
996
|
0
|
|
|
|
|
|
if (!uECC_vli_isZero(random, num_words) && |
997
|
0
|
|
|
|
|
|
uECC_vli_cmp(top, random, num_words) == 1) { |
998
|
0
|
|
|
|
|
|
return 1; |
999
|
|
|
|
|
|
|
} |
1000
|
|
|
|
|
|
|
} |
1001
|
0
|
|
|
|
|
|
return 0; |
1002
|
|
|
|
|
|
|
} |
1003
|
|
|
|
|
|
|
|
1004
|
0
|
|
|
|
|
|
int uECC_make_key(uint8_t *public_key, |
1005
|
|
|
|
|
|
|
uint8_t *private_key, |
1006
|
|
|
|
|
|
|
uECC_Curve curve) { |
1007
|
|
|
|
|
|
|
#if uECC_VLI_NATIVE_LITTLE_ENDIAN |
1008
|
|
|
|
|
|
|
uECC_word_t *_private = (uECC_word_t *)private_key; |
1009
|
|
|
|
|
|
|
uECC_word_t *_public = (uECC_word_t *)public_key; |
1010
|
|
|
|
|
|
|
#else |
1011
|
|
|
|
|
|
|
uECC_word_t _private[uECC_MAX_WORDS]; |
1012
|
|
|
|
|
|
|
uECC_word_t _public[uECC_MAX_WORDS * 2]; |
1013
|
|
|
|
|
|
|
#endif |
1014
|
|
|
|
|
|
|
uECC_word_t tries; |
1015
|
|
|
|
|
|
|
|
1016
|
0
|
0
|
|
|
|
|
for (tries = 0; tries < uECC_RNG_MAX_TRIES; ++tries) { |
1017
|
0
|
0
|
|
|
|
|
if (!uECC_generate_random_int(_private, curve->n, BITS_TO_WORDS(curve->num_n_bits))) { |
1018
|
0
|
|
|
|
|
|
return 0; |
1019
|
|
|
|
|
|
|
} |
1020
|
|
|
|
|
|
|
|
1021
|
0
|
0
|
|
|
|
|
if (EccPoint_compute_public_key(_public, _private, curve)) { |
1022
|
|
|
|
|
|
|
#if uECC_VLI_NATIVE_LITTLE_ENDIAN == 0 |
1023
|
0
|
|
|
|
|
|
uECC_vli_nativeToBytes(private_key, BITS_TO_BYTES(curve->num_n_bits), _private); |
1024
|
0
|
|
|
|
|
|
uECC_vli_nativeToBytes(public_key, curve->num_bytes, _public); |
1025
|
0
|
|
|
|
|
|
uECC_vli_nativeToBytes( |
1026
|
0
|
|
|
|
|
|
public_key + curve->num_bytes, curve->num_bytes, _public + curve->num_words); |
1027
|
|
|
|
|
|
|
#endif |
1028
|
0
|
|
|
|
|
|
return 1; |
1029
|
|
|
|
|
|
|
} |
1030
|
|
|
|
|
|
|
} |
1031
|
0
|
|
|
|
|
|
return 0; |
1032
|
|
|
|
|
|
|
} |
1033
|
|
|
|
|
|
|
|
1034
|
0
|
|
|
|
|
|
int uECC_shared_secret(const uint8_t *public_key, |
1035
|
|
|
|
|
|
|
const uint8_t *private_key, |
1036
|
|
|
|
|
|
|
uint8_t *secret, |
1037
|
|
|
|
|
|
|
uECC_Curve curve) { |
1038
|
|
|
|
|
|
|
uECC_word_t _public[uECC_MAX_WORDS * 2]; |
1039
|
|
|
|
|
|
|
uECC_word_t _private[uECC_MAX_WORDS]; |
1040
|
|
|
|
|
|
|
|
1041
|
|
|
|
|
|
|
uECC_word_t tmp[uECC_MAX_WORDS]; |
1042
|
0
|
|
|
|
|
|
uECC_word_t *p2[2] = {_private, tmp}; |
1043
|
0
|
|
|
|
|
|
uECC_word_t *initial_Z = 0; |
1044
|
|
|
|
|
|
|
uECC_word_t carry; |
1045
|
0
|
|
|
|
|
|
wordcount_t num_words = curve->num_words; |
1046
|
0
|
|
|
|
|
|
wordcount_t num_bytes = curve->num_bytes; |
1047
|
|
|
|
|
|
|
|
1048
|
|
|
|
|
|
|
#if uECC_VLI_NATIVE_LITTLE_ENDIAN |
1049
|
|
|
|
|
|
|
bcopy((uint8_t *) _private, private_key, num_bytes); |
1050
|
|
|
|
|
|
|
bcopy((uint8_t *) _public, public_key, num_bytes*2); |
1051
|
|
|
|
|
|
|
#else |
1052
|
0
|
|
|
|
|
|
uECC_vli_bytesToNative(_private, private_key, BITS_TO_BYTES(curve->num_n_bits)); |
1053
|
0
|
|
|
|
|
|
uECC_vli_bytesToNative(_public, public_key, num_bytes); |
1054
|
0
|
|
|
|
|
|
uECC_vli_bytesToNative(_public + num_words, public_key + num_bytes, num_bytes); |
1055
|
|
|
|
|
|
|
#endif |
1056
|
|
|
|
|
|
|
|
1057
|
|
|
|
|
|
|
/* Regularize the bitcount for the private key so that attackers cannot use a side channel |
1058
|
|
|
|
|
|
|
attack to learn the number of leading zeros. */ |
1059
|
0
|
|
|
|
|
|
carry = regularize_k(_private, _private, tmp, curve); |
1060
|
|
|
|
|
|
|
|
1061
|
|
|
|
|
|
|
/* If an RNG function was specified, try to get a random initial Z value to improve |
1062
|
|
|
|
|
|
|
protection against side-channel attacks. */ |
1063
|
0
|
0
|
|
|
|
|
if (g_rng_function) { |
1064
|
0
|
0
|
|
|
|
|
if (!uECC_generate_random_int(p2[carry], curve->p, num_words)) { |
1065
|
0
|
|
|
|
|
|
return 0; |
1066
|
|
|
|
|
|
|
} |
1067
|
0
|
|
|
|
|
|
initial_Z = p2[carry]; |
1068
|
|
|
|
|
|
|
} |
1069
|
|
|
|
|
|
|
|
1070
|
0
|
|
|
|
|
|
EccPoint_mult(_public, _public, p2[!carry], initial_Z, curve->num_n_bits + 1, curve); |
1071
|
|
|
|
|
|
|
#if uECC_VLI_NATIVE_LITTLE_ENDIAN |
1072
|
|
|
|
|
|
|
bcopy((uint8_t *) secret, (uint8_t *) _public, num_bytes); |
1073
|
|
|
|
|
|
|
#else |
1074
|
0
|
|
|
|
|
|
uECC_vli_nativeToBytes(secret, num_bytes, _public); |
1075
|
|
|
|
|
|
|
#endif |
1076
|
0
|
|
|
|
|
|
return !EccPoint_isZero(_public, curve); |
1077
|
|
|
|
|
|
|
} |
1078
|
|
|
|
|
|
|
|
1079
|
|
|
|
|
|
|
#if uECC_SUPPORT_COMPRESSED_POINT |
1080
|
0
|
|
|
|
|
|
void uECC_compress(const uint8_t *public_key, uint8_t *compressed, uECC_Curve curve) { |
1081
|
|
|
|
|
|
|
wordcount_t i; |
1082
|
0
|
0
|
|
|
|
|
for (i = 0; i < curve->num_bytes; ++i) { |
1083
|
0
|
|
|
|
|
|
compressed[i+1] = public_key[i]; |
1084
|
|
|
|
|
|
|
} |
1085
|
|
|
|
|
|
|
#if uECC_VLI_NATIVE_LITTLE_ENDIAN |
1086
|
|
|
|
|
|
|
compressed[0] = 2 + (public_key[curve->num_bytes] & 0x01); |
1087
|
|
|
|
|
|
|
#else |
1088
|
0
|
|
|
|
|
|
compressed[0] = 2 + (public_key[curve->num_bytes * 2 - 1] & 0x01); |
1089
|
|
|
|
|
|
|
#endif |
1090
|
0
|
|
|
|
|
|
} |
1091
|
|
|
|
|
|
|
|
1092
|
0
|
|
|
|
|
|
void uECC_decompress(const uint8_t *compressed, uint8_t *public_key, uECC_Curve curve) { |
1093
|
|
|
|
|
|
|
#if uECC_VLI_NATIVE_LITTLE_ENDIAN |
1094
|
|
|
|
|
|
|
uECC_word_t *point = (uECC_word_t *)public_key; |
1095
|
|
|
|
|
|
|
#else |
1096
|
|
|
|
|
|
|
uECC_word_t point[uECC_MAX_WORDS * 2]; |
1097
|
|
|
|
|
|
|
#endif |
1098
|
0
|
|
|
|
|
|
uECC_word_t *y = point + curve->num_words; |
1099
|
|
|
|
|
|
|
#if uECC_VLI_NATIVE_LITTLE_ENDIAN |
1100
|
|
|
|
|
|
|
bcopy(public_key, compressed+1, curve->num_bytes); |
1101
|
|
|
|
|
|
|
#else |
1102
|
0
|
|
|
|
|
|
uECC_vli_bytesToNative(point, compressed + 1, curve->num_bytes); |
1103
|
|
|
|
|
|
|
#endif |
1104
|
0
|
|
|
|
|
|
curve->x_side(y, point, curve); |
1105
|
0
|
|
|
|
|
|
curve->mod_sqrt(y, curve); |
1106
|
|
|
|
|
|
|
|
1107
|
0
|
0
|
|
|
|
|
if ((y[0] & 0x01) != (compressed[0] & 0x01)) { |
1108
|
0
|
|
|
|
|
|
uECC_vli_sub(y, curve->p, y, curve->num_words); |
1109
|
|
|
|
|
|
|
} |
1110
|
|
|
|
|
|
|
|
1111
|
|
|
|
|
|
|
#if uECC_VLI_NATIVE_LITTLE_ENDIAN == 0 |
1112
|
0
|
|
|
|
|
|
uECC_vli_nativeToBytes(public_key, curve->num_bytes, point); |
1113
|
0
|
|
|
|
|
|
uECC_vli_nativeToBytes(public_key + curve->num_bytes, curve->num_bytes, y); |
1114
|
|
|
|
|
|
|
#endif |
1115
|
0
|
|
|
|
|
|
} |
1116
|
|
|
|
|
|
|
#endif /* uECC_SUPPORT_COMPRESSED_POINT */ |
1117
|
|
|
|
|
|
|
|
1118
|
0
|
|
|
|
|
|
int uECC_valid_point(const uECC_word_t *point, uECC_Curve curve) { |
1119
|
|
|
|
|
|
|
uECC_word_t tmp1[uECC_MAX_WORDS]; |
1120
|
|
|
|
|
|
|
uECC_word_t tmp2[uECC_MAX_WORDS]; |
1121
|
0
|
|
|
|
|
|
wordcount_t num_words = curve->num_words; |
1122
|
|
|
|
|
|
|
|
1123
|
|
|
|
|
|
|
/* The point at infinity is invalid. */ |
1124
|
0
|
0
|
|
|
|
|
if (EccPoint_isZero(point, curve)) { |
1125
|
0
|
|
|
|
|
|
return 0; |
1126
|
|
|
|
|
|
|
} |
1127
|
|
|
|
|
|
|
|
1128
|
|
|
|
|
|
|
/* x and y must be smaller than p. */ |
1129
|
0
|
|
|
|
|
|
if (uECC_vli_cmp_unsafe(curve->p, point, num_words) != 1 || |
1130
|
0
|
|
|
|
|
|
uECC_vli_cmp_unsafe(curve->p, point + num_words, num_words) != 1) { |
1131
|
0
|
|
|
|
|
|
return 0; |
1132
|
|
|
|
|
|
|
} |
1133
|
|
|
|
|
|
|
|
1134
|
0
|
|
|
|
|
|
uECC_vli_modSquare_fast(tmp1, point + num_words, curve); |
1135
|
0
|
|
|
|
|
|
curve->x_side(tmp2, point, curve); /* tmp2 = x^3 + ax + b */ |
1136
|
|
|
|
|
|
|
|
1137
|
|
|
|
|
|
|
/* Make sure that y^2 == x^3 + ax + b */ |
1138
|
0
|
|
|
|
|
|
return (int)(uECC_vli_equal(tmp1, tmp2, num_words)); |
1139
|
|
|
|
|
|
|
} |
1140
|
|
|
|
|
|
|
|
1141
|
0
|
|
|
|
|
|
int uECC_valid_public_key(const uint8_t *public_key, uECC_Curve curve) { |
1142
|
|
|
|
|
|
|
#if uECC_VLI_NATIVE_LITTLE_ENDIAN |
1143
|
|
|
|
|
|
|
uECC_word_t *_public = (uECC_word_t *)public_key; |
1144
|
|
|
|
|
|
|
#else |
1145
|
|
|
|
|
|
|
uECC_word_t _public[uECC_MAX_WORDS * 2]; |
1146
|
|
|
|
|
|
|
#endif |
1147
|
|
|
|
|
|
|
|
1148
|
|
|
|
|
|
|
#if uECC_VLI_NATIVE_LITTLE_ENDIAN == 0 |
1149
|
0
|
|
|
|
|
|
uECC_vli_bytesToNative(_public, public_key, curve->num_bytes); |
1150
|
0
|
|
|
|
|
|
uECC_vli_bytesToNative( |
1151
|
0
|
|
|
|
|
|
_public + curve->num_words, public_key + curve->num_bytes, curve->num_bytes); |
1152
|
|
|
|
|
|
|
#endif |
1153
|
0
|
|
|
|
|
|
return uECC_valid_point(_public, curve); |
1154
|
|
|
|
|
|
|
} |
1155
|
|
|
|
|
|
|
|
1156
|
0
|
|
|
|
|
|
int uECC_compute_public_key(const uint8_t *private_key, uint8_t *public_key, uECC_Curve curve) { |
1157
|
|
|
|
|
|
|
#if uECC_VLI_NATIVE_LITTLE_ENDIAN |
1158
|
|
|
|
|
|
|
uECC_word_t *_private = (uECC_word_t *)private_key; |
1159
|
|
|
|
|
|
|
uECC_word_t *_public = (uECC_word_t *)public_key; |
1160
|
|
|
|
|
|
|
#else |
1161
|
|
|
|
|
|
|
uECC_word_t _private[uECC_MAX_WORDS]; |
1162
|
|
|
|
|
|
|
uECC_word_t _public[uECC_MAX_WORDS * 2]; |
1163
|
|
|
|
|
|
|
#endif |
1164
|
|
|
|
|
|
|
|
1165
|
|
|
|
|
|
|
#if uECC_VLI_NATIVE_LITTLE_ENDIAN == 0 |
1166
|
0
|
|
|
|
|
|
uECC_vli_bytesToNative(_private, private_key, BITS_TO_BYTES(curve->num_n_bits)); |
1167
|
|
|
|
|
|
|
#endif |
1168
|
|
|
|
|
|
|
|
1169
|
|
|
|
|
|
|
/* Make sure the private key is in the range [1, n-1]. */ |
1170
|
0
|
0
|
|
|
|
|
if (uECC_vli_isZero(_private, BITS_TO_WORDS(curve->num_n_bits))) { |
1171
|
0
|
|
|
|
|
|
return 0; |
1172
|
|
|
|
|
|
|
} |
1173
|
|
|
|
|
|
|
|
1174
|
0
|
0
|
|
|
|
|
if (uECC_vli_cmp(curve->n, _private, BITS_TO_WORDS(curve->num_n_bits)) != 1) { |
1175
|
0
|
|
|
|
|
|
return 0; |
1176
|
|
|
|
|
|
|
} |
1177
|
|
|
|
|
|
|
|
1178
|
|
|
|
|
|
|
/* Compute public key. */ |
1179
|
0
|
0
|
|
|
|
|
if (!EccPoint_compute_public_key(_public, _private, curve)) { |
1180
|
0
|
|
|
|
|
|
return 0; |
1181
|
|
|
|
|
|
|
} |
1182
|
|
|
|
|
|
|
|
1183
|
|
|
|
|
|
|
#if uECC_VLI_NATIVE_LITTLE_ENDIAN == 0 |
1184
|
0
|
|
|
|
|
|
uECC_vli_nativeToBytes(public_key, curve->num_bytes, _public); |
1185
|
0
|
|
|
|
|
|
uECC_vli_nativeToBytes( |
1186
|
0
|
|
|
|
|
|
public_key + curve->num_bytes, curve->num_bytes, _public + curve->num_words); |
1187
|
|
|
|
|
|
|
#endif |
1188
|
0
|
|
|
|
|
|
return 1; |
1189
|
|
|
|
|
|
|
} |
1190
|
|
|
|
|
|
|
|
1191
|
|
|
|
|
|
|
|
1192
|
|
|
|
|
|
|
/* -------- ECDSA code -------- */ |
1193
|
|
|
|
|
|
|
|
1194
|
0
|
|
|
|
|
|
static void bits2int(uECC_word_t *native, |
1195
|
|
|
|
|
|
|
const uint8_t *bits, |
1196
|
|
|
|
|
|
|
unsigned bits_size, |
1197
|
|
|
|
|
|
|
uECC_Curve curve) { |
1198
|
0
|
|
|
|
|
|
unsigned num_n_bytes = BITS_TO_BYTES(curve->num_n_bits); |
1199
|
0
|
|
|
|
|
|
unsigned num_n_words = BITS_TO_WORDS(curve->num_n_bits); |
1200
|
|
|
|
|
|
|
int shift; |
1201
|
|
|
|
|
|
|
uECC_word_t carry; |
1202
|
|
|
|
|
|
|
uECC_word_t *ptr; |
1203
|
|
|
|
|
|
|
|
1204
|
0
|
0
|
|
|
|
|
if (bits_size > num_n_bytes) { |
1205
|
0
|
|
|
|
|
|
bits_size = num_n_bytes; |
1206
|
|
|
|
|
|
|
} |
1207
|
|
|
|
|
|
|
|
1208
|
0
|
|
|
|
|
|
uECC_vli_clear(native, num_n_words); |
1209
|
|
|
|
|
|
|
#if uECC_VLI_NATIVE_LITTLE_ENDIAN |
1210
|
|
|
|
|
|
|
bcopy((uint8_t *) native, bits, bits_size); |
1211
|
|
|
|
|
|
|
#else |
1212
|
0
|
|
|
|
|
|
uECC_vli_bytesToNative(native, bits, bits_size); |
1213
|
|
|
|
|
|
|
#endif |
1214
|
0
|
0
|
|
|
|
|
if (bits_size * 8 <= (unsigned)curve->num_n_bits) { |
1215
|
0
|
|
|
|
|
|
return; |
1216
|
|
|
|
|
|
|
} |
1217
|
0
|
|
|
|
|
|
shift = bits_size * 8 - curve->num_n_bits; |
1218
|
0
|
|
|
|
|
|
carry = 0; |
1219
|
0
|
|
|
|
|
|
ptr = native + num_n_words; |
1220
|
0
|
0
|
|
|
|
|
while (ptr-- > native) { |
1221
|
0
|
|
|
|
|
|
uECC_word_t temp = *ptr; |
1222
|
0
|
|
|
|
|
|
*ptr = (temp >> shift) | carry; |
1223
|
0
|
|
|
|
|
|
carry = temp << (uECC_WORD_BITS - shift); |
1224
|
|
|
|
|
|
|
} |
1225
|
|
|
|
|
|
|
|
1226
|
|
|
|
|
|
|
/* Reduce mod curve_n */ |
1227
|
0
|
0
|
|
|
|
|
if (uECC_vli_cmp_unsafe(curve->n, native, num_n_words) != 1) { |
1228
|
0
|
|
|
|
|
|
uECC_vli_sub(native, native, curve->n, num_n_words); |
1229
|
|
|
|
|
|
|
} |
1230
|
|
|
|
|
|
|
} |
1231
|
|
|
|
|
|
|
|
1232
|
0
|
|
|
|
|
|
static int uECC_sign_with_k(const uint8_t *private_key, |
1233
|
|
|
|
|
|
|
const uint8_t *message_hash, |
1234
|
|
|
|
|
|
|
unsigned hash_size, |
1235
|
|
|
|
|
|
|
uECC_word_t *k, |
1236
|
|
|
|
|
|
|
uint8_t *signature, |
1237
|
|
|
|
|
|
|
uECC_Curve curve) { |
1238
|
|
|
|
|
|
|
|
1239
|
|
|
|
|
|
|
uECC_word_t tmp[uECC_MAX_WORDS]; |
1240
|
|
|
|
|
|
|
uECC_word_t s[uECC_MAX_WORDS]; |
1241
|
0
|
|
|
|
|
|
uECC_word_t *k2[2] = {tmp, s}; |
1242
|
|
|
|
|
|
|
#if uECC_VLI_NATIVE_LITTLE_ENDIAN |
1243
|
|
|
|
|
|
|
uECC_word_t *p = (uECC_word_t *)signature; |
1244
|
|
|
|
|
|
|
#else |
1245
|
|
|
|
|
|
|
uECC_word_t p[uECC_MAX_WORDS * 2]; |
1246
|
|
|
|
|
|
|
#endif |
1247
|
|
|
|
|
|
|
uECC_word_t carry; |
1248
|
0
|
|
|
|
|
|
wordcount_t num_words = curve->num_words; |
1249
|
0
|
|
|
|
|
|
wordcount_t num_n_words = BITS_TO_WORDS(curve->num_n_bits); |
1250
|
0
|
|
|
|
|
|
bitcount_t num_n_bits = curve->num_n_bits; |
1251
|
|
|
|
|
|
|
|
1252
|
|
|
|
|
|
|
/* Make sure 0 < k < curve_n */ |
1253
|
0
|
0
|
|
|
|
|
if (uECC_vli_isZero(k, num_words) || uECC_vli_cmp(curve->n, k, num_n_words) != 1) { |
|
|
0
|
|
|
|
|
|
1254
|
0
|
|
|
|
|
|
return 0; |
1255
|
|
|
|
|
|
|
} |
1256
|
|
|
|
|
|
|
|
1257
|
0
|
|
|
|
|
|
carry = regularize_k(k, tmp, s, curve); |
1258
|
0
|
|
|
|
|
|
EccPoint_mult(p, curve->G, k2[!carry], 0, num_n_bits + 1, curve); |
1259
|
0
|
0
|
|
|
|
|
if (uECC_vli_isZero(p, num_words)) { |
1260
|
0
|
|
|
|
|
|
return 0; |
1261
|
|
|
|
|
|
|
} |
1262
|
|
|
|
|
|
|
|
1263
|
|
|
|
|
|
|
/* If an RNG function was specified, get a random number |
1264
|
|
|
|
|
|
|
to prevent side channel analysis of k. */ |
1265
|
0
|
0
|
|
|
|
|
if (!g_rng_function) { |
1266
|
0
|
|
|
|
|
|
uECC_vli_clear(tmp, num_n_words); |
1267
|
0
|
|
|
|
|
|
tmp[0] = 1; |
1268
|
0
|
0
|
|
|
|
|
} else if (!uECC_generate_random_int(tmp, curve->n, num_n_words)) { |
1269
|
0
|
|
|
|
|
|
return 0; |
1270
|
|
|
|
|
|
|
} |
1271
|
|
|
|
|
|
|
|
1272
|
|
|
|
|
|
|
/* Prevent side channel analysis of uECC_vli_modInv() to determine |
1273
|
|
|
|
|
|
|
bits of k / the private key by premultiplying by a random number */ |
1274
|
0
|
|
|
|
|
|
uECC_vli_modMult(k, k, tmp, curve->n, num_n_words); /* k' = rand * k */ |
1275
|
0
|
|
|
|
|
|
uECC_vli_modInv(k, k, curve->n, num_n_words); /* k = 1 / k' */ |
1276
|
0
|
|
|
|
|
|
uECC_vli_modMult(k, k, tmp, curve->n, num_n_words); /* k = 1 / k */ |
1277
|
|
|
|
|
|
|
|
1278
|
|
|
|
|
|
|
#if uECC_VLI_NATIVE_LITTLE_ENDIAN == 0 |
1279
|
0
|
|
|
|
|
|
uECC_vli_nativeToBytes(signature, curve->num_bytes, p); /* store r */ |
1280
|
|
|
|
|
|
|
#endif |
1281
|
|
|
|
|
|
|
|
1282
|
|
|
|
|
|
|
#if uECC_VLI_NATIVE_LITTLE_ENDIAN |
1283
|
|
|
|
|
|
|
bcopy((uint8_t *) tmp, private_key, BITS_TO_BYTES(curve->num_n_bits)); |
1284
|
|
|
|
|
|
|
#else |
1285
|
0
|
|
|
|
|
|
uECC_vli_bytesToNative(tmp, private_key, BITS_TO_BYTES(curve->num_n_bits)); /* tmp = d */ |
1286
|
|
|
|
|
|
|
#endif |
1287
|
|
|
|
|
|
|
|
1288
|
0
|
|
|
|
|
|
s[num_n_words - 1] = 0; |
1289
|
0
|
|
|
|
|
|
uECC_vli_set(s, p, num_words); |
1290
|
0
|
|
|
|
|
|
uECC_vli_modMult(s, tmp, s, curve->n, num_n_words); /* s = r*d */ |
1291
|
|
|
|
|
|
|
|
1292
|
0
|
|
|
|
|
|
bits2int(tmp, message_hash, hash_size, curve); |
1293
|
0
|
|
|
|
|
|
uECC_vli_modAdd(s, tmp, s, curve->n, num_n_words); /* s = e + r*d */ |
1294
|
0
|
|
|
|
|
|
uECC_vli_modMult(s, s, k, curve->n, num_n_words); /* s = (e + r*d) / k */ |
1295
|
0
|
0
|
|
|
|
|
if (uECC_vli_numBits(s, num_n_words) > (bitcount_t)curve->num_bytes * 8) { |
1296
|
0
|
|
|
|
|
|
return 0; |
1297
|
|
|
|
|
|
|
} |
1298
|
|
|
|
|
|
|
#if uECC_VLI_NATIVE_LITTLE_ENDIAN |
1299
|
|
|
|
|
|
|
bcopy((uint8_t *) signature + curve->num_bytes, (uint8_t *) s, curve->num_bytes); |
1300
|
|
|
|
|
|
|
#else |
1301
|
0
|
|
|
|
|
|
uECC_vli_nativeToBytes(signature + curve->num_bytes, curve->num_bytes, s); |
1302
|
|
|
|
|
|
|
#endif |
1303
|
0
|
|
|
|
|
|
return 1; |
1304
|
|
|
|
|
|
|
} |
1305
|
|
|
|
|
|
|
|
1306
|
0
|
|
|
|
|
|
int uECC_sign(const uint8_t *private_key, |
1307
|
|
|
|
|
|
|
const uint8_t *message_hash, |
1308
|
|
|
|
|
|
|
unsigned hash_size, |
1309
|
|
|
|
|
|
|
uint8_t *signature, |
1310
|
|
|
|
|
|
|
uECC_Curve curve) { |
1311
|
|
|
|
|
|
|
uECC_word_t k[uECC_MAX_WORDS]; |
1312
|
|
|
|
|
|
|
uECC_word_t tries; |
1313
|
|
|
|
|
|
|
|
1314
|
0
|
0
|
|
|
|
|
for (tries = 0; tries < uECC_RNG_MAX_TRIES; ++tries) { |
1315
|
0
|
0
|
|
|
|
|
if (!uECC_generate_random_int(k, curve->n, BITS_TO_WORDS(curve->num_n_bits))) { |
1316
|
0
|
|
|
|
|
|
return 0; |
1317
|
|
|
|
|
|
|
} |
1318
|
|
|
|
|
|
|
|
1319
|
0
|
0
|
|
|
|
|
if (uECC_sign_with_k(private_key, message_hash, hash_size, k, signature, curve)) { |
1320
|
0
|
|
|
|
|
|
return 1; |
1321
|
|
|
|
|
|
|
} |
1322
|
|
|
|
|
|
|
} |
1323
|
0
|
|
|
|
|
|
return 0; |
1324
|
|
|
|
|
|
|
} |
1325
|
|
|
|
|
|
|
|
1326
|
|
|
|
|
|
|
/* Compute an HMAC using K as a key (as in RFC 6979). Note that K is always |
1327
|
|
|
|
|
|
|
the same size as the hash result size. */ |
1328
|
0
|
|
|
|
|
|
static void HMAC_init(const uECC_HashContext *hash_context, const uint8_t *K) { |
1329
|
0
|
|
|
|
|
|
uint8_t *pad = hash_context->tmp + 2 * hash_context->result_size; |
1330
|
|
|
|
|
|
|
unsigned i; |
1331
|
0
|
0
|
|
|
|
|
for (i = 0; i < hash_context->result_size; ++i) |
1332
|
0
|
|
|
|
|
|
pad[i] = K[i] ^ 0x36; |
1333
|
0
|
0
|
|
|
|
|
for (; i < hash_context->block_size; ++i) |
1334
|
0
|
|
|
|
|
|
pad[i] = 0x36; |
1335
|
|
|
|
|
|
|
|
1336
|
0
|
|
|
|
|
|
hash_context->init_hash(hash_context); |
1337
|
0
|
|
|
|
|
|
hash_context->update_hash(hash_context, pad, hash_context->block_size); |
1338
|
0
|
|
|
|
|
|
} |
1339
|
|
|
|
|
|
|
|
1340
|
0
|
|
|
|
|
|
static void HMAC_update(const uECC_HashContext *hash_context, |
1341
|
|
|
|
|
|
|
const uint8_t *message, |
1342
|
|
|
|
|
|
|
unsigned message_size) { |
1343
|
0
|
|
|
|
|
|
hash_context->update_hash(hash_context, message, message_size); |
1344
|
0
|
|
|
|
|
|
} |
1345
|
|
|
|
|
|
|
|
1346
|
0
|
|
|
|
|
|
static void HMAC_finish(const uECC_HashContext *hash_context, |
1347
|
|
|
|
|
|
|
const uint8_t *K, |
1348
|
|
|
|
|
|
|
uint8_t *result) { |
1349
|
0
|
|
|
|
|
|
uint8_t *pad = hash_context->tmp + 2 * hash_context->result_size; |
1350
|
|
|
|
|
|
|
unsigned i; |
1351
|
0
|
0
|
|
|
|
|
for (i = 0; i < hash_context->result_size; ++i) |
1352
|
0
|
|
|
|
|
|
pad[i] = K[i] ^ 0x5c; |
1353
|
0
|
0
|
|
|
|
|
for (; i < hash_context->block_size; ++i) |
1354
|
0
|
|
|
|
|
|
pad[i] = 0x5c; |
1355
|
|
|
|
|
|
|
|
1356
|
0
|
|
|
|
|
|
hash_context->finish_hash(hash_context, result); |
1357
|
|
|
|
|
|
|
|
1358
|
0
|
|
|
|
|
|
hash_context->init_hash(hash_context); |
1359
|
0
|
|
|
|
|
|
hash_context->update_hash(hash_context, pad, hash_context->block_size); |
1360
|
0
|
|
|
|
|
|
hash_context->update_hash(hash_context, result, hash_context->result_size); |
1361
|
0
|
|
|
|
|
|
hash_context->finish_hash(hash_context, result); |
1362
|
0
|
|
|
|
|
|
} |
1363
|
|
|
|
|
|
|
|
1364
|
|
|
|
|
|
|
/* V = HMAC_K(V) */ |
1365
|
0
|
|
|
|
|
|
static void update_V(const uECC_HashContext *hash_context, uint8_t *K, uint8_t *V) { |
1366
|
0
|
|
|
|
|
|
HMAC_init(hash_context, K); |
1367
|
0
|
|
|
|
|
|
HMAC_update(hash_context, V, hash_context->result_size); |
1368
|
0
|
|
|
|
|
|
HMAC_finish(hash_context, K, V); |
1369
|
0
|
|
|
|
|
|
} |
1370
|
|
|
|
|
|
|
|
1371
|
|
|
|
|
|
|
/* Deterministic signing, similar to RFC 6979. Differences are: |
1372
|
|
|
|
|
|
|
* We just use H(m) directly rather than bits2octets(H(m)) |
1373
|
|
|
|
|
|
|
(it is not reduced modulo curve_n). |
1374
|
|
|
|
|
|
|
* We generate a value for k (aka T) directly rather than converting endianness. |
1375
|
|
|
|
|
|
|
|
1376
|
|
|
|
|
|
|
Layout of hash_context->tmp: | | (1 byte overlapped 0x00 or 0x01) / */ |
1377
|
0
|
|
|
|
|
|
int uECC_sign_deterministic(const uint8_t *private_key, |
1378
|
|
|
|
|
|
|
const uint8_t *message_hash, |
1379
|
|
|
|
|
|
|
unsigned hash_size, |
1380
|
|
|
|
|
|
|
const uECC_HashContext *hash_context, |
1381
|
|
|
|
|
|
|
uint8_t *signature, |
1382
|
|
|
|
|
|
|
uECC_Curve curve) { |
1383
|
0
|
|
|
|
|
|
uint8_t *K = hash_context->tmp; |
1384
|
0
|
|
|
|
|
|
uint8_t *V = K + hash_context->result_size; |
1385
|
0
|
|
|
|
|
|
wordcount_t num_bytes = curve->num_bytes; |
1386
|
0
|
|
|
|
|
|
wordcount_t num_n_words = BITS_TO_WORDS(curve->num_n_bits); |
1387
|
0
|
|
|
|
|
|
bitcount_t num_n_bits = curve->num_n_bits; |
1388
|
|
|
|
|
|
|
uECC_word_t tries; |
1389
|
|
|
|
|
|
|
unsigned i; |
1390
|
0
|
0
|
|
|
|
|
for (i = 0; i < hash_context->result_size; ++i) { |
1391
|
0
|
|
|
|
|
|
V[i] = 0x01; |
1392
|
0
|
|
|
|
|
|
K[i] = 0; |
1393
|
|
|
|
|
|
|
} |
1394
|
|
|
|
|
|
|
|
1395
|
|
|
|
|
|
|
/* K = HMAC_K(V || 0x00 || int2octets(x) || h(m)) */ |
1396
|
0
|
|
|
|
|
|
HMAC_init(hash_context, K); |
1397
|
0
|
|
|
|
|
|
V[hash_context->result_size] = 0x00; |
1398
|
0
|
|
|
|
|
|
HMAC_update(hash_context, V, hash_context->result_size + 1); |
1399
|
0
|
|
|
|
|
|
HMAC_update(hash_context, private_key, num_bytes); |
1400
|
0
|
|
|
|
|
|
HMAC_update(hash_context, message_hash, hash_size); |
1401
|
0
|
|
|
|
|
|
HMAC_finish(hash_context, K, K); |
1402
|
|
|
|
|
|
|
|
1403
|
0
|
|
|
|
|
|
update_V(hash_context, K, V); |
1404
|
|
|
|
|
|
|
|
1405
|
|
|
|
|
|
|
/* K = HMAC_K(V || 0x01 || int2octets(x) || h(m)) */ |
1406
|
0
|
|
|
|
|
|
HMAC_init(hash_context, K); |
1407
|
0
|
|
|
|
|
|
V[hash_context->result_size] = 0x01; |
1408
|
0
|
|
|
|
|
|
HMAC_update(hash_context, V, hash_context->result_size + 1); |
1409
|
0
|
|
|
|
|
|
HMAC_update(hash_context, private_key, num_bytes); |
1410
|
0
|
|
|
|
|
|
HMAC_update(hash_context, message_hash, hash_size); |
1411
|
0
|
|
|
|
|
|
HMAC_finish(hash_context, K, K); |
1412
|
|
|
|
|
|
|
|
1413
|
0
|
|
|
|
|
|
update_V(hash_context, K, V); |
1414
|
|
|
|
|
|
|
|
1415
|
0
|
0
|
|
|
|
|
for (tries = 0; tries < uECC_RNG_MAX_TRIES; ++tries) { |
1416
|
|
|
|
|
|
|
uECC_word_t T[uECC_MAX_WORDS]; |
1417
|
0
|
|
|
|
|
|
uint8_t *T_ptr = (uint8_t *)T; |
1418
|
0
|
|
|
|
|
|
wordcount_t T_bytes = 0; |
1419
|
|
|
|
|
|
|
for (;;) { |
1420
|
0
|
|
|
|
|
|
update_V(hash_context, K, V); |
1421
|
0
|
0
|
|
|
|
|
for (i = 0; i < hash_context->result_size; ++i) { |
1422
|
0
|
|
|
|
|
|
T_ptr[T_bytes++] = V[i]; |
1423
|
0
|
0
|
|
|
|
|
if (T_bytes >= num_n_words * uECC_WORD_SIZE) { |
1424
|
0
|
|
|
|
|
|
goto filled; |
1425
|
|
|
|
|
|
|
} |
1426
|
|
|
|
|
|
|
} |
1427
|
0
|
|
|
|
|
|
} |
1428
|
|
|
|
|
|
|
filled: |
1429
|
0
|
0
|
|
|
|
|
if ((bitcount_t)num_n_words * uECC_WORD_SIZE * 8 > num_n_bits) { |
1430
|
0
|
|
|
|
|
|
uECC_word_t mask = (uECC_word_t)-1; |
1431
|
0
|
|
|
|
|
|
T[num_n_words - 1] &= |
1432
|
0
|
|
|
|
|
|
mask >> ((bitcount_t)(num_n_words * uECC_WORD_SIZE * 8 - num_n_bits)); |
1433
|
|
|
|
|
|
|
} |
1434
|
|
|
|
|
|
|
|
1435
|
0
|
0
|
|
|
|
|
if (uECC_sign_with_k(private_key, message_hash, hash_size, T, signature, curve)) { |
1436
|
0
|
|
|
|
|
|
return 1; |
1437
|
|
|
|
|
|
|
} |
1438
|
|
|
|
|
|
|
|
1439
|
|
|
|
|
|
|
/* K = HMAC_K(V || 0x00) */ |
1440
|
0
|
|
|
|
|
|
HMAC_init(hash_context, K); |
1441
|
0
|
|
|
|
|
|
V[hash_context->result_size] = 0x00; |
1442
|
0
|
|
|
|
|
|
HMAC_update(hash_context, V, hash_context->result_size + 1); |
1443
|
0
|
|
|
|
|
|
HMAC_finish(hash_context, K, K); |
1444
|
|
|
|
|
|
|
|
1445
|
0
|
|
|
|
|
|
update_V(hash_context, K, V); |
1446
|
|
|
|
|
|
|
} |
1447
|
0
|
|
|
|
|
|
return 0; |
1448
|
|
|
|
|
|
|
} |
1449
|
|
|
|
|
|
|
|
1450
|
0
|
|
|
|
|
|
static bitcount_t smax(bitcount_t a, bitcount_t b) { |
1451
|
0
|
|
|
|
|
|
return (a > b ? a : b); |
1452
|
|
|
|
|
|
|
} |
1453
|
|
|
|
|
|
|
|
1454
|
0
|
|
|
|
|
|
int uECC_verify(const uint8_t *public_key, |
1455
|
|
|
|
|
|
|
const uint8_t *message_hash, |
1456
|
|
|
|
|
|
|
unsigned hash_size, |
1457
|
|
|
|
|
|
|
const uint8_t *signature, |
1458
|
|
|
|
|
|
|
uECC_Curve curve) { |
1459
|
|
|
|
|
|
|
uECC_word_t u1[uECC_MAX_WORDS], u2[uECC_MAX_WORDS]; |
1460
|
|
|
|
|
|
|
uECC_word_t z[uECC_MAX_WORDS]; |
1461
|
|
|
|
|
|
|
uECC_word_t sum[uECC_MAX_WORDS * 2]; |
1462
|
|
|
|
|
|
|
uECC_word_t rx[uECC_MAX_WORDS]; |
1463
|
|
|
|
|
|
|
uECC_word_t ry[uECC_MAX_WORDS]; |
1464
|
|
|
|
|
|
|
uECC_word_t tx[uECC_MAX_WORDS]; |
1465
|
|
|
|
|
|
|
uECC_word_t ty[uECC_MAX_WORDS]; |
1466
|
|
|
|
|
|
|
uECC_word_t tz[uECC_MAX_WORDS]; |
1467
|
|
|
|
|
|
|
const uECC_word_t *points[4]; |
1468
|
|
|
|
|
|
|
const uECC_word_t *point; |
1469
|
|
|
|
|
|
|
bitcount_t num_bits; |
1470
|
|
|
|
|
|
|
bitcount_t i; |
1471
|
|
|
|
|
|
|
#if uECC_VLI_NATIVE_LITTLE_ENDIAN |
1472
|
|
|
|
|
|
|
uECC_word_t *_public = (uECC_word_t *)public_key; |
1473
|
|
|
|
|
|
|
#else |
1474
|
|
|
|
|
|
|
uECC_word_t _public[uECC_MAX_WORDS * 2]; |
1475
|
|
|
|
|
|
|
#endif |
1476
|
|
|
|
|
|
|
uECC_word_t r[uECC_MAX_WORDS], s[uECC_MAX_WORDS]; |
1477
|
0
|
|
|
|
|
|
wordcount_t num_words = curve->num_words; |
1478
|
0
|
|
|
|
|
|
wordcount_t num_n_words = BITS_TO_WORDS(curve->num_n_bits); |
1479
|
|
|
|
|
|
|
|
1480
|
0
|
|
|
|
|
|
rx[num_n_words - 1] = 0; |
1481
|
0
|
|
|
|
|
|
r[num_n_words - 1] = 0; |
1482
|
0
|
|
|
|
|
|
s[num_n_words - 1] = 0; |
1483
|
|
|
|
|
|
|
|
1484
|
|
|
|
|
|
|
#if uECC_VLI_NATIVE_LITTLE_ENDIAN |
1485
|
|
|
|
|
|
|
bcopy((uint8_t *) r, signature, curve->num_bytes); |
1486
|
|
|
|
|
|
|
bcopy((uint8_t *) s, signature + curve->num_bytes, curve->num_bytes); |
1487
|
|
|
|
|
|
|
#else |
1488
|
0
|
|
|
|
|
|
uECC_vli_bytesToNative(_public, public_key, curve->num_bytes); |
1489
|
0
|
|
|
|
|
|
uECC_vli_bytesToNative( |
1490
|
0
|
|
|
|
|
|
_public + num_words, public_key + curve->num_bytes, curve->num_bytes); |
1491
|
0
|
|
|
|
|
|
uECC_vli_bytesToNative(r, signature, curve->num_bytes); |
1492
|
0
|
|
|
|
|
|
uECC_vli_bytesToNative(s, signature + curve->num_bytes, curve->num_bytes); |
1493
|
|
|
|
|
|
|
#endif |
1494
|
|
|
|
|
|
|
|
1495
|
|
|
|
|
|
|
/* r, s must not be 0. */ |
1496
|
0
|
0
|
|
|
|
|
if (uECC_vli_isZero(r, num_words) || uECC_vli_isZero(s, num_words)) { |
|
|
0
|
|
|
|
|
|
1497
|
0
|
|
|
|
|
|
return 0; |
1498
|
|
|
|
|
|
|
} |
1499
|
|
|
|
|
|
|
|
1500
|
|
|
|
|
|
|
/* r, s must be < n. */ |
1501
|
0
|
|
|
|
|
|
if (uECC_vli_cmp_unsafe(curve->n, r, num_n_words) != 1 || |
1502
|
0
|
|
|
|
|
|
uECC_vli_cmp_unsafe(curve->n, s, num_n_words) != 1) { |
1503
|
0
|
|
|
|
|
|
return 0; |
1504
|
|
|
|
|
|
|
} |
1505
|
|
|
|
|
|
|
|
1506
|
|
|
|
|
|
|
/* Calculate u1 and u2. */ |
1507
|
0
|
|
|
|
|
|
uECC_vli_modInv(z, s, curve->n, num_n_words); /* z = 1/s */ |
1508
|
0
|
|
|
|
|
|
u1[num_n_words - 1] = 0; |
1509
|
0
|
|
|
|
|
|
bits2int(u1, message_hash, hash_size, curve); |
1510
|
0
|
|
|
|
|
|
uECC_vli_modMult(u1, u1, z, curve->n, num_n_words); /* u1 = e/s */ |
1511
|
0
|
|
|
|
|
|
uECC_vli_modMult(u2, r, z, curve->n, num_n_words); /* u2 = r/s */ |
1512
|
|
|
|
|
|
|
|
1513
|
|
|
|
|
|
|
/* Calculate sum = G + Q. */ |
1514
|
0
|
|
|
|
|
|
uECC_vli_set(sum, _public, num_words); |
1515
|
0
|
|
|
|
|
|
uECC_vli_set(sum + num_words, _public + num_words, num_words); |
1516
|
0
|
|
|
|
|
|
uECC_vli_set(tx, curve->G, num_words); |
1517
|
0
|
|
|
|
|
|
uECC_vli_set(ty, curve->G + num_words, num_words); |
1518
|
0
|
|
|
|
|
|
uECC_vli_modSub(z, sum, tx, curve->p, num_words); /* z = x2 - x1 */ |
1519
|
0
|
|
|
|
|
|
XYcZ_add(tx, ty, sum, sum + num_words, curve); |
1520
|
0
|
|
|
|
|
|
uECC_vli_modInv(z, z, curve->p, num_words); /* z = 1/z */ |
1521
|
0
|
|
|
|
|
|
apply_z(sum, sum + num_words, z, curve); |
1522
|
|
|
|
|
|
|
|
1523
|
|
|
|
|
|
|
/* Use Shamir's trick to calculate u1*G + u2*Q */ |
1524
|
0
|
|
|
|
|
|
points[0] = 0; |
1525
|
0
|
|
|
|
|
|
points[1] = curve->G; |
1526
|
0
|
|
|
|
|
|
points[2] = _public; |
1527
|
0
|
|
|
|
|
|
points[3] = sum; |
1528
|
0
|
|
|
|
|
|
num_bits = smax(uECC_vli_numBits(u1, num_n_words), |
1529
|
0
|
|
|
|
|
|
uECC_vli_numBits(u2, num_n_words)); |
1530
|
|
|
|
|
|
|
|
1531
|
0
|
|
|
|
|
|
point = points[(!!uECC_vli_testBit(u1, num_bits - 1)) | |
1532
|
0
|
0
|
|
|
|
|
((!!uECC_vli_testBit(u2, num_bits - 1)) << 1)]; |
1533
|
0
|
|
|
|
|
|
uECC_vli_set(rx, point, num_words); |
1534
|
0
|
|
|
|
|
|
uECC_vli_set(ry, point + num_words, num_words); |
1535
|
0
|
|
|
|
|
|
uECC_vli_clear(z, num_words); |
1536
|
0
|
|
|
|
|
|
z[0] = 1; |
1537
|
|
|
|
|
|
|
|
1538
|
0
|
0
|
|
|
|
|
for (i = num_bits - 2; i >= 0; --i) { |
1539
|
|
|
|
|
|
|
uECC_word_t index; |
1540
|
0
|
|
|
|
|
|
curve->double_jacobian(rx, ry, z, curve); |
1541
|
|
|
|
|
|
|
|
1542
|
0
|
0
|
|
|
|
|
index = (!!uECC_vli_testBit(u1, i)) | ((!!uECC_vli_testBit(u2, i)) << 1); |
1543
|
0
|
|
|
|
|
|
point = points[index]; |
1544
|
0
|
0
|
|
|
|
|
if (point) { |
1545
|
0
|
|
|
|
|
|
uECC_vli_set(tx, point, num_words); |
1546
|
0
|
|
|
|
|
|
uECC_vli_set(ty, point + num_words, num_words); |
1547
|
0
|
|
|
|
|
|
apply_z(tx, ty, z, curve); |
1548
|
0
|
|
|
|
|
|
uECC_vli_modSub(tz, rx, tx, curve->p, num_words); /* Z = x2 - x1 */ |
1549
|
0
|
|
|
|
|
|
XYcZ_add(tx, ty, rx, ry, curve); |
1550
|
0
|
|
|
|
|
|
uECC_vli_modMult_fast(z, z, tz, curve); |
1551
|
|
|
|
|
|
|
} |
1552
|
|
|
|
|
|
|
} |
1553
|
|
|
|
|
|
|
|
1554
|
0
|
|
|
|
|
|
uECC_vli_modInv(z, z, curve->p, num_words); /* Z = 1/Z */ |
1555
|
0
|
|
|
|
|
|
apply_z(rx, ry, z, curve); |
1556
|
|
|
|
|
|
|
|
1557
|
|
|
|
|
|
|
/* v = x1 (mod n) */ |
1558
|
0
|
0
|
|
|
|
|
if (uECC_vli_cmp_unsafe(curve->n, rx, num_n_words) != 1) { |
1559
|
0
|
|
|
|
|
|
uECC_vli_sub(rx, rx, curve->n, num_n_words); |
1560
|
|
|
|
|
|
|
} |
1561
|
|
|
|
|
|
|
|
1562
|
|
|
|
|
|
|
/* Accept only if v == r. */ |
1563
|
0
|
|
|
|
|
|
return (int)(uECC_vli_equal(rx, r, num_words)); |
1564
|
|
|
|
|
|
|
} |
1565
|
|
|
|
|
|
|
|
1566
|
|
|
|
|
|
|
#if uECC_ENABLE_VLI_API |
1567
|
|
|
|
|
|
|
|
1568
|
|
|
|
|
|
|
unsigned uECC_curve_num_words(uECC_Curve curve) { |
1569
|
|
|
|
|
|
|
return curve->num_words; |
1570
|
|
|
|
|
|
|
} |
1571
|
|
|
|
|
|
|
|
1572
|
|
|
|
|
|
|
unsigned uECC_curve_num_bytes(uECC_Curve curve) { |
1573
|
|
|
|
|
|
|
return curve->num_bytes; |
1574
|
|
|
|
|
|
|
} |
1575
|
|
|
|
|
|
|
|
1576
|
|
|
|
|
|
|
unsigned uECC_curve_num_bits(uECC_Curve curve) { |
1577
|
|
|
|
|
|
|
return curve->num_bytes * 8; |
1578
|
|
|
|
|
|
|
} |
1579
|
|
|
|
|
|
|
|
1580
|
|
|
|
|
|
|
unsigned uECC_curve_num_n_words(uECC_Curve curve) { |
1581
|
|
|
|
|
|
|
return BITS_TO_WORDS(curve->num_n_bits); |
1582
|
|
|
|
|
|
|
} |
1583
|
|
|
|
|
|
|
|
1584
|
|
|
|
|
|
|
unsigned uECC_curve_num_n_bytes(uECC_Curve curve) { |
1585
|
|
|
|
|
|
|
return BITS_TO_BYTES(curve->num_n_bits); |
1586
|
|
|
|
|
|
|
} |
1587
|
|
|
|
|
|
|
|
1588
|
|
|
|
|
|
|
unsigned uECC_curve_num_n_bits(uECC_Curve curve) { |
1589
|
|
|
|
|
|
|
return curve->num_n_bits; |
1590
|
|
|
|
|
|
|
} |
1591
|
|
|
|
|
|
|
|
1592
|
|
|
|
|
|
|
const uECC_word_t *uECC_curve_p(uECC_Curve curve) { |
1593
|
|
|
|
|
|
|
return curve->p; |
1594
|
|
|
|
|
|
|
} |
1595
|
|
|
|
|
|
|
|
1596
|
|
|
|
|
|
|
const uECC_word_t *uECC_curve_n(uECC_Curve curve) { |
1597
|
|
|
|
|
|
|
return curve->n; |
1598
|
|
|
|
|
|
|
} |
1599
|
|
|
|
|
|
|
|
1600
|
|
|
|
|
|
|
const uECC_word_t *uECC_curve_G(uECC_Curve curve) { |
1601
|
|
|
|
|
|
|
return curve->G; |
1602
|
|
|
|
|
|
|
} |
1603
|
|
|
|
|
|
|
|
1604
|
|
|
|
|
|
|
const uECC_word_t *uECC_curve_b(uECC_Curve curve) { |
1605
|
|
|
|
|
|
|
return curve->b; |
1606
|
|
|
|
|
|
|
} |
1607
|
|
|
|
|
|
|
|
1608
|
|
|
|
|
|
|
#if uECC_SUPPORT_COMPRESSED_POINT |
1609
|
|
|
|
|
|
|
void uECC_vli_mod_sqrt(uECC_word_t *a, uECC_Curve curve) { |
1610
|
|
|
|
|
|
|
curve->mod_sqrt(a, curve); |
1611
|
|
|
|
|
|
|
} |
1612
|
|
|
|
|
|
|
#endif |
1613
|
|
|
|
|
|
|
|
1614
|
|
|
|
|
|
|
void uECC_vli_mmod_fast(uECC_word_t *result, uECC_word_t *product, uECC_Curve curve) { |
1615
|
|
|
|
|
|
|
#if (uECC_OPTIMIZATION_LEVEL > 0) |
1616
|
|
|
|
|
|
|
curve->mmod_fast(result, product); |
1617
|
|
|
|
|
|
|
#else |
1618
|
|
|
|
|
|
|
uECC_vli_mmod(result, product, curve->p, curve->num_words); |
1619
|
|
|
|
|
|
|
#endif |
1620
|
|
|
|
|
|
|
} |
1621
|
|
|
|
|
|
|
|
1622
|
|
|
|
|
|
|
void uECC_point_mult(uECC_word_t *result, |
1623
|
|
|
|
|
|
|
const uECC_word_t *point, |
1624
|
|
|
|
|
|
|
const uECC_word_t *scalar, |
1625
|
|
|
|
|
|
|
uECC_Curve curve) { |
1626
|
|
|
|
|
|
|
uECC_word_t tmp1[uECC_MAX_WORDS]; |
1627
|
|
|
|
|
|
|
uECC_word_t tmp2[uECC_MAX_WORDS]; |
1628
|
|
|
|
|
|
|
uECC_word_t *p2[2] = {tmp1, tmp2}; |
1629
|
|
|
|
|
|
|
uECC_word_t carry = regularize_k(scalar, tmp1, tmp2, curve); |
1630
|
|
|
|
|
|
|
|
1631
|
|
|
|
|
|
|
EccPoint_mult(result, point, p2[!carry], 0, curve->num_n_bits + 1, curve); |
1632
|
|
|
|
|
|
|
} |
1633
|
|
|
|
|
|
|
|
1634
|
|
|
|
|
|
|
#endif /* uECC_ENABLE_VLI_API */ |