line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
1
|
|
|
|
|
|
|
package Math::Utils; |
2
|
|
|
|
|
|
|
|
3
|
16
|
|
|
16
|
|
1052879
|
use 5.010001; |
|
16
|
|
|
|
|
235
|
|
4
|
16
|
|
|
16
|
|
88
|
use strict; |
|
16
|
|
|
|
|
31
|
|
|
16
|
|
|
|
|
361
|
|
5
|
16
|
|
|
16
|
|
84
|
use warnings; |
|
16
|
|
|
|
|
36
|
|
|
16
|
|
|
|
|
477
|
|
6
|
16
|
|
|
16
|
|
94
|
use Carp; |
|
16
|
|
|
|
|
30
|
|
|
16
|
|
|
|
|
1000
|
|
7
|
|
|
|
|
|
|
|
8
|
16
|
|
|
16
|
|
104
|
use Exporter; |
|
16
|
|
|
|
|
30
|
|
|
16
|
|
|
|
|
10671
|
|
9
|
|
|
|
|
|
|
our @ISA = qw(Exporter); |
10
|
|
|
|
|
|
|
|
11
|
|
|
|
|
|
|
our %EXPORT_TAGS = ( |
12
|
|
|
|
|
|
|
compare => [ qw(generate_fltcmp generate_relational) ], |
13
|
|
|
|
|
|
|
fortran => [ qw(log10 copysign) ], |
14
|
|
|
|
|
|
|
utility => [ qw(log10 log2 copysign flipsign |
15
|
|
|
|
|
|
|
sign floor ceil fsum |
16
|
|
|
|
|
|
|
gcd hcf lcm moduli) ], |
17
|
|
|
|
|
|
|
polynomial => [ qw(pl_evaluate pl_dxevaluate |
18
|
|
|
|
|
|
|
pl_add pl_sub pl_div pl_mult |
19
|
|
|
|
|
|
|
pl_derivative pl_antiderivative) ], |
20
|
|
|
|
|
|
|
); |
21
|
|
|
|
|
|
|
|
22
|
|
|
|
|
|
|
our @EXPORT_OK = ( |
23
|
|
|
|
|
|
|
@{ $EXPORT_TAGS{compare} }, |
24
|
|
|
|
|
|
|
@{ $EXPORT_TAGS{utility} }, |
25
|
|
|
|
|
|
|
@{ $EXPORT_TAGS{polynomial} }, |
26
|
|
|
|
|
|
|
); |
27
|
|
|
|
|
|
|
|
28
|
|
|
|
|
|
|
our $VERSION = '1.12'; |
29
|
|
|
|
|
|
|
|
30
|
|
|
|
|
|
|
=head1 NAME |
31
|
|
|
|
|
|
|
|
32
|
|
|
|
|
|
|
Math::Utils - Useful mathematical functions not in Perl. |
33
|
|
|
|
|
|
|
|
34
|
|
|
|
|
|
|
=head1 SYNOPSIS |
35
|
|
|
|
|
|
|
|
36
|
|
|
|
|
|
|
use Math::Utils qw(:utility); # Useful functions |
37
|
|
|
|
|
|
|
|
38
|
|
|
|
|
|
|
# |
39
|
|
|
|
|
|
|
# Base 10 and base 2 logarithms. |
40
|
|
|
|
|
|
|
# |
41
|
|
|
|
|
|
|
$scale = log10($pagewidth); |
42
|
|
|
|
|
|
|
$bits = log2(1/$probability); |
43
|
|
|
|
|
|
|
|
44
|
|
|
|
|
|
|
# |
45
|
|
|
|
|
|
|
# Two uses of sign(). |
46
|
|
|
|
|
|
|
# |
47
|
|
|
|
|
|
|
$d = sign($z - $w); |
48
|
|
|
|
|
|
|
|
49
|
|
|
|
|
|
|
@ternaries = sign(@coefficients); |
50
|
|
|
|
|
|
|
|
51
|
|
|
|
|
|
|
# |
52
|
|
|
|
|
|
|
# Using copysign(), $dist will be doubled negative or |
53
|
|
|
|
|
|
|
# positive $offest, depending upon whether ($from - $to) |
54
|
|
|
|
|
|
|
# is positive or negative. |
55
|
|
|
|
|
|
|
# |
56
|
|
|
|
|
|
|
my $dist = copysign(2 * $offset, $from - $to); |
57
|
|
|
|
|
|
|
|
58
|
|
|
|
|
|
|
# |
59
|
|
|
|
|
|
|
# Change increment direction if goal is negative. |
60
|
|
|
|
|
|
|
# |
61
|
|
|
|
|
|
|
$incr = flipsign($incr, $goal); |
62
|
|
|
|
|
|
|
|
63
|
|
|
|
|
|
|
# |
64
|
|
|
|
|
|
|
# floor() and ceil() functions. |
65
|
|
|
|
|
|
|
# |
66
|
|
|
|
|
|
|
$point = floor($goal); |
67
|
|
|
|
|
|
|
$limit = ceil($goal); |
68
|
|
|
|
|
|
|
|
69
|
|
|
|
|
|
|
# |
70
|
|
|
|
|
|
|
# Safe(r) summation. |
71
|
|
|
|
|
|
|
# |
72
|
|
|
|
|
|
|
$tot = fsum(@inputs); |
73
|
|
|
|
|
|
|
|
74
|
|
|
|
|
|
|
# |
75
|
|
|
|
|
|
|
# The remainders of n after successive divisions of b, or |
76
|
|
|
|
|
|
|
# remainders after a set of divisions. |
77
|
|
|
|
|
|
|
# |
78
|
|
|
|
|
|
|
@rems = moduli($n, $b); |
79
|
|
|
|
|
|
|
|
80
|
|
|
|
|
|
|
or |
81
|
|
|
|
|
|
|
|
82
|
|
|
|
|
|
|
use Math::Utils qw(:compare); # Make comparison functions with tolerance. |
83
|
|
|
|
|
|
|
|
84
|
|
|
|
|
|
|
# |
85
|
|
|
|
|
|
|
# Floating point comparison function. |
86
|
|
|
|
|
|
|
# |
87
|
|
|
|
|
|
|
my $fltcmp = generate_fltmcp(1.0e-7); |
88
|
|
|
|
|
|
|
|
89
|
|
|
|
|
|
|
if (&$fltcmp($x0, $x1) < 0) |
90
|
|
|
|
|
|
|
{ |
91
|
|
|
|
|
|
|
add_left($data); |
92
|
|
|
|
|
|
|
} |
93
|
|
|
|
|
|
|
else |
94
|
|
|
|
|
|
|
{ |
95
|
|
|
|
|
|
|
add_right($data); |
96
|
|
|
|
|
|
|
} |
97
|
|
|
|
|
|
|
|
98
|
|
|
|
|
|
|
# |
99
|
|
|
|
|
|
|
# Or we can create single-operation comparison functions. |
100
|
|
|
|
|
|
|
# |
101
|
|
|
|
|
|
|
# Here we are only interested in the greater than and less than |
102
|
|
|
|
|
|
|
# comparison functions. |
103
|
|
|
|
|
|
|
# |
104
|
|
|
|
|
|
|
my(undef, undef, |
105
|
|
|
|
|
|
|
$approx_gt, undef, $approx_lt) = generate_relational(1.5e-5); |
106
|
|
|
|
|
|
|
|
107
|
|
|
|
|
|
|
or |
108
|
|
|
|
|
|
|
|
109
|
|
|
|
|
|
|
use Math::Utils qw(:polynomial); # Basic polynomial ops |
110
|
|
|
|
|
|
|
|
111
|
|
|
|
|
|
|
# |
112
|
|
|
|
|
|
|
# Coefficient lists run from 0th degree upward, left to right. |
113
|
|
|
|
|
|
|
# |
114
|
|
|
|
|
|
|
my @c1 = (1, 3, 5, 7, 11, 13, 17, 19); |
115
|
|
|
|
|
|
|
my @c2 = (1, 3, 1, 7); |
116
|
|
|
|
|
|
|
my @c3 = (1, -1, 1) |
117
|
|
|
|
|
|
|
|
118
|
|
|
|
|
|
|
my $c_ref = pl_mult(\@c1, \@c2); |
119
|
|
|
|
|
|
|
$c_ref = pl_add($c_ref, \@c3); |
120
|
|
|
|
|
|
|
|
121
|
|
|
|
|
|
|
=head1 EXPORT |
122
|
|
|
|
|
|
|
|
123
|
|
|
|
|
|
|
All functions can be exported by name, or by using the tag that they're |
124
|
|
|
|
|
|
|
grouped under. |
125
|
|
|
|
|
|
|
|
126
|
|
|
|
|
|
|
=cut |
127
|
|
|
|
|
|
|
|
128
|
|
|
|
|
|
|
=head2 utility tag |
129
|
|
|
|
|
|
|
|
130
|
|
|
|
|
|
|
Useful, general-purpose functions, including those that originated in |
131
|
|
|
|
|
|
|
FORTRAN and were implemented in Perl in the module L, |
132
|
|
|
|
|
|
|
by J. A. R. Williams. |
133
|
|
|
|
|
|
|
|
134
|
|
|
|
|
|
|
There is a name change -- copysign() was known as sign() |
135
|
|
|
|
|
|
|
in Math::Fortran. |
136
|
|
|
|
|
|
|
|
137
|
|
|
|
|
|
|
=head3 log10() |
138
|
|
|
|
|
|
|
|
139
|
|
|
|
|
|
|
$xlog10 = log10($x); |
140
|
|
|
|
|
|
|
@xlog10 = log10(@x); |
141
|
|
|
|
|
|
|
|
142
|
|
|
|
|
|
|
Return the log base ten of the argument. A list form of the function |
143
|
|
|
|
|
|
|
is also provided. |
144
|
|
|
|
|
|
|
|
145
|
|
|
|
|
|
|
=cut |
146
|
|
|
|
|
|
|
|
147
|
|
|
|
|
|
|
sub log10 |
148
|
|
|
|
|
|
|
{ |
149
|
6
|
|
|
6
|
1
|
1767
|
my $log10 = log(10); |
150
|
6
|
50
|
|
|
|
29
|
return wantarray? map(log($_)/$log10, @_): log($_[0])/$log10; |
151
|
|
|
|
|
|
|
} |
152
|
|
|
|
|
|
|
|
153
|
|
|
|
|
|
|
=head3 log2() |
154
|
|
|
|
|
|
|
|
155
|
|
|
|
|
|
|
$xlog2 = log2($x); |
156
|
|
|
|
|
|
|
@xlog2 = log2(@x); |
157
|
|
|
|
|
|
|
|
158
|
|
|
|
|
|
|
Return the log base two of the argument. A list form of the function |
159
|
|
|
|
|
|
|
is also provided. |
160
|
|
|
|
|
|
|
|
161
|
|
|
|
|
|
|
=cut |
162
|
|
|
|
|
|
|
|
163
|
|
|
|
|
|
|
sub log2 |
164
|
|
|
|
|
|
|
{ |
165
|
6
|
|
|
6
|
1
|
1779
|
my $log2 = log(2); |
166
|
6
|
50
|
|
|
|
36
|
return wantarray? map(log($_)/$log2, @_): log($_[0])/$log2; |
167
|
|
|
|
|
|
|
} |
168
|
|
|
|
|
|
|
|
169
|
|
|
|
|
|
|
=head3 sign() |
170
|
|
|
|
|
|
|
|
171
|
|
|
|
|
|
|
$s = sign($x); |
172
|
|
|
|
|
|
|
@valsigns = sign(@values); |
173
|
|
|
|
|
|
|
|
174
|
|
|
|
|
|
|
Returns -1 if the argument is negative, 0 if the argument is zero, and 1 |
175
|
|
|
|
|
|
|
if the argument is positive. |
176
|
|
|
|
|
|
|
|
177
|
|
|
|
|
|
|
In list form it applies the same operation to each member of the list. |
178
|
|
|
|
|
|
|
|
179
|
|
|
|
|
|
|
=cut |
180
|
|
|
|
|
|
|
|
181
|
|
|
|
|
|
|
sub sign |
182
|
|
|
|
|
|
|
{ |
183
|
6
|
100
|
|
6
|
1
|
1255
|
return wantarray? map{($_ < 0)? -1: (($_ > 0)? 1: 0)} @_: |
|
10
|
100
|
|
|
|
25
|
|
|
|
100
|
|
|
|
|
|
|
|
100
|
|
|
|
|
|
|
|
100
|
|
|
|
|
|
184
|
|
|
|
|
|
|
($_[0] < 0)? -1: (($_[0] > 0)? 1: 0); |
185
|
|
|
|
|
|
|
} |
186
|
|
|
|
|
|
|
|
187
|
|
|
|
|
|
|
=head3 copysign() |
188
|
|
|
|
|
|
|
|
189
|
|
|
|
|
|
|
$ms = copysign($m, $n); |
190
|
|
|
|
|
|
|
$s = copysign($x); |
191
|
|
|
|
|
|
|
|
192
|
|
|
|
|
|
|
Take the sign of the second argument and apply it to the first. Zero |
193
|
|
|
|
|
|
|
is considered part of the positive signs. |
194
|
|
|
|
|
|
|
|
195
|
|
|
|
|
|
|
copysign(-5, 0); # Returns 5. |
196
|
|
|
|
|
|
|
copysign(-5, 7); # Returns 5. |
197
|
|
|
|
|
|
|
copysign(-5, -7); # Returns -5. |
198
|
|
|
|
|
|
|
copysign(5, -7); # Returns -5. |
199
|
|
|
|
|
|
|
|
200
|
|
|
|
|
|
|
If there is only one argument, return -1 if the argument is negative, |
201
|
|
|
|
|
|
|
otherwise return 1. For example, copysign(1, -4) and copysign(-4) both |
202
|
|
|
|
|
|
|
return -1. |
203
|
|
|
|
|
|
|
|
204
|
|
|
|
|
|
|
=cut |
205
|
|
|
|
|
|
|
|
206
|
|
|
|
|
|
|
sub copysign |
207
|
|
|
|
|
|
|
{ |
208
|
6
|
100
|
|
6
|
1
|
1352
|
return ($_[1] < 0)? -abs($_[0]): abs($_[0]) if (@_ == 2); |
|
|
100
|
|
|
|
|
|
209
|
3
|
100
|
|
|
|
8
|
return ($_[0] < 0)? -1: 1; |
210
|
|
|
|
|
|
|
} |
211
|
|
|
|
|
|
|
|
212
|
|
|
|
|
|
|
=head3 flipsign() |
213
|
|
|
|
|
|
|
|
214
|
|
|
|
|
|
|
$ms = flipsign($m, $n); |
215
|
|
|
|
|
|
|
|
216
|
|
|
|
|
|
|
Multiply the signs of the arguments and apply it to the first. As |
217
|
|
|
|
|
|
|
with copysign(), zero is considered part of the positive signs. |
218
|
|
|
|
|
|
|
|
219
|
|
|
|
|
|
|
Effectively this means change the sign of the first argument if |
220
|
|
|
|
|
|
|
the second argument is negative. |
221
|
|
|
|
|
|
|
|
222
|
|
|
|
|
|
|
flipsign(-5, 0); # Returns -5. |
223
|
|
|
|
|
|
|
flipsign(-5, 7); # Returns -5. |
224
|
|
|
|
|
|
|
flipsign(-5, -7); # Returns 5. |
225
|
|
|
|
|
|
|
flipsign(5, -7); # Returns -5. |
226
|
|
|
|
|
|
|
|
227
|
|
|
|
|
|
|
If for some reason flipsign() is called with a single argument, |
228
|
|
|
|
|
|
|
that argument is returned unchanged. |
229
|
|
|
|
|
|
|
|
230
|
|
|
|
|
|
|
=cut |
231
|
|
|
|
|
|
|
|
232
|
|
|
|
|
|
|
sub flipsign |
233
|
|
|
|
|
|
|
{ |
234
|
0
|
0
|
0
|
0
|
1
|
0
|
return -$_[0] if (@_ == 2 and $_[1] < 0); |
235
|
0
|
|
|
|
|
0
|
return $_[0]; |
236
|
|
|
|
|
|
|
} |
237
|
|
|
|
|
|
|
|
238
|
|
|
|
|
|
|
=head3 floor() |
239
|
|
|
|
|
|
|
|
240
|
|
|
|
|
|
|
$b = floor($a/2); |
241
|
|
|
|
|
|
|
|
242
|
|
|
|
|
|
|
@ilist = floor(@numbers); |
243
|
|
|
|
|
|
|
|
244
|
|
|
|
|
|
|
Returns the greatest integer less than or equal to its argument. |
245
|
|
|
|
|
|
|
A list form of the function also exists. |
246
|
|
|
|
|
|
|
|
247
|
|
|
|
|
|
|
floor(1.5, 1.87, 1); # Returns (1, 1, 1) |
248
|
|
|
|
|
|
|
floor(-1.5, -1.87, -1); # Returns (-2, -2, -1) |
249
|
|
|
|
|
|
|
|
250
|
|
|
|
|
|
|
=cut |
251
|
|
|
|
|
|
|
|
252
|
|
|
|
|
|
|
sub floor |
253
|
|
|
|
|
|
|
{ |
254
|
4
|
100
|
100
|
4
|
1
|
315
|
return wantarray? map(($_ < 0 and int($_) != $_)? int($_ - 1): int($_), @_): |
|
|
100
|
66
|
|
|
|
|
|
|
100
|
|
|
|
|
|
255
|
|
|
|
|
|
|
($_[0] < 0 and int($_[0]) != $_[0])? int($_[0] - 1): int($_[0]); |
256
|
|
|
|
|
|
|
} |
257
|
|
|
|
|
|
|
|
258
|
|
|
|
|
|
|
=head3 ceil() |
259
|
|
|
|
|
|
|
|
260
|
|
|
|
|
|
|
$b = ceil($a/2); |
261
|
|
|
|
|
|
|
|
262
|
|
|
|
|
|
|
@ilist = ceil(@numbers); |
263
|
|
|
|
|
|
|
|
264
|
|
|
|
|
|
|
Returns the lowest integer greater than or equal to its argument. |
265
|
|
|
|
|
|
|
A list form of the function also exists. |
266
|
|
|
|
|
|
|
|
267
|
|
|
|
|
|
|
ceil(1.5, 1.87, 1); # Returns (2, 2, 1) |
268
|
|
|
|
|
|
|
ceil(-1.5, -1.87, -1); # Returns (-1, -1, -1) |
269
|
|
|
|
|
|
|
|
270
|
|
|
|
|
|
|
=cut |
271
|
|
|
|
|
|
|
|
272
|
|
|
|
|
|
|
sub ceil |
273
|
|
|
|
|
|
|
{ |
274
|
4
|
100
|
100
|
4
|
1
|
423
|
return wantarray? map(($_ > 0 and int($_) != $_)? int($_ + 1): int($_), @_): |
|
|
100
|
66
|
|
|
|
|
|
|
100
|
|
|
|
|
|
275
|
|
|
|
|
|
|
($_[0] > 0 and int($_[0]) != $_[0])? int($_[0] + 1): int($_[0]); |
276
|
|
|
|
|
|
|
} |
277
|
|
|
|
|
|
|
|
278
|
|
|
|
|
|
|
=head3 fsum() |
279
|
|
|
|
|
|
|
|
280
|
|
|
|
|
|
|
Return a sum of the values in the list, done in a manner to avoid rounding |
281
|
|
|
|
|
|
|
and cancellation errors. Currently this is done via |
282
|
|
|
|
|
|
|
L. |
283
|
|
|
|
|
|
|
|
284
|
|
|
|
|
|
|
=cut |
285
|
|
|
|
|
|
|
|
286
|
|
|
|
|
|
|
sub fsum |
287
|
|
|
|
|
|
|
{ |
288
|
3
|
|
|
3
|
1
|
13
|
my($sum, $c) = (0, 0); |
289
|
|
|
|
|
|
|
|
290
|
3
|
|
|
|
|
9
|
for my $v (@_) |
291
|
|
|
|
|
|
|
{ |
292
|
24
|
|
|
|
|
42
|
my $y = $v - $c; |
293
|
24
|
|
|
|
|
37
|
my $t = $sum + $y; |
294
|
|
|
|
|
|
|
|
295
|
|
|
|
|
|
|
# |
296
|
|
|
|
|
|
|
# If we lost low-order bits of $y (usually because |
297
|
|
|
|
|
|
|
# $sum is much larger than $y), save them in $c |
298
|
|
|
|
|
|
|
# for the next loop iteration. |
299
|
|
|
|
|
|
|
# |
300
|
24
|
|
|
|
|
49
|
$c = ($t - $sum) - $y; |
301
|
24
|
|
|
|
|
42
|
$sum = $t; |
302
|
|
|
|
|
|
|
} |
303
|
|
|
|
|
|
|
|
304
|
3
|
|
|
|
|
7
|
return $sum; |
305
|
|
|
|
|
|
|
} |
306
|
|
|
|
|
|
|
|
307
|
|
|
|
|
|
|
=head3 gcd |
308
|
|
|
|
|
|
|
|
309
|
|
|
|
|
|
|
=head3 hcf |
310
|
|
|
|
|
|
|
|
311
|
|
|
|
|
|
|
Return the greatest common divisor (also known as the highest |
312
|
|
|
|
|
|
|
common factor) of a list of integers. These are simply synomyms: |
313
|
|
|
|
|
|
|
|
314
|
|
|
|
|
|
|
$factor = gcd(@values); |
315
|
|
|
|
|
|
|
$factor = hfc(@numbers); |
316
|
|
|
|
|
|
|
|
317
|
|
|
|
|
|
|
=cut |
318
|
|
|
|
|
|
|
|
319
|
|
|
|
|
|
|
sub gcd |
320
|
|
|
|
|
|
|
{ |
321
|
16
|
|
|
16
|
|
7652
|
use integer; |
|
16
|
|
|
|
|
206
|
|
|
16
|
|
|
|
|
76
|
|
322
|
4
|
|
|
4
|
1
|
987
|
my($x, $y, $r); |
323
|
|
|
|
|
|
|
|
324
|
|
|
|
|
|
|
# |
325
|
|
|
|
|
|
|
# It could happen. Someone might type \$x instead of $x. |
326
|
|
|
|
|
|
|
# |
327
|
10
|
50
|
|
|
|
28
|
my @values = map{(ref $_ eq "ARRAY")? @$_: |
|
|
100
|
|
|
|
|
|
328
|
4
|
|
|
|
|
9
|
((ref $_ eq "SCALAR")? $$_: $_)} grep {$_} @_; |
|
10
|
|
|
|
|
17
|
|
329
|
|
|
|
|
|
|
|
330
|
4
|
50
|
|
|
|
11
|
return 0 if (scalar @values == 0); |
331
|
|
|
|
|
|
|
|
332
|
4
|
|
|
|
|
6
|
$y = abs pop @values; |
333
|
4
|
|
|
|
|
17
|
$x = abs pop @values; |
334
|
|
|
|
|
|
|
|
335
|
4
|
|
|
|
|
5
|
while (1) |
336
|
|
|
|
|
|
|
{ |
337
|
10
|
100
|
|
|
|
16
|
($x, $y) = ($y, $x) if ($y < $x); |
338
|
|
|
|
|
|
|
|
339
|
10
|
|
|
|
|
11
|
$r = $y % $x; |
340
|
10
|
|
|
|
|
9
|
$y = $x; |
341
|
|
|
|
|
|
|
|
342
|
10
|
100
|
|
|
|
13
|
if ($r == 0) |
343
|
|
|
|
|
|
|
{ |
344
|
7
|
100
|
|
|
|
14
|
return $x if (scalar @values == 0); |
345
|
3
|
|
|
|
|
4
|
$r = abs pop @values; |
346
|
|
|
|
|
|
|
} |
347
|
|
|
|
|
|
|
|
348
|
6
|
|
|
|
|
7
|
$x = $r; |
349
|
|
|
|
|
|
|
} |
350
|
|
|
|
|
|
|
|
351
|
0
|
|
|
|
|
0
|
return $y; |
352
|
|
|
|
|
|
|
} |
353
|
|
|
|
|
|
|
|
354
|
|
|
|
|
|
|
# |
355
|
|
|
|
|
|
|
#sub bgcd |
356
|
|
|
|
|
|
|
#{ |
357
|
|
|
|
|
|
|
# my($x, $y) = map(abs($_), @_); |
358
|
|
|
|
|
|
|
# |
359
|
|
|
|
|
|
|
# return $y if ($x == 0); |
360
|
|
|
|
|
|
|
# return $x if ($y == 0); |
361
|
|
|
|
|
|
|
# |
362
|
|
|
|
|
|
|
# my $lsbx = low_set_bit($x); |
363
|
|
|
|
|
|
|
# my $lsby = low_set_bit($y); |
364
|
|
|
|
|
|
|
# $x >>= $lsbx; |
365
|
|
|
|
|
|
|
# $y >>= $lsby; |
366
|
|
|
|
|
|
|
# |
367
|
|
|
|
|
|
|
# while ($x != $y) |
368
|
|
|
|
|
|
|
# { |
369
|
|
|
|
|
|
|
# ($x, $y) = ($y, $x) if ($x > $y); |
370
|
|
|
|
|
|
|
# |
371
|
|
|
|
|
|
|
# $y -= $x; |
372
|
|
|
|
|
|
|
# $y >>= low_set_bit($y); |
373
|
|
|
|
|
|
|
# } |
374
|
|
|
|
|
|
|
# return ($x << (($lsbx > $lsby)? $lsby: $lsbx)); |
375
|
|
|
|
|
|
|
#} |
376
|
|
|
|
|
|
|
|
377
|
|
|
|
|
|
|
*hcf = \&gcd; |
378
|
|
|
|
|
|
|
|
379
|
|
|
|
|
|
|
=head3 lcm |
380
|
|
|
|
|
|
|
|
381
|
|
|
|
|
|
|
Return the greatest common divisor of a list of integers. |
382
|
|
|
|
|
|
|
|
383
|
|
|
|
|
|
|
$factor = lcm(@values); |
384
|
|
|
|
|
|
|
|
385
|
|
|
|
|
|
|
=cut |
386
|
|
|
|
|
|
|
|
387
|
|
|
|
|
|
|
sub lcm |
388
|
|
|
|
|
|
|
{ |
389
|
|
|
|
|
|
|
# |
390
|
|
|
|
|
|
|
# It could happen. Someone might type \$x instead of $x. |
391
|
|
|
|
|
|
|
# |
392
|
0
|
0
|
|
0
|
1
|
0
|
my @values = map{(ref $_ eq "ARRAY")? @$_: |
|
0
|
0
|
|
|
|
0
|
|
393
|
|
|
|
|
|
|
((ref $_ eq "SCALAR")? $$_: $_)} @_; |
394
|
|
|
|
|
|
|
|
395
|
0
|
|
|
|
|
0
|
my $x = pop @values; |
396
|
|
|
|
|
|
|
|
397
|
0
|
|
|
|
|
0
|
for my $m (@values) |
398
|
|
|
|
|
|
|
{ |
399
|
0
|
|
|
|
|
0
|
$x *= $m/gcd($m, $x); |
400
|
|
|
|
|
|
|
} |
401
|
|
|
|
|
|
|
|
402
|
0
|
|
|
|
|
0
|
return abs $x; |
403
|
|
|
|
|
|
|
} |
404
|
|
|
|
|
|
|
|
405
|
|
|
|
|
|
|
=head3 moduli() |
406
|
|
|
|
|
|
|
|
407
|
|
|
|
|
|
|
Return the moduli of an integer after repeated divisions. The remainders are |
408
|
|
|
|
|
|
|
returned in a list from left to right. |
409
|
|
|
|
|
|
|
|
410
|
|
|
|
|
|
|
@digits = moduli(1899, 10); # Returns (9, 9, 8, 1) |
411
|
|
|
|
|
|
|
@rems = moduli(29, 3); # Returns (2, 0, 0, 1) |
412
|
|
|
|
|
|
|
|
413
|
|
|
|
|
|
|
=cut |
414
|
|
|
|
|
|
|
|
415
|
|
|
|
|
|
|
sub moduli |
416
|
|
|
|
|
|
|
{ |
417
|
2
|
|
|
2
|
1
|
382
|
my($n, $b) = (abs($_[0]), abs($_[1])); |
418
|
2
|
|
|
|
|
3
|
my @mlist; |
419
|
16
|
|
|
16
|
|
4723
|
use integer; |
|
16
|
|
|
|
|
40
|
|
|
16
|
|
|
|
|
55
|
|
420
|
|
|
|
|
|
|
|
421
|
2
|
|
|
|
|
2
|
for (;;) |
422
|
|
|
|
|
|
|
{ |
423
|
16
|
|
|
|
|
18
|
push @mlist, $n % $b; |
424
|
16
|
|
|
|
|
13
|
$n /= $b; |
425
|
16
|
100
|
|
|
|
24
|
return @mlist if ($n == 0); |
426
|
|
|
|
|
|
|
} |
427
|
0
|
|
|
|
|
0
|
return (); |
428
|
|
|
|
|
|
|
} |
429
|
|
|
|
|
|
|
|
430
|
|
|
|
|
|
|
=head2 compare tag |
431
|
|
|
|
|
|
|
|
432
|
|
|
|
|
|
|
Create comparison functions for floating point (non-integer) numbers. |
433
|
|
|
|
|
|
|
|
434
|
|
|
|
|
|
|
Since exact comparisons of floating point numbers tend to be iffy, |
435
|
|
|
|
|
|
|
the comparison functions use a tolerance chosen by you. You may |
436
|
|
|
|
|
|
|
then use those functions from then on confident that comparisons |
437
|
|
|
|
|
|
|
will be consistent. |
438
|
|
|
|
|
|
|
|
439
|
|
|
|
|
|
|
If you do not provide a tolerance, a default tolerance of 1.49012e-8 |
440
|
|
|
|
|
|
|
(approximately the square root of an Intel Pentium's |
441
|
|
|
|
|
|
|
L) |
442
|
|
|
|
|
|
|
will be used. |
443
|
|
|
|
|
|
|
|
444
|
|
|
|
|
|
|
=head3 generate_fltcmp() |
445
|
|
|
|
|
|
|
|
446
|
|
|
|
|
|
|
Returns a comparison function that will compare values using a tolerance |
447
|
|
|
|
|
|
|
that you supply. The generated function will return -1 if the first |
448
|
|
|
|
|
|
|
argument compares as less than the second, 0 if the two arguments |
449
|
|
|
|
|
|
|
compare as equal, and 1 if the first argument compares as greater than |
450
|
|
|
|
|
|
|
the second. |
451
|
|
|
|
|
|
|
|
452
|
|
|
|
|
|
|
my $fltcmp = generate_fltcmp(1.5e-7); |
453
|
|
|
|
|
|
|
|
454
|
|
|
|
|
|
|
my(@xpos) = grep {&$fltcmp($_, 0) == 1} @xvals; |
455
|
|
|
|
|
|
|
|
456
|
|
|
|
|
|
|
=cut |
457
|
|
|
|
|
|
|
|
458
|
|
|
|
|
|
|
my $default_tolerance = 1.49012e-8; |
459
|
|
|
|
|
|
|
|
460
|
|
|
|
|
|
|
sub generate_fltcmp |
461
|
|
|
|
|
|
|
{ |
462
|
4
|
|
66
|
4
|
1
|
361
|
my $tol = $_[0] // $default_tolerance; |
463
|
|
|
|
|
|
|
|
464
|
|
|
|
|
|
|
return sub { |
465
|
56
|
|
|
56
|
|
1331
|
my($x, $y) = @_; |
466
|
56
|
50
|
|
|
|
321
|
return 0 if (abs($x - $y) <= $tol); |
467
|
0
|
0
|
|
|
|
0
|
return -1 if ($x < $y); |
468
|
0
|
|
|
|
|
0
|
return 1; |
469
|
|
|
|
|
|
|
} |
470
|
4
|
|
|
|
|
32
|
} |
471
|
|
|
|
|
|
|
|
472
|
|
|
|
|
|
|
=head3 generate_relational() |
473
|
|
|
|
|
|
|
|
474
|
|
|
|
|
|
|
Returns a list of comparison functions that will compare values using a |
475
|
|
|
|
|
|
|
tolerance that you supply. The generated functions will be the equivalent |
476
|
|
|
|
|
|
|
of the equal, not equal, greater than, greater than or equal, less than, |
477
|
|
|
|
|
|
|
and less than or equal operators. |
478
|
|
|
|
|
|
|
|
479
|
|
|
|
|
|
|
my($eq, $ne, $gt, $ge, $lt, $le) = generate_relational(1.5e-7); |
480
|
|
|
|
|
|
|
|
481
|
|
|
|
|
|
|
my(@approx_5) = grep {&$eq($_, 5)} @xvals; |
482
|
|
|
|
|
|
|
|
483
|
|
|
|
|
|
|
Of course, if you were only interested in not equal, you could use: |
484
|
|
|
|
|
|
|
|
485
|
|
|
|
|
|
|
my(undef, $ne) = generate_relational(1.5e-7); |
486
|
|
|
|
|
|
|
|
487
|
|
|
|
|
|
|
my(@not_around5) = grep {&$ne($_, 5)} @xvals; |
488
|
|
|
|
|
|
|
|
489
|
|
|
|
|
|
|
=cut |
490
|
|
|
|
|
|
|
|
491
|
|
|
|
|
|
|
sub generate_relational |
492
|
|
|
|
|
|
|
{ |
493
|
2
|
|
33
|
2
|
1
|
87
|
my $tol = $_[0] // $default_tolerance; |
494
|
|
|
|
|
|
|
|
495
|
|
|
|
|
|
|
# |
496
|
|
|
|
|
|
|
# In order: eq, ne, gt, ge, lt, le. |
497
|
|
|
|
|
|
|
# |
498
|
|
|
|
|
|
|
return ( |
499
|
24
|
100
|
|
24
|
|
3756
|
sub {return (abs($_[0] - $_[1]) <= $tol)? 1: 0;}, # eq |
500
|
12
|
100
|
|
12
|
|
52
|
sub {return (abs($_[0] - $_[1]) > $tol)? 1: 0;}, # ne |
501
|
|
|
|
|
|
|
|
502
|
12
|
100
|
100
|
12
|
|
88
|
sub {return ((abs($_[0] - $_[1]) > $tol) and ($_[0] > $_[1]))? 1: 0;}, # gt |
503
|
12
|
100
|
100
|
12
|
|
75
|
sub {return ((abs($_[0] - $_[1]) <= $tol) or ($_[0] > $_[1]))? 1: 0;}, # ge |
504
|
|
|
|
|
|
|
|
505
|
12
|
100
|
100
|
12
|
|
64
|
sub {return ((abs($_[0] - $_[1]) > $tol) and ($_[0] < $_[1]))? 1: 0;}, # lt |
506
|
12
|
100
|
100
|
12
|
|
103
|
sub {return ((abs($_[0] - $_[1]) <= $tol) or ($_[0] < $_[1]))? 1: 0;} # le |
507
|
2
|
|
|
|
|
42
|
); |
508
|
|
|
|
|
|
|
} |
509
|
|
|
|
|
|
|
|
510
|
|
|
|
|
|
|
=head2 polynomial tag |
511
|
|
|
|
|
|
|
|
512
|
|
|
|
|
|
|
Perform some polynomial operations on plain lists of coefficients. |
513
|
|
|
|
|
|
|
|
514
|
|
|
|
|
|
|
# |
515
|
|
|
|
|
|
|
# The coefficient lists are presumed to go from low order to high: |
516
|
|
|
|
|
|
|
# |
517
|
|
|
|
|
|
|
@coefficients = (1, 2, 4, 8); # 1 + 2x + 4x**2 + 8x**3 |
518
|
|
|
|
|
|
|
|
519
|
|
|
|
|
|
|
In all functions the coeffcient list is passed by reference to the function, |
520
|
|
|
|
|
|
|
and the functions that return coefficients all return references to a |
521
|
|
|
|
|
|
|
coefficient list. |
522
|
|
|
|
|
|
|
|
523
|
|
|
|
|
|
|
B
|
524
|
|
|
|
|
|
|
already been removed before calling these functions, and that any leading |
525
|
|
|
|
|
|
|
zeros found in the returned lists will be handled by the caller.> This caveat |
526
|
|
|
|
|
|
|
is particularly important to note in the case of C. |
527
|
|
|
|
|
|
|
|
528
|
|
|
|
|
|
|
Although these functions are convenient for simple polynomial operations, |
529
|
|
|
|
|
|
|
for more advanced polynonial operations L is recommended. |
530
|
|
|
|
|
|
|
|
531
|
|
|
|
|
|
|
=head3 pl_evaluate() |
532
|
|
|
|
|
|
|
|
533
|
|
|
|
|
|
|
$y = pl_evaluate(\@coefficients, $x); |
534
|
|
|
|
|
|
|
@yvalues = pl_evaluate(\@coefficients, \@xvalues); |
535
|
|
|
|
|
|
|
|
536
|
|
|
|
|
|
|
You can also use lists of the X values or X array references: |
537
|
|
|
|
|
|
|
|
538
|
|
|
|
|
|
|
@yvalues = pl_evaluate(\@coefficients, \@xvalues, \@primes, $x, @negatives); |
539
|
|
|
|
|
|
|
|
540
|
|
|
|
|
|
|
Returns either a y-value for a corresponding x-value, or a list of |
541
|
|
|
|
|
|
|
y-values on the polynomial for a corresponding list of x-values, |
542
|
|
|
|
|
|
|
using Horner's method. |
543
|
|
|
|
|
|
|
|
544
|
|
|
|
|
|
|
=cut |
545
|
|
|
|
|
|
|
|
546
|
|
|
|
|
|
|
sub pl_evaluate |
547
|
|
|
|
|
|
|
{ |
548
|
8
|
|
|
8
|
1
|
4848
|
my @coefficients = @{$_[0]}; |
|
8
|
|
|
|
|
27
|
|
549
|
|
|
|
|
|
|
|
550
|
|
|
|
|
|
|
# |
551
|
|
|
|
|
|
|
# It could happen. Someone might type \$x instead of $x. |
552
|
|
|
|
|
|
|
# |
553
|
8
|
100
|
|
|
|
28
|
my @xvalues = map{(ref $_ eq "ARRAY")? @$_: |
|
12
|
100
|
|
|
|
58
|
|
554
|
|
|
|
|
|
|
((ref $_ eq "SCALAR")? $$_: $_)} @_[1 .. $#_]; |
555
|
|
|
|
|
|
|
|
556
|
|
|
|
|
|
|
# |
557
|
|
|
|
|
|
|
# Move the leading coefficient off the polynomial list |
558
|
|
|
|
|
|
|
# and use it as our starting value(s). |
559
|
|
|
|
|
|
|
# |
560
|
8
|
|
|
|
|
52
|
my @results = (pop @coefficients) x scalar @xvalues; |
561
|
|
|
|
|
|
|
|
562
|
8
|
|
|
|
|
24
|
for my $c (reverse @coefficients) |
563
|
|
|
|
|
|
|
{ |
564
|
24
|
|
|
|
|
1466
|
for my $j (0..$#xvalues) |
565
|
|
|
|
|
|
|
{ |
566
|
84
|
|
|
|
|
6123
|
$results[$j] = $results[$j] * $xvalues[$j] + $c; |
567
|
|
|
|
|
|
|
} |
568
|
|
|
|
|
|
|
} |
569
|
|
|
|
|
|
|
|
570
|
8
|
50
|
|
|
|
497
|
return wantarray? @results: $results[0]; |
571
|
|
|
|
|
|
|
} |
572
|
|
|
|
|
|
|
|
573
|
|
|
|
|
|
|
=head3 pl_dxevaluate() |
574
|
|
|
|
|
|
|
|
575
|
|
|
|
|
|
|
($y, $dy, $ddy) = pl_dxevaluate(\@coefficients, $x); |
576
|
|
|
|
|
|
|
|
577
|
|
|
|
|
|
|
Returns p(x), p'(x), and p"(x) of the polynomial for an |
578
|
|
|
|
|
|
|
x-value, using Horner's method. Note that unlike C |
579
|
|
|
|
|
|
|
above, the function can only use one x-value. |
580
|
|
|
|
|
|
|
|
581
|
|
|
|
|
|
|
If the polynomial is a linear equation, the second derivative value |
582
|
|
|
|
|
|
|
will be zero. Similarly, if the polynomial is a simple constant, |
583
|
|
|
|
|
|
|
the first derivative value will be zero. |
584
|
|
|
|
|
|
|
|
585
|
|
|
|
|
|
|
=cut |
586
|
|
|
|
|
|
|
|
587
|
|
|
|
|
|
|
sub pl_dxevaluate |
588
|
|
|
|
|
|
|
{ |
589
|
12
|
|
|
12
|
1
|
35
|
my($coef_ref, $x) = @_; |
590
|
12
|
|
|
|
|
39
|
my(@coefficients) = @$coef_ref; |
591
|
12
|
|
|
|
|
24
|
my $n = $#coefficients; |
592
|
12
|
|
|
|
|
23
|
my $val = pop @coefficients; |
593
|
12
|
|
|
|
|
39
|
my $d1val = $val * $n; |
594
|
12
|
|
|
|
|
22
|
my $d2val = 0; |
595
|
|
|
|
|
|
|
|
596
|
|
|
|
|
|
|
# |
597
|
|
|
|
|
|
|
# Special case for the linear eq'n (the y = constant eq'n |
598
|
|
|
|
|
|
|
# takes care of itself). |
599
|
|
|
|
|
|
|
# |
600
|
12
|
100
|
|
|
|
41
|
if ($n == 1) |
|
|
100
|
|
|
|
|
|
601
|
|
|
|
|
|
|
{ |
602
|
1
|
|
|
|
|
5
|
$val = $val * $x + $coefficients[0]; |
603
|
|
|
|
|
|
|
} |
604
|
|
|
|
|
|
|
elsif ($n >= 2) |
605
|
|
|
|
|
|
|
{ |
606
|
10
|
|
|
|
|
20
|
my $lastn = --$n; |
607
|
10
|
|
|
|
|
14
|
$d2val = $d1val * $n; |
608
|
|
|
|
|
|
|
|
609
|
|
|
|
|
|
|
# |
610
|
|
|
|
|
|
|
# Loop through the coefficients, except for |
611
|
|
|
|
|
|
|
# the linear and constant terms. |
612
|
|
|
|
|
|
|
# |
613
|
10
|
|
|
|
|
29
|
for my $c (reverse @coefficients[2..$lastn]) |
614
|
|
|
|
|
|
|
{ |
615
|
38
|
|
|
|
|
57
|
$val = $val * $x + $c; |
616
|
38
|
|
|
|
|
61
|
$d1val = $d1val * $x + ($c *= $n--); |
617
|
38
|
|
|
|
|
65
|
$d2val = $d2val * $x + ($c * $n); |
618
|
|
|
|
|
|
|
} |
619
|
|
|
|
|
|
|
|
620
|
|
|
|
|
|
|
# |
621
|
|
|
|
|
|
|
# Handle the last two coefficients. |
622
|
|
|
|
|
|
|
# |
623
|
10
|
|
|
|
|
20
|
$d1val = $d1val * $x + $coefficients[1]; |
624
|
10
|
|
|
|
|
22
|
$val = ($val * $x + $coefficients[1]) * $x + $coefficients[0]; |
625
|
|
|
|
|
|
|
} |
626
|
|
|
|
|
|
|
|
627
|
12
|
|
|
|
|
51
|
return ($val, $d1val, $d2val); |
628
|
|
|
|
|
|
|
} |
629
|
|
|
|
|
|
|
|
630
|
|
|
|
|
|
|
=head3 pl_add() |
631
|
|
|
|
|
|
|
|
632
|
|
|
|
|
|
|
$polyn_ref = pl_add(\@m, \@n); |
633
|
|
|
|
|
|
|
|
634
|
|
|
|
|
|
|
Add two lists of numbers as though they were polynomial coefficients. |
635
|
|
|
|
|
|
|
|
636
|
|
|
|
|
|
|
=cut |
637
|
|
|
|
|
|
|
|
638
|
|
|
|
|
|
|
sub pl_add |
639
|
|
|
|
|
|
|
{ |
640
|
3
|
|
|
3
|
1
|
883
|
my(@av) = @{$_[0]}; |
|
3
|
|
|
|
|
6
|
|
641
|
3
|
|
|
|
|
4
|
my(@bv) = @{$_[1]}; |
|
3
|
|
|
|
|
6
|
|
642
|
3
|
|
|
|
|
4
|
my $ldiff = scalar @av - scalar @bv; |
643
|
|
|
|
|
|
|
|
644
|
3
|
100
|
|
|
|
12
|
my @result = ($ldiff < 0)? |
645
|
|
|
|
|
|
|
splice(@bv, scalar @bv + $ldiff, -$ldiff): |
646
|
|
|
|
|
|
|
splice(@av, scalar @av - $ldiff, $ldiff); |
647
|
|
|
|
|
|
|
|
648
|
3
|
|
|
|
|
26
|
unshift @result, map($av[$_] + $bv[$_], 0.. $#av); |
649
|
|
|
|
|
|
|
|
650
|
3
|
|
|
|
|
8
|
return \@result; |
651
|
|
|
|
|
|
|
} |
652
|
|
|
|
|
|
|
|
653
|
|
|
|
|
|
|
=head3 pl_sub() |
654
|
|
|
|
|
|
|
|
655
|
|
|
|
|
|
|
$polyn_ref = pl_sub(\@m, \@n); |
656
|
|
|
|
|
|
|
|
657
|
|
|
|
|
|
|
Subtract the second list of numbers from the first as though they |
658
|
|
|
|
|
|
|
were polynomial coefficients. |
659
|
|
|
|
|
|
|
|
660
|
|
|
|
|
|
|
=cut |
661
|
|
|
|
|
|
|
|
662
|
|
|
|
|
|
|
sub pl_sub |
663
|
|
|
|
|
|
|
{ |
664
|
3
|
|
|
3
|
1
|
1137
|
my(@av) = @{$_[0]}; |
|
3
|
|
|
|
|
9
|
|
665
|
3
|
|
|
|
|
5
|
my(@bv) = @{$_[1]}; |
|
3
|
|
|
|
|
8
|
|
666
|
3
|
|
|
|
|
6
|
my $ldiff = scalar @av - scalar @bv; |
667
|
|
|
|
|
|
|
|
668
|
|
|
|
|
|
|
my @result = ($ldiff < 0)? |
669
|
3
|
100
|
|
|
|
13
|
map {-$_} splice(@bv, scalar @bv + $ldiff, -$ldiff): |
|
4
|
|
|
|
|
9
|
|
670
|
|
|
|
|
|
|
splice(@av, scalar @av - $ldiff, $ldiff); |
671
|
|
|
|
|
|
|
|
672
|
3
|
|
|
|
|
30
|
unshift @result, map($av[$_] - $bv[$_], 0.. $#av); |
673
|
|
|
|
|
|
|
|
674
|
3
|
|
|
|
|
13
|
return \@result; |
675
|
|
|
|
|
|
|
} |
676
|
|
|
|
|
|
|
|
677
|
|
|
|
|
|
|
=head3 pl_div() |
678
|
|
|
|
|
|
|
|
679
|
|
|
|
|
|
|
($q_ref, $r_ref) = pl_div(\@numerator, \@divisor); |
680
|
|
|
|
|
|
|
|
681
|
|
|
|
|
|
|
Synthetic division for polynomials. Divides the first list of coefficients |
682
|
|
|
|
|
|
|
by the second list. |
683
|
|
|
|
|
|
|
|
684
|
|
|
|
|
|
|
Returns references to the quotient and the remainder. |
685
|
|
|
|
|
|
|
|
686
|
|
|
|
|
|
|
Remember to check for leading zeros (which are rightmost in the list) in |
687
|
|
|
|
|
|
|
the returned values. For example, |
688
|
|
|
|
|
|
|
|
689
|
|
|
|
|
|
|
my @n = (4, 12, 9, 3); |
690
|
|
|
|
|
|
|
my @d = (1, 3, 3, 1); |
691
|
|
|
|
|
|
|
|
692
|
|
|
|
|
|
|
my($q_ref, $r_ref) = pl_div(\@n, \@d); |
693
|
|
|
|
|
|
|
|
694
|
|
|
|
|
|
|
After division you will have returned C<(3)> as the quotient, |
695
|
|
|
|
|
|
|
and C<(1, 3, 0)> as the remainder. In general, you will want to remove |
696
|
|
|
|
|
|
|
the leading zero, or for that matter values within epsilon of zero, in |
697
|
|
|
|
|
|
|
the remainder. |
698
|
|
|
|
|
|
|
|
699
|
|
|
|
|
|
|
my($q_ref, $r_ref) = pl_div($f1, $f2); |
700
|
|
|
|
|
|
|
|
701
|
|
|
|
|
|
|
# |
702
|
|
|
|
|
|
|
# Remove any leading zeros (i.e., numbers smaller in |
703
|
|
|
|
|
|
|
# magnitude than machine epsilon) in the remainder. |
704
|
|
|
|
|
|
|
# |
705
|
|
|
|
|
|
|
my @remd = @{$r_ref}; |
706
|
|
|
|
|
|
|
pop @remd while (@remd and abs($remd[$#remd]) < $epsilon); |
707
|
|
|
|
|
|
|
|
708
|
|
|
|
|
|
|
$f1 = $f2; |
709
|
|
|
|
|
|
|
$f2 = [@remd]; |
710
|
|
|
|
|
|
|
|
711
|
|
|
|
|
|
|
If C<$f1> and C<$f2> were to go through that bit of code again, not |
712
|
|
|
|
|
|
|
removing the leading zeros would lead to a divide-by-zero error. |
713
|
|
|
|
|
|
|
|
714
|
|
|
|
|
|
|
If either list of coefficients is empty, pl_div() returns undefs for |
715
|
|
|
|
|
|
|
both quotient and remainder. |
716
|
|
|
|
|
|
|
|
717
|
|
|
|
|
|
|
=cut |
718
|
|
|
|
|
|
|
|
719
|
|
|
|
|
|
|
sub pl_div |
720
|
|
|
|
|
|
|
{ |
721
|
5
|
|
|
5
|
1
|
2082
|
my @numerator = @{$_[0]}; |
|
5
|
|
|
|
|
15
|
|
722
|
5
|
|
|
|
|
9
|
my @divisor = @{$_[1]}; |
|
5
|
|
|
|
|
13
|
|
723
|
|
|
|
|
|
|
|
724
|
5
|
|
|
|
|
8
|
my @quotient; |
725
|
|
|
|
|
|
|
|
726
|
5
|
|
|
|
|
8
|
my $n_degree = $#numerator; |
727
|
5
|
|
|
|
|
24
|
my $d_degree = $#divisor; |
728
|
|
|
|
|
|
|
|
729
|
|
|
|
|
|
|
# |
730
|
|
|
|
|
|
|
# Sanity checks: a numerator less than the divisor |
731
|
|
|
|
|
|
|
# is automatically the remainder; and return a pair |
732
|
|
|
|
|
|
|
# of undefs if either set of coefficients are |
733
|
|
|
|
|
|
|
# empty lists. |
734
|
|
|
|
|
|
|
# |
735
|
5
|
50
|
|
|
|
14
|
return ([0], \@numerator) if ($n_degree < $d_degree); |
736
|
5
|
50
|
33
|
|
|
25
|
return (undef, undef) if ($d_degree < 0 or $n_degree < 0); |
737
|
|
|
|
|
|
|
|
738
|
5
|
|
|
|
|
10
|
my $lead_coefficient = $divisor[$#divisor]; |
739
|
|
|
|
|
|
|
|
740
|
|
|
|
|
|
|
# |
741
|
|
|
|
|
|
|
# Perform the synthetic division. The remainder will |
742
|
|
|
|
|
|
|
# be what's left in the numerator. |
743
|
|
|
|
|
|
|
# (4, 13, 4, -9, 6) / (1, 2) = (4, 5, -6, 3) |
744
|
|
|
|
|
|
|
# |
745
|
|
|
|
|
|
|
@quotient = reverse map { |
746
|
|
|
|
|
|
|
# |
747
|
|
|
|
|
|
|
# Get the next term for the quotient. We pop |
748
|
|
|
|
|
|
|
# off the lead numerator term, which would become |
749
|
|
|
|
|
|
|
# zero due to subtraction anyway. |
750
|
|
|
|
|
|
|
# |
751
|
5
|
|
|
|
|
17
|
my $q = (pop @numerator)/$lead_coefficient; |
|
20
|
|
|
|
|
38
|
|
752
|
|
|
|
|
|
|
|
753
|
20
|
|
|
|
|
42
|
for my $k (0..$d_degree - 1) |
754
|
|
|
|
|
|
|
{ |
755
|
67
|
|
|
|
|
129
|
$numerator[$#numerator - $k] -= $q * $divisor[$d_degree - $k - 1]; |
756
|
|
|
|
|
|
|
} |
757
|
|
|
|
|
|
|
|
758
|
20
|
|
|
|
|
49
|
$q; |
759
|
|
|
|
|
|
|
} reverse (0 .. $n_degree - $d_degree); |
760
|
|
|
|
|
|
|
|
761
|
5
|
|
|
|
|
20
|
return (\@quotient, \@numerator); |
762
|
|
|
|
|
|
|
} |
763
|
|
|
|
|
|
|
|
764
|
|
|
|
|
|
|
=head3 pl_mult() |
765
|
|
|
|
|
|
|
|
766
|
|
|
|
|
|
|
$m_ref = pl_mult(\@coefficients1, \@coefficients2); |
767
|
|
|
|
|
|
|
|
768
|
|
|
|
|
|
|
Returns the reference to the product of the two multiplicands. |
769
|
|
|
|
|
|
|
|
770
|
|
|
|
|
|
|
=cut |
771
|
|
|
|
|
|
|
|
772
|
|
|
|
|
|
|
sub pl_mult |
773
|
|
|
|
|
|
|
{ |
774
|
5
|
|
|
5
|
1
|
16347
|
my($av, $bv) = @_; |
775
|
5
|
|
|
|
|
9
|
my $a_degree = $#{$av}; |
|
5
|
|
|
|
|
8
|
|
776
|
5
|
|
|
|
|
20
|
my $b_degree = $#{$bv}; |
|
5
|
|
|
|
|
8
|
|
777
|
|
|
|
|
|
|
|
778
|
|
|
|
|
|
|
# |
779
|
|
|
|
|
|
|
# Rather than multiplying left to right for each element, |
780
|
|
|
|
|
|
|
# sum to each degree of the resulting polynomial (the list |
781
|
|
|
|
|
|
|
# after the map block). Still an O(n**2) operation, but |
782
|
|
|
|
|
|
|
# we don't need separate storage variables. |
783
|
|
|
|
|
|
|
# |
784
|
|
|
|
|
|
|
return [ map { |
785
|
5
|
100
|
|
|
|
16
|
my $a_idx = ($a_degree > $_)? $_: $a_degree; |
|
29
|
|
|
|
|
62
|
|
786
|
29
|
100
|
|
|
|
38
|
my $b_to = ($b_degree > $_)? $_: $b_degree; |
787
|
29
|
|
|
|
|
33
|
my $b_from = $_ - $a_idx; |
788
|
|
|
|
|
|
|
|
789
|
29
|
|
|
|
|
45
|
my $c = $av->[$a_idx] * $bv->[$b_from]; |
790
|
|
|
|
|
|
|
|
791
|
29
|
|
|
|
|
2439
|
for my $b_idx ($b_from+1 .. $b_to) |
792
|
|
|
|
|
|
|
{ |
793
|
31
|
|
|
|
|
687
|
$c += $av->[--$a_idx] * $bv->[$b_idx]; |
794
|
|
|
|
|
|
|
} |
795
|
29
|
|
|
|
|
2823
|
$c; |
796
|
|
|
|
|
|
|
} (0 .. $a_degree + $b_degree) ]; |
797
|
|
|
|
|
|
|
} |
798
|
|
|
|
|
|
|
|
799
|
|
|
|
|
|
|
=head3 pl_derivative() |
800
|
|
|
|
|
|
|
|
801
|
|
|
|
|
|
|
$poly_ref = pl_derivative(\@coefficients); |
802
|
|
|
|
|
|
|
|
803
|
|
|
|
|
|
|
Returns the derivative of a polynomial. |
804
|
|
|
|
|
|
|
|
805
|
|
|
|
|
|
|
=cut |
806
|
|
|
|
|
|
|
|
807
|
|
|
|
|
|
|
sub pl_derivative |
808
|
|
|
|
|
|
|
{ |
809
|
8
|
|
|
8
|
1
|
2901
|
my @coefficients = @{$_[0]}; |
|
8
|
|
|
|
|
22
|
|
810
|
8
|
|
|
|
|
14
|
my $degree = $#coefficients; |
811
|
|
|
|
|
|
|
|
812
|
8
|
100
|
|
|
|
26
|
return [] if ($degree < 1); |
813
|
|
|
|
|
|
|
|
814
|
7
|
|
|
|
|
28
|
$coefficients[$_] *= $_ for (2..$degree); |
815
|
|
|
|
|
|
|
|
816
|
7
|
|
|
|
|
13
|
shift @coefficients; |
817
|
7
|
|
|
|
|
17
|
return \@coefficients; |
818
|
|
|
|
|
|
|
} |
819
|
|
|
|
|
|
|
|
820
|
|
|
|
|
|
|
=head3 pl_antiderivative() |
821
|
|
|
|
|
|
|
|
822
|
|
|
|
|
|
|
$poly_ref = pl_antiderivative(\@coefficients); |
823
|
|
|
|
|
|
|
|
824
|
|
|
|
|
|
|
Returns the antiderivative of a polynomial. The constant value is |
825
|
|
|
|
|
|
|
always set to zero and will need to be changed by the caller if a |
826
|
|
|
|
|
|
|
different constant is needed. |
827
|
|
|
|
|
|
|
|
828
|
|
|
|
|
|
|
my @coefficients = (1, 2, -3, 2); |
829
|
|
|
|
|
|
|
my $integral = pl_antiderivative(\@coefficients); |
830
|
|
|
|
|
|
|
|
831
|
|
|
|
|
|
|
# |
832
|
|
|
|
|
|
|
# Integral needs to be 0 at x = 1. |
833
|
|
|
|
|
|
|
# |
834
|
|
|
|
|
|
|
my @coeff1 = @{$integral}; |
835
|
|
|
|
|
|
|
$coeff1[0] = - pl_evaluate($integral, 1); |
836
|
|
|
|
|
|
|
|
837
|
|
|
|
|
|
|
=cut |
838
|
|
|
|
|
|
|
|
839
|
|
|
|
|
|
|
sub pl_antiderivative |
840
|
|
|
|
|
|
|
{ |
841
|
8
|
|
|
8
|
1
|
3360
|
my @coefficients = @{$_[0]}; |
|
8
|
|
|
|
|
28
|
|
842
|
8
|
|
|
|
|
34
|
my $degree = scalar @coefficients; |
843
|
|
|
|
|
|
|
|
844
|
|
|
|
|
|
|
# |
845
|
|
|
|
|
|
|
# Sanity check if its an empty list. |
846
|
|
|
|
|
|
|
# |
847
|
8
|
100
|
|
|
|
25
|
return [0] if ($degree < 1); |
848
|
|
|
|
|
|
|
|
849
|
7
|
|
|
|
|
34
|
$coefficients[$_ - 1] /= $_ for (2..$degree); |
850
|
|
|
|
|
|
|
|
851
|
7
|
|
|
|
|
22
|
unshift @coefficients, 0; |
852
|
7
|
|
|
|
|
22
|
return \@coefficients; |
853
|
|
|
|
|
|
|
} |
854
|
|
|
|
|
|
|
|
855
|
|
|
|
|
|
|
=head1 AUTHOR |
856
|
|
|
|
|
|
|
|
857
|
|
|
|
|
|
|
John M. Gamble, C<< >> |
858
|
|
|
|
|
|
|
|
859
|
|
|
|
|
|
|
=head1 SEE ALSO |
860
|
|
|
|
|
|
|
|
861
|
|
|
|
|
|
|
L for a complete set of polynomial operations, with the |
862
|
|
|
|
|
|
|
added convenience that objects bring. |
863
|
|
|
|
|
|
|
|
864
|
|
|
|
|
|
|
Among its other functions, L has the mathematically useful |
865
|
|
|
|
|
|
|
functions max(), min(), product(), sum(), and sum0(). |
866
|
|
|
|
|
|
|
|
867
|
|
|
|
|
|
|
L has the function minmax(). |
868
|
|
|
|
|
|
|
|
869
|
|
|
|
|
|
|
L has gcd() and lcm() functions, as well as vecsum(), |
870
|
|
|
|
|
|
|
vecprod(), vecmin(), and vecmax(), which are like the L |
871
|
|
|
|
|
|
|
functions but which can force integer use, and when appropriate use |
872
|
|
|
|
|
|
|
L. |
873
|
|
|
|
|
|
|
|
874
|
|
|
|
|
|
|
L Likewise has min(), max(), sum() (which can take |
875
|
|
|
|
|
|
|
as arguments array references as well as arrays), plus maxabs(), |
876
|
|
|
|
|
|
|
minabs(), sumbyelement(), convolute(), and other functions. |
877
|
|
|
|
|
|
|
|
878
|
|
|
|
|
|
|
=head1 BUGS |
879
|
|
|
|
|
|
|
|
880
|
|
|
|
|
|
|
Please report any bugs or feature requests to C, or through |
881
|
|
|
|
|
|
|
the web interface at L. I will be notified, and then you'll |
882
|
|
|
|
|
|
|
automatically be notified of progress on your bug as I make changes. |
883
|
|
|
|
|
|
|
|
884
|
|
|
|
|
|
|
=head1 SUPPORT |
885
|
|
|
|
|
|
|
|
886
|
|
|
|
|
|
|
This module is on Github at L. |
887
|
|
|
|
|
|
|
|
888
|
|
|
|
|
|
|
You can also look for information at: |
889
|
|
|
|
|
|
|
|
890
|
|
|
|
|
|
|
=over 4 |
891
|
|
|
|
|
|
|
|
892
|
|
|
|
|
|
|
=item * RT: CPAN's request tracker (report bugs here) |
893
|
|
|
|
|
|
|
|
894
|
|
|
|
|
|
|
L |
895
|
|
|
|
|
|
|
|
896
|
|
|
|
|
|
|
=item * AnnoCPAN: Annotated CPAN documentation |
897
|
|
|
|
|
|
|
|
898
|
|
|
|
|
|
|
L |
899
|
|
|
|
|
|
|
|
900
|
|
|
|
|
|
|
=item * CPAN Ratings |
901
|
|
|
|
|
|
|
|
902
|
|
|
|
|
|
|
L |
903
|
|
|
|
|
|
|
|
904
|
|
|
|
|
|
|
=item * Search CPAN |
905
|
|
|
|
|
|
|
|
906
|
|
|
|
|
|
|
L |
907
|
|
|
|
|
|
|
|
908
|
|
|
|
|
|
|
=back |
909
|
|
|
|
|
|
|
|
910
|
|
|
|
|
|
|
|
911
|
|
|
|
|
|
|
=head1 ACKNOWLEDGEMENTS |
912
|
|
|
|
|
|
|
|
913
|
|
|
|
|
|
|
To J. A. R. Williams who got the ball rolling with L. |
914
|
|
|
|
|
|
|
|
915
|
|
|
|
|
|
|
=head1 LICENSE AND COPYRIGHT |
916
|
|
|
|
|
|
|
|
917
|
|
|
|
|
|
|
Copyright (c) 2017 John M. Gamble. All rights reserved. This program is |
918
|
|
|
|
|
|
|
free software; you can redistribute it and/or modify it under the same |
919
|
|
|
|
|
|
|
terms as Perl itself. |
920
|
|
|
|
|
|
|
|
921
|
|
|
|
|
|
|
=cut |
922
|
|
|
|
|
|
|
|
923
|
|
|
|
|
|
|
1; # End of Math::Utils |