| line | stmt | bran | cond | sub | pod | time | code | 
| 1 |  |  |  |  |  |  | package Math::Vector::Real::MultiNormalMixture; | 
| 2 |  |  |  |  |  |  |  | 
| 3 |  |  |  |  |  |  | our $VERSION = '0.02'; | 
| 4 |  |  |  |  |  |  |  | 
| 5 | 1 |  |  | 1 |  | 24460 | use 5.010; | 
|  | 1 |  |  |  |  | 4 |  | 
|  | 1 |  |  |  |  | 46 |  | 
| 6 | 1 |  |  | 1 |  | 8 | use strict; | 
|  | 1 |  |  |  |  | 2 |  | 
|  | 1 |  |  |  |  | 53 |  | 
| 7 | 1 |  |  | 1 |  | 5 | use warnings; | 
|  | 1 |  |  |  |  | 7 |  | 
|  | 1 |  |  |  |  | 39 |  | 
| 8 | 1 |  |  | 1 |  | 5 | use Carp; | 
|  | 1 |  |  |  |  | 2 |  | 
|  | 1 |  |  |  |  | 108 |  | 
| 9 |  |  |  |  |  |  |  | 
| 10 | 1 |  |  | 1 |  | 1183 | use Math::Vector::Real; | 
|  | 1 |  |  |  |  | 23023 |  | 
|  | 1 |  |  |  |  | 1691 |  | 
| 11 |  |  |  |  |  |  |  | 
| 12 |  |  |  |  |  |  | my $PI = 3.14159265358979323846264338327950288419716939937510; | 
| 13 |  |  |  |  |  |  |  | 
| 14 |  |  |  |  |  |  | sub new { | 
| 15 | 0 |  |  | 0 | 1 |  | my ($class, %opts) = @_; | 
| 16 | 0 |  | 0 |  |  |  | my $mu = delete $opts{mu} // croak "required argument 'mu' missing"; | 
| 17 | 0 | 0 |  |  |  |  | @$mu >= 1 or die "'mu' must containt one point at least"; | 
| 18 | 0 |  |  |  |  |  | my $dim = @{$mu->[0]}; | 
|  | 0 |  |  |  |  |  |  | 
| 19 | 0 |  |  |  |  |  | my $n = @$mu; | 
| 20 | 0 |  |  |  |  |  | my $alpha = delete $opts{alpha}; | 
| 21 | 0 | 0 |  |  |  |  | my @alpha = (defined $alpha ? @$alpha : ((1/$n) x $n)); | 
| 22 | 0 |  | 0 |  |  |  | my $sigma = delete $opts{sigma} // 1.0; | 
| 23 | 0 | 0 |  |  |  |  | my @sigma = (ref $sigma ? @$sigma : (($sigma) x $n)); | 
| 24 | 0 | 0 | 0 |  |  |  | croak "bad array size" unless (@alpha == $n and @sigma == $n); | 
| 25 | 0 |  |  |  |  |  | my $c1 = (2 * $PI) ** (-0.5 * $dim); | 
| 26 | 0 |  |  |  |  |  | my @c = map $alpha[$_] * $c1 * ($sigma[$_] ** (-$dim)), (0..$#alpha); | 
| 27 | 0 |  |  |  |  |  | my @isigma2 = map 1.0/($_ * $_), @sigma; | 
| 28 | 0 |  |  |  |  |  | my $c2 = -sqrt(2.0 / $PI); | 
| 29 | 0 |  |  |  |  |  | my @second = map $c2/($_ * $_ * $_), @sigma; | 
| 30 |  |  |  |  |  |  |  | 
| 31 | 0 |  |  |  |  |  | my $self = { mu => [map Math::Vector::Real::clone($_), @$mu], | 
| 32 |  |  |  |  |  |  | alpha => \@alpha, | 
| 33 |  |  |  |  |  |  | sigma => \@sigma, | 
| 34 |  |  |  |  |  |  | isigma2 => \@isigma2, | 
| 35 |  |  |  |  |  |  | c => \@c, | 
| 36 |  |  |  |  |  |  | second => \@second, | 
| 37 |  |  |  |  |  |  | dim => $dim, | 
| 38 |  |  |  |  |  |  | }; | 
| 39 | 0 |  |  |  |  |  | bless $self, $class; | 
| 40 |  |  |  |  |  |  | } | 
| 41 |  |  |  |  |  |  |  | 
| 42 |  |  |  |  |  |  | sub density { | 
| 43 | 0 |  |  | 0 | 1 |  | my ($self, $p) = @_; | 
| 44 | 0 |  |  |  |  |  | my $c = $self->{c}; | 
| 45 | 0 |  |  |  |  |  | my $mu = $self->{mu}; | 
| 46 | 0 |  |  |  |  |  | my $isigma2 = $self->{sigma}; | 
| 47 | 0 |  |  |  |  |  | my $acu = 0; | 
| 48 | 0 |  |  |  |  |  | for (0..$#$mu) { | 
| 49 | 0 |  |  |  |  |  | $acu += $c->[$_] * exp(-$isigma2->[$_] * $mu->[$_]->dist2($p)); | 
| 50 |  |  |  |  |  |  | } | 
| 51 | 0 |  |  |  |  |  | $acu; | 
| 52 |  |  |  |  |  |  | } | 
| 53 |  |  |  |  |  |  |  | 
| 54 |  |  |  |  |  |  | sub density_portion { | 
| 55 | 0 |  |  | 0 | 1 |  | my $self = shift; | 
| 56 | 0 |  |  |  |  |  | my $p = shift; | 
| 57 | 0 |  |  |  |  |  | my $c = $self->{c}; | 
| 58 | 0 |  |  |  |  |  | my $mu = $self->{mu}; | 
| 59 | 0 |  |  |  |  |  | my $isigma2 = $self->{sigma}; | 
| 60 | 0 |  |  |  |  |  | my $acu = 0; | 
| 61 | 0 |  |  |  |  |  | for (@_) { | 
| 62 | 0 |  |  |  |  |  | $acu += $c->[$_] * exp(-$isigma2->[$_] * $mu->[$_]->dist2($p)); | 
| 63 |  |  |  |  |  |  | } | 
| 64 | 0 |  |  |  |  |  | $acu; | 
| 65 |  |  |  |  |  |  | } | 
| 66 |  |  |  |  |  |  |  | 
| 67 |  |  |  |  |  |  | sub density_and_gradient { | 
| 68 | 0 |  |  | 0 | 1 |  | my ($self, $p) = @_; | 
| 69 | 0 |  |  |  |  |  | my $c = $self->{c}; | 
| 70 | 0 |  |  |  |  |  | my $mu = $self->{mu}; | 
| 71 | 0 |  |  |  |  |  | my $isigma2 = $self->{sigma}; | 
| 72 | 0 |  |  |  |  |  | my $d = 0; | 
| 73 | 0 |  |  |  |  |  | my $g = $Math::Vector::Real->zero(scalar @{$mu->[0]}); | 
|  | 0 |  |  |  |  |  |  | 
| 74 | 0 |  |  |  |  |  | for (0..$#$mu) { | 
| 75 | 0 |  |  |  |  |  | my $mu_p = $p - $mu->[$_]; | 
| 76 | 0 |  |  |  |  |  | my $isigma2 = $isigma2->[$_]; | 
| 77 | 0 |  |  |  |  |  | my $Dd = $c->[$_] * exp(-$isigma2 * $mu_p->abs2); | 
| 78 | 0 |  |  |  |  |  | $d += $Dd; | 
| 79 | 0 |  |  |  |  |  | $g += -2 * $isigma2 * $mu_p * $Dd; | 
| 80 |  |  |  |  |  |  | } | 
| 81 | 0 |  |  |  |  |  | return ($d, $g); | 
| 82 |  |  |  |  |  |  | } | 
| 83 |  |  |  |  |  |  |  | 
| 84 |  |  |  |  |  |  | sub max_density_estimation { | 
| 85 | 0 |  |  | 0 | 1 |  | my $self = shift; | 
| 86 | 0 |  |  |  |  |  | my $mu = $self->{mu}; | 
| 87 | 0 |  |  |  |  |  | my $max = $self->density($mu->[0]); | 
| 88 | 0 |  |  |  |  |  | for my $ix (1..$#$mu) { | 
| 89 | 0 |  |  |  |  |  | my $d = $self->density($mu->[$ix]); | 
| 90 |  |  |  |  |  |  | # print "d: $d\n"; | 
| 91 | 0 | 0 |  |  |  |  | $max = $d if $d > $max; | 
| 92 |  |  |  |  |  |  | } | 
| 93 | 0 |  |  |  |  |  | return $max; | 
| 94 |  |  |  |  |  |  | } | 
| 95 |  |  |  |  |  |  |  | 
| 96 |  |  |  |  |  |  | 1; | 
| 97 |  |  |  |  |  |  | __END__ |