| line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
|
1
|
|
|
|
|
|
|
|
|
2
|
|
|
|
|
|
|
=encoding utf8 |
|
3
|
|
|
|
|
|
|
|
|
4
|
|
|
|
|
|
|
=head1 NAME |
|
5
|
|
|
|
|
|
|
|
|
6
|
|
|
|
|
|
|
Math::Symbolic::MiscAlgebra - Miscellaneous algebra routines like det() |
|
7
|
|
|
|
|
|
|
|
|
8
|
|
|
|
|
|
|
=head1 SYNOPSIS |
|
9
|
|
|
|
|
|
|
|
|
10
|
|
|
|
|
|
|
use Math::Symbolic qw/:all/; |
|
11
|
|
|
|
|
|
|
use Math::Symbolic::MiscAlgebra qw/:all/; # not loaded by Math::Symbolic |
|
12
|
|
|
|
|
|
|
|
|
13
|
|
|
|
|
|
|
@matrix = (['x*y', 'z*x', 'y*z'],['x', 'z', 'z'],['x', 'x', 'y']); |
|
14
|
|
|
|
|
|
|
$det = det @matrix; |
|
15
|
|
|
|
|
|
|
|
|
16
|
|
|
|
|
|
|
@vector = ('x', 'y', 'z'); |
|
17
|
|
|
|
|
|
|
$solution = solve_linear(\@matrix, \@vector); |
|
18
|
|
|
|
|
|
|
|
|
19
|
|
|
|
|
|
|
=head1 DESCRIPTION |
|
20
|
|
|
|
|
|
|
|
|
21
|
|
|
|
|
|
|
This module provides several subroutines related to |
|
22
|
|
|
|
|
|
|
algebra such as computing the determinant of quadratic matrices, solving |
|
23
|
|
|
|
|
|
|
linear equation systems and computation of Bell Polynomials. |
|
24
|
|
|
|
|
|
|
|
|
25
|
|
|
|
|
|
|
Please note that the code herein may or may not be refactored into |
|
26
|
|
|
|
|
|
|
the OO-interface of the Math::Symbolic module in the future. |
|
27
|
|
|
|
|
|
|
|
|
28
|
|
|
|
|
|
|
=head2 EXPORT |
|
29
|
|
|
|
|
|
|
|
|
30
|
|
|
|
|
|
|
None by default. |
|
31
|
|
|
|
|
|
|
|
|
32
|
|
|
|
|
|
|
You may choose to have any of the following routines exported to the |
|
33
|
|
|
|
|
|
|
calling namespace. ':all' tag exports all of the following: |
|
34
|
|
|
|
|
|
|
|
|
35
|
|
|
|
|
|
|
det |
|
36
|
|
|
|
|
|
|
linear_solve |
|
37
|
|
|
|
|
|
|
bell_polynomial |
|
38
|
|
|
|
|
|
|
|
|
39
|
|
|
|
|
|
|
=head1 SUBROUTINES |
|
40
|
|
|
|
|
|
|
|
|
41
|
|
|
|
|
|
|
=cut |
|
42
|
|
|
|
|
|
|
|
|
43
|
|
|
|
|
|
|
package Math::Symbolic::MiscAlgebra; |
|
44
|
|
|
|
|
|
|
|
|
45
|
3
|
|
|
3
|
|
2194
|
use 5.006; |
|
|
3
|
|
|
|
|
11
|
|
|
|
3
|
|
|
|
|
136
|
|
|
46
|
3
|
|
|
3
|
|
16
|
use strict; |
|
|
3
|
|
|
|
|
7
|
|
|
|
3
|
|
|
|
|
92
|
|
|
47
|
3
|
|
|
3
|
|
17
|
use warnings; |
|
|
3
|
|
|
|
|
6
|
|
|
|
3
|
|
|
|
|
77
|
|
|
48
|
|
|
|
|
|
|
|
|
49
|
3
|
|
|
3
|
|
17
|
use Carp; |
|
|
3
|
|
|
|
|
8
|
|
|
|
3
|
|
|
|
|
237
|
|
|
50
|
3
|
|
|
3
|
|
20
|
use Memoize; |
|
|
3
|
|
|
|
|
7
|
|
|
|
3
|
|
|
|
|
210
|
|
|
51
|
|
|
|
|
|
|
|
|
52
|
3
|
|
|
3
|
|
18
|
use Math::Symbolic qw/:all/; |
|
|
3
|
|
|
|
|
6
|
|
|
|
3
|
|
|
|
|
5029
|
|
|
53
|
|
|
|
|
|
|
|
|
54
|
|
|
|
|
|
|
require Exporter; |
|
55
|
|
|
|
|
|
|
our @ISA = qw(Exporter); |
|
56
|
|
|
|
|
|
|
our %EXPORT_TAGS = ( |
|
57
|
|
|
|
|
|
|
'all' => [ |
|
58
|
|
|
|
|
|
|
qw( |
|
59
|
|
|
|
|
|
|
det |
|
60
|
|
|
|
|
|
|
bell_polynomial |
|
61
|
|
|
|
|
|
|
linear_solve |
|
62
|
|
|
|
|
|
|
) |
|
63
|
|
|
|
|
|
|
] |
|
64
|
|
|
|
|
|
|
); |
|
65
|
|
|
|
|
|
|
|
|
66
|
|
|
|
|
|
|
our @EXPORT_OK = ( @{ $EXPORT_TAGS{'all'} } ); |
|
67
|
|
|
|
|
|
|
|
|
68
|
|
|
|
|
|
|
our $VERSION = '0.612'; |
|
69
|
|
|
|
|
|
|
|
|
70
|
|
|
|
|
|
|
=head2 det |
|
71
|
|
|
|
|
|
|
|
|
72
|
|
|
|
|
|
|
det() computes the determinant of a matrix of Math::Symbolic trees (or strings |
|
73
|
|
|
|
|
|
|
that can be parsed as such). First argument must be a literal array: |
|
74
|
|
|
|
|
|
|
"det @matrix", where @matrix is an n x n matrix. |
|
75
|
|
|
|
|
|
|
|
|
76
|
|
|
|
|
|
|
Please note that calculating determinants of matrices using the |
|
77
|
|
|
|
|
|
|
straightforward Laplace algorithm is a slow (O(n!)) |
|
78
|
|
|
|
|
|
|
operation. This implementation cannot make use of the various optimizations |
|
79
|
|
|
|
|
|
|
resulting from the determinant properties since we are dealing with |
|
80
|
|
|
|
|
|
|
symbolic matrix elements. If you have a matrix of reals, it is strongly |
|
81
|
|
|
|
|
|
|
suggested that you use Math::MatrixReal or Math::Pari to get the determinant |
|
82
|
|
|
|
|
|
|
which can be calculated using LR decomposition much faster. |
|
83
|
|
|
|
|
|
|
|
|
84
|
|
|
|
|
|
|
On a related note: Calculating the determinant of a 20x20 matrix would take |
|
85
|
|
|
|
|
|
|
over 77146 years if your Perl could do 1 million calculations per second. |
|
86
|
|
|
|
|
|
|
Given that we're talking about several method calls per calculation, that's |
|
87
|
|
|
|
|
|
|
much more than todays computers could do. On the other hand, if you'd be |
|
88
|
|
|
|
|
|
|
using this straightforward algorithm with numbers only and in C, you might |
|
89
|
|
|
|
|
|
|
be done in 26 years alright, so please go for the smarter route (better |
|
90
|
|
|
|
|
|
|
algorithm) instead if you have numbers only. |
|
91
|
|
|
|
|
|
|
|
|
92
|
|
|
|
|
|
|
=cut |
|
93
|
|
|
|
|
|
|
|
|
94
|
|
|
|
|
|
|
sub det (\@) { |
|
95
|
7
|
|
|
7
|
1
|
1009
|
my $matrix = shift; |
|
96
|
7
|
|
|
|
|
15
|
my $size = @$matrix; |
|
97
|
|
|
|
|
|
|
|
|
98
|
7
|
|
|
|
|
20
|
foreach (@$matrix) { |
|
99
|
20
|
50
|
|
|
|
118
|
croak "det(Matrix) requires n x n matrix!" if @$_ != $size; |
|
100
|
20
|
|
|
|
|
36
|
foreach (@$_) { |
|
101
|
60
|
100
|
|
|
|
462
|
$_ = Math::Symbolic::parse_from_string($_) |
|
102
|
|
|
|
|
|
|
if ref($_) !~ /^Math::Symbolic/; |
|
103
|
|
|
|
|
|
|
} |
|
104
|
|
|
|
|
|
|
} |
|
105
|
|
|
|
|
|
|
|
|
106
|
7
|
50
|
|
|
|
63
|
return $matrix->[0][0] if $size == 1; |
|
107
|
7
|
100
|
|
|
|
125
|
return $matrix->[0][0] * $matrix->[1][1] - $matrix->[1][0] * $matrix->[0][1] |
|
108
|
|
|
|
|
|
|
if $size == 2; |
|
109
|
5
|
|
|
|
|
13
|
return _det_helper( $matrix, $size ); |
|
110
|
|
|
|
|
|
|
} |
|
111
|
|
|
|
|
|
|
|
|
112
|
|
|
|
|
|
|
sub _det_helper { |
|
113
|
9
|
|
|
9
|
|
15
|
my $matrix = shift; |
|
114
|
9
|
|
|
|
|
10
|
my $size = shift; |
|
115
|
|
|
|
|
|
|
|
|
116
|
9
|
100
|
|
|
|
142
|
return $matrix->[0][0] * $matrix->[1][1] * $matrix->[2][2] + $matrix->[1][0] |
|
117
|
|
|
|
|
|
|
* $matrix->[2][1] * $matrix->[0][2] + $matrix->[2][0] * $matrix->[0][1] * |
|
118
|
|
|
|
|
|
|
$matrix->[1][2] - $matrix->[0][2] * $matrix->[1][1] * $matrix->[2][0] - |
|
119
|
|
|
|
|
|
|
$matrix->[1][2] * $matrix->[2][1] * $matrix->[0][0] - $matrix->[2][2] * |
|
120
|
|
|
|
|
|
|
$matrix->[0][1] * $matrix->[1][0] |
|
121
|
|
|
|
|
|
|
if $size == 3; |
|
122
|
|
|
|
|
|
|
|
|
123
|
1
|
|
|
|
|
3
|
my $det; |
|
124
|
1
|
|
|
|
|
5
|
foreach ( 0 .. $size - 1 ) { |
|
125
|
4
|
100
|
|
|
|
16
|
if ( $_ % 2 ) { |
|
126
|
2
|
|
|
|
|
9
|
$det -= |
|
127
|
|
|
|
|
|
|
$matrix->[0][$_] * |
|
128
|
|
|
|
|
|
|
_det_helper( _matrix_slice( $matrix, 0, $_ ), $size - 1 ); |
|
129
|
|
|
|
|
|
|
} |
|
130
|
|
|
|
|
|
|
else { |
|
131
|
2
|
|
|
|
|
10
|
$det += |
|
132
|
|
|
|
|
|
|
$matrix->[0][$_] * |
|
133
|
|
|
|
|
|
|
_det_helper( _matrix_slice( $matrix, 0, $_ ), $size - 1 ); |
|
134
|
|
|
|
|
|
|
} |
|
135
|
|
|
|
|
|
|
} |
|
136
|
1
|
|
|
|
|
7
|
return $det; |
|
137
|
|
|
|
|
|
|
} |
|
138
|
|
|
|
|
|
|
|
|
139
|
|
|
|
|
|
|
sub _matrix_slice { |
|
140
|
7
|
|
|
7
|
|
2297
|
my $matrix = shift; |
|
141
|
7
|
|
|
|
|
9
|
my $x = shift; |
|
142
|
7
|
|
|
|
|
9
|
my $y = shift; |
|
143
|
|
|
|
|
|
|
|
|
144
|
18
|
|
|
|
|
34
|
return [ map { [ @{$_}[ 0 .. $y - 1, $y + 1 ... $#$_ ] ] } |
|
|
18
|
|
|
|
|
121
|
|
|
|
7
|
|
|
|
|
15
|
|
|
145
|
7
|
|
|
|
|
22
|
@{$matrix}[ 0 .. $x - 1, $x + 1 .. $#$matrix ] ]; |
|
146
|
|
|
|
|
|
|
} |
|
147
|
|
|
|
|
|
|
|
|
148
|
|
|
|
|
|
|
=head2 linear_solve |
|
149
|
|
|
|
|
|
|
|
|
150
|
|
|
|
|
|
|
Calculates the solutions x (vector) of a linear equation system of the form |
|
151
|
|
|
|
|
|
|
C with C being a matrix, C a vector and the solution C a |
|
152
|
|
|
|
|
|
|
vector. Due to implementation limitations, C must be a quadratic matrix and |
|
153
|
|
|
|
|
|
|
C must have a dimension that is equivalent to that of C. Furthermore, |
|
154
|
|
|
|
|
|
|
the determinant of C must be non-zero. The algorithm used is devised from |
|
155
|
|
|
|
|
|
|
Cramer's Rule and thus inefficient. The preferred algorithm for this task is |
|
156
|
|
|
|
|
|
|
Gaussian Elimination. If you have a matrix and a vector of real numbers, please |
|
157
|
|
|
|
|
|
|
consider using either Math::MatrixReal or Math::Pari instead. |
|
158
|
|
|
|
|
|
|
|
|
159
|
|
|
|
|
|
|
First argument must be a reference to a matrix (array of arrays) of symbolic |
|
160
|
|
|
|
|
|
|
terms, second argument must be a reference to a vector (array) of symbolic |
|
161
|
|
|
|
|
|
|
terms. Strings will be automatically converted to Math::Symbolic trees. |
|
162
|
|
|
|
|
|
|
Returns a reference to the solution vector. |
|
163
|
|
|
|
|
|
|
|
|
164
|
|
|
|
|
|
|
=cut |
|
165
|
|
|
|
|
|
|
|
|
166
|
|
|
|
|
|
|
sub linear_solve { |
|
167
|
1
|
|
|
1
|
1
|
3
|
my ( $m, $v ) = @_; |
|
168
|
1
|
|
|
|
|
2
|
my $dim = @$v; |
|
169
|
|
|
|
|
|
|
|
|
170
|
1
|
50
|
|
|
|
5
|
croak "linear_solve(Matrix, Vector) requires n x n matrix and n-vector!" |
|
171
|
|
|
|
|
|
|
if @$m != $dim; |
|
172
|
1
|
|
|
|
|
4
|
foreach (@$m) { |
|
173
|
3
|
50
|
|
|
|
43
|
croak "linear_solve(Matrix, Vector) requires n x n matrix and n-vector!" |
|
174
|
|
|
|
|
|
|
if @$_ != $dim; |
|
175
|
3
|
|
|
|
|
9
|
foreach (@$_) { |
|
176
|
9
|
50
|
|
|
|
140
|
$_ = Math::Symbolic::parse_from_string($_) |
|
177
|
|
|
|
|
|
|
if ref($_) !~ /^Math::Symbolic/; |
|
178
|
|
|
|
|
|
|
} |
|
179
|
|
|
|
|
|
|
} |
|
180
|
1
|
|
|
|
|
17
|
foreach (@$v) { |
|
181
|
3
|
50
|
|
|
|
43
|
$_ = Math::Symbolic::parse_from_string($_) |
|
182
|
|
|
|
|
|
|
if ref($_) !~ /^Math::Symbolic/; |
|
183
|
|
|
|
|
|
|
} |
|
184
|
|
|
|
|
|
|
|
|
185
|
1
|
|
|
|
|
20
|
my $det = det @$m; |
|
186
|
|
|
|
|
|
|
|
|
187
|
1
|
|
|
|
|
3
|
my @vec; |
|
188
|
|
|
|
|
|
|
|
|
189
|
1
|
|
|
|
|
5
|
foreach my $i ( 0 .. $#$m ) { |
|
190
|
3
|
|
|
|
|
9
|
my $nm = _replace_col( $m, $v, $i ); |
|
191
|
3
|
|
|
|
|
8
|
my $det_i = det @$nm; |
|
192
|
3
|
|
|
|
|
10
|
push @vec, $det_i / $det; |
|
193
|
|
|
|
|
|
|
} |
|
194
|
|
|
|
|
|
|
|
|
195
|
1
|
|
|
|
|
9
|
return \@vec; |
|
196
|
|
|
|
|
|
|
} |
|
197
|
|
|
|
|
|
|
|
|
198
|
|
|
|
|
|
|
sub _replace_col { |
|
199
|
3
|
|
|
3
|
|
4
|
my $m = shift; |
|
200
|
3
|
|
|
|
|
4
|
my $v = shift; |
|
201
|
3
|
|
|
|
|
4
|
my $col = shift; |
|
202
|
3
|
|
|
|
|
5
|
my $nm = []; |
|
203
|
3
|
|
|
|
|
7
|
foreach my $i ( 0 .. $#$m ) { |
|
204
|
9
|
|
|
|
|
17
|
$nm->[$i] = [ |
|
205
|
9
|
|
|
|
|
41
|
@{ $m->[$i] }[ 0 .. $col - 1 ], |
|
206
|
|
|
|
|
|
|
$v->[$i], |
|
207
|
9
|
|
|
|
|
14
|
@{ $m->[$i] }[ $col + 1 .. $#$m ] |
|
208
|
|
|
|
|
|
|
]; |
|
209
|
|
|
|
|
|
|
} |
|
210
|
3
|
|
|
|
|
7
|
return $nm; |
|
211
|
|
|
|
|
|
|
} |
|
212
|
|
|
|
|
|
|
|
|
213
|
|
|
|
|
|
|
=head2 bell_polynomial |
|
214
|
|
|
|
|
|
|
|
|
215
|
|
|
|
|
|
|
This functions returns the nth Bell Polynomial. It uses memoization for |
|
216
|
|
|
|
|
|
|
speed increase. |
|
217
|
|
|
|
|
|
|
|
|
218
|
|
|
|
|
|
|
First argument is the n. Second (optional) argument is the variable or |
|
219
|
|
|
|
|
|
|
variable name to use in the polynomial. Defaults to 'x'. |
|
220
|
|
|
|
|
|
|
|
|
221
|
|
|
|
|
|
|
The Bell Polynomial is defined as follows: |
|
222
|
|
|
|
|
|
|
|
|
223
|
|
|
|
|
|
|
phi_0 (x) = 1 |
|
224
|
|
|
|
|
|
|
phi_n+1(x) = x * ( phi_n(x) + partial_derivative( phi_n(x), x ) ) |
|
225
|
|
|
|
|
|
|
|
|
226
|
|
|
|
|
|
|
Bell Polynomials are Exponential Polynimals with phi_n(1) = the nth bell |
|
227
|
|
|
|
|
|
|
number. Please refer to the bell_number() function in the |
|
228
|
|
|
|
|
|
|
Math::Symbolic::AuxFunctions module for a method of generating these numbers. |
|
229
|
|
|
|
|
|
|
|
|
230
|
|
|
|
|
|
|
=cut |
|
231
|
|
|
|
|
|
|
|
|
232
|
|
|
|
|
|
|
memoize('bell_polynomial'); |
|
233
|
|
|
|
|
|
|
|
|
234
|
|
|
|
|
|
|
sub bell_polynomial { |
|
235
|
|
|
|
|
|
|
my $n = shift; |
|
236
|
|
|
|
|
|
|
my $var = shift; |
|
237
|
|
|
|
|
|
|
$var = 'x' if not defined $var; |
|
238
|
|
|
|
|
|
|
$var = Math::Symbolic::Variable->new($var); |
|
239
|
|
|
|
|
|
|
|
|
240
|
|
|
|
|
|
|
return undef if $n < 0; |
|
241
|
|
|
|
|
|
|
return Math::Symbolic::Constant->new(1) if $n == 0; |
|
242
|
|
|
|
|
|
|
return $var if $n == 1; |
|
243
|
|
|
|
|
|
|
|
|
244
|
|
|
|
|
|
|
my $bell = bell_polynomial( $n - 1 ); |
|
245
|
|
|
|
|
|
|
$bell = Math::Symbolic::Operator->new( |
|
246
|
|
|
|
|
|
|
'+', |
|
247
|
|
|
|
|
|
|
Math::Symbolic::Operator->new( '*', $var, $bell )->simplify(), |
|
248
|
|
|
|
|
|
|
Math::Symbolic::Operator->new( |
|
249
|
|
|
|
|
|
|
'*', |
|
250
|
|
|
|
|
|
|
$var, |
|
251
|
|
|
|
|
|
|
Math::Symbolic::Operator->new( 'partial_derivative', $bell, $var ) |
|
252
|
|
|
|
|
|
|
->apply_derivatives()->simplify() |
|
253
|
|
|
|
|
|
|
)->simplify() |
|
254
|
|
|
|
|
|
|
); |
|
255
|
|
|
|
|
|
|
return $bell; |
|
256
|
|
|
|
|
|
|
} |
|
257
|
|
|
|
|
|
|
|
|
258
|
|
|
|
|
|
|
1; |
|
259
|
|
|
|
|
|
|
__END__ |