| line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
|
1
|
|
|
|
|
|
|
|
|
2
|
|
|
|
|
|
|
=encoding utf8 |
|
3
|
|
|
|
|
|
|
|
|
4
|
|
|
|
|
|
|
=head1 NAME |
|
5
|
|
|
|
|
|
|
|
|
6
|
|
|
|
|
|
|
Math::Symbolic::VectorCalculus - Symbolically comp. grad, Jacobi matrices etc. |
|
7
|
|
|
|
|
|
|
|
|
8
|
|
|
|
|
|
|
=head1 SYNOPSIS |
|
9
|
|
|
|
|
|
|
|
|
10
|
|
|
|
|
|
|
use Math::Symbolic qw/:all/; |
|
11
|
|
|
|
|
|
|
use Math::Symbolic::VectorCalculus; # not loaded by Math::Symbolic |
|
12
|
|
|
|
|
|
|
|
|
13
|
|
|
|
|
|
|
@gradient = grad 'x+y*z'; |
|
14
|
|
|
|
|
|
|
# or: |
|
15
|
|
|
|
|
|
|
$function = parse_from_string('a*b^c'); |
|
16
|
|
|
|
|
|
|
@gradient = grad $function; |
|
17
|
|
|
|
|
|
|
# or: |
|
18
|
|
|
|
|
|
|
@signature = qw(x y z); |
|
19
|
|
|
|
|
|
|
@gradient = grad 'a*x+b*y+c*z', @signature; # Gradient only for x, y, z |
|
20
|
|
|
|
|
|
|
# or: |
|
21
|
|
|
|
|
|
|
@gradient = grad $function, @signature; |
|
22
|
|
|
|
|
|
|
|
|
23
|
|
|
|
|
|
|
# Similar syntax variations as with the gradient: |
|
24
|
|
|
|
|
|
|
$divergence = div @functions; |
|
25
|
|
|
|
|
|
|
$divergence = div @functions, @signature; |
|
26
|
|
|
|
|
|
|
|
|
27
|
|
|
|
|
|
|
# Again, similar DWIM syntax variations as with grad: |
|
28
|
|
|
|
|
|
|
@rotation = rot @functions; |
|
29
|
|
|
|
|
|
|
@rotation = rot @functions, @signature; |
|
30
|
|
|
|
|
|
|
|
|
31
|
|
|
|
|
|
|
# Signatures always inferred from the functions here: |
|
32
|
|
|
|
|
|
|
@matrix = Jacobi @functions; |
|
33
|
|
|
|
|
|
|
# $matrix is now array of array references. These hold |
|
34
|
|
|
|
|
|
|
# Math::Symbolic trees. Or: |
|
35
|
|
|
|
|
|
|
@matrix = Jacobi @functions, @signature; |
|
36
|
|
|
|
|
|
|
|
|
37
|
|
|
|
|
|
|
# Similar to Jacobi: |
|
38
|
|
|
|
|
|
|
@matrix = Hesse $function; |
|
39
|
|
|
|
|
|
|
# or: |
|
40
|
|
|
|
|
|
|
@matrix = Hesse $function, @signature; |
|
41
|
|
|
|
|
|
|
|
|
42
|
|
|
|
|
|
|
$wronsky_determinant = WronskyDet @functions, @vars; |
|
43
|
|
|
|
|
|
|
# or: |
|
44
|
|
|
|
|
|
|
$wronsky_determinant = WronskyDet @functions; # functions of 1 variable |
|
45
|
|
|
|
|
|
|
|
|
46
|
|
|
|
|
|
|
$differential = TotalDifferential $function; |
|
47
|
|
|
|
|
|
|
$differential = TotalDifferential $function, @signature; |
|
48
|
|
|
|
|
|
|
$differential = TotalDifferential $function, @signature, @point; |
|
49
|
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
|
$dir_deriv = DirectionalDerivative $function, @vector; |
|
51
|
|
|
|
|
|
|
$dir_deriv = DirectionalDerivative $function, @vector, @signature; |
|
52
|
|
|
|
|
|
|
|
|
53
|
|
|
|
|
|
|
$taylor = TaylorPolyTwoDim $function, $var1, $var2, $degree; |
|
54
|
|
|
|
|
|
|
$taylor = TaylorPolyTwoDim $function, $var1, $var2, |
|
55
|
|
|
|
|
|
|
$degree, $var1_0, $var2_0; |
|
56
|
|
|
|
|
|
|
# example: |
|
57
|
|
|
|
|
|
|
$taylor = TaylorPolyTwoDim 'sin(x)*cos(y)', 'x', 'y', 2; |
|
58
|
|
|
|
|
|
|
|
|
59
|
|
|
|
|
|
|
=head1 DESCRIPTION |
|
60
|
|
|
|
|
|
|
|
|
61
|
|
|
|
|
|
|
This module provides several subroutines related to |
|
62
|
|
|
|
|
|
|
vector calculus such as computing gradients, divergence, rotation, |
|
63
|
|
|
|
|
|
|
and Jacobi/Hesse Matrices of Math::Symbolic trees. |
|
64
|
|
|
|
|
|
|
Furthermore it provides means of computing directional derivatives |
|
65
|
|
|
|
|
|
|
and the total differential of a scalar function and the |
|
66
|
|
|
|
|
|
|
Wronsky Determinant of a set of n scalar functions. |
|
67
|
|
|
|
|
|
|
|
|
68
|
|
|
|
|
|
|
Please note that the code herein may or may not be refactored into |
|
69
|
|
|
|
|
|
|
the OO-interface of the Math::Symbolic module in the future. |
|
70
|
|
|
|
|
|
|
|
|
71
|
|
|
|
|
|
|
=head2 EXPORT |
|
72
|
|
|
|
|
|
|
|
|
73
|
|
|
|
|
|
|
None by default. |
|
74
|
|
|
|
|
|
|
|
|
75
|
|
|
|
|
|
|
You may choose to have any of the following routines exported to the |
|
76
|
|
|
|
|
|
|
calling namespace. ':all' tag exports all of the following: |
|
77
|
|
|
|
|
|
|
|
|
78
|
|
|
|
|
|
|
grad |
|
79
|
|
|
|
|
|
|
div |
|
80
|
|
|
|
|
|
|
rot |
|
81
|
|
|
|
|
|
|
Jacobi |
|
82
|
|
|
|
|
|
|
Hesse |
|
83
|
|
|
|
|
|
|
WronskyDet |
|
84
|
|
|
|
|
|
|
TotalDifferential |
|
85
|
|
|
|
|
|
|
DirectionalDerivative |
|
86
|
|
|
|
|
|
|
TaylorPolyTwoDim |
|
87
|
|
|
|
|
|
|
|
|
88
|
|
|
|
|
|
|
=head1 SUBROUTINES |
|
89
|
|
|
|
|
|
|
|
|
90
|
|
|
|
|
|
|
=cut |
|
91
|
|
|
|
|
|
|
|
|
92
|
|
|
|
|
|
|
package Math::Symbolic::VectorCalculus; |
|
93
|
|
|
|
|
|
|
|
|
94
|
2
|
|
|
2
|
|
3899
|
use 5.006; |
|
|
2
|
|
|
|
|
13
|
|
|
|
2
|
|
|
|
|
90
|
|
|
95
|
2
|
|
|
2
|
|
16
|
use strict; |
|
|
2
|
|
|
|
|
4
|
|
|
|
2
|
|
|
|
|
77
|
|
|
96
|
2
|
|
|
2
|
|
11
|
use warnings; |
|
|
2
|
|
|
|
|
4
|
|
|
|
2
|
|
|
|
|
64
|
|
|
97
|
|
|
|
|
|
|
|
|
98
|
2
|
|
|
2
|
|
13
|
use Carp; |
|
|
2
|
|
|
|
|
4
|
|
|
|
2
|
|
|
|
|
171
|
|
|
99
|
|
|
|
|
|
|
|
|
100
|
2
|
|
|
2
|
|
11
|
use Math::Symbolic qw/:all/; |
|
|
2
|
|
|
|
|
5
|
|
|
|
2
|
|
|
|
|
635
|
|
|
101
|
2
|
|
|
2
|
|
1459
|
use Math::Symbolic::MiscAlgebra qw/det/; |
|
|
2
|
|
|
|
|
7
|
|
|
|
2
|
|
|
|
|
6855
|
|
|
102
|
|
|
|
|
|
|
|
|
103
|
|
|
|
|
|
|
require Exporter; |
|
104
|
|
|
|
|
|
|
our @ISA = qw(Exporter); |
|
105
|
|
|
|
|
|
|
our %EXPORT_TAGS = ( |
|
106
|
|
|
|
|
|
|
'all' => [ |
|
107
|
|
|
|
|
|
|
qw( |
|
108
|
|
|
|
|
|
|
grad |
|
109
|
|
|
|
|
|
|
div |
|
110
|
|
|
|
|
|
|
rot |
|
111
|
|
|
|
|
|
|
Jacobi |
|
112
|
|
|
|
|
|
|
Hesse |
|
113
|
|
|
|
|
|
|
TotalDifferential |
|
114
|
|
|
|
|
|
|
DirectionalDerivative |
|
115
|
|
|
|
|
|
|
TaylorPolyTwoDim |
|
116
|
|
|
|
|
|
|
WronskyDet |
|
117
|
|
|
|
|
|
|
) |
|
118
|
|
|
|
|
|
|
] |
|
119
|
|
|
|
|
|
|
); |
|
120
|
|
|
|
|
|
|
|
|
121
|
|
|
|
|
|
|
our @EXPORT_OK = ( @{ $EXPORT_TAGS{'all'} } ); |
|
122
|
|
|
|
|
|
|
|
|
123
|
|
|
|
|
|
|
our $VERSION = '0.612'; |
|
124
|
|
|
|
|
|
|
|
|
125
|
|
|
|
|
|
|
=begin comment |
|
126
|
|
|
|
|
|
|
|
|
127
|
|
|
|
|
|
|
_combined_signature returns the combined signature of unique variable names |
|
128
|
|
|
|
|
|
|
of all Math::Symbolic trees passed to it. |
|
129
|
|
|
|
|
|
|
|
|
130
|
|
|
|
|
|
|
=end comment |
|
131
|
|
|
|
|
|
|
|
|
132
|
|
|
|
|
|
|
=cut |
|
133
|
|
|
|
|
|
|
|
|
134
|
|
|
|
|
|
|
sub _combined_signature { |
|
135
|
4
|
|
|
4
|
|
13
|
my %seen = map { ( $_, undef ) } map { ( $_->signature() ) } @_; |
|
|
24
|
|
|
|
|
44
|
|
|
|
12
|
|
|
|
|
38
|
|
|
136
|
4
|
|
|
|
|
22
|
return [ sort keys %seen ]; |
|
137
|
|
|
|
|
|
|
} |
|
138
|
|
|
|
|
|
|
|
|
139
|
|
|
|
|
|
|
=head2 grad |
|
140
|
|
|
|
|
|
|
|
|
141
|
|
|
|
|
|
|
This subroutine computes the gradient of a Math::Symbolic tree representing |
|
142
|
|
|
|
|
|
|
a function. |
|
143
|
|
|
|
|
|
|
|
|
144
|
|
|
|
|
|
|
The gradient of a function f(x1, x2, ..., xn) is defined as the vector: |
|
145
|
|
|
|
|
|
|
|
|
146
|
|
|
|
|
|
|
( df(x1, x2, ..., xn) / d(x1), |
|
147
|
|
|
|
|
|
|
df(x1, x2, ..., xn) / d(x2), |
|
148
|
|
|
|
|
|
|
..., |
|
149
|
|
|
|
|
|
|
df(x1, x2, ..., xn) / d(xn) ) |
|
150
|
|
|
|
|
|
|
|
|
151
|
|
|
|
|
|
|
(These are all partial derivatives.) Any good book on calculus will have |
|
152
|
|
|
|
|
|
|
more details on this. |
|
153
|
|
|
|
|
|
|
|
|
154
|
|
|
|
|
|
|
grad uses prototypes to allow for a variety of usages. In its most basic form, |
|
155
|
|
|
|
|
|
|
it accepts only one argument which may either be a Math::Symbolic tree or a |
|
156
|
|
|
|
|
|
|
string both of which will be interpreted as the function to compute the |
|
157
|
|
|
|
|
|
|
gradient for. Optionally, you may specify a second argument which must |
|
158
|
|
|
|
|
|
|
be a (literal) array of Math::Symbolic::Variable objects or valid |
|
159
|
|
|
|
|
|
|
Math::Symbolic variable names (strings). These variables will the be used for |
|
160
|
|
|
|
|
|
|
the gradient instead of the x1, ..., xn inferred from the function signature. |
|
161
|
|
|
|
|
|
|
|
|
162
|
|
|
|
|
|
|
=cut |
|
163
|
|
|
|
|
|
|
|
|
164
|
|
|
|
|
|
|
sub grad ($;\@) { |
|
165
|
14
|
|
|
14
|
1
|
68
|
my $original = shift; |
|
166
|
14
|
100
|
|
|
|
87
|
$original = parse_from_string($original) |
|
167
|
|
|
|
|
|
|
unless ref($original) =~ /^Math::Symbolic/; |
|
168
|
14
|
|
|
|
|
37
|
my $signature = shift; |
|
169
|
|
|
|
|
|
|
|
|
170
|
14
|
|
|
|
|
23
|
my @funcs; |
|
171
|
14
|
100
|
|
|
|
61
|
my @signature = |
|
172
|
|
|
|
|
|
|
( defined $signature ? @$signature : $original->signature() ); |
|
173
|
|
|
|
|
|
|
|
|
174
|
14
|
|
|
|
|
43
|
foreach (@signature) { |
|
175
|
33
|
|
|
|
|
121
|
my $var = Math::Symbolic::Variable->new($_); |
|
176
|
33
|
|
|
|
|
114
|
my $func = Math::Symbolic::Operator->new( |
|
177
|
|
|
|
|
|
|
{ |
|
178
|
|
|
|
|
|
|
type => U_P_DERIVATIVE, |
|
179
|
|
|
|
|
|
|
operands => [ $original->new(), $var ], |
|
180
|
|
|
|
|
|
|
} |
|
181
|
|
|
|
|
|
|
); |
|
182
|
33
|
|
|
|
|
113
|
push @funcs, $func; |
|
183
|
|
|
|
|
|
|
} |
|
184
|
14
|
|
|
|
|
176
|
return @funcs; |
|
185
|
|
|
|
|
|
|
} |
|
186
|
|
|
|
|
|
|
|
|
187
|
|
|
|
|
|
|
=head2 div |
|
188
|
|
|
|
|
|
|
|
|
189
|
|
|
|
|
|
|
This subroutine computes the divergence of a set of Math::Symbolic trees |
|
190
|
|
|
|
|
|
|
representing a vectorial function. |
|
191
|
|
|
|
|
|
|
|
|
192
|
|
|
|
|
|
|
The divergence of a vectorial function |
|
193
|
|
|
|
|
|
|
F = (f1(x1, ..., xn), ..., fn(x1, ..., xn)) is defined like follows: |
|
194
|
|
|
|
|
|
|
|
|
195
|
|
|
|
|
|
|
sum_from_i=1_to_n( dfi(x1, ..., xn) / dxi ) |
|
196
|
|
|
|
|
|
|
|
|
197
|
|
|
|
|
|
|
That is, the sum of all partial derivatives of the i-th component function |
|
198
|
|
|
|
|
|
|
to the i-th coordinate. See your favourite book on calculus for details. |
|
199
|
|
|
|
|
|
|
Obviously, it is important to keep in mind that the number of function |
|
200
|
|
|
|
|
|
|
components must be equal to the number of variables/coordinates. |
|
201
|
|
|
|
|
|
|
|
|
202
|
|
|
|
|
|
|
Similar to grad, div uses prototypes to offer a comfortable interface. |
|
203
|
|
|
|
|
|
|
First argument must be a (literal) array of strings and Math::Symbolic trees |
|
204
|
|
|
|
|
|
|
which represent the vectorial function's components. If no second argument |
|
205
|
|
|
|
|
|
|
is passed, the variables used for computing the divergence will be |
|
206
|
|
|
|
|
|
|
inferred from the functions. That means the function signatures will be |
|
207
|
|
|
|
|
|
|
joined to form a signature for the vectorial function. |
|
208
|
|
|
|
|
|
|
|
|
209
|
|
|
|
|
|
|
If the optional second argument is specified, it has to be a (literal) |
|
210
|
|
|
|
|
|
|
array of Math::Symbolic::Variable objects and valid variable names (strings). |
|
211
|
|
|
|
|
|
|
These will then be interpreted as the list of variables for computing the |
|
212
|
|
|
|
|
|
|
divergence. |
|
213
|
|
|
|
|
|
|
|
|
214
|
|
|
|
|
|
|
=cut |
|
215
|
|
|
|
|
|
|
|
|
216
|
|
|
|
|
|
|
sub div (\@;\@) { |
|
217
|
9
|
100
|
|
|
|
84
|
my @originals = |
|
218
|
3
|
|
|
|
|
10
|
map { ( ref($_) =~ /^Math::Symbolic/ ) ? $_ : parse_from_string($_) } |
|
219
|
3
|
|
|
3
|
1
|
35
|
@{ +shift }; |
|
220
|
|
|
|
|
|
|
|
|
221
|
3
|
|
|
|
|
21
|
my $signature = shift; |
|
222
|
3
|
100
|
|
|
|
16
|
$signature = _combined_signature(@originals) |
|
223
|
|
|
|
|
|
|
if not defined $signature; |
|
224
|
|
|
|
|
|
|
|
|
225
|
3
|
50
|
|
|
|
13
|
if ( @$signature != @originals ) { |
|
226
|
0
|
|
|
|
|
0
|
die "Variable count does not function count for divergence."; |
|
227
|
|
|
|
|
|
|
} |
|
228
|
|
|
|
|
|
|
|
|
229
|
3
|
|
|
|
|
9
|
my @signature = map { Math::Symbolic::Variable->new($_) } @$signature; |
|
|
9
|
|
|
|
|
31
|
|
|
230
|
|
|
|
|
|
|
|
|
231
|
3
|
|
|
|
|
14
|
my $div = Math::Symbolic::Operator->new( |
|
232
|
|
|
|
|
|
|
{ |
|
233
|
|
|
|
|
|
|
type => U_P_DERIVATIVE, |
|
234
|
|
|
|
|
|
|
operands => [ shift(@originals)->new(), shift @signature ], |
|
235
|
|
|
|
|
|
|
} |
|
236
|
|
|
|
|
|
|
); |
|
237
|
|
|
|
|
|
|
|
|
238
|
3
|
|
|
|
|
15
|
foreach (@originals) { |
|
239
|
6
|
|
|
|
|
20
|
$div = Math::Symbolic::Operator->new( |
|
240
|
|
|
|
|
|
|
'+', $div, |
|
241
|
|
|
|
|
|
|
Math::Symbolic::Operator->new( |
|
242
|
|
|
|
|
|
|
{ |
|
243
|
|
|
|
|
|
|
type => U_P_DERIVATIVE, |
|
244
|
|
|
|
|
|
|
operands => [ $_->new(), shift @signature ], |
|
245
|
|
|
|
|
|
|
} |
|
246
|
|
|
|
|
|
|
) |
|
247
|
|
|
|
|
|
|
); |
|
248
|
|
|
|
|
|
|
} |
|
249
|
3
|
|
|
|
|
20
|
return $div; |
|
250
|
|
|
|
|
|
|
} |
|
251
|
|
|
|
|
|
|
|
|
252
|
|
|
|
|
|
|
=head2 rot |
|
253
|
|
|
|
|
|
|
|
|
254
|
|
|
|
|
|
|
This subroutine computes the rotation of a set of three Math::Symbolic trees |
|
255
|
|
|
|
|
|
|
representing a vectorial function. |
|
256
|
|
|
|
|
|
|
|
|
257
|
|
|
|
|
|
|
The rotation of a vectorial function |
|
258
|
|
|
|
|
|
|
F = (f1(x1, x2, x3), f2(x1, x2, x3), f3(x1, x2, x3)) is defined as the |
|
259
|
|
|
|
|
|
|
following vector: |
|
260
|
|
|
|
|
|
|
|
|
261
|
|
|
|
|
|
|
( ( df3/dx2 - df2/dx3 ), |
|
262
|
|
|
|
|
|
|
( df1/dx3 - df3/dx1 ), |
|
263
|
|
|
|
|
|
|
( df2/dx1 - df1/dx2 ) ) |
|
264
|
|
|
|
|
|
|
|
|
265
|
|
|
|
|
|
|
Or "nabla x F" for short. Again, I have to refer to the literature for |
|
266
|
|
|
|
|
|
|
the details on what rotation is. Please note that there have to be |
|
267
|
|
|
|
|
|
|
exactly three function components and three coordinates because the cross |
|
268
|
|
|
|
|
|
|
product and hence rotation is only defined in three dimensions. |
|
269
|
|
|
|
|
|
|
|
|
270
|
|
|
|
|
|
|
As with the previously introduced subroutines div and grad, rot |
|
271
|
|
|
|
|
|
|
offers a prototyped interface. |
|
272
|
|
|
|
|
|
|
First argument must be a (literal) array of strings and Math::Symbolic trees |
|
273
|
|
|
|
|
|
|
which represent the vectorial function's components. If no second argument |
|
274
|
|
|
|
|
|
|
is passed, the variables used for computing the rotation will be |
|
275
|
|
|
|
|
|
|
inferred from the functions. That means the function signatures will be |
|
276
|
|
|
|
|
|
|
joined to form a signature for the vectorial function. |
|
277
|
|
|
|
|
|
|
|
|
278
|
|
|
|
|
|
|
If the optional second argument is specified, it has to be a (literal) |
|
279
|
|
|
|
|
|
|
array of Math::Symbolic::Variable objects and valid variable names (strings). |
|
280
|
|
|
|
|
|
|
These will then be interpreted as the list of variables for computing the |
|
281
|
|
|
|
|
|
|
rotation. (And please excuse my copying the last two paragraphs from above.) |
|
282
|
|
|
|
|
|
|
|
|
283
|
|
|
|
|
|
|
=cut |
|
284
|
|
|
|
|
|
|
|
|
285
|
|
|
|
|
|
|
sub rot (\@;\@) { |
|
286
|
1
|
|
|
1
|
1
|
3
|
my $originals = shift; |
|
287
|
3
|
50
|
|
|
|
48
|
my @originals = |
|
288
|
1
|
|
|
|
|
3
|
map { ( ref($_) =~ /^Math::Symbolic/ ) ? $_ : parse_from_string($_) } |
|
289
|
|
|
|
|
|
|
@$originals; |
|
290
|
|
|
|
|
|
|
|
|
291
|
1
|
|
|
|
|
20
|
my $signature = shift; |
|
292
|
1
|
50
|
|
|
|
6
|
$signature = _combined_signature(@originals) |
|
293
|
|
|
|
|
|
|
unless defined $signature; |
|
294
|
|
|
|
|
|
|
|
|
295
|
1
|
50
|
|
|
|
5
|
if ( @originals != 3 ) { |
|
296
|
0
|
|
|
|
|
0
|
die "Rotation only defined for functions of three components."; |
|
297
|
|
|
|
|
|
|
} |
|
298
|
1
|
50
|
|
|
|
4
|
if ( @$signature != 3 ) { |
|
299
|
0
|
|
|
|
|
0
|
die "Rotation only defined for three variables."; |
|
300
|
|
|
|
|
|
|
} |
|
301
|
|
|
|
|
|
|
|
|
302
|
|
|
|
|
|
|
return ( |
|
303
|
1
|
|
|
|
|
6
|
Math::Symbolic::Operator->new( |
|
304
|
|
|
|
|
|
|
'-', |
|
305
|
|
|
|
|
|
|
Math::Symbolic::Operator->new( |
|
306
|
|
|
|
|
|
|
{ |
|
307
|
|
|
|
|
|
|
type => U_P_DERIVATIVE, |
|
308
|
|
|
|
|
|
|
operands => [ $originals[2]->new(), $signature->[1] ], |
|
309
|
|
|
|
|
|
|
} |
|
310
|
|
|
|
|
|
|
), |
|
311
|
|
|
|
|
|
|
Math::Symbolic::Operator->new( |
|
312
|
|
|
|
|
|
|
{ |
|
313
|
|
|
|
|
|
|
type => U_P_DERIVATIVE, |
|
314
|
|
|
|
|
|
|
operands => [ $originals[1]->new(), $signature->[2] ], |
|
315
|
|
|
|
|
|
|
} |
|
316
|
|
|
|
|
|
|
) |
|
317
|
|
|
|
|
|
|
), |
|
318
|
|
|
|
|
|
|
Math::Symbolic::Operator->new( |
|
319
|
|
|
|
|
|
|
'-', |
|
320
|
|
|
|
|
|
|
Math::Symbolic::Operator->new( |
|
321
|
|
|
|
|
|
|
{ |
|
322
|
|
|
|
|
|
|
type => U_P_DERIVATIVE, |
|
323
|
|
|
|
|
|
|
operands => [ $originals[0]->new(), $signature->[2] ], |
|
324
|
|
|
|
|
|
|
} |
|
325
|
|
|
|
|
|
|
), |
|
326
|
|
|
|
|
|
|
Math::Symbolic::Operator->new( |
|
327
|
|
|
|
|
|
|
{ |
|
328
|
|
|
|
|
|
|
type => U_P_DERIVATIVE, |
|
329
|
|
|
|
|
|
|
operands => [ $originals[2]->new(), $signature->[0] ], |
|
330
|
|
|
|
|
|
|
} |
|
331
|
|
|
|
|
|
|
) |
|
332
|
|
|
|
|
|
|
), |
|
333
|
|
|
|
|
|
|
Math::Symbolic::Operator->new( |
|
334
|
|
|
|
|
|
|
'-', |
|
335
|
|
|
|
|
|
|
Math::Symbolic::Operator->new( |
|
336
|
|
|
|
|
|
|
{ |
|
337
|
|
|
|
|
|
|
type => U_P_DERIVATIVE, |
|
338
|
|
|
|
|
|
|
operands => [ $originals[1]->new(), $signature->[0] ], |
|
339
|
|
|
|
|
|
|
} |
|
340
|
|
|
|
|
|
|
), |
|
341
|
|
|
|
|
|
|
Math::Symbolic::Operator->new( |
|
342
|
|
|
|
|
|
|
{ |
|
343
|
|
|
|
|
|
|
type => U_P_DERIVATIVE, |
|
344
|
|
|
|
|
|
|
operands => [ $originals[0]->new(), $signature->[1] ], |
|
345
|
|
|
|
|
|
|
} |
|
346
|
|
|
|
|
|
|
) |
|
347
|
|
|
|
|
|
|
) |
|
348
|
|
|
|
|
|
|
); |
|
349
|
|
|
|
|
|
|
} |
|
350
|
|
|
|
|
|
|
|
|
351
|
|
|
|
|
|
|
=head2 Jacobi |
|
352
|
|
|
|
|
|
|
|
|
353
|
|
|
|
|
|
|
Jacobi() returns the Jacobi matrix of a given vectorial function. |
|
354
|
|
|
|
|
|
|
It expects any number of arguments (strings and/or Math::Symbolic trees) |
|
355
|
|
|
|
|
|
|
which will be interpreted as the vectorial function's components. |
|
356
|
|
|
|
|
|
|
Variables used for computing the matrix are, by default, inferred from the |
|
357
|
|
|
|
|
|
|
combined signature of the components. By specifying a second literal |
|
358
|
|
|
|
|
|
|
array of variable names as (second) argument, you may override this |
|
359
|
|
|
|
|
|
|
behaviour. |
|
360
|
|
|
|
|
|
|
|
|
361
|
|
|
|
|
|
|
The Jacobi matrix is the vector of gradient vectors of the vectorial |
|
362
|
|
|
|
|
|
|
function's components. |
|
363
|
|
|
|
|
|
|
|
|
364
|
|
|
|
|
|
|
=cut |
|
365
|
|
|
|
|
|
|
|
|
366
|
|
|
|
|
|
|
sub Jacobi (\@;\@) { |
|
367
|
5
|
100
|
|
|
|
63
|
my @funcs = |
|
368
|
2
|
|
|
|
|
6
|
map { ( ref($_) =~ /^Math::Symbolic/ ) ? $_ : parse_from_string($_) } |
|
369
|
2
|
|
|
2
|
1
|
5
|
@{ +shift() }; |
|
370
|
|
|
|
|
|
|
|
|
371
|
2
|
|
|
|
|
21
|
my $signature = shift; |
|
372
|
2
|
50
|
|
|
|
32
|
my @signature = ( |
|
373
|
|
|
|
|
|
|
defined $signature |
|
374
|
|
|
|
|
|
|
? ( |
|
375
|
|
|
|
|
|
|
map { |
|
376
|
1
|
|
|
|
|
4
|
( ref($_) =~ /^Math::Symbolic/ ) |
|
377
|
|
|
|
|
|
|
? $_ |
|
378
|
|
|
|
|
|
|
: parse_from_string($_) |
|
379
|
|
|
|
|
|
|
} @$signature |
|
380
|
|
|
|
|
|
|
) |
|
381
|
2
|
100
|
|
|
|
7
|
: ( @{ +_combined_signature(@funcs) } ) |
|
382
|
|
|
|
|
|
|
); |
|
383
|
|
|
|
|
|
|
|
|
384
|
2
|
|
|
|
|
28
|
return map { [ grad $_, @signature ] } @funcs; |
|
|
5
|
|
|
|
|
17
|
|
|
385
|
|
|
|
|
|
|
} |
|
386
|
|
|
|
|
|
|
|
|
387
|
|
|
|
|
|
|
=head2 Hesse |
|
388
|
|
|
|
|
|
|
|
|
389
|
|
|
|
|
|
|
Hesse() returns the Hesse matrix of a given scalar function. First |
|
390
|
|
|
|
|
|
|
argument must be a string (to be parsed as a Math::Symbolic tree) |
|
391
|
|
|
|
|
|
|
or a Math::Symbolic tree. As with Jacobi(), Hesse() optionally |
|
392
|
|
|
|
|
|
|
accepts an array of signature variables as second argument. |
|
393
|
|
|
|
|
|
|
|
|
394
|
|
|
|
|
|
|
The Hesse matrix is the Jacobi matrix of the gradient of a scalar function. |
|
395
|
|
|
|
|
|
|
|
|
396
|
|
|
|
|
|
|
=cut |
|
397
|
|
|
|
|
|
|
|
|
398
|
|
|
|
|
|
|
sub Hesse ($;\@) { |
|
399
|
1
|
|
|
1
|
1
|
3
|
my $function = shift; |
|
400
|
1
|
50
|
|
|
|
10
|
$function = parse_from_string($function) |
|
401
|
|
|
|
|
|
|
unless ref($function) =~ /^Math::Symbolic/; |
|
402
|
1
|
|
|
|
|
22
|
my $signature = shift; |
|
403
|
0
|
0
|
|
|
|
0
|
my @signature = ( |
|
404
|
|
|
|
|
|
|
defined $signature |
|
405
|
|
|
|
|
|
|
? ( |
|
406
|
|
|
|
|
|
|
map { |
|
407
|
1
|
50
|
|
|
|
10
|
( ref($_) =~ /^Math::Symbolic/ ) |
|
408
|
|
|
|
|
|
|
? $_ |
|
409
|
|
|
|
|
|
|
: parse_from_string($_) |
|
410
|
|
|
|
|
|
|
} @$signature |
|
411
|
|
|
|
|
|
|
) |
|
412
|
|
|
|
|
|
|
: $function->signature() |
|
413
|
|
|
|
|
|
|
); |
|
414
|
|
|
|
|
|
|
|
|
415
|
1
|
|
|
|
|
7
|
my @gradient = grad $function, @signature; |
|
416
|
1
|
|
|
|
|
7
|
return Jacobi @gradient, @signature; |
|
417
|
|
|
|
|
|
|
} |
|
418
|
|
|
|
|
|
|
|
|
419
|
|
|
|
|
|
|
=head2 TotalDifferential |
|
420
|
|
|
|
|
|
|
|
|
421
|
|
|
|
|
|
|
This function computes the total differential of a scalar function of |
|
422
|
|
|
|
|
|
|
multiple variables in a certain point. |
|
423
|
|
|
|
|
|
|
|
|
424
|
|
|
|
|
|
|
First argument must be the function to derive. The second argument is |
|
425
|
|
|
|
|
|
|
an optional (literal) array of variable names (strings) and |
|
426
|
|
|
|
|
|
|
Math::Symbolic::Variable objects to be used for deriving. If the argument |
|
427
|
|
|
|
|
|
|
is not specified, the functions signature will be used. The third argument |
|
428
|
|
|
|
|
|
|
is also an optional array and denotes the set of variable (names) to use for |
|
429
|
|
|
|
|
|
|
indicating the point for which to evaluate the differential. It must have |
|
430
|
|
|
|
|
|
|
the same number of elements as the second argument. |
|
431
|
|
|
|
|
|
|
If not specified the variable names used as coordinated (the second argument) |
|
432
|
|
|
|
|
|
|
with an appended '_0' will be used as the point's components. |
|
433
|
|
|
|
|
|
|
|
|
434
|
|
|
|
|
|
|
=cut |
|
435
|
|
|
|
|
|
|
|
|
436
|
|
|
|
|
|
|
sub TotalDifferential ($;\@\@) { |
|
437
|
3
|
|
|
3
|
1
|
7
|
my $function = shift; |
|
438
|
3
|
50
|
|
|
|
28
|
$function = parse_from_string($function) |
|
439
|
|
|
|
|
|
|
unless ref($function) =~ /^Math::Symbolic/; |
|
440
|
|
|
|
|
|
|
|
|
441
|
3
|
|
|
|
|
72
|
my $sig = shift; |
|
442
|
3
|
100
|
|
|
|
16
|
$sig = [ $function->signature() ] if not defined $sig; |
|
443
|
3
|
|
|
|
|
10
|
my @sig = map { Math::Symbolic::Variable->new($_) } @$sig; |
|
|
6
|
|
|
|
|
26
|
|
|
444
|
|
|
|
|
|
|
|
|
445
|
3
|
|
|
|
|
8
|
my $point = shift; |
|
446
|
3
|
100
|
|
|
|
14
|
$point = [ map { $_->name() . '_0' } @sig ] if not defined $point; |
|
|
4
|
|
|
|
|
14
|
|
|
447
|
3
|
|
|
|
|
11
|
my @point = map { Math::Symbolic::Variable->new($_) } @$point; |
|
|
6
|
|
|
|
|
24
|
|
|
448
|
|
|
|
|
|
|
|
|
449
|
3
|
50
|
|
|
|
13
|
if ( @point != @sig ) { |
|
450
|
0
|
|
|
|
|
0
|
croak "Signature dimension does not match point dimension."; |
|
451
|
|
|
|
|
|
|
} |
|
452
|
|
|
|
|
|
|
|
|
453
|
3
|
|
|
|
|
21
|
my @grad = grad $function, @sig; |
|
454
|
3
|
50
|
|
|
|
11
|
if ( @grad != @sig ) { |
|
455
|
0
|
|
|
|
|
0
|
croak "Signature dimension does not match function grad dim."; |
|
456
|
|
|
|
|
|
|
} |
|
457
|
|
|
|
|
|
|
|
|
458
|
3
|
|
|
|
|
8
|
foreach (@grad) { |
|
459
|
6
|
|
|
|
|
14
|
my @point_copy = @point; |
|
460
|
6
|
|
|
|
|
10
|
$_->implement( map { ( $_->name() => shift(@point_copy) ) } @sig ); |
|
|
12
|
|
|
|
|
39
|
|
|
461
|
|
|
|
|
|
|
} |
|
462
|
|
|
|
|
|
|
|
|
463
|
3
|
|
|
|
|
19
|
my $d = |
|
464
|
|
|
|
|
|
|
Math::Symbolic::Operator->new( '*', shift(@grad), |
|
465
|
|
|
|
|
|
|
Math::Symbolic::Operator->new( '-', shift(@sig), shift(@point) ) ); |
|
466
|
|
|
|
|
|
|
|
|
467
|
3
|
|
|
|
|
23
|
$d += |
|
468
|
|
|
|
|
|
|
Math::Symbolic::Operator->new( '*', shift(@grad), |
|
469
|
|
|
|
|
|
|
Math::Symbolic::Operator->new( '-', shift(@sig), shift(@point) ) ) |
|
470
|
|
|
|
|
|
|
while @grad; |
|
471
|
|
|
|
|
|
|
|
|
472
|
3
|
|
|
|
|
30
|
return $d; |
|
473
|
|
|
|
|
|
|
} |
|
474
|
|
|
|
|
|
|
|
|
475
|
|
|
|
|
|
|
=head2 DirectionalDerivative |
|
476
|
|
|
|
|
|
|
|
|
477
|
|
|
|
|
|
|
DirectionalDerivative computes the directional derivative of a scalar function |
|
478
|
|
|
|
|
|
|
in the direction of a specified vector. With f being the function and X, A being |
|
479
|
|
|
|
|
|
|
vectors, it looks like this: (this is a partial derivative) |
|
480
|
|
|
|
|
|
|
|
|
481
|
|
|
|
|
|
|
df(X)/dA = grad(f(X)) * (A / |A|) |
|
482
|
|
|
|
|
|
|
|
|
483
|
|
|
|
|
|
|
First argument must be the function to derive (either a string or a valid |
|
484
|
|
|
|
|
|
|
Math::Symbolic tree). Second argument must be vector into whose direction to |
|
485
|
|
|
|
|
|
|
derive. It is to be specified as an array of variable names and objects. |
|
486
|
|
|
|
|
|
|
Third argument is the optional signature to be used for computing the gradient. |
|
487
|
|
|
|
|
|
|
Please see the documentation of the grad function for details. It's |
|
488
|
|
|
|
|
|
|
dimension must match that of the directional vector. |
|
489
|
|
|
|
|
|
|
|
|
490
|
|
|
|
|
|
|
=cut |
|
491
|
|
|
|
|
|
|
|
|
492
|
|
|
|
|
|
|
sub DirectionalDerivative ($\@;\@) { |
|
493
|
2
|
|
|
2
|
1
|
13
|
my $function = shift; |
|
494
|
2
|
50
|
|
|
|
17
|
$function = parse_from_string($function) |
|
495
|
|
|
|
|
|
|
unless ref($function) =~ /^Math::Symbolic/; |
|
496
|
|
|
|
|
|
|
|
|
497
|
2
|
|
|
|
|
49
|
my $vec = shift; |
|
498
|
2
|
|
|
|
|
7
|
my @vec = map { Math::Symbolic::Variable->new($_) } @$vec; |
|
|
5
|
|
|
|
|
19
|
|
|
499
|
|
|
|
|
|
|
|
|
500
|
2
|
|
|
|
|
5
|
my $sig = shift; |
|
501
|
2
|
100
|
|
|
|
13
|
$sig = [ $function->signature() ] if not defined $sig; |
|
502
|
2
|
|
|
|
|
8
|
my @sig = map { Math::Symbolic::Variable->new($_) } @$sig; |
|
|
5
|
|
|
|
|
17
|
|
|
503
|
|
|
|
|
|
|
|
|
504
|
2
|
50
|
|
|
|
10
|
if ( @vec != @sig ) { |
|
505
|
0
|
|
|
|
|
0
|
croak "Signature dimension does not match vector dimension."; |
|
506
|
|
|
|
|
|
|
} |
|
507
|
|
|
|
|
|
|
|
|
508
|
2
|
|
|
|
|
10
|
my @grad = grad $function, @sig; |
|
509
|
2
|
50
|
|
|
|
11
|
if ( @grad != @sig ) { |
|
510
|
0
|
|
|
|
|
0
|
croak "Signature dimension does not match function grad dim."; |
|
511
|
|
|
|
|
|
|
} |
|
512
|
|
|
|
|
|
|
|
|
513
|
2
|
|
|
|
|
18
|
my $two = Math::Symbolic::Constant->new(2); |
|
514
|
5
|
|
|
|
|
19
|
my @squares = |
|
515
|
2
|
|
|
|
|
8
|
map { Math::Symbolic::Operator->new( '^', $_, $two ) } @vec; |
|
516
|
|
|
|
|
|
|
|
|
517
|
2
|
|
|
|
|
5
|
my $abs_vec = shift @squares; |
|
518
|
2
|
|
|
|
|
20
|
$abs_vec += shift(@squares) while @squares; |
|
519
|
|
|
|
|
|
|
|
|
520
|
2
|
|
|
|
|
12
|
$abs_vec = |
|
521
|
|
|
|
|
|
|
Math::Symbolic::Operator->new( '^', $abs_vec, |
|
522
|
|
|
|
|
|
|
Math::Symbolic::Constant->new( 1 / 2 ) ); |
|
523
|
|
|
|
|
|
|
|
|
524
|
2
|
|
|
|
|
6
|
@vec = map { $_ / $abs_vec } @vec; |
|
|
5
|
|
|
|
|
18
|
|
|
525
|
|
|
|
|
|
|
|
|
526
|
2
|
|
|
|
|
12
|
my $dd = Math::Symbolic::Operator->new( '*', shift(@grad), shift(@vec) ); |
|
527
|
|
|
|
|
|
|
|
|
528
|
2
|
|
|
|
|
17
|
$dd += Math::Symbolic::Operator->new( '*', shift(@grad), shift(@vec) ) |
|
529
|
|
|
|
|
|
|
while @grad; |
|
530
|
|
|
|
|
|
|
|
|
531
|
2
|
|
|
|
|
28
|
return $dd; |
|
532
|
|
|
|
|
|
|
} |
|
533
|
|
|
|
|
|
|
|
|
534
|
|
|
|
|
|
|
=begin comment |
|
535
|
|
|
|
|
|
|
|
|
536
|
|
|
|
|
|
|
This computes the taylor binomial |
|
537
|
|
|
|
|
|
|
|
|
538
|
|
|
|
|
|
|
(d/dx*(x-x0)+d/dy*(y-y0))^n * f(x0, y0) |
|
539
|
|
|
|
|
|
|
|
|
540
|
|
|
|
|
|
|
=end comment |
|
541
|
|
|
|
|
|
|
|
|
542
|
|
|
|
|
|
|
=cut |
|
543
|
|
|
|
|
|
|
|
|
544
|
|
|
|
|
|
|
sub _taylor_binomial { |
|
545
|
1
|
|
|
1
|
|
3
|
my $f = shift; |
|
546
|
1
|
|
|
|
|
3
|
my $a = shift; |
|
547
|
1
|
|
|
|
|
2
|
my $b = shift; |
|
548
|
1
|
|
|
|
|
2
|
my $a0 = shift; |
|
549
|
1
|
|
|
|
|
2
|
my $b0 = shift; |
|
550
|
1
|
|
|
|
|
2
|
my $n = shift; |
|
551
|
|
|
|
|
|
|
|
|
552
|
1
|
|
|
|
|
5
|
$f = $f->new(); |
|
553
|
1
|
|
|
|
|
5
|
my $da = $a - $a0; |
|
554
|
1
|
|
|
|
|
4
|
my $db = $b - $b0; |
|
555
|
|
|
|
|
|
|
|
|
556
|
1
|
|
|
|
|
6
|
$f->implement( $a->name() => $a0, $b->name() => $b0 ); |
|
557
|
|
|
|
|
|
|
|
|
558
|
1
|
50
|
|
|
|
10
|
return Math::Symbolic::Constant->one() if $n == 0; |
|
559
|
1
|
50
|
|
|
|
10
|
return $da * |
|
560
|
|
|
|
|
|
|
Math::Symbolic::Operator->new( 'partial_derivative', $f->new(), $a0 ) + |
|
561
|
|
|
|
|
|
|
$db * |
|
562
|
|
|
|
|
|
|
Math::Symbolic::Operator->new( 'partial_derivative', $f->new(), $b0 ) |
|
563
|
|
|
|
|
|
|
if $n == 1; |
|
564
|
|
|
|
|
|
|
|
|
565
|
0
|
|
|
|
|
0
|
my $n_obj = Math::Symbolic::Constant->new($n); |
|
566
|
|
|
|
|
|
|
|
|
567
|
0
|
|
|
|
|
0
|
my $p_a_deriv = $f->new(); |
|
568
|
|
|
|
|
|
|
$p_a_deriv = |
|
569
|
|
|
|
|
|
|
Math::Symbolic::Operator->new( 'partial_derivative', $p_a_deriv, $a0 ) |
|
570
|
0
|
|
|
|
|
0
|
for 1 .. $n; |
|
571
|
|
|
|
|
|
|
|
|
572
|
0
|
|
|
|
|
0
|
my $res = |
|
573
|
|
|
|
|
|
|
Math::Symbolic::Operator->new( '*', $p_a_deriv, |
|
574
|
|
|
|
|
|
|
Math::Symbolic::Operator->new( '^', $da, $n_obj ) ); |
|
575
|
|
|
|
|
|
|
|
|
576
|
0
|
|
|
|
|
0
|
foreach my $k ( 1 .. $n - 1 ) { |
|
577
|
0
|
|
|
|
|
0
|
$p_a_deriv = $p_a_deriv->op1()->new(); |
|
578
|
|
|
|
|
|
|
|
|
579
|
0
|
|
|
|
|
0
|
my $deriv = $p_a_deriv; |
|
580
|
|
|
|
|
|
|
$deriv = |
|
581
|
|
|
|
|
|
|
Math::Symbolic::Operator->new( 'partial_derivative', $deriv, $b0 ) |
|
582
|
0
|
|
|
|
|
0
|
for 1 .. $k; |
|
583
|
|
|
|
|
|
|
|
|
584
|
0
|
|
|
|
|
0
|
my $k_obj = Math::Symbolic::Constant->new($k); |
|
585
|
0
|
|
|
|
|
0
|
$res += Math::Symbolic::Operator->new( |
|
586
|
|
|
|
|
|
|
'*', |
|
587
|
|
|
|
|
|
|
Math::Symbolic::Constant->new( _over( $n, $k ) ), |
|
588
|
|
|
|
|
|
|
Math::Symbolic::Operator->new( |
|
589
|
|
|
|
|
|
|
'*', $deriv, |
|
590
|
|
|
|
|
|
|
Math::Symbolic::Operator->new( |
|
591
|
|
|
|
|
|
|
'*', |
|
592
|
|
|
|
|
|
|
Math::Symbolic::Operator->new( |
|
593
|
|
|
|
|
|
|
'^', $da, Math::Symbolic::Constant->new( $n - $k ) |
|
594
|
|
|
|
|
|
|
), |
|
595
|
|
|
|
|
|
|
Math::Symbolic::Operator->new( '^', $db, $k_obj ) |
|
596
|
|
|
|
|
|
|
) |
|
597
|
|
|
|
|
|
|
) |
|
598
|
|
|
|
|
|
|
); |
|
599
|
|
|
|
|
|
|
} |
|
600
|
|
|
|
|
|
|
|
|
601
|
0
|
|
|
|
|
0
|
my $p_b_deriv = $f->new(); |
|
602
|
|
|
|
|
|
|
$p_b_deriv = |
|
603
|
|
|
|
|
|
|
Math::Symbolic::Operator->new( 'partial_derivative', $p_b_deriv, $b0 ) |
|
604
|
0
|
|
|
|
|
0
|
for 1 .. $n; |
|
605
|
|
|
|
|
|
|
|
|
606
|
0
|
|
|
|
|
0
|
$res += |
|
607
|
|
|
|
|
|
|
Math::Symbolic::Operator->new( '*', $p_b_deriv, |
|
608
|
|
|
|
|
|
|
Math::Symbolic::Operator->new( '^', $db, $n_obj ) ); |
|
609
|
|
|
|
|
|
|
|
|
610
|
0
|
|
|
|
|
0
|
return $res; |
|
611
|
|
|
|
|
|
|
} |
|
612
|
|
|
|
|
|
|
|
|
613
|
|
|
|
|
|
|
=begin comment |
|
614
|
|
|
|
|
|
|
|
|
615
|
|
|
|
|
|
|
This computes |
|
616
|
|
|
|
|
|
|
|
|
617
|
|
|
|
|
|
|
/ n \ |
|
618
|
|
|
|
|
|
|
| | |
|
619
|
|
|
|
|
|
|
\ k / |
|
620
|
|
|
|
|
|
|
|
|
621
|
|
|
|
|
|
|
=end comment |
|
622
|
|
|
|
|
|
|
|
|
623
|
|
|
|
|
|
|
=cut |
|
624
|
|
|
|
|
|
|
|
|
625
|
|
|
|
|
|
|
sub _over { |
|
626
|
0
|
|
|
0
|
|
0
|
my $n = shift; |
|
627
|
0
|
|
|
|
|
0
|
my $k = shift; |
|
628
|
|
|
|
|
|
|
|
|
629
|
0
|
0
|
|
|
|
0
|
return 1 if $k == 0; |
|
630
|
0
|
0
|
|
|
|
0
|
return _over( $n, $n - $k ) if $k > $n / 2; |
|
631
|
|
|
|
|
|
|
|
|
632
|
0
|
|
|
|
|
0
|
my $prod = 1; |
|
633
|
0
|
|
|
|
|
0
|
my $i = $n; |
|
634
|
0
|
|
|
|
|
0
|
my $j = $k; |
|
635
|
0
|
|
|
|
|
0
|
while ( $i > $k ) { |
|
636
|
0
|
|
|
|
|
0
|
$prod *= $i; |
|
637
|
0
|
0
|
|
|
|
0
|
$prod /= $j if $j > 1; |
|
638
|
0
|
|
|
|
|
0
|
$i--; |
|
639
|
0
|
|
|
|
|
0
|
$j--; |
|
640
|
|
|
|
|
|
|
} |
|
641
|
|
|
|
|
|
|
|
|
642
|
0
|
|
|
|
|
0
|
return ($prod); |
|
643
|
|
|
|
|
|
|
} |
|
644
|
|
|
|
|
|
|
|
|
645
|
|
|
|
|
|
|
=begin comment |
|
646
|
|
|
|
|
|
|
|
|
647
|
|
|
|
|
|
|
_faculty() computes the product that is the faculty of the |
|
648
|
|
|
|
|
|
|
first argument. |
|
649
|
|
|
|
|
|
|
|
|
650
|
|
|
|
|
|
|
=end comment |
|
651
|
|
|
|
|
|
|
|
|
652
|
|
|
|
|
|
|
=cut |
|
653
|
|
|
|
|
|
|
|
|
654
|
|
|
|
|
|
|
sub _faculty { |
|
655
|
1
|
|
|
1
|
|
2
|
my $num = shift; |
|
656
|
1
|
50
|
|
|
|
6
|
croak "Cannot calculate faculty of negative numbers." |
|
657
|
|
|
|
|
|
|
if $num < 0; |
|
658
|
1
|
|
|
|
|
9
|
my $fac = Math::Symbolic::Constant->one(); |
|
659
|
1
|
50
|
|
|
|
9
|
return $fac if $num <= 1; |
|
660
|
0
|
|
|
|
|
0
|
for ( my $i = 2 ; $i <= $num ; $i++ ) { |
|
661
|
0
|
|
|
|
|
0
|
$fac *= Math::Symbolic::Constant->new($i); |
|
662
|
|
|
|
|
|
|
} |
|
663
|
0
|
|
|
|
|
0
|
return $fac; |
|
664
|
|
|
|
|
|
|
} |
|
665
|
|
|
|
|
|
|
|
|
666
|
|
|
|
|
|
|
=head2 TaylorPolyTwoDim |
|
667
|
|
|
|
|
|
|
|
|
668
|
|
|
|
|
|
|
This subroutine computes the Taylor Polynomial for functions of two |
|
669
|
|
|
|
|
|
|
variables. Please refer to the documentation of the TaylorPolynomial |
|
670
|
|
|
|
|
|
|
function in the Math::Symbolic::MiscCalculus package for an explanation |
|
671
|
|
|
|
|
|
|
of single dimensional Taylor Polynomials. This is the counterpart in |
|
672
|
|
|
|
|
|
|
two dimensions. |
|
673
|
|
|
|
|
|
|
|
|
674
|
|
|
|
|
|
|
First argument must be the function to approximate with the Taylor Polynomial |
|
675
|
|
|
|
|
|
|
either as a string or a Math::Symbolic tree. Second and third argument |
|
676
|
|
|
|
|
|
|
must be the names of the two coordinates. (These may alternatively be |
|
677
|
|
|
|
|
|
|
Math::Symbolic::Variable objects.) Fourth argument must be |
|
678
|
|
|
|
|
|
|
the degree of the Taylor Polynomial. Fifth and Sixth arguments are optional |
|
679
|
|
|
|
|
|
|
and specify the names of the variables to introduce as the point of |
|
680
|
|
|
|
|
|
|
approximation. These default to the names of the coordinates with '_0' |
|
681
|
|
|
|
|
|
|
appended. |
|
682
|
|
|
|
|
|
|
|
|
683
|
|
|
|
|
|
|
=cut |
|
684
|
|
|
|
|
|
|
|
|
685
|
|
|
|
|
|
|
sub TaylorPolyTwoDim ($$$$;$$) { |
|
686
|
2
|
|
|
2
|
1
|
7
|
my $function = shift; |
|
687
|
2
|
50
|
|
|
|
19
|
$function = parse_from_string($function) |
|
688
|
|
|
|
|
|
|
unless ref($function) =~ /^Math::Symbolic/; |
|
689
|
|
|
|
|
|
|
|
|
690
|
2
|
|
|
|
|
43
|
my $x1 = shift; |
|
691
|
2
|
50
|
|
|
|
15
|
$x1 = Math::Symbolic::Variable->new($x1) |
|
692
|
|
|
|
|
|
|
unless ref($x1) eq 'Math::Symbolic::Variable'; |
|
693
|
2
|
|
|
|
|
6
|
my $x2 = shift; |
|
694
|
2
|
50
|
|
|
|
12
|
$x2 = Math::Symbolic::Variable->new($x2) |
|
695
|
|
|
|
|
|
|
unless ref($x2) eq 'Math::Symbolic::Variable'; |
|
696
|
|
|
|
|
|
|
|
|
697
|
2
|
|
|
|
|
4
|
my $n = shift; |
|
698
|
|
|
|
|
|
|
|
|
699
|
2
|
|
|
|
|
4
|
my $x1_0 = shift; |
|
700
|
2
|
50
|
|
|
|
12
|
$x1_0 = $x1->name() . '_0' if not defined $x1_0; |
|
701
|
2
|
50
|
|
|
|
13
|
$x1_0 = Math::Symbolic::Variable->new($x1_0) |
|
702
|
|
|
|
|
|
|
unless ref($x1_0) eq 'Math::Symbolic::Variable'; |
|
703
|
|
|
|
|
|
|
|
|
704
|
2
|
|
|
|
|
3
|
my $x2_0 = shift; |
|
705
|
2
|
50
|
|
|
|
11
|
$x2_0 = $x2->name() . '_0' if not defined $x2_0; |
|
706
|
2
|
50
|
|
|
|
12
|
$x2_0 = Math::Symbolic::Variable->new($x2_0) |
|
707
|
|
|
|
|
|
|
unless ref($x2_0) eq 'Math::Symbolic::Variable'; |
|
708
|
|
|
|
|
|
|
|
|
709
|
2
|
|
|
|
|
7
|
my $x1_n = $x1->name(); |
|
710
|
2
|
|
|
|
|
7
|
my $x2_n = $x2->name(); |
|
711
|
|
|
|
|
|
|
|
|
712
|
2
|
|
|
|
|
15
|
my $dx1 = $x1 - $x1_0; |
|
713
|
2
|
|
|
|
|
6
|
my $dx2 = $x2 - $x2_0; |
|
714
|
|
|
|
|
|
|
|
|
715
|
2
|
|
|
|
|
8
|
my $copy = $function->new(); |
|
716
|
2
|
|
|
|
|
13
|
$copy->implement( $x1_n => $x1_0, $x2_n => $x2_0 ); |
|
717
|
|
|
|
|
|
|
|
|
718
|
2
|
|
|
|
|
14
|
my $taylor = $copy; |
|
719
|
|
|
|
|
|
|
|
|
720
|
2
|
100
|
|
|
|
16
|
return $taylor if $n == 0; |
|
721
|
|
|
|
|
|
|
|
|
722
|
1
|
|
|
|
|
4
|
foreach my $k ( 1 .. $n ) { |
|
723
|
1
|
|
|
|
|
6
|
$taylor += |
|
724
|
|
|
|
|
|
|
Math::Symbolic::Operator->new( '/', |
|
725
|
|
|
|
|
|
|
_taylor_binomial( $function->new(), $x1, $x2, $x1_0, $x2_0, $k ), |
|
726
|
|
|
|
|
|
|
_faculty($k) ); |
|
727
|
|
|
|
|
|
|
} |
|
728
|
|
|
|
|
|
|
|
|
729
|
1
|
|
|
|
|
10
|
return $taylor; |
|
730
|
|
|
|
|
|
|
} |
|
731
|
|
|
|
|
|
|
|
|
732
|
|
|
|
|
|
|
=head2 WronskyDet |
|
733
|
|
|
|
|
|
|
|
|
734
|
|
|
|
|
|
|
WronskyDet() computes the Wronsky Determinant of a set of n functions. |
|
735
|
|
|
|
|
|
|
|
|
736
|
|
|
|
|
|
|
First argument is required and a (literal) array of n functions. Second |
|
737
|
|
|
|
|
|
|
argument is optional and a (literal) array of n variables or variable names. |
|
738
|
|
|
|
|
|
|
If the second argument is omitted, the variables used for deriving are inferred |
|
739
|
|
|
|
|
|
|
from function signatures. This requires, however, that the function signatures |
|
740
|
|
|
|
|
|
|
have exactly one element. (And the function this exactly one variable.) |
|
741
|
|
|
|
|
|
|
|
|
742
|
|
|
|
|
|
|
=cut |
|
743
|
|
|
|
|
|
|
|
|
744
|
|
|
|
|
|
|
sub WronskyDet (\@;\@) { |
|
745
|
1
|
|
|
1
|
1
|
3
|
my $functions = shift; |
|
746
|
2
|
50
|
|
|
|
40
|
my @functions = |
|
747
|
1
|
|
|
|
|
4
|
map { ( ref($_) =~ /^Math::Symbolic/ ) ? $_ : parse_from_string($_) } |
|
748
|
|
|
|
|
|
|
@$functions; |
|
749
|
1
|
|
|
|
|
22
|
my $vars = shift; |
|
750
|
1
|
50
|
|
|
|
9
|
my @vars = ( defined $vars ? @$vars : () ); |
|
751
|
0
|
|
|
|
|
0
|
@vars = map { |
|
752
|
1
|
50
|
|
|
|
4
|
my @sig = $_->signature(); |
|
753
|
0
|
0
|
|
|
|
0
|
croak "Cannot infer function signature for WronskyDet." |
|
754
|
|
|
|
|
|
|
if @sig != 1; |
|
755
|
0
|
|
|
|
|
0
|
shift @sig; |
|
756
|
|
|
|
|
|
|
} @functions if not defined $vars; |
|
757
|
1
|
|
|
|
|
3
|
@vars = map { Math::Symbolic::Variable->new($_) } @vars; |
|
|
2
|
|
|
|
|
11
|
|
|
758
|
1
|
50
|
|
|
|
5
|
croak "Number of vars doesn't match num of functions in WronskyDet." |
|
759
|
|
|
|
|
|
|
if not @vars == @functions; |
|
760
|
|
|
|
|
|
|
|
|
761
|
1
|
|
|
|
|
3
|
my @matrix; |
|
762
|
1
|
|
|
|
|
3
|
push @matrix, [@functions]; |
|
763
|
1
|
|
|
|
|
4
|
foreach ( 2 .. @functions ) { |
|
764
|
1
|
|
|
|
|
2
|
my $i = 0; |
|
765
|
2
|
|
|
|
|
11
|
@functions = map { |
|
766
|
1
|
|
|
|
|
4
|
Math::Symbolic::Operator->new( 'partial_derivative', $_, |
|
767
|
|
|
|
|
|
|
$vars[ $i++ ] ) |
|
768
|
|
|
|
|
|
|
} @functions; |
|
769
|
1
|
|
|
|
|
6
|
push @matrix, [@functions]; |
|
770
|
|
|
|
|
|
|
} |
|
771
|
1
|
|
|
|
|
7
|
return det @matrix; |
|
772
|
|
|
|
|
|
|
} |
|
773
|
|
|
|
|
|
|
|
|
774
|
|
|
|
|
|
|
1; |
|
775
|
|
|
|
|
|
|
__END__ |