line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
1
|
|
|
|
|
|
|
|
2
|
|
|
|
|
|
|
=encoding utf8 |
3
|
|
|
|
|
|
|
|
4
|
|
|
|
|
|
|
=head1 NAME |
5
|
|
|
|
|
|
|
|
6
|
|
|
|
|
|
|
Math::Symbolic::MiscCalculus - Miscellaneous calculus routines (eg Taylor poly) |
7
|
|
|
|
|
|
|
|
8
|
|
|
|
|
|
|
=head1 SYNOPSIS |
9
|
|
|
|
|
|
|
|
10
|
|
|
|
|
|
|
use Math::Symbolic qw/:all/; |
11
|
|
|
|
|
|
|
use Math::Symbolic::MiscCalculus qw/:all/; # not loaded by Math::Symbolic |
12
|
|
|
|
|
|
|
|
13
|
|
|
|
|
|
|
$taylor_poly = TaylorPolynomial $function, $degree, $variable; |
14
|
|
|
|
|
|
|
# or: |
15
|
|
|
|
|
|
|
$taylor_poly = TaylorPolynomial $function, $degree, $variable, $pos; |
16
|
|
|
|
|
|
|
|
17
|
|
|
|
|
|
|
$lagrange_error = TaylorErrorLagrange $function, $degree, $variable; |
18
|
|
|
|
|
|
|
# or: |
19
|
|
|
|
|
|
|
$lagrange_error = TaylorErrorLagrange $function, $degree, $variable, $pos; |
20
|
|
|
|
|
|
|
# or: |
21
|
|
|
|
|
|
|
$lagrange_error = TaylorErrorLagrange $function, $degree, $variable, $pos, |
22
|
|
|
|
|
|
|
$name_for_range_variable; |
23
|
|
|
|
|
|
|
|
24
|
|
|
|
|
|
|
# This has the same syntax variations as the Lagrange error: |
25
|
|
|
|
|
|
|
$cauchy_error = TaylorErrorLagrange $function, $degree, $variable; |
26
|
|
|
|
|
|
|
|
27
|
|
|
|
|
|
|
=head1 DESCRIPTION |
28
|
|
|
|
|
|
|
|
29
|
|
|
|
|
|
|
This module provides several subroutines related to |
30
|
|
|
|
|
|
|
calculus such as computing Taylor polynomials and errors the |
31
|
|
|
|
|
|
|
associated errors from Math::Symbolic trees. |
32
|
|
|
|
|
|
|
|
33
|
|
|
|
|
|
|
Please note that the code herein may or may not be refactored into |
34
|
|
|
|
|
|
|
the OO-interface of the Math::Symbolic module in the future. |
35
|
|
|
|
|
|
|
|
36
|
|
|
|
|
|
|
=head2 EXPORT |
37
|
|
|
|
|
|
|
|
38
|
|
|
|
|
|
|
None by default. |
39
|
|
|
|
|
|
|
|
40
|
|
|
|
|
|
|
You may choose to have any of the following routines exported to the |
41
|
|
|
|
|
|
|
calling namespace. ':all' tag exports all of the following: |
42
|
|
|
|
|
|
|
|
43
|
|
|
|
|
|
|
TaylorPolynomial |
44
|
|
|
|
|
|
|
TaylorErrorLagrange |
45
|
|
|
|
|
|
|
TaylorErrorCauchy |
46
|
|
|
|
|
|
|
|
47
|
|
|
|
|
|
|
=head1 SUBROUTINES |
48
|
|
|
|
|
|
|
|
49
|
|
|
|
|
|
|
=cut |
50
|
|
|
|
|
|
|
|
51
|
|
|
|
|
|
|
package Math::Symbolic::MiscCalculus; |
52
|
|
|
|
|
|
|
|
53
|
2
|
|
|
2
|
|
3571
|
use 5.006; |
|
2
|
|
|
|
|
13
|
|
|
2
|
|
|
|
|
79
|
|
54
|
2
|
|
|
2
|
|
13
|
use strict; |
|
2
|
|
|
|
|
5
|
|
|
2
|
|
|
|
|
70
|
|
55
|
2
|
|
|
2
|
|
12
|
use warnings; |
|
2
|
|
|
|
|
3
|
|
|
2
|
|
|
|
|
64
|
|
56
|
|
|
|
|
|
|
|
57
|
2
|
|
|
2
|
|
12
|
use Carp; |
|
2
|
|
|
|
|
4
|
|
|
2
|
|
|
|
|
156
|
|
58
|
|
|
|
|
|
|
|
59
|
2
|
|
|
2
|
|
10
|
use Math::Symbolic qw/:all/; |
|
2
|
|
|
|
|
4
|
|
|
2
|
|
|
|
|
3441
|
|
60
|
|
|
|
|
|
|
|
61
|
|
|
|
|
|
|
require Exporter; |
62
|
|
|
|
|
|
|
our @ISA = qw(Exporter); |
63
|
|
|
|
|
|
|
our %EXPORT_TAGS = ( |
64
|
|
|
|
|
|
|
'all' => [ |
65
|
|
|
|
|
|
|
qw( |
66
|
|
|
|
|
|
|
TaylorPolynomial |
67
|
|
|
|
|
|
|
TaylorErrorLagrange |
68
|
|
|
|
|
|
|
TaylorErrorCauchy |
69
|
|
|
|
|
|
|
) |
70
|
|
|
|
|
|
|
] |
71
|
|
|
|
|
|
|
); |
72
|
|
|
|
|
|
|
|
73
|
|
|
|
|
|
|
our @EXPORT_OK = ( @{ $EXPORT_TAGS{'all'} } ); |
74
|
|
|
|
|
|
|
|
75
|
|
|
|
|
|
|
our $VERSION = '0.612'; |
76
|
|
|
|
|
|
|
|
77
|
|
|
|
|
|
|
=begin comment |
78
|
|
|
|
|
|
|
|
79
|
|
|
|
|
|
|
_faculty() computes the (symbolic) product that is the faculty of the |
80
|
|
|
|
|
|
|
first argument. |
81
|
|
|
|
|
|
|
|
82
|
|
|
|
|
|
|
=end comment |
83
|
|
|
|
|
|
|
|
84
|
|
|
|
|
|
|
=cut |
85
|
|
|
|
|
|
|
|
86
|
|
|
|
|
|
|
sub _faculty { |
87
|
10
|
|
|
10
|
|
20
|
my $num = shift; |
88
|
10
|
50
|
|
|
|
33
|
croak "Cannot calculate faculty of negative numbers." |
89
|
|
|
|
|
|
|
if $num < 0; |
90
|
10
|
|
|
|
|
59
|
my $fac = Math::Symbolic::Constant->one(); |
91
|
10
|
100
|
|
|
|
48
|
return $fac if $num <= 1; |
92
|
7
|
|
|
|
|
39
|
for ( my $i = 2 ; $i <= $num ; $i++ ) { |
93
|
11
|
|
|
|
|
60
|
$fac *= Math::Symbolic::Constant->new($i); |
94
|
|
|
|
|
|
|
} |
95
|
7
|
|
|
|
|
37
|
return $fac; |
96
|
|
|
|
|
|
|
} |
97
|
|
|
|
|
|
|
|
98
|
|
|
|
|
|
|
=head2 TaylorPolynomial |
99
|
|
|
|
|
|
|
|
100
|
|
|
|
|
|
|
This function (symbolically) computes the nth-degree Taylor Polynomial |
101
|
|
|
|
|
|
|
of a given function. Generally speaking, the Taylor Polynomial is an |
102
|
|
|
|
|
|
|
n-th degree polynomial that approximates the original function. It does |
103
|
|
|
|
|
|
|
so particularly well in the proximity of a certain point x0. |
104
|
|
|
|
|
|
|
(Since my mathematical English jargon is lacking, I strongly suggest you |
105
|
|
|
|
|
|
|
read up on what this is in a book.) |
106
|
|
|
|
|
|
|
|
107
|
|
|
|
|
|
|
Mathematically speaking, the Taylor Polynomial of the function f(x) looks |
108
|
|
|
|
|
|
|
like this: |
109
|
|
|
|
|
|
|
|
110
|
|
|
|
|
|
|
Tn(f, x, x0) = |
111
|
|
|
|
|
|
|
sum_from_k=0_to_n( |
112
|
|
|
|
|
|
|
n-th_total_derivative(f)(x0) / k! * (x-x0)^k |
113
|
|
|
|
|
|
|
) |
114
|
|
|
|
|
|
|
|
115
|
|
|
|
|
|
|
First argument to the subroutine must be the function to approximate. It may |
116
|
|
|
|
|
|
|
be given either as a string to be parsed or as a valid Math::Symbolic tree. |
117
|
|
|
|
|
|
|
Second argument must be an integer indicating to which degree to approximate. |
118
|
|
|
|
|
|
|
The third argument is the last required argument and denotes the variable |
119
|
|
|
|
|
|
|
to use for approximation either as a string (name) or as a |
120
|
|
|
|
|
|
|
Math::Symbolic::Variable object. That's the 'x' above. |
121
|
|
|
|
|
|
|
The fourth argument is optional and specifies the name of the variable to |
122
|
|
|
|
|
|
|
introduce as the point of approximation. May also be a variable object. |
123
|
|
|
|
|
|
|
It's the 'x0' above. If not specified, the name of this variable will be |
124
|
|
|
|
|
|
|
assumed to be the name of the function variable (the 'x') with '_0' appended. |
125
|
|
|
|
|
|
|
|
126
|
|
|
|
|
|
|
This routine is for functions of one variable only. There is an equivalent |
127
|
|
|
|
|
|
|
for functions of two variables in the Math::Symbolic::VectorCalculus package. |
128
|
|
|
|
|
|
|
|
129
|
|
|
|
|
|
|
=cut |
130
|
|
|
|
|
|
|
|
131
|
|
|
|
|
|
|
sub TaylorPolynomial ($$$;$) { |
132
|
3
|
|
|
3
|
1
|
19
|
my $func = shift; |
133
|
3
|
|
|
|
|
6
|
my $degree = shift; |
134
|
3
|
|
|
|
|
8
|
my $var = shift; |
135
|
3
|
|
|
|
|
6
|
my $pos = shift; |
136
|
|
|
|
|
|
|
|
137
|
3
|
50
|
|
|
|
23
|
$func = parse_from_string($func) |
138
|
|
|
|
|
|
|
unless ref($func) =~ /^Math::Symbolic/; |
139
|
3
|
50
|
|
|
|
80
|
$var = Math::Symbolic::Variable->new($var) |
140
|
|
|
|
|
|
|
unless ref($var) =~ /^Math::Symbolic::Variable$/; |
141
|
3
|
50
|
|
|
|
24
|
$pos = Math::Symbolic::Variable->new( $var->name() . '_0' ) |
142
|
|
|
|
|
|
|
unless ref($pos) =~ /^Math::Symbolic::Variable$/; |
143
|
|
|
|
|
|
|
|
144
|
3
|
|
|
|
|
13
|
my $copy = $func->new(); |
145
|
3
|
|
|
|
|
10
|
$copy->implement( $var->name() => $pos ); |
146
|
3
|
|
|
|
|
20
|
my $taylor = $copy; |
147
|
|
|
|
|
|
|
|
148
|
3
|
100
|
|
|
|
16
|
return $taylor if $degree == 0; |
149
|
|
|
|
|
|
|
|
150
|
2
|
|
|
|
|
10
|
my $diff = Math::Symbolic::Operator->new( '-', $var, $pos ); |
151
|
|
|
|
|
|
|
|
152
|
2
|
|
|
|
|
8
|
my $partial = $func->new(); |
153
|
2
|
|
|
|
|
7
|
foreach my $d ( 1 .. $degree ) { |
154
|
4
|
|
|
|
|
17
|
$partial = |
155
|
|
|
|
|
|
|
Math::Symbolic::Operator->new( 'total_derivative', $partial, $var ); |
156
|
4
|
|
|
|
|
43
|
$partial = $partial->apply_derivatives()->simplify(); |
157
|
4
|
|
|
|
|
219
|
my $copy = $partial->new()->implement( $var->name() => $pos ); |
158
|
4
|
|
|
|
|
47
|
$taylor += Math::Symbolic::Operator->new( |
159
|
|
|
|
|
|
|
'*', |
160
|
|
|
|
|
|
|
Math::Symbolic::Operator->new( '/', $copy, _faculty($d) ), |
161
|
|
|
|
|
|
|
Math::Symbolic::Operator->new( |
162
|
|
|
|
|
|
|
'^', $diff, Math::Symbolic::Constant->new($d) |
163
|
|
|
|
|
|
|
) |
164
|
|
|
|
|
|
|
); |
165
|
|
|
|
|
|
|
} |
166
|
2
|
|
|
|
|
121
|
return $taylor; |
167
|
|
|
|
|
|
|
} |
168
|
|
|
|
|
|
|
|
169
|
|
|
|
|
|
|
=head2 TaylorErrorLagrange |
170
|
|
|
|
|
|
|
|
171
|
|
|
|
|
|
|
TaylorErrorLagrange computes and returns the formula for the Taylor |
172
|
|
|
|
|
|
|
Polynomial's approximation error after Lagrange. (Again, my English |
173
|
|
|
|
|
|
|
terminology is lacking.) It looks similar to this: |
174
|
|
|
|
|
|
|
|
175
|
|
|
|
|
|
|
Rn(f, x, x0) = |
176
|
|
|
|
|
|
|
n+1-th_total_derivative(f)( x0 + theta * (x-x0) ) / (n+1)! * (x-x0)^(n+1) |
177
|
|
|
|
|
|
|
|
178
|
|
|
|
|
|
|
Please refer to your favourite book on the topic. 'theta' may be |
179
|
|
|
|
|
|
|
any number between 0 and 1. |
180
|
|
|
|
|
|
|
|
181
|
|
|
|
|
|
|
The calling conventions for TaylorErrorLagrange are similar to those of |
182
|
|
|
|
|
|
|
TaylorPolynomial, but TaylorErrorLagrange takes an extra optional argument |
183
|
|
|
|
|
|
|
specifying the name of 'theta'. If it isn't specified explicitly, the |
184
|
|
|
|
|
|
|
variable will be named 'theta' as in the formula above. |
185
|
|
|
|
|
|
|
|
186
|
|
|
|
|
|
|
=cut |
187
|
|
|
|
|
|
|
|
188
|
|
|
|
|
|
|
sub TaylorErrorLagrange ($$$;$$) { |
189
|
6
|
|
|
6
|
1
|
2577
|
my $func = shift; |
190
|
6
|
|
|
|
|
13
|
my $degree = shift; |
191
|
6
|
|
|
|
|
12
|
my $var = shift; |
192
|
6
|
|
|
|
|
13
|
my $pos = shift; |
193
|
6
|
|
|
|
|
13
|
my $theta = shift; |
194
|
|
|
|
|
|
|
|
195
|
6
|
100
|
|
|
|
46
|
$func = parse_from_string($func) |
196
|
|
|
|
|
|
|
unless ref($func) =~ /^Math::Symbolic/; |
197
|
6
|
100
|
|
|
|
119
|
$var = Math::Symbolic::Variable->new($var) |
198
|
|
|
|
|
|
|
unless ref($var) =~ /^Math::Symbolic::Variable$/; |
199
|
6
|
100
|
|
|
|
44
|
$pos = Math::Symbolic::Variable->new( $var->name() . '_0' ) |
200
|
|
|
|
|
|
|
unless ref($pos) =~ /^Math::Symbolic::Variable$/; |
201
|
6
|
100
|
|
|
|
39
|
$theta = Math::Symbolic::Variable->new('theta') |
202
|
|
|
|
|
|
|
unless ref($theta) =~ /^Math::Symbolic::Variable$/; |
203
|
|
|
|
|
|
|
|
204
|
6
|
|
|
|
|
28
|
my $error = |
205
|
|
|
|
|
|
|
Math::Symbolic::Operator->new( 'total_derivative', $func->new(), $var ); |
206
|
|
|
|
|
|
|
|
207
|
6
|
|
|
|
|
25
|
foreach ( 1 .. $degree + 1 ) { |
208
|
14
|
|
|
|
|
71
|
$error = |
209
|
|
|
|
|
|
|
Math::Symbolic::Operator->new( 'total_derivative', $error, $var ); |
210
|
14
|
|
|
|
|
165
|
$error = $error->apply_derivatives()->simplify(); |
211
|
|
|
|
|
|
|
} |
212
|
|
|
|
|
|
|
|
213
|
|
|
|
|
|
|
# We want to avoid endless recursion at all cost! |
214
|
6
|
|
|
|
|
33
|
my @sig = $func->signature(); |
215
|
6
|
|
|
|
|
26
|
my $last = $sig[-1] . '_not_taken'; |
216
|
|
|
|
|
|
|
|
217
|
6
|
|
|
|
|
30
|
$error->implement( $var->name() => Math::Symbolic::Variable->new($last) ); |
218
|
6
|
|
|
|
|
85
|
my $xhi = Math::Symbolic::Operator->new( |
219
|
|
|
|
|
|
|
'+', $pos, |
220
|
|
|
|
|
|
|
Math::Symbolic::Operator->new( |
221
|
|
|
|
|
|
|
'*', $theta, Math::Symbolic::Operator->new( '-', $var, $pos ) |
222
|
|
|
|
|
|
|
) |
223
|
|
|
|
|
|
|
); |
224
|
6
|
|
|
|
|
30
|
$error->implement( $last => $xhi ); |
225
|
|
|
|
|
|
|
|
226
|
6
|
|
|
|
|
73
|
$error = Math::Symbolic::Operator->new( |
227
|
|
|
|
|
|
|
'*', $error, |
228
|
|
|
|
|
|
|
Math::Symbolic::Operator->new( |
229
|
|
|
|
|
|
|
'/', |
230
|
|
|
|
|
|
|
Math::Symbolic::Operator->new( |
231
|
|
|
|
|
|
|
'^', |
232
|
|
|
|
|
|
|
Math::Symbolic::Operator->new( '-', $var, $pos ), |
233
|
|
|
|
|
|
|
Math::Symbolic::Constant->new( $degree + 1 ) |
234
|
|
|
|
|
|
|
), |
235
|
|
|
|
|
|
|
_faculty( $degree + 1 ) |
236
|
|
|
|
|
|
|
) |
237
|
|
|
|
|
|
|
); |
238
|
6
|
|
|
|
|
56
|
return $error; |
239
|
|
|
|
|
|
|
} |
240
|
|
|
|
|
|
|
|
241
|
|
|
|
|
|
|
=head2 TaylorErrorCauchy |
242
|
|
|
|
|
|
|
|
243
|
|
|
|
|
|
|
TaylorErrorCauchy computes and returns the formula for the Taylor |
244
|
|
|
|
|
|
|
Polynomial's approximation error after (guess who!) Cauchy. |
245
|
|
|
|
|
|
|
(Again, my English terminology is lacking.) It looks similar to this: |
246
|
|
|
|
|
|
|
|
247
|
|
|
|
|
|
|
Rn(f, x, x0) = TaylorErrorLagrange(...) * (1 - theta)^n |
248
|
|
|
|
|
|
|
|
249
|
|
|
|
|
|
|
Please refer to your favourite book on the topic and the documentation for |
250
|
|
|
|
|
|
|
TaylorErrorLagrange. 'theta' may be any number between 0 and 1. |
251
|
|
|
|
|
|
|
|
252
|
|
|
|
|
|
|
The calling conventions for TaylorErrorCauchy are identical to those of |
253
|
|
|
|
|
|
|
TaylorErrorLagrange. |
254
|
|
|
|
|
|
|
|
255
|
|
|
|
|
|
|
=cut |
256
|
|
|
|
|
|
|
|
257
|
|
|
|
|
|
|
sub TaylorErrorCauchy ($$$;$$) { |
258
|
3
|
|
|
3
|
1
|
2442
|
my $func = shift; |
259
|
3
|
|
|
|
|
8
|
my $degree = shift; |
260
|
3
|
|
|
|
|
7
|
my $var = shift; |
261
|
3
|
|
|
|
|
8
|
my $pos = shift; |
262
|
3
|
|
|
|
|
5
|
my $theta = shift; |
263
|
|
|
|
|
|
|
|
264
|
3
|
50
|
|
|
|
27
|
$func = parse_from_string($func) |
265
|
|
|
|
|
|
|
unless ref($func) =~ /^Math::Symbolic/; |
266
|
3
|
50
|
|
|
|
89
|
$var = Math::Symbolic::Variable->new($var) |
267
|
|
|
|
|
|
|
unless ref($var) =~ /^Math::Symbolic::Variable$/; |
268
|
3
|
50
|
|
|
|
22
|
$pos = Math::Symbolic::Variable->new( $var->name() . '_0' ) |
269
|
|
|
|
|
|
|
unless ref($pos) =~ /^Math::Symbolic::Variable$/; |
270
|
3
|
50
|
|
|
|
24
|
$theta = Math::Symbolic::Variable->new('theta') |
271
|
|
|
|
|
|
|
unless ref($theta) =~ /^Math::Symbolic::Variable$/; |
272
|
|
|
|
|
|
|
|
273
|
3
|
|
|
|
|
17
|
my $error = TaylorErrorLagrange( $func, $degree, $var, $pos, $theta ); |
274
|
|
|
|
|
|
|
|
275
|
3
|
|
|
|
|
19
|
$error = Math::Symbolic::Operator->new( |
276
|
|
|
|
|
|
|
'*', $error, |
277
|
|
|
|
|
|
|
Math::Symbolic::Operator->new( |
278
|
|
|
|
|
|
|
'^', |
279
|
|
|
|
|
|
|
Math::Symbolic::Operator->new( |
280
|
|
|
|
|
|
|
'-', Math::Symbolic::Constant->one(), $theta |
281
|
|
|
|
|
|
|
), |
282
|
|
|
|
|
|
|
$degree |
283
|
|
|
|
|
|
|
) |
284
|
|
|
|
|
|
|
); |
285
|
3
|
|
|
|
|
40
|
return $error; |
286
|
|
|
|
|
|
|
} |
287
|
|
|
|
|
|
|
|
288
|
|
|
|
|
|
|
1; |
289
|
|
|
|
|
|
|
__END__ |