line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
1
|
|
|
|
|
|
|
package Math::Utils; |
2
|
|
|
|
|
|
|
|
3
|
18
|
|
|
18
|
|
1205491
|
use 5.010001; |
|
18
|
|
|
|
|
216
|
|
4
|
18
|
|
|
18
|
|
107
|
use strict; |
|
18
|
|
|
|
|
35
|
|
|
18
|
|
|
|
|
396
|
|
5
|
18
|
|
|
18
|
|
85
|
use warnings; |
|
18
|
|
|
|
|
73
|
|
|
18
|
|
|
|
|
618
|
|
6
|
18
|
|
|
18
|
|
112
|
use Carp; |
|
18
|
|
|
|
|
30
|
|
|
18
|
|
|
|
|
1145
|
|
7
|
|
|
|
|
|
|
|
8
|
18
|
|
|
18
|
|
110
|
use Exporter; |
|
18
|
|
|
|
|
45
|
|
|
18
|
|
|
|
|
12506
|
|
9
|
|
|
|
|
|
|
our @ISA = qw(Exporter); |
10
|
|
|
|
|
|
|
|
11
|
|
|
|
|
|
|
our %EXPORT_TAGS = ( |
12
|
|
|
|
|
|
|
compare => [ qw(generate_fltcmp generate_relational) ], |
13
|
|
|
|
|
|
|
fortran => [ qw(log10 copysign) ], |
14
|
|
|
|
|
|
|
utility => [ qw(log10 log2 copysign flipsign |
15
|
|
|
|
|
|
|
sign floor ceil fsum |
16
|
|
|
|
|
|
|
gcd hcf lcm moduli) ], |
17
|
|
|
|
|
|
|
polynomial => [ qw(pl_evaluate pl_dxevaluate pl_translate |
18
|
|
|
|
|
|
|
pl_add pl_sub pl_div pl_mult |
19
|
|
|
|
|
|
|
pl_derivative pl_antiderivative) ], |
20
|
|
|
|
|
|
|
); |
21
|
|
|
|
|
|
|
|
22
|
|
|
|
|
|
|
our @EXPORT_OK = ( |
23
|
|
|
|
|
|
|
@{ $EXPORT_TAGS{compare} }, |
24
|
|
|
|
|
|
|
@{ $EXPORT_TAGS{utility} }, |
25
|
|
|
|
|
|
|
@{ $EXPORT_TAGS{polynomial} }, |
26
|
|
|
|
|
|
|
); |
27
|
|
|
|
|
|
|
|
28
|
|
|
|
|
|
|
# |
29
|
|
|
|
|
|
|
# Add an :all tag automatically. |
30
|
|
|
|
|
|
|
# |
31
|
|
|
|
|
|
|
$EXPORT_TAGS{all} = [@EXPORT_OK]; |
32
|
|
|
|
|
|
|
|
33
|
|
|
|
|
|
|
our $VERSION = '1.13'; |
34
|
|
|
|
|
|
|
|
35
|
|
|
|
|
|
|
=head1 NAME |
36
|
|
|
|
|
|
|
|
37
|
|
|
|
|
|
|
Math::Utils - Useful mathematical functions not in Perl. |
38
|
|
|
|
|
|
|
|
39
|
|
|
|
|
|
|
=head1 SYNOPSIS |
40
|
|
|
|
|
|
|
|
41
|
|
|
|
|
|
|
use Math::Utils qw(:utility); # Useful functions |
42
|
|
|
|
|
|
|
|
43
|
|
|
|
|
|
|
# |
44
|
|
|
|
|
|
|
# Base 10 and base 2 logarithms. |
45
|
|
|
|
|
|
|
# |
46
|
|
|
|
|
|
|
$scale = log10($pagewidth); |
47
|
|
|
|
|
|
|
$bits = log2(1/$probability); |
48
|
|
|
|
|
|
|
|
49
|
|
|
|
|
|
|
# |
50
|
|
|
|
|
|
|
# Two uses of sign(). |
51
|
|
|
|
|
|
|
# |
52
|
|
|
|
|
|
|
$d = sign($z - $w); |
53
|
|
|
|
|
|
|
|
54
|
|
|
|
|
|
|
@ternaries = sign(@coefficients); |
55
|
|
|
|
|
|
|
|
56
|
|
|
|
|
|
|
# |
57
|
|
|
|
|
|
|
# Using copysign(), $dist will be doubled negative or |
58
|
|
|
|
|
|
|
# positive $offest, depending upon whether ($from - $to) |
59
|
|
|
|
|
|
|
# is positive or negative. |
60
|
|
|
|
|
|
|
# |
61
|
|
|
|
|
|
|
my $dist = copysign(2 * $offset, $from - $to); |
62
|
|
|
|
|
|
|
|
63
|
|
|
|
|
|
|
# |
64
|
|
|
|
|
|
|
# Change increment direction if goal is negative. |
65
|
|
|
|
|
|
|
# |
66
|
|
|
|
|
|
|
$incr = flipsign($incr, $goal); |
67
|
|
|
|
|
|
|
|
68
|
|
|
|
|
|
|
# |
69
|
|
|
|
|
|
|
# floor() and ceil() functions. |
70
|
|
|
|
|
|
|
# |
71
|
|
|
|
|
|
|
$point = floor($goal); |
72
|
|
|
|
|
|
|
$limit = ceil($goal); |
73
|
|
|
|
|
|
|
|
74
|
|
|
|
|
|
|
# |
75
|
|
|
|
|
|
|
# gcd() and lcm() functions. |
76
|
|
|
|
|
|
|
# |
77
|
|
|
|
|
|
|
$divisor = gcd(@multipliers); |
78
|
|
|
|
|
|
|
$numerator = lcm(@multipliers); |
79
|
|
|
|
|
|
|
|
80
|
|
|
|
|
|
|
# |
81
|
|
|
|
|
|
|
# Safe(r) summation. |
82
|
|
|
|
|
|
|
# |
83
|
|
|
|
|
|
|
$tot = fsum(@inputs); |
84
|
|
|
|
|
|
|
|
85
|
|
|
|
|
|
|
# |
86
|
|
|
|
|
|
|
# The remainders of n after successive divisions of b, or |
87
|
|
|
|
|
|
|
# remainders after a set of divisions. |
88
|
|
|
|
|
|
|
# |
89
|
|
|
|
|
|
|
@rems = moduli($n, $b); |
90
|
|
|
|
|
|
|
|
91
|
|
|
|
|
|
|
or |
92
|
|
|
|
|
|
|
|
93
|
|
|
|
|
|
|
use Math::Utils qw(:compare); # Make comparison functions with tolerance. |
94
|
|
|
|
|
|
|
|
95
|
|
|
|
|
|
|
# |
96
|
|
|
|
|
|
|
# Floating point comparison function. |
97
|
|
|
|
|
|
|
# |
98
|
|
|
|
|
|
|
my $fltcmp = generate_fltmcp(1.0e-7); |
99
|
|
|
|
|
|
|
|
100
|
|
|
|
|
|
|
if (&$fltcmp($x0, $x1) < 0) |
101
|
|
|
|
|
|
|
{ |
102
|
|
|
|
|
|
|
add_left($data); |
103
|
|
|
|
|
|
|
} |
104
|
|
|
|
|
|
|
else |
105
|
|
|
|
|
|
|
{ |
106
|
|
|
|
|
|
|
add_right($data); |
107
|
|
|
|
|
|
|
} |
108
|
|
|
|
|
|
|
|
109
|
|
|
|
|
|
|
# |
110
|
|
|
|
|
|
|
# Or we can create single-operation comparison functions. |
111
|
|
|
|
|
|
|
# |
112
|
|
|
|
|
|
|
# Here we are only interested in the greater than and less than |
113
|
|
|
|
|
|
|
# comparison functions. |
114
|
|
|
|
|
|
|
# |
115
|
|
|
|
|
|
|
my(undef, undef, |
116
|
|
|
|
|
|
|
$approx_gt, undef, $approx_lt) = generate_relational(1.5e-5); |
117
|
|
|
|
|
|
|
|
118
|
|
|
|
|
|
|
or |
119
|
|
|
|
|
|
|
|
120
|
|
|
|
|
|
|
use Math::Utils qw(:polynomial); # Basic polynomial ops |
121
|
|
|
|
|
|
|
|
122
|
|
|
|
|
|
|
# |
123
|
|
|
|
|
|
|
# Coefficient lists run from 0th degree upward, left to right. |
124
|
|
|
|
|
|
|
# |
125
|
|
|
|
|
|
|
my @c1 = (1, 3, 5, 7, 11, 13, 17, 19); |
126
|
|
|
|
|
|
|
my @c2 = (1, 3, 1, 7); |
127
|
|
|
|
|
|
|
my @c3 = (1, -1, 1) |
128
|
|
|
|
|
|
|
|
129
|
|
|
|
|
|
|
my $c_ref = pl_mult(\@c1, \@c2); |
130
|
|
|
|
|
|
|
$c_ref = pl_add($c_ref, \@c3); |
131
|
|
|
|
|
|
|
|
132
|
|
|
|
|
|
|
=head1 EXPORT |
133
|
|
|
|
|
|
|
|
134
|
|
|
|
|
|
|
All functions can be exported by name, or by using the tag that they're |
135
|
|
|
|
|
|
|
grouped under. |
136
|
|
|
|
|
|
|
|
137
|
|
|
|
|
|
|
=cut |
138
|
|
|
|
|
|
|
|
139
|
|
|
|
|
|
|
=head2 utility tag |
140
|
|
|
|
|
|
|
|
141
|
|
|
|
|
|
|
Useful, general-purpose functions, including those that originated in |
142
|
|
|
|
|
|
|
FORTRAN and were implemented in Perl in the module L, |
143
|
|
|
|
|
|
|
by J. A. R. Williams. |
144
|
|
|
|
|
|
|
|
145
|
|
|
|
|
|
|
There is a name change -- copysign() was known as sign() |
146
|
|
|
|
|
|
|
in Math::Fortran. |
147
|
|
|
|
|
|
|
|
148
|
|
|
|
|
|
|
=head3 log10() |
149
|
|
|
|
|
|
|
|
150
|
|
|
|
|
|
|
$xlog10 = log10($x); |
151
|
|
|
|
|
|
|
@xlog10 = log10(@x); |
152
|
|
|
|
|
|
|
|
153
|
|
|
|
|
|
|
Return the log base ten of the argument. A list form of the function |
154
|
|
|
|
|
|
|
is also provided. |
155
|
|
|
|
|
|
|
|
156
|
|
|
|
|
|
|
=cut |
157
|
|
|
|
|
|
|
|
158
|
|
|
|
|
|
|
sub log10 |
159
|
|
|
|
|
|
|
{ |
160
|
6
|
|
|
6
|
1
|
1649
|
my $log10 = log(10); |
161
|
6
|
50
|
|
|
|
44
|
return wantarray? map(log($_)/$log10, @_): log($_[0])/$log10; |
162
|
|
|
|
|
|
|
} |
163
|
|
|
|
|
|
|
|
164
|
|
|
|
|
|
|
=head3 log2() |
165
|
|
|
|
|
|
|
|
166
|
|
|
|
|
|
|
$xlog2 = log2($x); |
167
|
|
|
|
|
|
|
@xlog2 = log2(@x); |
168
|
|
|
|
|
|
|
|
169
|
|
|
|
|
|
|
Return the log base two of the argument. A list form of the function |
170
|
|
|
|
|
|
|
is also provided. |
171
|
|
|
|
|
|
|
|
172
|
|
|
|
|
|
|
=cut |
173
|
|
|
|
|
|
|
|
174
|
|
|
|
|
|
|
sub log2 |
175
|
|
|
|
|
|
|
{ |
176
|
6
|
|
|
6
|
1
|
1668
|
my $log2 = log(2); |
177
|
6
|
50
|
|
|
|
27
|
return wantarray? map(log($_)/$log2, @_): log($_[0])/$log2; |
178
|
|
|
|
|
|
|
} |
179
|
|
|
|
|
|
|
|
180
|
|
|
|
|
|
|
=head3 sign() |
181
|
|
|
|
|
|
|
|
182
|
|
|
|
|
|
|
$s = sign($x); |
183
|
|
|
|
|
|
|
@valsigns = sign(@values); |
184
|
|
|
|
|
|
|
|
185
|
|
|
|
|
|
|
Returns -1 if the argument is negative, 0 if the argument is zero, and 1 |
186
|
|
|
|
|
|
|
if the argument is positive. |
187
|
|
|
|
|
|
|
|
188
|
|
|
|
|
|
|
In list form it applies the same operation to each member of the list. |
189
|
|
|
|
|
|
|
|
190
|
|
|
|
|
|
|
=cut |
191
|
|
|
|
|
|
|
|
192
|
|
|
|
|
|
|
sub sign |
193
|
|
|
|
|
|
|
{ |
194
|
6
|
100
|
|
6
|
1
|
1667
|
return wantarray? map{($_ < 0)? -1: (($_ > 0)? 1: 0)} @_: |
|
10
|
100
|
|
|
|
34
|
|
|
|
100
|
|
|
|
|
|
|
|
100
|
|
|
|
|
|
|
|
100
|
|
|
|
|
|
195
|
|
|
|
|
|
|
($_[0] < 0)? -1: (($_[0] > 0)? 1: 0); |
196
|
|
|
|
|
|
|
} |
197
|
|
|
|
|
|
|
|
198
|
|
|
|
|
|
|
=head3 copysign() |
199
|
|
|
|
|
|
|
|
200
|
|
|
|
|
|
|
$ms = copysign($m, $n); |
201
|
|
|
|
|
|
|
$s = copysign($x); |
202
|
|
|
|
|
|
|
|
203
|
|
|
|
|
|
|
Take the sign of the second argument and apply it to the first. Zero |
204
|
|
|
|
|
|
|
is considered part of the positive signs. |
205
|
|
|
|
|
|
|
|
206
|
|
|
|
|
|
|
copysign(-5, 0); # Returns 5. |
207
|
|
|
|
|
|
|
copysign(-5, 7); # Returns 5. |
208
|
|
|
|
|
|
|
copysign(-5, -7); # Returns -5. |
209
|
|
|
|
|
|
|
copysign(5, -7); # Returns -5. |
210
|
|
|
|
|
|
|
|
211
|
|
|
|
|
|
|
If there is only one argument, return -1 if the argument is negative, |
212
|
|
|
|
|
|
|
otherwise return 1. For example, copysign(1, -4) and copysign(-4) both |
213
|
|
|
|
|
|
|
return -1. |
214
|
|
|
|
|
|
|
|
215
|
|
|
|
|
|
|
=cut |
216
|
|
|
|
|
|
|
|
217
|
|
|
|
|
|
|
sub copysign |
218
|
|
|
|
|
|
|
{ |
219
|
6
|
100
|
|
6
|
1
|
1751
|
return ($_[1] < 0)? -abs($_[0]): abs($_[0]) if (@_ == 2); |
|
|
100
|
|
|
|
|
|
220
|
3
|
100
|
|
|
|
12
|
return ($_[0] < 0)? -1: 1; |
221
|
|
|
|
|
|
|
} |
222
|
|
|
|
|
|
|
|
223
|
|
|
|
|
|
|
=head3 flipsign() |
224
|
|
|
|
|
|
|
|
225
|
|
|
|
|
|
|
$ms = flipsign($m, $n); |
226
|
|
|
|
|
|
|
|
227
|
|
|
|
|
|
|
Multiply the signs of the arguments and apply it to the first. As |
228
|
|
|
|
|
|
|
with copysign(), zero is considered part of the positive signs. |
229
|
|
|
|
|
|
|
|
230
|
|
|
|
|
|
|
Effectively this means change the sign of the first argument if |
231
|
|
|
|
|
|
|
the second argument is negative. |
232
|
|
|
|
|
|
|
|
233
|
|
|
|
|
|
|
flipsign(-5, 0); # Returns -5. |
234
|
|
|
|
|
|
|
flipsign(-5, 7); # Returns -5. |
235
|
|
|
|
|
|
|
flipsign(-5, -7); # Returns 5. |
236
|
|
|
|
|
|
|
flipsign(5, -7); # Returns -5. |
237
|
|
|
|
|
|
|
|
238
|
|
|
|
|
|
|
If for some reason flipsign() is called with a single argument, |
239
|
|
|
|
|
|
|
that argument is returned unchanged. |
240
|
|
|
|
|
|
|
|
241
|
|
|
|
|
|
|
=cut |
242
|
|
|
|
|
|
|
|
243
|
|
|
|
|
|
|
sub flipsign |
244
|
|
|
|
|
|
|
{ |
245
|
0
|
0
|
0
|
0
|
1
|
0
|
return -$_[0] if (@_ == 2 and $_[1] < 0); |
246
|
0
|
|
|
|
|
0
|
return $_[0]; |
247
|
|
|
|
|
|
|
} |
248
|
|
|
|
|
|
|
|
249
|
|
|
|
|
|
|
=head3 floor() |
250
|
|
|
|
|
|
|
|
251
|
|
|
|
|
|
|
$b = floor($a/2); |
252
|
|
|
|
|
|
|
|
253
|
|
|
|
|
|
|
@ilist = floor(@numbers); |
254
|
|
|
|
|
|
|
|
255
|
|
|
|
|
|
|
Returns the greatest integer less than or equal to its argument. |
256
|
|
|
|
|
|
|
A list form of the function also exists. |
257
|
|
|
|
|
|
|
|
258
|
|
|
|
|
|
|
floor(1.5, 1.87, 1); # Returns (1, 1, 1) |
259
|
|
|
|
|
|
|
floor(-1.5, -1.87, -1); # Returns (-2, -2, -1) |
260
|
|
|
|
|
|
|
|
261
|
|
|
|
|
|
|
=cut |
262
|
|
|
|
|
|
|
|
263
|
|
|
|
|
|
|
sub floor |
264
|
|
|
|
|
|
|
{ |
265
|
4
|
100
|
100
|
4
|
1
|
440
|
return wantarray? map(($_ < 0 and int($_) != $_)? int($_ - 1): int($_), @_): |
|
|
100
|
66
|
|
|
|
|
|
|
100
|
|
|
|
|
|
266
|
|
|
|
|
|
|
($_[0] < 0 and int($_[0]) != $_[0])? int($_[0] - 1): int($_[0]); |
267
|
|
|
|
|
|
|
} |
268
|
|
|
|
|
|
|
|
269
|
|
|
|
|
|
|
=head3 ceil() |
270
|
|
|
|
|
|
|
|
271
|
|
|
|
|
|
|
$b = ceil($a/2); |
272
|
|
|
|
|
|
|
|
273
|
|
|
|
|
|
|
@ilist = ceil(@numbers); |
274
|
|
|
|
|
|
|
|
275
|
|
|
|
|
|
|
Returns the lowest integer greater than or equal to its argument. |
276
|
|
|
|
|
|
|
A list form of the function also exists. |
277
|
|
|
|
|
|
|
|
278
|
|
|
|
|
|
|
ceil(1.5, 1.87, 1); # Returns (2, 2, 1) |
279
|
|
|
|
|
|
|
ceil(-1.5, -1.87, -1); # Returns (-1, -1, -1) |
280
|
|
|
|
|
|
|
|
281
|
|
|
|
|
|
|
=cut |
282
|
|
|
|
|
|
|
|
283
|
|
|
|
|
|
|
sub ceil |
284
|
|
|
|
|
|
|
{ |
285
|
4
|
100
|
100
|
4
|
1
|
616
|
return wantarray? map(($_ > 0 and int($_) != $_)? int($_ + 1): int($_), @_): |
|
|
100
|
66
|
|
|
|
|
|
|
100
|
|
|
|
|
|
286
|
|
|
|
|
|
|
($_[0] > 0 and int($_[0]) != $_[0])? int($_[0] + 1): int($_[0]); |
287
|
|
|
|
|
|
|
} |
288
|
|
|
|
|
|
|
|
289
|
|
|
|
|
|
|
=head3 fsum() |
290
|
|
|
|
|
|
|
|
291
|
|
|
|
|
|
|
Return a sum of the values in the list, done in a manner to avoid rounding |
292
|
|
|
|
|
|
|
and cancellation errors. Currently this is done via |
293
|
|
|
|
|
|
|
L. |
294
|
|
|
|
|
|
|
|
295
|
|
|
|
|
|
|
=cut |
296
|
|
|
|
|
|
|
|
297
|
|
|
|
|
|
|
sub fsum |
298
|
|
|
|
|
|
|
{ |
299
|
3
|
|
|
3
|
1
|
13
|
my($sum, $c) = (0, 0); |
300
|
|
|
|
|
|
|
|
301
|
3
|
|
|
|
|
8
|
for my $v (@_) |
302
|
|
|
|
|
|
|
{ |
303
|
24
|
|
|
|
|
34
|
my $y = $v - $c; |
304
|
24
|
|
|
|
|
43
|
my $t = $sum + $y; |
305
|
|
|
|
|
|
|
|
306
|
|
|
|
|
|
|
# |
307
|
|
|
|
|
|
|
# If we lost low-order bits of $y (usually because |
308
|
|
|
|
|
|
|
# $sum is much larger than $y), save them in $c |
309
|
|
|
|
|
|
|
# for the next loop iteration. |
310
|
|
|
|
|
|
|
# |
311
|
24
|
|
|
|
|
27
|
$c = ($t - $sum) - $y; |
312
|
24
|
|
|
|
|
33
|
$sum = $t; |
313
|
|
|
|
|
|
|
} |
314
|
|
|
|
|
|
|
|
315
|
3
|
|
|
|
|
9
|
return $sum; |
316
|
|
|
|
|
|
|
} |
317
|
|
|
|
|
|
|
|
318
|
|
|
|
|
|
|
=head3 gcd |
319
|
|
|
|
|
|
|
|
320
|
|
|
|
|
|
|
=head3 hcf |
321
|
|
|
|
|
|
|
|
322
|
|
|
|
|
|
|
Return the greatest common divisor (also known as the highest |
323
|
|
|
|
|
|
|
common factor) of a list of integers. These are simply synomyms: |
324
|
|
|
|
|
|
|
|
325
|
|
|
|
|
|
|
$factor = gcd(@values); |
326
|
|
|
|
|
|
|
$factor = hfc(@numbers); |
327
|
|
|
|
|
|
|
|
328
|
|
|
|
|
|
|
=cut |
329
|
|
|
|
|
|
|
|
330
|
|
|
|
|
|
|
sub gcd |
331
|
|
|
|
|
|
|
{ |
332
|
18
|
|
|
18
|
|
9234
|
use integer; |
|
18
|
|
|
|
|
269
|
|
|
18
|
|
|
|
|
96
|
|
333
|
24
|
|
|
24
|
1
|
1285
|
my($x, $y, $r); |
334
|
|
|
|
|
|
|
|
335
|
|
|
|
|
|
|
# |
336
|
|
|
|
|
|
|
# It could happen. Someone might type \$x instead of $x. |
337
|
|
|
|
|
|
|
# |
338
|
60
|
50
|
|
|
|
135
|
my @values = map{(ref $_ eq "ARRAY")? @$_: |
|
|
100
|
|
|
|
|
|
339
|
24
|
|
|
|
|
44
|
((ref $_ eq "SCALAR")? $$_: $_)} grep {$_} @_; |
|
60
|
|
|
|
|
90
|
|
340
|
|
|
|
|
|
|
|
341
|
24
|
50
|
|
|
|
54
|
return 0 if (scalar @values == 0); |
342
|
|
|
|
|
|
|
|
343
|
24
|
|
|
|
|
46
|
$y = abs pop @values; |
344
|
24
|
|
|
|
|
30
|
$x = abs pop @values; |
345
|
|
|
|
|
|
|
|
346
|
24
|
|
|
|
|
31
|
while (1) |
347
|
|
|
|
|
|
|
{ |
348
|
41
|
100
|
|
|
|
85
|
($x, $y) = ($y, $x) if ($y < $x); |
349
|
|
|
|
|
|
|
|
350
|
41
|
|
|
|
|
50
|
$r = $y % $x; |
351
|
41
|
|
|
|
|
47
|
$y = $x; |
352
|
|
|
|
|
|
|
|
353
|
41
|
100
|
|
|
|
73
|
if ($r == 0) |
354
|
|
|
|
|
|
|
{ |
355
|
37
|
100
|
|
|
|
101
|
return $x if (scalar @values == 0); |
356
|
13
|
|
|
|
|
19
|
$r = abs pop @values; |
357
|
|
|
|
|
|
|
} |
358
|
|
|
|
|
|
|
|
359
|
17
|
|
|
|
|
19
|
$x = $r; |
360
|
|
|
|
|
|
|
} |
361
|
|
|
|
|
|
|
|
362
|
0
|
|
|
|
|
0
|
return $y; |
363
|
|
|
|
|
|
|
} |
364
|
|
|
|
|
|
|
|
365
|
|
|
|
|
|
|
# |
366
|
|
|
|
|
|
|
#sub bgcd |
367
|
|
|
|
|
|
|
#{ |
368
|
|
|
|
|
|
|
# my($x, $y) = map(abs($_), @_); |
369
|
|
|
|
|
|
|
# |
370
|
|
|
|
|
|
|
# return $y if ($x == 0); |
371
|
|
|
|
|
|
|
# return $x if ($y == 0); |
372
|
|
|
|
|
|
|
# |
373
|
|
|
|
|
|
|
# my $lsbx = low_set_bit($x); |
374
|
|
|
|
|
|
|
# my $lsby = low_set_bit($y); |
375
|
|
|
|
|
|
|
# $x >>= $lsbx; |
376
|
|
|
|
|
|
|
# $y >>= $lsby; |
377
|
|
|
|
|
|
|
# |
378
|
|
|
|
|
|
|
# while ($x != $y) |
379
|
|
|
|
|
|
|
# { |
380
|
|
|
|
|
|
|
# ($x, $y) = ($y, $x) if ($x > $y); |
381
|
|
|
|
|
|
|
# |
382
|
|
|
|
|
|
|
# $y -= $x; |
383
|
|
|
|
|
|
|
# $y >>= low_set_bit($y); |
384
|
|
|
|
|
|
|
# } |
385
|
|
|
|
|
|
|
# return ($x << (($lsbx > $lsby)? $lsby: $lsbx)); |
386
|
|
|
|
|
|
|
#} |
387
|
|
|
|
|
|
|
|
388
|
|
|
|
|
|
|
*hcf = \&gcd; |
389
|
|
|
|
|
|
|
|
390
|
|
|
|
|
|
|
=head3 lcm |
391
|
|
|
|
|
|
|
|
392
|
|
|
|
|
|
|
Return the least common multiple of a list of integers. |
393
|
|
|
|
|
|
|
|
394
|
|
|
|
|
|
|
$factor = lcm(@values); |
395
|
|
|
|
|
|
|
|
396
|
|
|
|
|
|
|
=cut |
397
|
|
|
|
|
|
|
|
398
|
|
|
|
|
|
|
sub lcm |
399
|
|
|
|
|
|
|
{ |
400
|
|
|
|
|
|
|
# |
401
|
|
|
|
|
|
|
# It could happen. Someone might type \$x instead of $x. |
402
|
|
|
|
|
|
|
# |
403
|
0
|
0
|
|
0
|
1
|
0
|
my @values = map{(ref $_ eq "ARRAY")? @$_: |
|
0
|
0
|
|
|
|
0
|
|
404
|
|
|
|
|
|
|
((ref $_ eq "SCALAR")? $$_: $_)} @_; |
405
|
|
|
|
|
|
|
|
406
|
0
|
|
|
|
|
0
|
my $x = pop @values; |
407
|
|
|
|
|
|
|
|
408
|
0
|
|
|
|
|
0
|
for my $m (@values) |
409
|
|
|
|
|
|
|
{ |
410
|
0
|
|
|
|
|
0
|
$x *= $m/gcd($m, $x); |
411
|
|
|
|
|
|
|
} |
412
|
|
|
|
|
|
|
|
413
|
0
|
|
|
|
|
0
|
return abs $x; |
414
|
|
|
|
|
|
|
} |
415
|
|
|
|
|
|
|
|
416
|
|
|
|
|
|
|
=head3 moduli() |
417
|
|
|
|
|
|
|
|
418
|
|
|
|
|
|
|
Return the moduli of an integer after repeated divisions. The remainders are |
419
|
|
|
|
|
|
|
returned in a list from left to right. |
420
|
|
|
|
|
|
|
|
421
|
|
|
|
|
|
|
@digits = moduli(1899, 10); # Returns (9, 9, 8, 1) |
422
|
|
|
|
|
|
|
@rems = moduli(29, 3); # Returns (2, 0, 0, 1) |
423
|
|
|
|
|
|
|
|
424
|
|
|
|
|
|
|
=cut |
425
|
|
|
|
|
|
|
|
426
|
|
|
|
|
|
|
sub moduli |
427
|
|
|
|
|
|
|
{ |
428
|
2
|
|
|
2
|
1
|
529
|
my($n, $b) = (abs($_[0]), abs($_[1])); |
429
|
2
|
|
|
|
|
4
|
my @mlist; |
430
|
18
|
|
|
18
|
|
6329
|
use integer; |
|
18
|
|
|
|
|
39
|
|
|
18
|
|
|
|
|
90
|
|
431
|
|
|
|
|
|
|
|
432
|
2
|
|
|
|
|
4
|
for (;;) |
433
|
|
|
|
|
|
|
{ |
434
|
16
|
|
|
|
|
25
|
push @mlist, $n % $b; |
435
|
16
|
|
|
|
|
19
|
$n /= $b; |
436
|
16
|
100
|
|
|
|
44
|
return @mlist if ($n == 0); |
437
|
|
|
|
|
|
|
} |
438
|
0
|
|
|
|
|
0
|
return (); |
439
|
|
|
|
|
|
|
} |
440
|
|
|
|
|
|
|
|
441
|
|
|
|
|
|
|
=head2 compare tag |
442
|
|
|
|
|
|
|
|
443
|
|
|
|
|
|
|
Create comparison functions for floating point (non-integer) numbers. |
444
|
|
|
|
|
|
|
|
445
|
|
|
|
|
|
|
Since exact comparisons of floating point numbers tend to be iffy, |
446
|
|
|
|
|
|
|
the comparison functions use a tolerance chosen by you. You may |
447
|
|
|
|
|
|
|
then use those functions from then on confident that comparisons |
448
|
|
|
|
|
|
|
will be consistent. |
449
|
|
|
|
|
|
|
|
450
|
|
|
|
|
|
|
If you do not provide a tolerance, a default tolerance of 1.49012e-8 |
451
|
|
|
|
|
|
|
(approximately the square root of an Intel Pentium's |
452
|
|
|
|
|
|
|
L) |
453
|
|
|
|
|
|
|
will be used. |
454
|
|
|
|
|
|
|
|
455
|
|
|
|
|
|
|
=head3 generate_fltcmp() |
456
|
|
|
|
|
|
|
|
457
|
|
|
|
|
|
|
Returns a comparison function that will compare values using a tolerance |
458
|
|
|
|
|
|
|
that you supply. The generated function will return -1 if the first |
459
|
|
|
|
|
|
|
argument compares as less than the second, 0 if the two arguments |
460
|
|
|
|
|
|
|
compare as equal, and 1 if the first argument compares as greater than |
461
|
|
|
|
|
|
|
the second. |
462
|
|
|
|
|
|
|
|
463
|
|
|
|
|
|
|
my $fltcmp = generate_fltcmp(1.5e-7); |
464
|
|
|
|
|
|
|
|
465
|
|
|
|
|
|
|
my(@xpos) = grep {&$fltcmp($_, 0) == 1} @xvals; |
466
|
|
|
|
|
|
|
|
467
|
|
|
|
|
|
|
=cut |
468
|
|
|
|
|
|
|
|
469
|
|
|
|
|
|
|
my $default_tolerance = 1.49012e-8; |
470
|
|
|
|
|
|
|
|
471
|
|
|
|
|
|
|
sub generate_fltcmp |
472
|
|
|
|
|
|
|
{ |
473
|
4
|
|
66
|
4
|
1
|
350
|
my $tol = $_[0] // $default_tolerance; |
474
|
|
|
|
|
|
|
|
475
|
|
|
|
|
|
|
return sub { |
476
|
56
|
|
|
56
|
|
1043
|
my($x, $y) = @_; |
477
|
56
|
50
|
|
|
|
244
|
return 0 if (abs($x - $y) <= $tol); |
478
|
0
|
0
|
|
|
|
0
|
return -1 if ($x < $y); |
479
|
0
|
|
|
|
|
0
|
return 1; |
480
|
|
|
|
|
|
|
} |
481
|
4
|
|
|
|
|
27
|
} |
482
|
|
|
|
|
|
|
|
483
|
|
|
|
|
|
|
=head3 generate_relational() |
484
|
|
|
|
|
|
|
|
485
|
|
|
|
|
|
|
Returns a list of comparison functions that will compare values using a |
486
|
|
|
|
|
|
|
tolerance that you supply. The generated functions will be the equivalent |
487
|
|
|
|
|
|
|
of the equal, not equal, greater than, greater than or equal, less than, |
488
|
|
|
|
|
|
|
and less than or equal operators. |
489
|
|
|
|
|
|
|
|
490
|
|
|
|
|
|
|
my($eq, $ne, $gt, $ge, $lt, $le) = generate_relational(1.5e-7); |
491
|
|
|
|
|
|
|
|
492
|
|
|
|
|
|
|
my(@approx_5) = grep {&$eq($_, 5)} @xvals; |
493
|
|
|
|
|
|
|
|
494
|
|
|
|
|
|
|
Of course, if you were only interested in not equal, you could use: |
495
|
|
|
|
|
|
|
|
496
|
|
|
|
|
|
|
my(undef, $ne) = generate_relational(1.5e-7); |
497
|
|
|
|
|
|
|
|
498
|
|
|
|
|
|
|
my(@not_around5) = grep {&$ne($_, 5)} @xvals; |
499
|
|
|
|
|
|
|
|
500
|
|
|
|
|
|
|
=cut |
501
|
|
|
|
|
|
|
|
502
|
|
|
|
|
|
|
sub generate_relational |
503
|
|
|
|
|
|
|
{ |
504
|
2
|
|
33
|
2
|
1
|
108
|
my $tol = $_[0] // $default_tolerance; |
505
|
|
|
|
|
|
|
|
506
|
|
|
|
|
|
|
# |
507
|
|
|
|
|
|
|
# In order: eq, ne, gt, ge, lt, le. |
508
|
|
|
|
|
|
|
# |
509
|
|
|
|
|
|
|
return ( |
510
|
24
|
100
|
|
24
|
|
3453
|
sub {return (abs($_[0] - $_[1]) <= $tol)? 1: 0;}, # eq |
511
|
12
|
100
|
|
12
|
|
45
|
sub {return (abs($_[0] - $_[1]) > $tol)? 1: 0;}, # ne |
512
|
|
|
|
|
|
|
|
513
|
12
|
100
|
100
|
12
|
|
64
|
sub {return ((abs($_[0] - $_[1]) > $tol) and ($_[0] > $_[1]))? 1: 0;}, # gt |
514
|
12
|
100
|
100
|
12
|
|
55
|
sub {return ((abs($_[0] - $_[1]) <= $tol) or ($_[0] > $_[1]))? 1: 0;}, # ge |
515
|
|
|
|
|
|
|
|
516
|
12
|
100
|
100
|
12
|
|
54
|
sub {return ((abs($_[0] - $_[1]) > $tol) and ($_[0] < $_[1]))? 1: 0;}, # lt |
517
|
12
|
100
|
100
|
12
|
|
88
|
sub {return ((abs($_[0] - $_[1]) <= $tol) or ($_[0] < $_[1]))? 1: 0;} # le |
518
|
2
|
|
|
|
|
26
|
); |
519
|
|
|
|
|
|
|
} |
520
|
|
|
|
|
|
|
|
521
|
|
|
|
|
|
|
=head2 polynomial tag |
522
|
|
|
|
|
|
|
|
523
|
|
|
|
|
|
|
Perform some polynomial operations on plain lists of coefficients. |
524
|
|
|
|
|
|
|
|
525
|
|
|
|
|
|
|
# |
526
|
|
|
|
|
|
|
# The coefficient lists are presumed to go from low order to high: |
527
|
|
|
|
|
|
|
# |
528
|
|
|
|
|
|
|
@coefficients = (1, 2, 4, 8); # 1 + 2x + 4x**2 + 8x**3 |
529
|
|
|
|
|
|
|
|
530
|
|
|
|
|
|
|
In all functions the coeffcient list is passed by reference to the function, |
531
|
|
|
|
|
|
|
and the functions that return coefficients all return references to a |
532
|
|
|
|
|
|
|
coefficient list. |
533
|
|
|
|
|
|
|
|
534
|
|
|
|
|
|
|
B
|
535
|
|
|
|
|
|
|
already been removed before calling these functions, and that any leading |
536
|
|
|
|
|
|
|
zeros found in the returned lists will be handled by the caller.> This caveat |
537
|
|
|
|
|
|
|
is particularly important to note in the case of C. |
538
|
|
|
|
|
|
|
|
539
|
|
|
|
|
|
|
Although these functions are convenient for simple polynomial operations, |
540
|
|
|
|
|
|
|
for more advanced polynonial operations L is recommended. |
541
|
|
|
|
|
|
|
|
542
|
|
|
|
|
|
|
=head3 pl_evaluate() |
543
|
|
|
|
|
|
|
|
544
|
|
|
|
|
|
|
$y = pl_evaluate(\@coefficients, $x); |
545
|
|
|
|
|
|
|
@yvalues = pl_evaluate(\@coefficients, \@xvalues); |
546
|
|
|
|
|
|
|
|
547
|
|
|
|
|
|
|
You can also use lists of the X values or X array references: |
548
|
|
|
|
|
|
|
|
549
|
|
|
|
|
|
|
@yvalues = pl_evaluate(\@coefficients, \@xvalues, \@primes, $x, @negatives); |
550
|
|
|
|
|
|
|
|
551
|
|
|
|
|
|
|
Returns either a y-value for a corresponding x-value, or a list of |
552
|
|
|
|
|
|
|
y-values on the polynomial for a corresponding list of x-values, |
553
|
|
|
|
|
|
|
using Horner's method. |
554
|
|
|
|
|
|
|
|
555
|
|
|
|
|
|
|
=cut |
556
|
|
|
|
|
|
|
|
557
|
|
|
|
|
|
|
sub pl_evaluate |
558
|
|
|
|
|
|
|
{ |
559
|
8
|
|
|
8
|
1
|
4070
|
my @coefficients = @{$_[0]}; |
|
8
|
|
|
|
|
16
|
|
560
|
|
|
|
|
|
|
|
561
|
|
|
|
|
|
|
# |
562
|
|
|
|
|
|
|
# It could happen. Someone might type \$x instead of $x. |
563
|
|
|
|
|
|
|
# |
564
|
8
|
100
|
|
|
|
26
|
my @xvalues = map{(ref $_ eq "ARRAY")? @$_: |
|
12
|
100
|
|
|
|
62
|
|
565
|
|
|
|
|
|
|
((ref $_ eq "SCALAR")? $$_: $_)} @_[1 .. $#_]; |
566
|
|
|
|
|
|
|
|
567
|
|
|
|
|
|
|
# |
568
|
|
|
|
|
|
|
# Move the leading coefficient off the polynomial list |
569
|
|
|
|
|
|
|
# and use it as our starting value(s). |
570
|
|
|
|
|
|
|
# |
571
|
8
|
|
|
|
|
24
|
my @results = (pop @coefficients) x scalar @xvalues; |
572
|
|
|
|
|
|
|
|
573
|
8
|
|
|
|
|
16
|
for my $c (reverse @coefficients) |
574
|
|
|
|
|
|
|
{ |
575
|
24
|
|
|
|
|
1178
|
for my $j (0..$#xvalues) |
576
|
|
|
|
|
|
|
{ |
577
|
84
|
|
|
|
|
4544
|
$results[$j] = $results[$j] * $xvalues[$j] + $c; |
578
|
|
|
|
|
|
|
} |
579
|
|
|
|
|
|
|
} |
580
|
|
|
|
|
|
|
|
581
|
8
|
50
|
|
|
|
365
|
return wantarray? @results: $results[0]; |
582
|
|
|
|
|
|
|
} |
583
|
|
|
|
|
|
|
|
584
|
|
|
|
|
|
|
=head3 pl_dxevaluate() |
585
|
|
|
|
|
|
|
|
586
|
|
|
|
|
|
|
($y, $dy, $ddy) = pl_dxevaluate(\@coefficients, $x); |
587
|
|
|
|
|
|
|
|
588
|
|
|
|
|
|
|
Returns p(x), p'(x), and p"(x) of the polynomial for an |
589
|
|
|
|
|
|
|
x-value, using Horner's method. Note that unlike C |
590
|
|
|
|
|
|
|
above, the function can only use one x-value. |
591
|
|
|
|
|
|
|
|
592
|
|
|
|
|
|
|
If the polynomial is a linear equation, the second derivative value |
593
|
|
|
|
|
|
|
will be zero. Similarly, if the polynomial is a simple constant, |
594
|
|
|
|
|
|
|
the first derivative value will be zero. |
595
|
|
|
|
|
|
|
|
596
|
|
|
|
|
|
|
=cut |
597
|
|
|
|
|
|
|
|
598
|
|
|
|
|
|
|
sub pl_dxevaluate |
599
|
|
|
|
|
|
|
{ |
600
|
12
|
|
|
12
|
1
|
31
|
my($coef_ref, $x) = @_; |
601
|
12
|
|
|
|
|
28
|
my(@coefficients) = @$coef_ref; |
602
|
12
|
|
|
|
|
21
|
my $n = $#coefficients; |
603
|
12
|
|
|
|
|
33
|
my $val = pop @coefficients; |
604
|
12
|
|
|
|
|
24
|
my $d1val = $val * $n; |
605
|
12
|
|
|
|
|
16
|
my $d2val = 0; |
606
|
|
|
|
|
|
|
|
607
|
|
|
|
|
|
|
# |
608
|
|
|
|
|
|
|
# Special case for the linear eq'n (the y = constant eq'n |
609
|
|
|
|
|
|
|
# takes care of itself). |
610
|
|
|
|
|
|
|
# |
611
|
12
|
100
|
|
|
|
37
|
if ($n == 1) |
|
|
100
|
|
|
|
|
|
612
|
|
|
|
|
|
|
{ |
613
|
1
|
|
|
|
|
2
|
$val = $val * $x + $coefficients[0]; |
614
|
|
|
|
|
|
|
} |
615
|
|
|
|
|
|
|
elsif ($n >= 2) |
616
|
|
|
|
|
|
|
{ |
617
|
10
|
|
|
|
|
16
|
my $lastn = --$n; |
618
|
10
|
|
|
|
|
14
|
$d2val = $d1val * $n; |
619
|
|
|
|
|
|
|
|
620
|
|
|
|
|
|
|
# |
621
|
|
|
|
|
|
|
# Loop through the coefficients, except for |
622
|
|
|
|
|
|
|
# the linear and constant terms. |
623
|
|
|
|
|
|
|
# |
624
|
10
|
|
|
|
|
22
|
for my $c (reverse @coefficients[2..$lastn]) |
625
|
|
|
|
|
|
|
{ |
626
|
38
|
|
|
|
|
45
|
$val = $val * $x + $c; |
627
|
38
|
|
|
|
|
47
|
$d1val = $d1val * $x + ($c *= $n--); |
628
|
38
|
|
|
|
|
58
|
$d2val = $d2val * $x + ($c * $n); |
629
|
|
|
|
|
|
|
} |
630
|
|
|
|
|
|
|
|
631
|
|
|
|
|
|
|
# |
632
|
|
|
|
|
|
|
# Handle the last two coefficients. |
633
|
|
|
|
|
|
|
# |
634
|
10
|
|
|
|
|
16
|
$d1val = $d1val * $x + $coefficients[1]; |
635
|
10
|
|
|
|
|
17
|
$val = ($val * $x + $coefficients[1]) * $x + $coefficients[0]; |
636
|
|
|
|
|
|
|
} |
637
|
|
|
|
|
|
|
|
638
|
12
|
|
|
|
|
56
|
return ($val, $d1val, $d2val); |
639
|
|
|
|
|
|
|
} |
640
|
|
|
|
|
|
|
|
641
|
|
|
|
|
|
|
=head3 pl_translate() |
642
|
|
|
|
|
|
|
|
643
|
|
|
|
|
|
|
$x = [8, 3, 1]; |
644
|
|
|
|
|
|
|
$y = [3, 1]; |
645
|
|
|
|
|
|
|
|
646
|
|
|
|
|
|
|
# |
647
|
|
|
|
|
|
|
# Translating C by C returns [26, 9, 1] |
648
|
|
|
|
|
|
|
# |
649
|
|
|
|
|
|
|
$z = pl_translate($x, $y); |
650
|
|
|
|
|
|
|
|
651
|
|
|
|
|
|
|
Returns a polynomial transformed by substituting a polynomial variable with another polynomial. |
652
|
|
|
|
|
|
|
For example, a simple linear translation by 1 to the polynomial C |
653
|
|
|
|
|
|
|
would be accomplished by setting x = (y - 1); resulting in C. |
654
|
|
|
|
|
|
|
|
655
|
|
|
|
|
|
|
$x = [4, 4, 1, 1]; |
656
|
|
|
|
|
|
|
$y = [-1, 1]; |
657
|
|
|
|
|
|
|
$z = pl_translate($x, $y); # Becomes [0, 5, -2, 1] |
658
|
|
|
|
|
|
|
|
659
|
|
|
|
|
|
|
=cut |
660
|
|
|
|
|
|
|
|
661
|
|
|
|
|
|
|
sub pl_translate |
662
|
|
|
|
|
|
|
{ |
663
|
4
|
|
|
4
|
1
|
1920
|
my($x, $y) = @_; |
664
|
|
|
|
|
|
|
|
665
|
4
|
|
|
|
|
10
|
my @x_arr = @$x; |
666
|
4
|
|
|
|
|
8
|
my @z = pop @x_arr; |
667
|
|
|
|
|
|
|
|
668
|
4
|
|
|
|
|
9
|
for my $c (reverse @x_arr) |
669
|
|
|
|
|
|
|
{ |
670
|
8
|
|
|
|
|
9
|
@z = @{ pl_mult(\@z, $y) }; |
|
8
|
|
|
|
|
28
|
|
671
|
8
|
|
|
|
|
18
|
$z[0] += $c; |
672
|
|
|
|
|
|
|
} |
673
|
|
|
|
|
|
|
|
674
|
4
|
|
|
|
|
11
|
return [@z]; |
675
|
|
|
|
|
|
|
} |
676
|
|
|
|
|
|
|
|
677
|
|
|
|
|
|
|
=head3 pl_add() |
678
|
|
|
|
|
|
|
|
679
|
|
|
|
|
|
|
$polyn_ref = pl_add(\@m, \@n); |
680
|
|
|
|
|
|
|
|
681
|
|
|
|
|
|
|
Add two lists of numbers as though they were polynomial coefficients. |
682
|
|
|
|
|
|
|
|
683
|
|
|
|
|
|
|
=cut |
684
|
|
|
|
|
|
|
|
685
|
|
|
|
|
|
|
sub pl_add |
686
|
|
|
|
|
|
|
{ |
687
|
41
|
|
|
41
|
1
|
1281
|
my(@av) = @{$_[0]}; |
|
41
|
|
|
|
|
70
|
|
688
|
41
|
|
|
|
|
52
|
my(@bv) = @{$_[1]}; |
|
41
|
|
|
|
|
58
|
|
689
|
41
|
|
|
|
|
54
|
my $ldiff = scalar @av - scalar @bv; |
690
|
|
|
|
|
|
|
|
691
|
41
|
100
|
|
|
|
117
|
my @result = ($ldiff < 0)? |
692
|
|
|
|
|
|
|
splice(@bv, scalar @bv + $ldiff, -$ldiff): |
693
|
|
|
|
|
|
|
splice(@av, scalar @av - $ldiff, $ldiff); |
694
|
|
|
|
|
|
|
|
695
|
41
|
|
|
|
|
138
|
unshift @result, map($av[$_] + $bv[$_], 0.. $#av); |
696
|
|
|
|
|
|
|
|
697
|
41
|
|
|
|
|
98
|
return \@result; |
698
|
|
|
|
|
|
|
} |
699
|
|
|
|
|
|
|
|
700
|
|
|
|
|
|
|
=head3 pl_sub() |
701
|
|
|
|
|
|
|
|
702
|
|
|
|
|
|
|
$polyn_ref = pl_sub(\@m, \@n); |
703
|
|
|
|
|
|
|
|
704
|
|
|
|
|
|
|
Subtract the second list of numbers from the first as though they |
705
|
|
|
|
|
|
|
were polynomial coefficients. |
706
|
|
|
|
|
|
|
|
707
|
|
|
|
|
|
|
=cut |
708
|
|
|
|
|
|
|
|
709
|
|
|
|
|
|
|
sub pl_sub |
710
|
|
|
|
|
|
|
{ |
711
|
3
|
|
|
3
|
1
|
997
|
my(@av) = @{$_[0]}; |
|
3
|
|
|
|
|
8
|
|
712
|
3
|
|
|
|
|
4
|
my(@bv) = @{$_[1]}; |
|
3
|
|
|
|
|
8
|
|
713
|
3
|
|
|
|
|
7
|
my $ldiff = scalar @av - scalar @bv; |
714
|
|
|
|
|
|
|
|
715
|
|
|
|
|
|
|
my @result = ($ldiff < 0)? |
716
|
3
|
100
|
|
|
|
27
|
map {-$_} splice(@bv, scalar @bv + $ldiff, -$ldiff): |
|
4
|
|
|
|
|
8
|
|
717
|
|
|
|
|
|
|
splice(@av, scalar @av - $ldiff, $ldiff); |
718
|
|
|
|
|
|
|
|
719
|
3
|
|
|
|
|
28
|
unshift @result, map($av[$_] - $bv[$_], 0.. $#av); |
720
|
|
|
|
|
|
|
|
721
|
3
|
|
|
|
|
12
|
return \@result; |
722
|
|
|
|
|
|
|
} |
723
|
|
|
|
|
|
|
|
724
|
|
|
|
|
|
|
=head3 pl_div() |
725
|
|
|
|
|
|
|
|
726
|
|
|
|
|
|
|
($q_ref, $r_ref) = pl_div(\@numerator, \@divisor); |
727
|
|
|
|
|
|
|
|
728
|
|
|
|
|
|
|
Synthetic division for polynomials. Divides the first list of coefficients |
729
|
|
|
|
|
|
|
by the second list. |
730
|
|
|
|
|
|
|
|
731
|
|
|
|
|
|
|
Returns references to the quotient and the remainder. |
732
|
|
|
|
|
|
|
|
733
|
|
|
|
|
|
|
Remember to check for leading zeros (which are rightmost in the list) in |
734
|
|
|
|
|
|
|
the returned values. For example, |
735
|
|
|
|
|
|
|
|
736
|
|
|
|
|
|
|
my @n = (4, 12, 9, 3); |
737
|
|
|
|
|
|
|
my @d = (1, 3, 3, 1); |
738
|
|
|
|
|
|
|
|
739
|
|
|
|
|
|
|
my($q_ref, $r_ref) = pl_div(\@n, \@d); |
740
|
|
|
|
|
|
|
|
741
|
|
|
|
|
|
|
After division you will have returned C<(3)> as the quotient, |
742
|
|
|
|
|
|
|
and C<(1, 3, 0)> as the remainder. In general, you will want to remove |
743
|
|
|
|
|
|
|
the leading zero, or for that matter values within epsilon of zero, in |
744
|
|
|
|
|
|
|
the remainder. |
745
|
|
|
|
|
|
|
|
746
|
|
|
|
|
|
|
my($q_ref, $r_ref) = pl_div($f1, $f2); |
747
|
|
|
|
|
|
|
|
748
|
|
|
|
|
|
|
# |
749
|
|
|
|
|
|
|
# Remove any leading zeros (i.e., numbers smaller in |
750
|
|
|
|
|
|
|
# magnitude than machine epsilon) in the remainder. |
751
|
|
|
|
|
|
|
# |
752
|
|
|
|
|
|
|
my @remd = @{$r_ref}; |
753
|
|
|
|
|
|
|
pop @remd while (@remd and abs($remd[$#remd]) < $epsilon); |
754
|
|
|
|
|
|
|
|
755
|
|
|
|
|
|
|
$f1 = $f2; |
756
|
|
|
|
|
|
|
$f2 = [@remd]; |
757
|
|
|
|
|
|
|
|
758
|
|
|
|
|
|
|
If C<$f1> and C<$f2> were to go through that bit of code again, not |
759
|
|
|
|
|
|
|
removing the leading zeros would lead to a divide-by-zero error. |
760
|
|
|
|
|
|
|
|
761
|
|
|
|
|
|
|
If either list of coefficients is empty, pl_div() returns undefs for |
762
|
|
|
|
|
|
|
both quotient and remainder. |
763
|
|
|
|
|
|
|
|
764
|
|
|
|
|
|
|
=cut |
765
|
|
|
|
|
|
|
|
766
|
|
|
|
|
|
|
sub pl_div |
767
|
|
|
|
|
|
|
{ |
768
|
5
|
|
|
5
|
1
|
1813
|
my @numerator = @{$_[0]}; |
|
5
|
|
|
|
|
15
|
|
769
|
5
|
|
|
|
|
10
|
my @divisor = @{$_[1]}; |
|
5
|
|
|
|
|
9
|
|
770
|
|
|
|
|
|
|
|
771
|
5
|
|
|
|
|
6
|
my @quotient; |
772
|
|
|
|
|
|
|
|
773
|
5
|
|
|
|
|
24
|
my $n_degree = $#numerator; |
774
|
5
|
|
|
|
|
6
|
my $d_degree = $#divisor; |
775
|
|
|
|
|
|
|
|
776
|
|
|
|
|
|
|
# |
777
|
|
|
|
|
|
|
# Sanity checks: a numerator less than the divisor |
778
|
|
|
|
|
|
|
# is automatically the remainder; and return a pair |
779
|
|
|
|
|
|
|
# of undefs if either set of coefficients are |
780
|
|
|
|
|
|
|
# empty lists. |
781
|
|
|
|
|
|
|
# |
782
|
5
|
50
|
|
|
|
14
|
return ([0], \@numerator) if ($n_degree < $d_degree); |
783
|
5
|
50
|
33
|
|
|
23
|
return (undef, undef) if ($d_degree < 0 or $n_degree < 0); |
784
|
|
|
|
|
|
|
|
785
|
5
|
|
|
|
|
9
|
my $lead_coefficient = $divisor[$#divisor]; |
786
|
|
|
|
|
|
|
|
787
|
|
|
|
|
|
|
# |
788
|
|
|
|
|
|
|
# Perform the synthetic division. The remainder will |
789
|
|
|
|
|
|
|
# be what's left in the numerator. |
790
|
|
|
|
|
|
|
# (4, 13, 4, -9, 6) / (1, 2) = (4, 5, -6, 3) |
791
|
|
|
|
|
|
|
# |
792
|
|
|
|
|
|
|
@quotient = reverse map { |
793
|
|
|
|
|
|
|
# |
794
|
|
|
|
|
|
|
# Get the next term for the quotient. We pop |
795
|
|
|
|
|
|
|
# off the lead numerator term, which would become |
796
|
|
|
|
|
|
|
# zero due to subtraction anyway. |
797
|
|
|
|
|
|
|
# |
798
|
5
|
|
|
|
|
14
|
my $q = (pop @numerator)/$lead_coefficient; |
|
20
|
|
|
|
|
32
|
|
799
|
|
|
|
|
|
|
|
800
|
20
|
|
|
|
|
37
|
for my $k (0..$d_degree - 1) |
801
|
|
|
|
|
|
|
{ |
802
|
67
|
|
|
|
|
104
|
$numerator[$#numerator - $k] -= $q * $divisor[$d_degree - $k - 1]; |
803
|
|
|
|
|
|
|
} |
804
|
|
|
|
|
|
|
|
805
|
20
|
|
|
|
|
39
|
$q; |
806
|
|
|
|
|
|
|
} reverse (0 .. $n_degree - $d_degree); |
807
|
|
|
|
|
|
|
|
808
|
5
|
|
|
|
|
16
|
return (\@quotient, \@numerator); |
809
|
|
|
|
|
|
|
} |
810
|
|
|
|
|
|
|
|
811
|
|
|
|
|
|
|
=head3 pl_mult() |
812
|
|
|
|
|
|
|
|
813
|
|
|
|
|
|
|
$m_ref = pl_mult(\@coefficients1, \@coefficients2); |
814
|
|
|
|
|
|
|
|
815
|
|
|
|
|
|
|
Returns the reference to the product of the two multiplicands. |
816
|
|
|
|
|
|
|
|
817
|
|
|
|
|
|
|
=cut |
818
|
|
|
|
|
|
|
|
819
|
|
|
|
|
|
|
sub pl_mult |
820
|
|
|
|
|
|
|
{ |
821
|
51
|
|
|
51
|
1
|
18800
|
my($av, $bv) = @_; |
822
|
51
|
|
|
|
|
63
|
my $a_degree = $#{$av}; |
|
51
|
|
|
|
|
87
|
|
823
|
51
|
|
|
|
|
109
|
my $b_degree = $#{$bv}; |
|
51
|
|
|
|
|
74
|
|
824
|
|
|
|
|
|
|
|
825
|
|
|
|
|
|
|
# |
826
|
|
|
|
|
|
|
# Rather than multiplying left to right for each element, |
827
|
|
|
|
|
|
|
# sum to each degree of the resulting polynomial (the list |
828
|
|
|
|
|
|
|
# after the map block). Still an O(n**2) operation, but |
829
|
|
|
|
|
|
|
# we don't need separate storage variables. |
830
|
|
|
|
|
|
|
# |
831
|
|
|
|
|
|
|
return [ map { |
832
|
51
|
100
|
|
|
|
113
|
my $a_idx = ($a_degree > $_)? $_: $a_degree; |
|
186
|
|
|
|
|
299
|
|
833
|
186
|
100
|
|
|
|
279
|
my $b_to = ($b_degree > $_)? $_: $b_degree; |
834
|
186
|
|
|
|
|
226
|
my $b_from = $_ - $a_idx; |
835
|
|
|
|
|
|
|
|
836
|
186
|
|
|
|
|
259
|
my $c = $av->[$a_idx] * $bv->[$b_from]; |
837
|
|
|
|
|
|
|
|
838
|
186
|
|
|
|
|
2601
|
for my $b_idx ($b_from+1 .. $b_to) |
839
|
|
|
|
|
|
|
{ |
840
|
98
|
|
|
|
|
839
|
$c += $av->[--$a_idx] * $bv->[$b_idx]; |
841
|
|
|
|
|
|
|
} |
842
|
186
|
|
|
|
|
3086
|
$c; |
843
|
|
|
|
|
|
|
} (0 .. $a_degree + $b_degree) ]; |
844
|
|
|
|
|
|
|
} |
845
|
|
|
|
|
|
|
|
846
|
|
|
|
|
|
|
=head3 pl_derivative() |
847
|
|
|
|
|
|
|
|
848
|
|
|
|
|
|
|
$poly_ref = pl_derivative(\@coefficients); |
849
|
|
|
|
|
|
|
|
850
|
|
|
|
|
|
|
Returns the derivative of a polynomial. |
851
|
|
|
|
|
|
|
|
852
|
|
|
|
|
|
|
=cut |
853
|
|
|
|
|
|
|
|
854
|
|
|
|
|
|
|
sub pl_derivative |
855
|
|
|
|
|
|
|
{ |
856
|
8
|
|
|
8
|
1
|
2673
|
my @coefficients = @{$_[0]}; |
|
8
|
|
|
|
|
17
|
|
857
|
8
|
|
|
|
|
15
|
my $degree = $#coefficients; |
858
|
|
|
|
|
|
|
|
859
|
8
|
100
|
|
|
|
21
|
return [] if ($degree < 1); |
860
|
|
|
|
|
|
|
|
861
|
7
|
|
|
|
|
23
|
$coefficients[$_] *= $_ for (2..$degree); |
862
|
|
|
|
|
|
|
|
863
|
7
|
|
|
|
|
11
|
shift @coefficients; |
864
|
7
|
|
|
|
|
14
|
return \@coefficients; |
865
|
|
|
|
|
|
|
} |
866
|
|
|
|
|
|
|
|
867
|
|
|
|
|
|
|
=head3 pl_antiderivative() |
868
|
|
|
|
|
|
|
|
869
|
|
|
|
|
|
|
$poly_ref = pl_antiderivative(\@coefficients); |
870
|
|
|
|
|
|
|
|
871
|
|
|
|
|
|
|
Returns the antiderivative of a polynomial. The constant value is |
872
|
|
|
|
|
|
|
always set to zero and will need to be changed by the caller if a |
873
|
|
|
|
|
|
|
different constant is needed. |
874
|
|
|
|
|
|
|
|
875
|
|
|
|
|
|
|
my @coefficients = (1, 2, -3, 2); |
876
|
|
|
|
|
|
|
my $integral = pl_antiderivative(\@coefficients); |
877
|
|
|
|
|
|
|
|
878
|
|
|
|
|
|
|
# |
879
|
|
|
|
|
|
|
# Integral needs to be 0 at x = 1. |
880
|
|
|
|
|
|
|
# |
881
|
|
|
|
|
|
|
my @coeff1 = @{$integral}; |
882
|
|
|
|
|
|
|
$coeff1[0] = - pl_evaluate($integral, 1); |
883
|
|
|
|
|
|
|
|
884
|
|
|
|
|
|
|
=cut |
885
|
|
|
|
|
|
|
|
886
|
|
|
|
|
|
|
sub pl_antiderivative |
887
|
|
|
|
|
|
|
{ |
888
|
8
|
|
|
8
|
1
|
2954
|
my @coefficients = @{$_[0]}; |
|
8
|
|
|
|
|
37
|
|
889
|
8
|
|
|
|
|
12
|
my $degree = scalar @coefficients; |
890
|
|
|
|
|
|
|
|
891
|
|
|
|
|
|
|
# |
892
|
|
|
|
|
|
|
# Sanity check if its an empty list. |
893
|
|
|
|
|
|
|
# |
894
|
8
|
100
|
|
|
|
23
|
return [0] if ($degree < 1); |
895
|
|
|
|
|
|
|
|
896
|
7
|
|
|
|
|
31
|
$coefficients[$_ - 1] /= $_ for (2..$degree); |
897
|
|
|
|
|
|
|
|
898
|
7
|
|
|
|
|
20
|
unshift @coefficients, 0; |
899
|
7
|
|
|
|
|
15
|
return \@coefficients; |
900
|
|
|
|
|
|
|
} |
901
|
|
|
|
|
|
|
|
902
|
|
|
|
|
|
|
=head1 AUTHOR |
903
|
|
|
|
|
|
|
|
904
|
|
|
|
|
|
|
John M. Gamble, C<< >> |
905
|
|
|
|
|
|
|
|
906
|
|
|
|
|
|
|
=head1 SEE ALSO |
907
|
|
|
|
|
|
|
|
908
|
|
|
|
|
|
|
L for a complete set of polynomial operations, with the |
909
|
|
|
|
|
|
|
added convenience that objects bring. |
910
|
|
|
|
|
|
|
|
911
|
|
|
|
|
|
|
Among its other functions, L has the mathematically useful |
912
|
|
|
|
|
|
|
functions max(), min(), product(), sum(), and sum0(). |
913
|
|
|
|
|
|
|
|
914
|
|
|
|
|
|
|
L has the function minmax(). |
915
|
|
|
|
|
|
|
|
916
|
|
|
|
|
|
|
L has gcd() and lcm() functions, as well as vecsum(), |
917
|
|
|
|
|
|
|
vecprod(), vecmin(), and vecmax(), which are like the L |
918
|
|
|
|
|
|
|
functions but which can force integer use, and when appropriate use |
919
|
|
|
|
|
|
|
L. |
920
|
|
|
|
|
|
|
|
921
|
|
|
|
|
|
|
L Likewise has min(), max(), sum() (which can take |
922
|
|
|
|
|
|
|
as arguments array references as well as arrays), plus maxabs(), |
923
|
|
|
|
|
|
|
minabs(), sumbyelement(), convolute(), and other functions. |
924
|
|
|
|
|
|
|
|
925
|
|
|
|
|
|
|
=head1 BUGS |
926
|
|
|
|
|
|
|
|
927
|
|
|
|
|
|
|
Please report any bugs or feature requests to C, or through |
928
|
|
|
|
|
|
|
the web interface at L. I will be notified, and then you'll |
929
|
|
|
|
|
|
|
automatically be notified of progress on your bug as I make changes. |
930
|
|
|
|
|
|
|
|
931
|
|
|
|
|
|
|
=head1 SUPPORT |
932
|
|
|
|
|
|
|
|
933
|
|
|
|
|
|
|
This module is on Github at L. |
934
|
|
|
|
|
|
|
|
935
|
|
|
|
|
|
|
You can also look for information at: |
936
|
|
|
|
|
|
|
|
937
|
|
|
|
|
|
|
=over 4 |
938
|
|
|
|
|
|
|
|
939
|
|
|
|
|
|
|
=item * RT: CPAN's request tracker (report bugs here) |
940
|
|
|
|
|
|
|
|
941
|
|
|
|
|
|
|
L |
942
|
|
|
|
|
|
|
|
943
|
|
|
|
|
|
|
=item * AnnoCPAN: Annotated CPAN documentation |
944
|
|
|
|
|
|
|
|
945
|
|
|
|
|
|
|
L |
946
|
|
|
|
|
|
|
|
947
|
|
|
|
|
|
|
=item * CPAN Ratings |
948
|
|
|
|
|
|
|
|
949
|
|
|
|
|
|
|
L |
950
|
|
|
|
|
|
|
|
951
|
|
|
|
|
|
|
=item * Search CPAN |
952
|
|
|
|
|
|
|
|
953
|
|
|
|
|
|
|
L |
954
|
|
|
|
|
|
|
|
955
|
|
|
|
|
|
|
=back |
956
|
|
|
|
|
|
|
|
957
|
|
|
|
|
|
|
|
958
|
|
|
|
|
|
|
=head1 ACKNOWLEDGEMENTS |
959
|
|
|
|
|
|
|
|
960
|
|
|
|
|
|
|
To J. A. R. Williams who got the ball rolling with L. |
961
|
|
|
|
|
|
|
|
962
|
|
|
|
|
|
|
=head1 LICENSE AND COPYRIGHT |
963
|
|
|
|
|
|
|
|
964
|
|
|
|
|
|
|
Copyright (c) 2017 John M. Gamble. All rights reserved. This program is |
965
|
|
|
|
|
|
|
free software; you can redistribute it and/or modify it under the same |
966
|
|
|
|
|
|
|
terms as Perl itself. |
967
|
|
|
|
|
|
|
|
968
|
|
|
|
|
|
|
=cut |
969
|
|
|
|
|
|
|
|
970
|
|
|
|
|
|
|
1; # End of Math::Utils |