| line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
|
1
|
|
|
|
|
|
|
# -*- Perl -*- |
|
2
|
|
|
|
|
|
|
# |
|
3
|
|
|
|
|
|
|
# slide rule virtualization for Perl |
|
4
|
|
|
|
|
|
|
|
|
5
|
|
|
|
|
|
|
package Math::SlideRule; |
|
6
|
|
|
|
|
|
|
|
|
7
|
2
|
|
|
2
|
|
100362
|
use 5.010000; |
|
|
2
|
|
|
|
|
7
|
|
|
8
|
|
|
|
|
|
|
|
|
9
|
2
|
|
|
2
|
|
452
|
use Moo; |
|
|
2
|
|
|
|
|
14596
|
|
|
|
2
|
|
|
|
|
9
|
|
|
10
|
2
|
|
|
2
|
|
2823
|
use namespace::clean; |
|
|
2
|
|
|
|
|
14221
|
|
|
|
2
|
|
|
|
|
19
|
|
|
11
|
2
|
|
|
2
|
|
705
|
use Scalar::Util qw/looks_like_number/; |
|
|
2
|
|
|
|
|
4
|
|
|
|
2
|
|
|
|
|
2658
|
|
|
12
|
|
|
|
|
|
|
|
|
13
|
|
|
|
|
|
|
our $VERSION = '1.11'; |
|
14
|
|
|
|
|
|
|
|
|
15
|
|
|
|
|
|
|
######################################################################## |
|
16
|
|
|
|
|
|
|
# |
|
17
|
|
|
|
|
|
|
# ATTRIBUTES |
|
18
|
|
|
|
|
|
|
|
|
19
|
|
|
|
|
|
|
# these are taken from common scale names on a slide rule; see code for |
|
20
|
|
|
|
|
|
|
# how they are populated |
|
21
|
|
|
|
|
|
|
has A => ( is => 'lazy', ); |
|
22
|
|
|
|
|
|
|
has C => ( is => 'lazy', ); |
|
23
|
|
|
|
|
|
|
|
|
24
|
1
|
|
|
1
|
|
15
|
sub _build_A { $_[0]->_range_exp_weighted( 1, 100 ) } |
|
25
|
1
|
|
|
1
|
|
15
|
sub _build_C { $_[0]->_range_exp_weighted( 1, 10 ) } |
|
26
|
|
|
|
|
|
|
|
|
27
|
|
|
|
|
|
|
# increased precision comes at the cost of additional memory use |
|
28
|
|
|
|
|
|
|
# |
|
29
|
|
|
|
|
|
|
# NOTE changing the precision after A, C and so forth have been |
|
30
|
|
|
|
|
|
|
# generated will do nothing to those values. instead, construct a new |
|
31
|
|
|
|
|
|
|
# object with a different precision set, if necessary |
|
32
|
|
|
|
|
|
|
has precision => ( is => 'rw', default => sub { 10_000 } ); |
|
33
|
|
|
|
|
|
|
|
|
34
|
|
|
|
|
|
|
######################################################################## |
|
35
|
|
|
|
|
|
|
# |
|
36
|
|
|
|
|
|
|
# METHODS |
|
37
|
|
|
|
|
|
|
|
|
38
|
|
|
|
|
|
|
# builds two arrays, one of values (1, 2, 3...), another of distances |
|
39
|
|
|
|
|
|
|
# based on the log of those values. these arrays returned in a hash |
|
40
|
|
|
|
|
|
|
# reference. slide rule lookups obtain the index of a value, then use |
|
41
|
|
|
|
|
|
|
# that to find the distance of that value, then uses other distances |
|
42
|
|
|
|
|
|
|
# to figure out some new location, that a new value can be worked back |
|
43
|
|
|
|
|
|
|
# out from |
|
44
|
|
|
|
|
|
|
# |
|
45
|
|
|
|
|
|
|
# NOTE that these scales are not calibrated directly to one another |
|
46
|
|
|
|
|
|
|
# as they would be on a slide rule |
|
47
|
|
|
|
|
|
|
sub _range_exp_weighted { |
|
48
|
2
|
|
|
2
|
|
7
|
my ( $self, $min, $max ) = @_; |
|
49
|
|
|
|
|
|
|
|
|
50
|
2
|
|
|
|
|
15
|
my @range = map log, $min, $max; |
|
51
|
2
|
|
|
|
|
4
|
my ( @values, @distances ); |
|
52
|
|
|
|
|
|
|
|
|
53
|
2
|
|
|
|
|
11
|
my $slope = ( $range[1] - $range[0] ) / $self->precision; |
|
54
|
|
|
|
|
|
|
|
|
55
|
2
|
|
|
|
|
8
|
for my $d ( 0 .. $self->precision ) { |
|
56
|
|
|
|
|
|
|
# via slope equation; y = mx + b and m = (y2-y1)/(x2-x1) with |
|
57
|
|
|
|
|
|
|
# assumption that precision 0..$mp and @range[min,max] |
|
58
|
20002
|
|
|
|
|
24991
|
push @distances, $slope * $d + $range[0]; |
|
59
|
20002
|
|
|
|
|
25203
|
push @values, exp $distances[-1]; |
|
60
|
|
|
|
|
|
|
} |
|
61
|
|
|
|
|
|
|
|
|
62
|
2
|
|
|
|
|
80
|
return { value => \@values, dist => \@distances }; |
|
63
|
|
|
|
|
|
|
} |
|
64
|
|
|
|
|
|
|
|
|
65
|
|
|
|
|
|
|
# binary search an array of values for a given value, returning index of |
|
66
|
|
|
|
|
|
|
# the closest match. used to lookup values and their corresponding |
|
67
|
|
|
|
|
|
|
# distances from the various A, C, etc. attribute tables. NOTE this |
|
68
|
|
|
|
|
|
|
# routine assumes that the given value has been normalized e.g. via |
|
69
|
|
|
|
|
|
|
# standard_form to lie somewhere on or between the minimum and maximum |
|
70
|
|
|
|
|
|
|
# values in the given array reference |
|
71
|
|
|
|
|
|
|
sub _rank { |
|
72
|
95
|
|
|
95
|
|
786
|
my ( $self, $value, $ref ) = @_; |
|
73
|
|
|
|
|
|
|
|
|
74
|
95
|
|
|
|
|
104
|
my $lo = 0; |
|
75
|
95
|
|
|
|
|
115
|
my $hi = $#$ref; |
|
76
|
|
|
|
|
|
|
|
|
77
|
95
|
|
|
|
|
164
|
while ( $lo <= $hi ) { |
|
78
|
999
|
|
|
|
|
1175
|
my $mid = int( $lo + ( $hi - $lo ) / 2 ); |
|
79
|
999
|
100
|
|
|
|
1500
|
if ( $ref->[$mid] > $value ) { |
|
|
|
100
|
|
|
|
|
|
|
80
|
477
|
|
|
|
|
637
|
$hi = $mid - 1; |
|
81
|
|
|
|
|
|
|
} elsif ( $ref->[$mid] < $value ) { |
|
82
|
475
|
|
|
|
|
657
|
$lo = $mid + 1; |
|
83
|
|
|
|
|
|
|
} else { |
|
84
|
47
|
|
|
|
|
85
|
return $mid; |
|
85
|
|
|
|
|
|
|
} |
|
86
|
|
|
|
|
|
|
} |
|
87
|
|
|
|
|
|
|
|
|
88
|
|
|
|
|
|
|
# no exact match; return index of value closest to the numeral supplied |
|
89
|
48
|
50
|
|
|
|
79
|
if ( $lo > $#$ref ) { |
|
90
|
0
|
|
|
|
|
0
|
return $hi; |
|
91
|
|
|
|
|
|
|
} else { |
|
92
|
48
|
100
|
|
|
|
345
|
if ( abs( $ref->[$lo] - $value ) >= abs( $ref->[$hi] - $value ) ) { |
|
93
|
26
|
|
|
|
|
52
|
return $hi; |
|
94
|
|
|
|
|
|
|
} else { |
|
95
|
22
|
|
|
|
|
53
|
return $lo; |
|
96
|
|
|
|
|
|
|
} |
|
97
|
|
|
|
|
|
|
} |
|
98
|
|
|
|
|
|
|
} |
|
99
|
|
|
|
|
|
|
|
|
100
|
|
|
|
|
|
|
# division is just multiplication done backwards on a slide rule, as the |
|
101
|
|
|
|
|
|
|
# same physical distances are involved. there are also "CF" and "CI" (C |
|
102
|
|
|
|
|
|
|
# scale, folded, or inverse) and so forth scales to assist with such |
|
103
|
|
|
|
|
|
|
# operations, though these mostly just help avoid excess motions on the |
|
104
|
|
|
|
|
|
|
# slide rule |
|
105
|
|
|
|
|
|
|
# |
|
106
|
|
|
|
|
|
|
# NOTE cannot just pass m*(1/n) to multiply() because that looses |
|
107
|
|
|
|
|
|
|
# precision: .82 for 75/92 while can get .815 on pocket slide rule |
|
108
|
|
|
|
|
|
|
sub divide { |
|
109
|
10
|
|
|
10
|
1
|
569
|
my $self = shift; |
|
110
|
10
|
|
|
|
|
14
|
my $n = shift; |
|
111
|
10
|
|
|
|
|
14
|
my $i = 0; |
|
112
|
|
|
|
|
|
|
|
|
113
|
10
|
100
|
|
|
|
33
|
die "need at least two numbers\n" if @_ < 1; |
|
114
|
9
|
100
|
100
|
|
|
56
|
die "argument index $i not a number\n" |
|
115
|
|
|
|
|
|
|
unless defined $n and looks_like_number($n); |
|
116
|
|
|
|
|
|
|
|
|
117
|
7
|
|
|
|
|
22
|
my ( $n_coe, $n_exp, $neg_count ) = $self->standard_form($n); |
|
118
|
|
|
|
|
|
|
|
|
119
|
7
|
|
|
|
|
122
|
my $n_idx = $self->_rank( $n_coe, $self->C->{value} ); |
|
120
|
7
|
|
|
|
|
123
|
my $distance = $self->C->{dist}[$n_idx]; |
|
121
|
7
|
|
|
|
|
35
|
my $exponent = $n_exp; |
|
122
|
|
|
|
|
|
|
|
|
123
|
7
|
|
|
|
|
14
|
for my $m (@_) { |
|
124
|
10
|
|
|
|
|
13
|
$i++; |
|
125
|
10
|
100
|
|
|
|
39
|
die "argument index $i not a number\n" if !looks_like_number($m); |
|
126
|
|
|
|
|
|
|
|
|
127
|
8
|
100
|
|
|
|
16
|
$neg_count++ if $m < 0; |
|
128
|
|
|
|
|
|
|
|
|
129
|
8
|
|
|
|
|
17
|
my ( $m_coe, $m_exp, undef ) = $self->standard_form($m); |
|
130
|
8
|
|
|
|
|
78
|
my $m_idx = $self->_rank( $m_coe, $self->C->{value} ); |
|
131
|
|
|
|
|
|
|
|
|
132
|
8
|
|
|
|
|
92
|
$distance -= $self->C->{dist}[$m_idx]; |
|
133
|
8
|
|
|
|
|
33
|
$exponent -= $m_exp; |
|
134
|
|
|
|
|
|
|
|
|
135
|
8
|
50
|
|
|
|
78
|
if ( $distance < $self->C->{dist}[0] ) { |
|
136
|
8
|
|
|
|
|
93
|
$distance = $self->C->{dist}[-1] + $distance; |
|
137
|
8
|
|
|
|
|
32
|
$exponent--; |
|
138
|
|
|
|
|
|
|
} |
|
139
|
|
|
|
|
|
|
} |
|
140
|
|
|
|
|
|
|
|
|
141
|
5
|
|
|
|
|
45
|
my $d_idx = $self->_rank( $distance, $self->C->{dist} ); |
|
142
|
5
|
|
|
|
|
59
|
my $product = $self->C->{value}[$d_idx]; |
|
143
|
|
|
|
|
|
|
|
|
144
|
5
|
|
|
|
|
30
|
$product *= 10**$exponent; |
|
145
|
5
|
100
|
|
|
|
16
|
$product *= -1 if $neg_count % 2 == 1; |
|
146
|
|
|
|
|
|
|
|
|
147
|
5
|
|
|
|
|
77
|
return $product; |
|
148
|
|
|
|
|
|
|
} |
|
149
|
|
|
|
|
|
|
|
|
150
|
|
|
|
|
|
|
sub multiply { |
|
151
|
21
|
|
|
21
|
1
|
158
|
my $self = shift; |
|
152
|
21
|
|
|
|
|
25
|
my $n = shift; |
|
153
|
21
|
|
|
|
|
28
|
my $i = 0; |
|
154
|
|
|
|
|
|
|
|
|
155
|
21
|
100
|
|
|
|
54
|
die "need at least two numbers\n" if @_ < 1; |
|
156
|
20
|
100
|
100
|
|
|
87
|
die "argument index $i not a number\n" |
|
157
|
|
|
|
|
|
|
unless defined $n and looks_like_number($n); |
|
158
|
|
|
|
|
|
|
|
|
159
|
18
|
|
|
|
|
39
|
my ( $n_coe, $n_exp, $neg_count ) = $self->standard_form($n); |
|
160
|
|
|
|
|
|
|
|
|
161
|
|
|
|
|
|
|
# chain method has first lookup on D and then subsequent done by |
|
162
|
|
|
|
|
|
|
# moving C on slider and keeping tabs with the hairline, then reading |
|
163
|
|
|
|
|
|
|
# back on D for the final result. (plus incrementing the exponent |
|
164
|
|
|
|
|
|
|
# count when a reverse slide is necessary, for example for 3.4*4.1, as |
|
165
|
|
|
|
|
|
|
# that jumps to the next magnitude) |
|
166
|
|
|
|
|
|
|
# |
|
167
|
|
|
|
|
|
|
# one can also do the multiplication on the A and B scales, which is |
|
168
|
|
|
|
|
|
|
# handy if you then need to pull the square root off of D. but this |
|
169
|
|
|
|
|
|
|
# implementation ignores such alternatives |
|
170
|
18
|
|
|
|
|
252
|
my $n_idx = $self->_rank( $n_coe, $self->C->{value} ); |
|
171
|
18
|
|
|
|
|
161
|
my $distance = $self->C->{dist}[$n_idx]; |
|
172
|
18
|
|
|
|
|
66
|
my $exponent = $n_exp; |
|
173
|
|
|
|
|
|
|
|
|
174
|
18
|
|
|
|
|
28
|
for my $m (@_) { |
|
175
|
26
|
|
|
|
|
42
|
$i++; |
|
176
|
26
|
100
|
|
|
|
61
|
die "argument index $i not a number\n" if !looks_like_number($m); |
|
177
|
|
|
|
|
|
|
|
|
178
|
24
|
100
|
|
|
|
39
|
$neg_count++ if $m < 0; |
|
179
|
|
|
|
|
|
|
|
|
180
|
24
|
|
|
|
|
39
|
my ( $m_coe, $m_exp, undef ) = $self->standard_form($m); |
|
181
|
24
|
|
|
|
|
195
|
my $m_idx = $self->_rank( $m_coe, $self->C->{value} ); |
|
182
|
|
|
|
|
|
|
|
|
183
|
24
|
|
|
|
|
188
|
$distance += $self->C->{dist}[$m_idx]; |
|
184
|
24
|
|
|
|
|
80
|
$exponent += $m_exp; |
|
185
|
|
|
|
|
|
|
|
|
186
|
|
|
|
|
|
|
# order of magnitude change, adjust back to bounds (these are |
|
187
|
|
|
|
|
|
|
# notable on a slide rule by having to index from the opposite |
|
188
|
|
|
|
|
|
|
# direction than usual for the C and D scales (though one could |
|
189
|
|
|
|
|
|
|
# also obtain the value with the A and B or the CI and DI |
|
190
|
|
|
|
|
|
|
# scales, but those would then need some rule to track the |
|
191
|
|
|
|
|
|
|
# exponent change)) |
|
192
|
24
|
100
|
|
|
|
202
|
if ( $distance > $self->C->{dist}[-1] ) { |
|
193
|
8
|
|
|
|
|
74
|
$distance -= $self->C->{dist}[-1]; |
|
194
|
8
|
|
|
|
|
31
|
$exponent++; |
|
195
|
|
|
|
|
|
|
} |
|
196
|
|
|
|
|
|
|
} |
|
197
|
|
|
|
|
|
|
|
|
198
|
16
|
|
|
|
|
139
|
my $d_idx = $self->_rank( $distance, $self->C->{dist} ); |
|
199
|
16
|
|
|
|
|
118
|
my $product = $self->C->{value}[$d_idx]; |
|
200
|
|
|
|
|
|
|
|
|
201
|
16
|
|
|
|
|
68
|
$product *= 10**$exponent; |
|
202
|
16
|
100
|
|
|
|
31
|
$product *= -1 if $neg_count % 2 == 1; |
|
203
|
|
|
|
|
|
|
|
|
204
|
16
|
|
|
|
|
144
|
return $product; |
|
205
|
|
|
|
|
|
|
} |
|
206
|
|
|
|
|
|
|
|
|
207
|
|
|
|
|
|
|
# relies on conversion from A to C scales (and that the distances in |
|
208
|
|
|
|
|
|
|
# said scales are linked to one another) |
|
209
|
|
|
|
|
|
|
sub sqrt { |
|
210
|
9
|
|
|
9
|
1
|
108
|
my ( $self, $n ) = @_; |
|
211
|
9
|
100
|
100
|
|
|
56
|
die "argument not a number\n" unless defined $n and looks_like_number($n); |
|
212
|
7
|
100
|
|
|
|
22
|
die "Can't take sqrt of $n\n" if $n < 0; |
|
213
|
|
|
|
|
|
|
|
|
214
|
6
|
|
|
|
|
13
|
my ( $n_coe, $n_exp, undef ) = $self->standard_form($n); |
|
215
|
|
|
|
|
|
|
|
|
216
|
6
|
100
|
|
|
|
17
|
if ( $n_exp % 2 == 1 ) { |
|
217
|
3
|
|
|
|
|
4
|
$n_coe *= 10; |
|
218
|
3
|
|
|
|
|
4
|
$n_exp--; |
|
219
|
|
|
|
|
|
|
} |
|
220
|
|
|
|
|
|
|
|
|
221
|
6
|
|
|
|
|
120
|
my $n_idx = $self->_rank( $n_coe, $self->A->{value} ); |
|
222
|
|
|
|
|
|
|
|
|
223
|
|
|
|
|
|
|
# NOTE division is due to A and C scale distances not being calibrated |
|
224
|
|
|
|
|
|
|
# directly with one another |
|
225
|
6
|
|
|
|
|
122
|
my $distance = $self->A->{dist}[$n_idx] / 2; |
|
226
|
|
|
|
|
|
|
|
|
227
|
6
|
|
|
|
|
112
|
my $d_idx = $self->_rank( $distance, $self->C->{dist} ); |
|
228
|
6
|
|
|
|
|
81
|
my $sqrt = $self->C->{value}[$d_idx]; |
|
229
|
|
|
|
|
|
|
|
|
230
|
6
|
|
|
|
|
40
|
$sqrt *= 10**( $n_exp / 2 ); |
|
231
|
|
|
|
|
|
|
|
|
232
|
6
|
|
|
|
|
72
|
return $sqrt; |
|
233
|
|
|
|
|
|
|
} |
|
234
|
|
|
|
|
|
|
|
|
235
|
|
|
|
|
|
|
# converts numbers to standard form (scientific notation) or otherwise |
|
236
|
|
|
|
|
|
|
# between a particular range of numbers (to support A/B "double |
|
237
|
|
|
|
|
|
|
# decade" scales) |
|
238
|
|
|
|
|
|
|
sub standard_form { |
|
239
|
76
|
|
|
76
|
1
|
129
|
my ( $self, $val, $min, $max ) = @_; |
|
240
|
|
|
|
|
|
|
|
|
241
|
76
|
|
100
|
|
|
222
|
$min //= 1; |
|
242
|
76
|
|
100
|
|
|
178
|
$max //= 10; |
|
243
|
|
|
|
|
|
|
|
|
244
|
76
|
100
|
|
|
|
140
|
my $is_neg = $val < 0 ? 1 : 0; |
|
245
|
|
|
|
|
|
|
|
|
246
|
76
|
|
|
|
|
87
|
$val = abs $val; |
|
247
|
76
|
|
|
|
|
76
|
my $exp = 0; |
|
248
|
|
|
|
|
|
|
|
|
249
|
76
|
100
|
|
|
|
182
|
if ( $val < $min ) { |
|
|
|
100
|
|
|
|
|
|
|
250
|
9
|
|
|
|
|
21
|
while ( $val < $min ) { |
|
251
|
17
|
|
|
|
|
33
|
$val *= 10; |
|
252
|
17
|
|
|
|
|
27
|
$exp--; |
|
253
|
|
|
|
|
|
|
} |
|
254
|
|
|
|
|
|
|
} elsif ( $val >= $max ) { |
|
255
|
45
|
|
|
|
|
78
|
while ( $val >= $max ) { |
|
256
|
59
|
|
|
|
|
83
|
$val /= 10; |
|
257
|
59
|
|
|
|
|
92
|
$exp++; |
|
258
|
|
|
|
|
|
|
} |
|
259
|
|
|
|
|
|
|
} |
|
260
|
|
|
|
|
|
|
|
|
261
|
76
|
|
|
|
|
197
|
return $val, $exp, $is_neg; |
|
262
|
|
|
|
|
|
|
} |
|
263
|
|
|
|
|
|
|
|
|
264
|
|
|
|
|
|
|
1; |
|
265
|
|
|
|
|
|
|
__END__ |