line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
1
|
|
|
|
|
|
|
// Copyright 2018 Ulf Adams |
2
|
|
|
|
|
|
|
// |
3
|
|
|
|
|
|
|
// The contents of this file may be used under the terms of the Apache License, |
4
|
|
|
|
|
|
|
// Version 2.0. |
5
|
|
|
|
|
|
|
// |
6
|
|
|
|
|
|
|
// (See accompanying file LICENSE-Apache or copy at |
7
|
|
|
|
|
|
|
// http://www.apache.org/licenses/LICENSE-2.0) |
8
|
|
|
|
|
|
|
// |
9
|
|
|
|
|
|
|
// Alternatively, the contents of this file may be used under the terms of |
10
|
|
|
|
|
|
|
// the Boost Software License, Version 1.0. |
11
|
|
|
|
|
|
|
// (See accompanying file LICENSE-Boost or copy at |
12
|
|
|
|
|
|
|
// https://www.boost.org/LICENSE_1_0.txt) |
13
|
|
|
|
|
|
|
// |
14
|
|
|
|
|
|
|
// Unless required by applicable law or agreed to in writing, this software |
15
|
|
|
|
|
|
|
// is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY |
16
|
|
|
|
|
|
|
// KIND, either express or implied. |
17
|
|
|
|
|
|
|
|
18
|
|
|
|
|
|
|
// Runtime compiler options: |
19
|
|
|
|
|
|
|
// -DRYU_DEBUG Generate verbose debugging output to stdout. |
20
|
|
|
|
|
|
|
// |
21
|
|
|
|
|
|
|
// -DRYU_ONLY_64_BIT_OPS Avoid using uint128_t or 64-bit intrinsics. Slower, |
22
|
|
|
|
|
|
|
// depending on your compiler. |
23
|
|
|
|
|
|
|
// |
24
|
|
|
|
|
|
|
// -DRYU_AVOID_UINT128 Avoid using uint128_t. Slower, depending on your compiler. |
25
|
|
|
|
|
|
|
|
26
|
|
|
|
|
|
|
/* Sisyphus has applied some superficial changes to this file because perl has * |
27
|
|
|
|
|
|
|
* not always honored "C99 mode". The location of the header files, relative * |
28
|
|
|
|
|
|
|
* to the location of this file, has also changed */ |
29
|
|
|
|
|
|
|
|
30
|
|
|
|
|
|
|
#include "ryu_headers/ryu.h" |
31
|
|
|
|
|
|
|
|
32
|
|
|
|
|
|
|
#include |
33
|
|
|
|
|
|
|
#include |
34
|
|
|
|
|
|
|
#include |
35
|
|
|
|
|
|
|
#include |
36
|
|
|
|
|
|
|
#include |
37
|
|
|
|
|
|
|
|
38
|
|
|
|
|
|
|
#ifdef RYU_DEBUG |
39
|
|
|
|
|
|
|
#include |
40
|
|
|
|
|
|
|
#include |
41
|
|
|
|
|
|
|
#endif |
42
|
|
|
|
|
|
|
|
43
|
|
|
|
|
|
|
#include "ryu_headers/common.h" |
44
|
|
|
|
|
|
|
#include "ryu_headers/digit_table.h" |
45
|
|
|
|
|
|
|
#include "ryu_headers/d2fixed_full_table.h" |
46
|
|
|
|
|
|
|
#include "ryu_headers/d2s_intrinsics.h" |
47
|
|
|
|
|
|
|
|
48
|
|
|
|
|
|
|
#define DOUBLE_MANTISSA_BITS 52 |
49
|
|
|
|
|
|
|
#define DOUBLE_EXPONENT_BITS 11 |
50
|
|
|
|
|
|
|
#define DOUBLE_BIAS 1023 |
51
|
|
|
|
|
|
|
|
52
|
|
|
|
|
|
|
#define POW10_ADDITIONAL_BITS 120 |
53
|
|
|
|
|
|
|
|
54
|
|
|
|
|
|
|
#if defined(HAS_UINT128) |
55
|
0
|
|
|
|
|
|
static inline uint128_t umul256(const uint128_t a, const uint64_t bHi, const uint64_t bLo, uint128_t* const productHi) { |
56
|
0
|
|
|
|
|
|
const uint64_t aLo = (uint64_t)a; |
57
|
0
|
|
|
|
|
|
const uint64_t aHi = (uint64_t)(a >> 64); |
58
|
|
|
|
|
|
|
|
59
|
0
|
|
|
|
|
|
const uint128_t b00 = (uint128_t)aLo * bLo; |
60
|
0
|
|
|
|
|
|
const uint128_t b01 = (uint128_t)aLo * bHi; |
61
|
0
|
|
|
|
|
|
const uint128_t b10 = (uint128_t)aHi * bLo; |
62
|
0
|
|
|
|
|
|
const uint128_t b11 = (uint128_t)aHi * bHi; |
63
|
|
|
|
|
|
|
|
64
|
0
|
|
|
|
|
|
const uint64_t b00Lo = (uint64_t)b00; |
65
|
0
|
|
|
|
|
|
const uint64_t b00Hi = (uint64_t)(b00 >> 64); |
66
|
|
|
|
|
|
|
|
67
|
0
|
|
|
|
|
|
const uint128_t mid1 = b10 + b00Hi; |
68
|
0
|
|
|
|
|
|
const uint64_t mid1Lo = (uint64_t)(mid1); |
69
|
0
|
|
|
|
|
|
const uint64_t mid1Hi = (uint64_t)(mid1 >> 64); |
70
|
|
|
|
|
|
|
|
71
|
0
|
|
|
|
|
|
const uint128_t mid2 = b01 + mid1Lo; |
72
|
0
|
|
|
|
|
|
const uint64_t mid2Lo = (uint64_t)(mid2); |
73
|
0
|
|
|
|
|
|
const uint64_t mid2Hi = (uint64_t)(mid2 >> 64); |
74
|
|
|
|
|
|
|
|
75
|
0
|
|
|
|
|
|
const uint128_t pHi = b11 + mid1Hi + mid2Hi; |
76
|
0
|
|
|
|
|
|
const uint128_t pLo = ((uint128_t)mid2Lo << 64) | b00Lo; |
77
|
|
|
|
|
|
|
|
78
|
0
|
|
|
|
|
|
*productHi = pHi; |
79
|
0
|
|
|
|
|
|
return pLo; |
80
|
|
|
|
|
|
|
} |
81
|
|
|
|
|
|
|
|
82
|
|
|
|
|
|
|
// Returns the high 128 bits of the 256-bit product of a and b. |
83
|
0
|
|
|
|
|
|
static inline uint128_t umul256_hi(const uint128_t a, const uint64_t bHi, const uint64_t bLo) { |
84
|
|
|
|
|
|
|
// Reuse the umul256 implementation. |
85
|
|
|
|
|
|
|
// Optimizers will likely eliminate the instructions used to compute the |
86
|
|
|
|
|
|
|
// low part of the product. |
87
|
|
|
|
|
|
|
uint128_t hi; |
88
|
0
|
|
|
|
|
|
umul256(a, bHi, bLo, &hi); |
89
|
0
|
|
|
|
|
|
return hi; |
90
|
|
|
|
|
|
|
} |
91
|
|
|
|
|
|
|
|
92
|
|
|
|
|
|
|
// Unfortunately, gcc/clang do not automatically turn a 128-bit integer division |
93
|
|
|
|
|
|
|
// into a multiplication, so we have to do it manually. |
94
|
0
|
|
|
|
|
|
static inline uint32_t uint128_mod1e9(const uint128_t v) { |
95
|
|
|
|
|
|
|
// After multiplying, we're going to shift right by 29, then truncate to uint32_t. |
96
|
|
|
|
|
|
|
// This means that we need only 29 + 32 = 61 bits, so we can truncate to uint64_t before shifting. |
97
|
0
|
|
|
|
|
|
const uint64_t multiplied = (uint64_t) umul256_hi(v, 0x89705F4136B4A597u, 0x31680A88F8953031u); |
98
|
|
|
|
|
|
|
|
99
|
|
|
|
|
|
|
// For uint32_t truncation, see the mod1e9() comment in d2s_intrinsics.h. |
100
|
0
|
|
|
|
|
|
const uint32_t shifted = (uint32_t) (multiplied >> 29); |
101
|
|
|
|
|
|
|
|
102
|
0
|
|
|
|
|
|
return ((uint32_t) v) - 1000000000 * shifted; |
103
|
|
|
|
|
|
|
} |
104
|
|
|
|
|
|
|
|
105
|
|
|
|
|
|
|
// Best case: use 128-bit type. |
106
|
0
|
|
|
|
|
|
static inline uint32_t mulShift_mod1e9(const uint64_t m, const uint64_t* const mul, const int32_t j) { |
107
|
0
|
|
|
|
|
|
const uint128_t b0 = ((uint128_t) m) * mul[0]; // 0 |
108
|
0
|
|
|
|
|
|
const uint128_t b1 = ((uint128_t) m) * mul[1]; // 64 |
109
|
0
|
|
|
|
|
|
const uint128_t b2 = ((uint128_t) m) * mul[2]; // 128 |
110
|
|
|
|
|
|
|
#ifdef RYU_DEBUG |
111
|
0
|
0
|
|
|
|
|
if (j < 128 || j > 180) { |
|
|
0
|
|
|
|
|
|
112
|
0
|
|
|
|
|
|
printf("%d\n", j); |
113
|
|
|
|
|
|
|
} |
114
|
|
|
|
|
|
|
#endif |
115
|
0
|
0
|
|
|
|
|
assert(j >= 128); |
116
|
0
|
0
|
|
|
|
|
assert(j <= 180); |
117
|
|
|
|
|
|
|
// j: [128, 256) |
118
|
0
|
|
|
|
|
|
const uint128_t mid = b1 + (uint64_t) (b0 >> 64); // 64 |
119
|
0
|
|
|
|
|
|
const uint128_t s1 = b2 + (uint64_t) (mid >> 64); // 128 |
120
|
0
|
|
|
|
|
|
return uint128_mod1e9(s1 >> (j - 128)); |
121
|
|
|
|
|
|
|
} |
122
|
|
|
|
|
|
|
|
123
|
|
|
|
|
|
|
#else // HAS_UINT128 |
124
|
|
|
|
|
|
|
|
125
|
|
|
|
|
|
|
#if defined(HAS_64_BIT_INTRINSICS) |
126
|
|
|
|
|
|
|
// Returns the low 64 bits of the high 128 bits of the 256-bit product of a and b. |
127
|
|
|
|
|
|
|
static inline uint64_t umul256_hi128_lo64( |
128
|
|
|
|
|
|
|
const uint64_t aHi, const uint64_t aLo, const uint64_t bHi, const uint64_t bLo) { |
129
|
|
|
|
|
|
|
uint64_t b00Hi; |
130
|
|
|
|
|
|
|
const uint64_t b00Lo = umul128(aLo, bLo, &b00Hi); |
131
|
|
|
|
|
|
|
uint64_t b01Hi; |
132
|
|
|
|
|
|
|
const uint64_t b01Lo = umul128(aLo, bHi, &b01Hi); |
133
|
|
|
|
|
|
|
uint64_t b10Hi; |
134
|
|
|
|
|
|
|
const uint64_t b10Lo = umul128(aHi, bLo, &b10Hi); |
135
|
|
|
|
|
|
|
uint64_t b11Hi; |
136
|
|
|
|
|
|
|
const uint64_t b11Lo = umul128(aHi, bHi, &b11Hi); |
137
|
|
|
|
|
|
|
(void) b00Lo; // unused |
138
|
|
|
|
|
|
|
(void) b11Hi; // unused |
139
|
|
|
|
|
|
|
const uint64_t temp1Lo = b10Lo + b00Hi; |
140
|
|
|
|
|
|
|
const uint64_t temp1Hi = b10Hi + (temp1Lo < b10Lo); |
141
|
|
|
|
|
|
|
const uint64_t temp2Lo = b01Lo + temp1Lo; |
142
|
|
|
|
|
|
|
const uint64_t temp2Hi = b01Hi + (temp2Lo < b01Lo); |
143
|
|
|
|
|
|
|
return b11Lo + temp1Hi + temp2Hi; |
144
|
|
|
|
|
|
|
} |
145
|
|
|
|
|
|
|
|
146
|
|
|
|
|
|
|
static inline uint32_t uint128_mod1e9(const uint64_t vHi, const uint64_t vLo) { |
147
|
|
|
|
|
|
|
// After multiplying, we're going to shift right by 29, then truncate to uint32_t. |
148
|
|
|
|
|
|
|
// This means that we need only 29 + 32 = 61 bits, so we can truncate to uint64_t before shifting. |
149
|
|
|
|
|
|
|
const uint64_t multiplied = umul256_hi128_lo64(vHi, vLo, 0x89705F4136B4A597u, 0x31680A88F8953031u); |
150
|
|
|
|
|
|
|
|
151
|
|
|
|
|
|
|
// For uint32_t truncation, see the mod1e9() comment in d2s_intrinsics.h. |
152
|
|
|
|
|
|
|
const uint32_t shifted = (uint32_t) (multiplied >> 29); |
153
|
|
|
|
|
|
|
|
154
|
|
|
|
|
|
|
return ((uint32_t) vLo) - 1000000000 * shifted; |
155
|
|
|
|
|
|
|
} |
156
|
|
|
|
|
|
|
#endif // HAS_64_BIT_INTRINSICS |
157
|
|
|
|
|
|
|
|
158
|
|
|
|
|
|
|
static inline uint32_t mulShift_mod1e9(const uint64_t m, const uint64_t* const mul, const int32_t j) { |
159
|
|
|
|
|
|
|
uint64_t high0; // 64 |
160
|
|
|
|
|
|
|
const uint64_t low0 = umul128(m, mul[0], &high0); // 0 |
161
|
|
|
|
|
|
|
uint64_t high1; // 128 |
162
|
|
|
|
|
|
|
const uint64_t low1 = umul128(m, mul[1], &high1); // 64 |
163
|
|
|
|
|
|
|
uint64_t high2; // 192 |
164
|
|
|
|
|
|
|
const uint64_t low2 = umul128(m, mul[2], &high2); // 128 |
165
|
|
|
|
|
|
|
const uint64_t s0low = low0; // 0 |
166
|
|
|
|
|
|
|
(void) s0low; // unused |
167
|
|
|
|
|
|
|
const uint64_t s0high = low1 + high0; // 64 |
168
|
|
|
|
|
|
|
const uint32_t c1 = s0high < low1; |
169
|
|
|
|
|
|
|
const uint64_t s1low = low2 + high1 + c1; // 128 |
170
|
|
|
|
|
|
|
const uint32_t c2 = s1low < low2; // high1 + c1 can't overflow, so compare against low2 |
171
|
|
|
|
|
|
|
const uint64_t s1high = high2 + c2; // 192 |
172
|
|
|
|
|
|
|
#ifdef RYU_DEBUG |
173
|
|
|
|
|
|
|
if (j < 128 || j > 180) { |
174
|
|
|
|
|
|
|
printf("%d\n", j); |
175
|
|
|
|
|
|
|
} |
176
|
|
|
|
|
|
|
#endif |
177
|
|
|
|
|
|
|
assert(j >= 128); |
178
|
|
|
|
|
|
|
assert(j <= 180); |
179
|
|
|
|
|
|
|
#if defined(HAS_64_BIT_INTRINSICS) |
180
|
|
|
|
|
|
|
const uint32_t dist = (uint32_t) (j - 128); // dist: [0, 52] |
181
|
|
|
|
|
|
|
const uint64_t shiftedhigh = s1high >> dist; |
182
|
|
|
|
|
|
|
const uint64_t shiftedlow = shiftright128(s1low, s1high, dist); |
183
|
|
|
|
|
|
|
return uint128_mod1e9(shiftedhigh, shiftedlow); |
184
|
|
|
|
|
|
|
#else // HAS_64_BIT_INTRINSICS |
185
|
|
|
|
|
|
|
if (j < 160) { // j: [128, 160) |
186
|
|
|
|
|
|
|
const uint64_t r0 = mod1e9(s1high); |
187
|
|
|
|
|
|
|
const uint64_t r1 = mod1e9((r0 << 32) | (s1low >> 32)); |
188
|
|
|
|
|
|
|
const uint64_t r2 = ((r1 << 32) | (s1low & 0xffffffff)); |
189
|
|
|
|
|
|
|
return mod1e9(r2 >> (j - 128)); |
190
|
|
|
|
|
|
|
} else { // j: [160, 192) |
191
|
|
|
|
|
|
|
const uint64_t r0 = mod1e9(s1high); |
192
|
|
|
|
|
|
|
const uint64_t r1 = ((r0 << 32) | (s1low >> 32)); |
193
|
|
|
|
|
|
|
return mod1e9(r1 >> (j - 160)); |
194
|
|
|
|
|
|
|
} |
195
|
|
|
|
|
|
|
#endif // HAS_64_BIT_INTRINSICS |
196
|
|
|
|
|
|
|
} |
197
|
|
|
|
|
|
|
#endif // HAS_UINT128 |
198
|
|
|
|
|
|
|
|
199
|
|
|
|
|
|
|
// Convert `digits` to a sequence of decimal digits. Append the digits to the result. |
200
|
|
|
|
|
|
|
// The caller has to guarantee that: |
201
|
|
|
|
|
|
|
// 10^(olength-1) <= digits < 10^olength |
202
|
|
|
|
|
|
|
// e.g., by passing `olength` as `decimalLength9(digits)`. |
203
|
0
|
|
|
|
|
|
static inline void append_n_digits(const uint32_t olength, uint32_t digits, char* const result) { |
204
|
|
|
|
|
|
|
#ifdef RYU_DEBUG |
205
|
0
|
|
|
|
|
|
printf("DIGITS=%u\n", digits); |
206
|
|
|
|
|
|
|
#endif |
207
|
|
|
|
|
|
|
|
208
|
0
|
|
|
|
|
|
uint32_t i = 0; |
209
|
0
|
0
|
|
|
|
|
while (digits >= 10000) { |
210
|
|
|
|
|
|
|
#ifdef __clang__ // https://bugs.llvm.org/show_bug.cgi?id=38217 |
211
|
|
|
|
|
|
|
const uint32_t c = digits - 10000 * (digits / 10000); |
212
|
|
|
|
|
|
|
#else |
213
|
0
|
|
|
|
|
|
const uint32_t c = digits % 10000; |
214
|
|
|
|
|
|
|
#endif |
215
|
0
|
|
|
|
|
|
digits /= 10000; |
216
|
0
|
|
|
|
|
|
const uint32_t c0 = (c % 100) << 1; |
217
|
0
|
|
|
|
|
|
const uint32_t c1 = (c / 100) << 1; |
218
|
0
|
|
|
|
|
|
memcpy(result + olength - i - 2, DIGIT_TABLE + c0, 2); |
219
|
0
|
|
|
|
|
|
memcpy(result + olength - i - 4, DIGIT_TABLE + c1, 2); |
220
|
0
|
|
|
|
|
|
i += 4; |
221
|
|
|
|
|
|
|
} |
222
|
0
|
0
|
|
|
|
|
if (digits >= 100) { |
223
|
0
|
|
|
|
|
|
const uint32_t c = (digits % 100) << 1; |
224
|
0
|
|
|
|
|
|
digits /= 100; |
225
|
0
|
|
|
|
|
|
memcpy(result + olength - i - 2, DIGIT_TABLE + c, 2); |
226
|
0
|
|
|
|
|
|
i += 2; |
227
|
|
|
|
|
|
|
} |
228
|
0
|
0
|
|
|
|
|
if (digits >= 10) { |
229
|
0
|
|
|
|
|
|
const uint32_t c = digits << 1; |
230
|
0
|
|
|
|
|
|
memcpy(result + olength - i - 2, DIGIT_TABLE + c, 2); |
231
|
|
|
|
|
|
|
} else { |
232
|
0
|
|
|
|
|
|
result[0] = (char) ('0' + digits); |
233
|
|
|
|
|
|
|
} |
234
|
0
|
|
|
|
|
|
} |
235
|
|
|
|
|
|
|
|
236
|
|
|
|
|
|
|
// Convert `digits` to a sequence of decimal digits. Print the first digit, followed by a decimal |
237
|
|
|
|
|
|
|
// dot '.' followed by the remaining digits. The caller has to guarantee that: |
238
|
|
|
|
|
|
|
// 10^(olength-1) <= digits < 10^olength |
239
|
|
|
|
|
|
|
// e.g., by passing `olength` as `decimalLength9(digits)`. |
240
|
0
|
|
|
|
|
|
static inline void append_d_digits(const uint32_t olength, uint32_t digits, char* const result) { |
241
|
|
|
|
|
|
|
#ifdef RYU_DEBUG |
242
|
0
|
|
|
|
|
|
printf("DIGITS=%u\n", digits); |
243
|
|
|
|
|
|
|
#endif |
244
|
|
|
|
|
|
|
|
245
|
0
|
|
|
|
|
|
uint32_t i = 0; |
246
|
0
|
0
|
|
|
|
|
while (digits >= 10000) { |
247
|
|
|
|
|
|
|
#ifdef __clang__ // https://bugs.llvm.org/show_bug.cgi?id=38217 |
248
|
|
|
|
|
|
|
const uint32_t c = digits - 10000 * (digits / 10000); |
249
|
|
|
|
|
|
|
#else |
250
|
0
|
|
|
|
|
|
const uint32_t c = digits % 10000; |
251
|
|
|
|
|
|
|
#endif |
252
|
0
|
|
|
|
|
|
digits /= 10000; |
253
|
0
|
|
|
|
|
|
const uint32_t c0 = (c % 100) << 1; |
254
|
0
|
|
|
|
|
|
const uint32_t c1 = (c / 100) << 1; |
255
|
0
|
|
|
|
|
|
memcpy(result + olength + 1 - i - 2, DIGIT_TABLE + c0, 2); |
256
|
0
|
|
|
|
|
|
memcpy(result + olength + 1 - i - 4, DIGIT_TABLE + c1, 2); |
257
|
0
|
|
|
|
|
|
i += 4; |
258
|
|
|
|
|
|
|
} |
259
|
0
|
0
|
|
|
|
|
if (digits >= 100) { |
260
|
0
|
|
|
|
|
|
const uint32_t c = (digits % 100) << 1; |
261
|
0
|
|
|
|
|
|
digits /= 100; |
262
|
0
|
|
|
|
|
|
memcpy(result + olength + 1 - i - 2, DIGIT_TABLE + c, 2); |
263
|
0
|
|
|
|
|
|
i += 2; |
264
|
|
|
|
|
|
|
} |
265
|
0
|
0
|
|
|
|
|
if (digits >= 10) { |
266
|
0
|
|
|
|
|
|
const uint32_t c = digits << 1; |
267
|
0
|
|
|
|
|
|
result[2] = DIGIT_TABLE[c + 1]; |
268
|
0
|
|
|
|
|
|
result[1] = '.'; |
269
|
0
|
|
|
|
|
|
result[0] = DIGIT_TABLE[c]; |
270
|
|
|
|
|
|
|
} else { |
271
|
0
|
|
|
|
|
|
result[1] = '.'; |
272
|
0
|
|
|
|
|
|
result[0] = (char) ('0' + digits); |
273
|
|
|
|
|
|
|
} |
274
|
0
|
|
|
|
|
|
} |
275
|
|
|
|
|
|
|
|
276
|
|
|
|
|
|
|
// Convert `digits` to decimal and write the last `count` decimal digits to result. |
277
|
|
|
|
|
|
|
// If `digits` contains additional digits, then those are silently ignored. |
278
|
0
|
|
|
|
|
|
static inline void append_c_digits(const uint32_t count, uint32_t digits, char* const result) { |
279
|
|
|
|
|
|
|
#ifdef RYU_DEBUG |
280
|
0
|
|
|
|
|
|
printf("DIGITS=%u\n", digits); |
281
|
|
|
|
|
|
|
#endif |
282
|
|
|
|
|
|
|
// Copy pairs of digits from DIGIT_TABLE. |
283
|
0
|
|
|
|
|
|
uint32_t i = 0; |
284
|
0
|
0
|
|
|
|
|
for (; i < count - 1; i += 2) { |
285
|
0
|
|
|
|
|
|
const uint32_t c = (digits % 100) << 1; |
286
|
0
|
|
|
|
|
|
digits /= 100; |
287
|
0
|
|
|
|
|
|
memcpy(result + count - i - 2, DIGIT_TABLE + c, 2); |
288
|
|
|
|
|
|
|
} |
289
|
|
|
|
|
|
|
// Generate the last digit if count is odd. |
290
|
0
|
0
|
|
|
|
|
if (i < count) { |
291
|
0
|
|
|
|
|
|
const char c = (char) ('0' + (digits % 10)); |
292
|
0
|
|
|
|
|
|
result[count - i - 1] = c; |
293
|
|
|
|
|
|
|
} |
294
|
0
|
|
|
|
|
|
} |
295
|
|
|
|
|
|
|
|
296
|
|
|
|
|
|
|
// Convert `digits` to decimal and write the last 9 decimal digits to result. |
297
|
|
|
|
|
|
|
// If `digits` contains additional digits, then those are silently ignored. |
298
|
0
|
|
|
|
|
|
static inline void append_nine_digits(uint32_t digits, char* const result) { |
299
|
|
|
|
|
|
|
uint32_t i; |
300
|
|
|
|
|
|
|
#ifdef RYU_DEBUG |
301
|
0
|
|
|
|
|
|
printf("DIGITS=%u\n", digits); |
302
|
|
|
|
|
|
|
#endif |
303
|
0
|
0
|
|
|
|
|
if (digits == 0) { |
304
|
0
|
|
|
|
|
|
memset(result, '0', 9); |
305
|
0
|
|
|
|
|
|
return; |
306
|
|
|
|
|
|
|
} |
307
|
|
|
|
|
|
|
|
308
|
0
|
0
|
|
|
|
|
for (i = 0; i < 5; i += 4) { |
309
|
|
|
|
|
|
|
#ifdef __clang__ // https://bugs.llvm.org/show_bug.cgi?id=38217 |
310
|
|
|
|
|
|
|
const uint32_t c = digits - 10000 * (digits / 10000); |
311
|
|
|
|
|
|
|
#else |
312
|
0
|
|
|
|
|
|
const uint32_t c = digits % 10000; |
313
|
|
|
|
|
|
|
#endif |
314
|
0
|
|
|
|
|
|
digits /= 10000; |
315
|
0
|
|
|
|
|
|
const uint32_t c0 = (c % 100) << 1; |
316
|
0
|
|
|
|
|
|
const uint32_t c1 = (c / 100) << 1; |
317
|
0
|
|
|
|
|
|
memcpy(result + 7 - i, DIGIT_TABLE + c0, 2); |
318
|
0
|
|
|
|
|
|
memcpy(result + 5 - i, DIGIT_TABLE + c1, 2); |
319
|
|
|
|
|
|
|
} |
320
|
0
|
|
|
|
|
|
result[0] = (char) ('0' + digits); |
321
|
|
|
|
|
|
|
} |
322
|
|
|
|
|
|
|
|
323
|
0
|
|
|
|
|
|
static inline uint32_t indexForExponent(const uint32_t e) { |
324
|
0
|
|
|
|
|
|
return (e + 15) / 16; |
325
|
|
|
|
|
|
|
} |
326
|
|
|
|
|
|
|
|
327
|
0
|
|
|
|
|
|
static inline uint32_t pow10BitsForIndex(const uint32_t idx) { |
328
|
0
|
|
|
|
|
|
return 16 * idx + POW10_ADDITIONAL_BITS; |
329
|
|
|
|
|
|
|
} |
330
|
|
|
|
|
|
|
|
331
|
0
|
|
|
|
|
|
static inline uint32_t lengthForIndex(const uint32_t idx) { |
332
|
|
|
|
|
|
|
// +1 for ceil, +16 for mantissa, +8 to round up when dividing by 9 |
333
|
0
|
|
|
|
|
|
return (log10Pow2(16 * (int32_t) idx) + 1 + 16 + 8) / 9; |
334
|
|
|
|
|
|
|
} |
335
|
|
|
|
|
|
|
|
336
|
0
|
|
|
|
|
|
static inline int copy_special_str_printf(char* const result, const bool sign, const uint64_t mantissa) { |
337
|
|
|
|
|
|
|
#if defined(_MSC_VER) |
338
|
|
|
|
|
|
|
// TODO: Check that -nan is expected output on Windows. |
339
|
|
|
|
|
|
|
if (sign) { |
340
|
|
|
|
|
|
|
result[0] = '-'; |
341
|
|
|
|
|
|
|
} |
342
|
|
|
|
|
|
|
if (mantissa) { |
343
|
|
|
|
|
|
|
if (mantissa < (1ull << (DOUBLE_MANTISSA_BITS - 1))) { |
344
|
|
|
|
|
|
|
memcpy(result + sign, "nan(snan)", 9); |
345
|
|
|
|
|
|
|
return sign + 9; |
346
|
|
|
|
|
|
|
} |
347
|
|
|
|
|
|
|
memcpy(result + sign, "nan", 3); |
348
|
|
|
|
|
|
|
return sign + 3; |
349
|
|
|
|
|
|
|
} |
350
|
|
|
|
|
|
|
#else |
351
|
0
|
0
|
|
|
|
|
if (mantissa) { |
352
|
0
|
|
|
|
|
|
memcpy(result, "nan", 3); |
353
|
0
|
|
|
|
|
|
return 3; |
354
|
|
|
|
|
|
|
} |
355
|
0
|
0
|
|
|
|
|
if (sign) { |
356
|
0
|
|
|
|
|
|
result[0] = '-'; |
357
|
|
|
|
|
|
|
} |
358
|
|
|
|
|
|
|
#endif |
359
|
0
|
|
|
|
|
|
memcpy(result + sign, "Infinity", 8); |
360
|
0
|
|
|
|
|
|
return sign + 8; |
361
|
|
|
|
|
|
|
} |
362
|
|
|
|
|
|
|
|
363
|
0
|
|
|
|
|
|
int d2fixed_buffered_n(double d, uint32_t precision, char* result) { |
364
|
0
|
|
|
|
|
|
const uint64_t bits = double_to_bits(d); |
365
|
|
|
|
|
|
|
#ifdef RYU_DEBUG |
366
|
|
|
|
|
|
|
int32_t bit; |
367
|
0
|
|
|
|
|
|
printf("IN="); |
368
|
0
|
0
|
|
|
|
|
for (bit = 63; bit >= 0; --bit) { |
369
|
0
|
|
|
|
|
|
printf("%d", (int) ((bits >> bit) & 1)); |
370
|
|
|
|
|
|
|
} |
371
|
0
|
|
|
|
|
|
printf("\n"); |
372
|
|
|
|
|
|
|
#endif |
373
|
|
|
|
|
|
|
|
374
|
|
|
|
|
|
|
// Decode bits into sign, mantissa, and exponent. |
375
|
0
|
|
|
|
|
|
const bool ieeeSign = ((bits >> (DOUBLE_MANTISSA_BITS + DOUBLE_EXPONENT_BITS)) & 1) != 0; |
376
|
0
|
|
|
|
|
|
const uint64_t ieeeMantissa = bits & ((1ull << DOUBLE_MANTISSA_BITS) - 1); |
377
|
0
|
|
|
|
|
|
const uint32_t ieeeExponent = (uint32_t) ((bits >> DOUBLE_MANTISSA_BITS) & ((1u << DOUBLE_EXPONENT_BITS) - 1)); |
378
|
|
|
|
|
|
|
|
379
|
|
|
|
|
|
|
// Case distinction; exit early for the easy cases. |
380
|
0
|
0
|
|
|
|
|
if (ieeeExponent == ((1u << DOUBLE_EXPONENT_BITS) - 1u)) { |
381
|
0
|
|
|
|
|
|
return copy_special_str_printf(result, ieeeSign, ieeeMantissa); |
382
|
|
|
|
|
|
|
} |
383
|
0
|
0
|
|
|
|
|
if (ieeeExponent == 0 && ieeeMantissa == 0) { |
|
|
0
|
|
|
|
|
|
384
|
0
|
|
|
|
|
|
int index = 0; |
385
|
0
|
0
|
|
|
|
|
if (ieeeSign) { |
386
|
0
|
|
|
|
|
|
result[index++] = '-'; |
387
|
|
|
|
|
|
|
} |
388
|
0
|
|
|
|
|
|
result[index++] = '0'; |
389
|
0
|
0
|
|
|
|
|
if (precision > 0) { |
390
|
0
|
|
|
|
|
|
result[index++] = '.'; |
391
|
0
|
|
|
|
|
|
memset(result + index, '0', precision); |
392
|
0
|
|
|
|
|
|
index += precision; |
393
|
|
|
|
|
|
|
} |
394
|
0
|
|
|
|
|
|
return index; |
395
|
|
|
|
|
|
|
} |
396
|
|
|
|
|
|
|
|
397
|
|
|
|
|
|
|
int32_t e2; |
398
|
|
|
|
|
|
|
int32_t i; |
399
|
|
|
|
|
|
|
uint64_t m2; |
400
|
0
|
0
|
|
|
|
|
if (ieeeExponent == 0) { |
401
|
0
|
|
|
|
|
|
e2 = 1 - DOUBLE_BIAS - DOUBLE_MANTISSA_BITS; |
402
|
0
|
|
|
|
|
|
m2 = ieeeMantissa; |
403
|
|
|
|
|
|
|
} else { |
404
|
0
|
|
|
|
|
|
e2 = (int32_t) ieeeExponent - DOUBLE_BIAS - DOUBLE_MANTISSA_BITS; |
405
|
0
|
|
|
|
|
|
m2 = (1ull << DOUBLE_MANTISSA_BITS) | ieeeMantissa; |
406
|
|
|
|
|
|
|
} |
407
|
|
|
|
|
|
|
|
408
|
|
|
|
|
|
|
#ifdef RYU_DEBUG |
409
|
0
|
|
|
|
|
|
printf("-> %" PRIu64 " * 2^%d\n", m2, e2); |
410
|
|
|
|
|
|
|
#endif |
411
|
|
|
|
|
|
|
|
412
|
0
|
|
|
|
|
|
int index = 0; |
413
|
0
|
|
|
|
|
|
bool nonzero = false; |
414
|
0
|
0
|
|
|
|
|
if (ieeeSign) { |
415
|
0
|
|
|
|
|
|
result[index++] = '-'; |
416
|
|
|
|
|
|
|
} |
417
|
0
|
0
|
|
|
|
|
if (e2 >= -52) { |
418
|
0
|
0
|
|
|
|
|
const uint32_t idx = e2 < 0 ? 0 : indexForExponent((uint32_t) e2); |
419
|
0
|
|
|
|
|
|
const uint32_t p10bits = pow10BitsForIndex(idx); |
420
|
0
|
|
|
|
|
|
const int32_t len = (int32_t) lengthForIndex(idx); |
421
|
|
|
|
|
|
|
#ifdef RYU_DEBUG |
422
|
0
|
|
|
|
|
|
printf("idx=%u\n", idx); |
423
|
0
|
|
|
|
|
|
printf("len=%d\n", len); |
424
|
|
|
|
|
|
|
#endif |
425
|
0
|
0
|
|
|
|
|
for (i = len - 1; i >= 0; --i) { |
426
|
0
|
|
|
|
|
|
const uint32_t j = p10bits - e2; |
427
|
|
|
|
|
|
|
// Temporary: j is usually around 128, and by shifting a bit, we push it to 128 or above, which is |
428
|
|
|
|
|
|
|
// a slightly faster code path in mulShift_mod1e9. Instead, we can just increase the multipliers. |
429
|
0
|
|
|
|
|
|
const uint32_t digits = mulShift_mod1e9(m2 << 8, POW10_SPLIT[POW10_OFFSET[idx] + i], (int32_t) (j + 8)); |
430
|
0
|
0
|
|
|
|
|
if (nonzero) { |
431
|
0
|
|
|
|
|
|
append_nine_digits(digits, result + index); |
432
|
0
|
|
|
|
|
|
index += 9; |
433
|
0
|
0
|
|
|
|
|
} else if (digits != 0) { |
434
|
0
|
|
|
|
|
|
const uint32_t olength = decimalLength9(digits); |
435
|
0
|
|
|
|
|
|
append_n_digits(olength, digits, result + index); |
436
|
0
|
|
|
|
|
|
index += olength; |
437
|
0
|
|
|
|
|
|
nonzero = true; |
438
|
|
|
|
|
|
|
} |
439
|
|
|
|
|
|
|
} |
440
|
|
|
|
|
|
|
} |
441
|
0
|
0
|
|
|
|
|
if (!nonzero) { |
442
|
0
|
|
|
|
|
|
result[index++] = '0'; |
443
|
|
|
|
|
|
|
} |
444
|
0
|
0
|
|
|
|
|
if (precision > 0) { |
445
|
0
|
|
|
|
|
|
result[index++] = '.'; |
446
|
|
|
|
|
|
|
} |
447
|
|
|
|
|
|
|
#ifdef RYU_DEBUG |
448
|
0
|
|
|
|
|
|
printf("e2=%d\n", e2); |
449
|
|
|
|
|
|
|
#endif |
450
|
0
|
0
|
|
|
|
|
if (e2 < 0) { |
451
|
0
|
|
|
|
|
|
const int32_t idx = -e2 / 16; |
452
|
|
|
|
|
|
|
#ifdef RYU_DEBUG |
453
|
0
|
|
|
|
|
|
printf("idx=%d\n", idx); |
454
|
|
|
|
|
|
|
#endif |
455
|
0
|
|
|
|
|
|
const uint32_t blocks = precision / 9 + 1; |
456
|
|
|
|
|
|
|
// 0 = don't round up; 1 = round up unconditionally; 2 = round up if odd. |
457
|
0
|
|
|
|
|
|
int roundUp = 0; |
458
|
0
|
|
|
|
|
|
uint32_t i = 0; |
459
|
0
|
0
|
|
|
|
|
if (blocks <= MIN_BLOCK_2[idx]) { |
460
|
0
|
|
|
|
|
|
i = blocks; |
461
|
0
|
|
|
|
|
|
memset(result + index, '0', precision); |
462
|
0
|
|
|
|
|
|
index += precision; |
463
|
0
|
0
|
|
|
|
|
} else if (i < MIN_BLOCK_2[idx]) { |
464
|
0
|
|
|
|
|
|
i = MIN_BLOCK_2[idx]; |
465
|
0
|
|
|
|
|
|
memset(result + index, '0', 9 * i); |
466
|
0
|
|
|
|
|
|
index += 9 * i; |
467
|
|
|
|
|
|
|
} |
468
|
0
|
0
|
|
|
|
|
for (; i < blocks; ++i) { |
469
|
0
|
|
|
|
|
|
const int32_t j = ADDITIONAL_BITS_2 + (-e2 - 16 * idx); |
470
|
0
|
|
|
|
|
|
const uint32_t p = POW10_OFFSET_2[idx] + i - MIN_BLOCK_2[idx]; |
471
|
0
|
0
|
|
|
|
|
if (p >= POW10_OFFSET_2[idx + 1]) { |
472
|
|
|
|
|
|
|
// If the remaining digits are all 0, then we might as well use memset. |
473
|
|
|
|
|
|
|
// No rounding required in this case. |
474
|
0
|
|
|
|
|
|
const uint32_t fill = precision - 9 * i; |
475
|
0
|
|
|
|
|
|
memset(result + index, '0', fill); |
476
|
0
|
|
|
|
|
|
index += fill; |
477
|
0
|
|
|
|
|
|
break; |
478
|
|
|
|
|
|
|
} |
479
|
|
|
|
|
|
|
// Temporary: j is usually around 128, and by shifting a bit, we push it to 128 or above, which is |
480
|
|
|
|
|
|
|
// a slightly faster code path in mulShift_mod1e9. Instead, we can just increase the multipliers. |
481
|
0
|
|
|
|
|
|
uint32_t digits = mulShift_mod1e9(m2 << 8, POW10_SPLIT_2[p], j + 8); |
482
|
|
|
|
|
|
|
uint32_t k; |
483
|
|
|
|
|
|
|
#ifdef RYU_DEBUG |
484
|
0
|
|
|
|
|
|
printf("digits=%u\n", digits); |
485
|
|
|
|
|
|
|
#endif |
486
|
0
|
0
|
|
|
|
|
if (i < blocks - 1) { |
487
|
0
|
|
|
|
|
|
append_nine_digits(digits, result + index); |
488
|
0
|
|
|
|
|
|
index += 9; |
489
|
|
|
|
|
|
|
} else { |
490
|
0
|
|
|
|
|
|
const uint32_t maximum = precision - 9 * i; |
491
|
0
|
|
|
|
|
|
uint32_t lastDigit = 0; |
492
|
0
|
0
|
|
|
|
|
for (k = 0; k < 9 - maximum; ++k) { |
493
|
0
|
|
|
|
|
|
lastDigit = digits % 10; |
494
|
0
|
|
|
|
|
|
digits /= 10; |
495
|
|
|
|
|
|
|
} |
496
|
|
|
|
|
|
|
#ifdef RYU_DEBUG |
497
|
0
|
|
|
|
|
|
printf("lastDigit=%u\n", lastDigit); |
498
|
|
|
|
|
|
|
#endif |
499
|
0
|
0
|
|
|
|
|
if (lastDigit != 5) { |
500
|
0
|
|
|
|
|
|
roundUp = lastDigit > 5; |
501
|
|
|
|
|
|
|
} else { |
502
|
|
|
|
|
|
|
// Is m * 10^(additionalDigits + 1) / 2^(-e2) integer? |
503
|
0
|
|
|
|
|
|
const int32_t requiredTwos = -e2 - (int32_t) precision - 1; |
504
|
0
|
|
|
|
|
|
const bool trailingZeros = requiredTwos <= 0 |
505
|
0
|
0
|
|
|
|
|
|| (requiredTwos < 60 && multipleOfPowerOf2(m2, (uint32_t) requiredTwos)); |
|
|
0
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
506
|
0
|
0
|
|
|
|
|
roundUp = trailingZeros ? 2 : 1; |
507
|
|
|
|
|
|
|
#ifdef RYU_DEBUG |
508
|
0
|
|
|
|
|
|
printf("requiredTwos=%d\n", requiredTwos); |
509
|
0
|
0
|
|
|
|
|
printf("trailingZeros=%s\n", trailingZeros ? "true" : "false"); |
510
|
|
|
|
|
|
|
#endif |
511
|
|
|
|
|
|
|
} |
512
|
0
|
0
|
|
|
|
|
if (maximum > 0) { |
513
|
0
|
|
|
|
|
|
append_c_digits(maximum, digits, result + index); |
514
|
0
|
|
|
|
|
|
index += maximum; |
515
|
|
|
|
|
|
|
} |
516
|
0
|
|
|
|
|
|
break; |
517
|
|
|
|
|
|
|
} |
518
|
|
|
|
|
|
|
} |
519
|
|
|
|
|
|
|
#ifdef RYU_DEBUG |
520
|
0
|
|
|
|
|
|
printf("roundUp=%d\n", roundUp); |
521
|
|
|
|
|
|
|
#endif |
522
|
0
|
0
|
|
|
|
|
if (roundUp != 0) { |
523
|
0
|
|
|
|
|
|
int roundIndex = index; |
524
|
0
|
|
|
|
|
|
int dotIndex = 0; // '.' can't be located at index 0 |
525
|
|
|
|
|
|
|
while (true) { |
526
|
0
|
|
|
|
|
|
--roundIndex; |
527
|
|
|
|
|
|
|
char c; |
528
|
0
|
0
|
|
|
|
|
if (roundIndex == -1 || (c = result[roundIndex], c == '-')) { |
|
|
0
|
|
|
|
|
|
529
|
0
|
|
|
|
|
|
result[roundIndex + 1] = '1'; |
530
|
0
|
0
|
|
|
|
|
if (dotIndex > 0) { |
531
|
0
|
|
|
|
|
|
result[dotIndex] = '0'; |
532
|
0
|
|
|
|
|
|
result[dotIndex + 1] = '.'; |
533
|
|
|
|
|
|
|
} |
534
|
0
|
|
|
|
|
|
result[index++] = '0'; |
535
|
0
|
|
|
|
|
|
break; |
536
|
|
|
|
|
|
|
} |
537
|
0
|
0
|
|
|
|
|
if (c == '.') { |
538
|
0
|
|
|
|
|
|
dotIndex = roundIndex; |
539
|
0
|
|
|
|
|
|
continue; |
540
|
0
|
0
|
|
|
|
|
} else if (c == '9') { |
541
|
0
|
|
|
|
|
|
result[roundIndex] = '0'; |
542
|
0
|
|
|
|
|
|
roundUp = 1; |
543
|
0
|
|
|
|
|
|
continue; |
544
|
|
|
|
|
|
|
} else { |
545
|
0
|
0
|
|
|
|
|
if (roundUp == 2 && c % 2 == 0) { |
|
|
0
|
|
|
|
|
|
546
|
0
|
|
|
|
|
|
break; |
547
|
|
|
|
|
|
|
} |
548
|
0
|
|
|
|
|
|
result[roundIndex] = c + 1; |
549
|
0
|
|
|
|
|
|
break; |
550
|
|
|
|
|
|
|
} |
551
|
0
|
|
|
|
|
|
} |
552
|
|
|
|
|
|
|
} |
553
|
|
|
|
|
|
|
} else { |
554
|
0
|
|
|
|
|
|
memset(result + index, '0', precision); |
555
|
0
|
|
|
|
|
|
index += precision; |
556
|
|
|
|
|
|
|
} |
557
|
0
|
|
|
|
|
|
return index; |
558
|
|
|
|
|
|
|
} |
559
|
|
|
|
|
|
|
|
560
|
0
|
|
|
|
|
|
void d2fixed_buffered(double d, uint32_t precision, char* result) { |
561
|
0
|
|
|
|
|
|
const int len = d2fixed_buffered_n(d, precision, result); |
562
|
0
|
|
|
|
|
|
result[len] = '\0'; |
563
|
0
|
|
|
|
|
|
} |
564
|
|
|
|
|
|
|
|
565
|
0
|
|
|
|
|
|
char* d2fixed(double d, uint32_t precision) { |
566
|
0
|
|
|
|
|
|
char* const buffer = (char*)malloc(2000); |
567
|
0
|
|
|
|
|
|
const int index = d2fixed_buffered_n(d, precision, buffer); |
568
|
0
|
|
|
|
|
|
buffer[index] = '\0'; |
569
|
0
|
|
|
|
|
|
return buffer; |
570
|
|
|
|
|
|
|
} |
571
|
|
|
|
|
|
|
|
572
|
|
|
|
|
|
|
|
573
|
|
|
|
|
|
|
|
574
|
0
|
|
|
|
|
|
int d2exp_buffered_n(double d, uint32_t precision, char* result) { |
575
|
0
|
|
|
|
|
|
const uint64_t bits = double_to_bits(d); |
576
|
|
|
|
|
|
|
#ifdef RYU_DEBUG |
577
|
|
|
|
|
|
|
int32_t bit; |
578
|
0
|
|
|
|
|
|
printf("IN="); |
579
|
0
|
0
|
|
|
|
|
for (bit = 63; bit >= 0; --bit) { |
580
|
0
|
|
|
|
|
|
printf("%d", (int) ((bits >> bit) & 1)); |
581
|
|
|
|
|
|
|
} |
582
|
0
|
|
|
|
|
|
printf("\n"); |
583
|
|
|
|
|
|
|
#endif |
584
|
|
|
|
|
|
|
|
585
|
|
|
|
|
|
|
// Decode bits into sign, mantissa, and exponent. |
586
|
0
|
|
|
|
|
|
const bool ieeeSign = ((bits >> (DOUBLE_MANTISSA_BITS + DOUBLE_EXPONENT_BITS)) & 1) != 0; |
587
|
0
|
|
|
|
|
|
const uint64_t ieeeMantissa = bits & ((1ull << DOUBLE_MANTISSA_BITS) - 1); |
588
|
0
|
|
|
|
|
|
const uint32_t ieeeExponent = (uint32_t) ((bits >> DOUBLE_MANTISSA_BITS) & ((1u << DOUBLE_EXPONENT_BITS) - 1)); |
589
|
|
|
|
|
|
|
|
590
|
|
|
|
|
|
|
// Case distinction; exit early for the easy cases. |
591
|
0
|
0
|
|
|
|
|
if (ieeeExponent == ((1u << DOUBLE_EXPONENT_BITS) - 1u)) { |
592
|
0
|
|
|
|
|
|
return copy_special_str_printf(result, ieeeSign, ieeeMantissa); |
593
|
|
|
|
|
|
|
} |
594
|
0
|
0
|
|
|
|
|
if (ieeeExponent == 0 && ieeeMantissa == 0) { |
|
|
0
|
|
|
|
|
|
595
|
0
|
|
|
|
|
|
int index = 0; |
596
|
0
|
0
|
|
|
|
|
if (ieeeSign) { |
597
|
0
|
|
|
|
|
|
result[index++] = '-'; |
598
|
|
|
|
|
|
|
} |
599
|
0
|
|
|
|
|
|
result[index++] = '0'; |
600
|
0
|
0
|
|
|
|
|
if (precision > 0) { |
601
|
0
|
|
|
|
|
|
result[index++] = '.'; |
602
|
0
|
|
|
|
|
|
memset(result + index, '0', precision); |
603
|
0
|
|
|
|
|
|
index += precision; |
604
|
|
|
|
|
|
|
} |
605
|
0
|
|
|
|
|
|
memcpy(result + index, "e+00", 4); |
606
|
0
|
|
|
|
|
|
index += 4; |
607
|
0
|
|
|
|
|
|
return index; |
608
|
|
|
|
|
|
|
} |
609
|
|
|
|
|
|
|
|
610
|
|
|
|
|
|
|
int32_t e2; |
611
|
|
|
|
|
|
|
uint64_t m2; |
612
|
0
|
0
|
|
|
|
|
if (ieeeExponent == 0) { |
613
|
0
|
|
|
|
|
|
e2 = 1 - DOUBLE_BIAS - DOUBLE_MANTISSA_BITS; |
614
|
0
|
|
|
|
|
|
m2 = ieeeMantissa; |
615
|
|
|
|
|
|
|
} else { |
616
|
0
|
|
|
|
|
|
e2 = (int32_t) ieeeExponent - DOUBLE_BIAS - DOUBLE_MANTISSA_BITS; |
617
|
0
|
|
|
|
|
|
m2 = (1ull << DOUBLE_MANTISSA_BITS) | ieeeMantissa; |
618
|
|
|
|
|
|
|
} |
619
|
|
|
|
|
|
|
|
620
|
|
|
|
|
|
|
#ifdef RYU_DEBUG |
621
|
0
|
|
|
|
|
|
printf("-> %" PRIu64 " * 2^%d\n", m2, e2); |
622
|
|
|
|
|
|
|
#endif |
623
|
|
|
|
|
|
|
|
624
|
0
|
|
|
|
|
|
const bool printDecimalPoint = precision > 0; |
625
|
0
|
|
|
|
|
|
++precision; |
626
|
0
|
|
|
|
|
|
int index = 0; |
627
|
0
|
0
|
|
|
|
|
if (ieeeSign) { |
628
|
0
|
|
|
|
|
|
result[index++] = '-'; |
629
|
|
|
|
|
|
|
} |
630
|
0
|
|
|
|
|
|
uint32_t digits = 0; |
631
|
0
|
|
|
|
|
|
uint32_t printedDigits = 0; |
632
|
0
|
|
|
|
|
|
uint32_t availableDigits = 0; |
633
|
0
|
|
|
|
|
|
int32_t exp = 0; |
634
|
|
|
|
|
|
|
int32_t i; |
635
|
0
|
0
|
|
|
|
|
if (e2 >= -52) { |
636
|
0
|
0
|
|
|
|
|
const uint32_t idx = e2 < 0 ? 0 : indexForExponent((uint32_t) e2); |
637
|
0
|
|
|
|
|
|
const uint32_t p10bits = pow10BitsForIndex(idx); |
638
|
0
|
|
|
|
|
|
const int32_t len = (int32_t) lengthForIndex(idx); |
639
|
|
|
|
|
|
|
#ifdef RYU_DEBUG |
640
|
0
|
|
|
|
|
|
printf("idx=%u\n", idx); |
641
|
0
|
|
|
|
|
|
printf("len=%d\n", len); |
642
|
|
|
|
|
|
|
#endif |
643
|
0
|
0
|
|
|
|
|
for (i = len - 1; i >= 0; --i) { |
644
|
0
|
|
|
|
|
|
const uint32_t j = p10bits - e2; |
645
|
|
|
|
|
|
|
// Temporary: j is usually around 128, and by shifting a bit, we push it to 128 or above, which is |
646
|
|
|
|
|
|
|
// a slightly faster code path in mulShift_mod1e9. Instead, we can just increase the multipliers. |
647
|
0
|
|
|
|
|
|
digits = mulShift_mod1e9(m2 << 8, POW10_SPLIT[POW10_OFFSET[idx] + i], (int32_t) (j + 8)); |
648
|
0
|
0
|
|
|
|
|
if (printedDigits != 0) { |
649
|
0
|
0
|
|
|
|
|
if (printedDigits + 9 > precision) { |
650
|
0
|
|
|
|
|
|
availableDigits = 9; |
651
|
0
|
|
|
|
|
|
break; |
652
|
|
|
|
|
|
|
} |
653
|
0
|
|
|
|
|
|
append_nine_digits(digits, result + index); |
654
|
0
|
|
|
|
|
|
index += 9; |
655
|
0
|
|
|
|
|
|
printedDigits += 9; |
656
|
0
|
0
|
|
|
|
|
} else if (digits != 0) { |
657
|
0
|
|
|
|
|
|
availableDigits = decimalLength9(digits); |
658
|
0
|
|
|
|
|
|
exp = i * 9 + (int32_t) availableDigits - 1; |
659
|
0
|
0
|
|
|
|
|
if (availableDigits > precision) { |
660
|
0
|
|
|
|
|
|
break; |
661
|
|
|
|
|
|
|
} |
662
|
0
|
0
|
|
|
|
|
if (printDecimalPoint) { |
663
|
0
|
|
|
|
|
|
append_d_digits(availableDigits, digits, result + index); |
664
|
0
|
|
|
|
|
|
index += availableDigits + 1; // +1 for decimal point |
665
|
|
|
|
|
|
|
} else { |
666
|
0
|
|
|
|
|
|
result[index++] = (char) ('0' + digits); |
667
|
|
|
|
|
|
|
} |
668
|
0
|
|
|
|
|
|
printedDigits = availableDigits; |
669
|
0
|
|
|
|
|
|
availableDigits = 0; |
670
|
|
|
|
|
|
|
} |
671
|
|
|
|
|
|
|
} |
672
|
|
|
|
|
|
|
} |
673
|
|
|
|
|
|
|
|
674
|
0
|
0
|
|
|
|
|
if (e2 < 0 && availableDigits == 0) { |
|
|
0
|
|
|
|
|
|
675
|
0
|
|
|
|
|
|
const int32_t idx = -e2 / 16; |
676
|
|
|
|
|
|
|
int32_t i; |
677
|
|
|
|
|
|
|
#ifdef RYU_DEBUG |
678
|
0
|
|
|
|
|
|
printf("idx=%d, e2=%d, min=%d\n", idx, e2, MIN_BLOCK_2[idx]); |
679
|
|
|
|
|
|
|
#endif |
680
|
0
|
0
|
|
|
|
|
for (i = MIN_BLOCK_2[idx]; i < 200; ++i) { |
681
|
0
|
|
|
|
|
|
const int32_t j = ADDITIONAL_BITS_2 + (-e2 - 16 * idx); |
682
|
0
|
|
|
|
|
|
const uint32_t p = POW10_OFFSET_2[idx] + (uint32_t) i - MIN_BLOCK_2[idx]; |
683
|
|
|
|
|
|
|
// Temporary: j is usually around 128, and by shifting a bit, we push it to 128 or above, which is |
684
|
|
|
|
|
|
|
// a slightly faster code path in mulShift_mod1e9. Instead, we can just increase the multipliers. |
685
|
0
|
0
|
|
|
|
|
digits = (p >= POW10_OFFSET_2[idx + 1]) ? 0 : mulShift_mod1e9(m2 << 8, POW10_SPLIT_2[p], j + 8); |
686
|
|
|
|
|
|
|
#ifdef RYU_DEBUG |
687
|
0
|
|
|
|
|
|
printf("exact=%" PRIu64 " * (%" PRIu64 " + %" PRIu64 " << 64) >> %d\n", m2, POW10_SPLIT_2[p][0], POW10_SPLIT_2[p][1], j); |
688
|
0
|
|
|
|
|
|
printf("digits=%u\n", digits); |
689
|
|
|
|
|
|
|
#endif |
690
|
0
|
0
|
|
|
|
|
if (printedDigits != 0) { |
691
|
0
|
0
|
|
|
|
|
if (printedDigits + 9 > precision) { |
692
|
0
|
|
|
|
|
|
availableDigits = 9; |
693
|
0
|
|
|
|
|
|
break; |
694
|
|
|
|
|
|
|
} |
695
|
0
|
|
|
|
|
|
append_nine_digits(digits, result + index); |
696
|
0
|
|
|
|
|
|
index += 9; |
697
|
0
|
|
|
|
|
|
printedDigits += 9; |
698
|
0
|
0
|
|
|
|
|
} else if (digits != 0) { |
699
|
0
|
|
|
|
|
|
availableDigits = decimalLength9(digits); |
700
|
0
|
|
|
|
|
|
exp = -(i + 1) * 9 + (int32_t) availableDigits - 1; |
701
|
0
|
0
|
|
|
|
|
if (availableDigits > precision) { |
702
|
0
|
|
|
|
|
|
break; |
703
|
|
|
|
|
|
|
} |
704
|
0
|
0
|
|
|
|
|
if (printDecimalPoint) { |
705
|
0
|
|
|
|
|
|
append_d_digits(availableDigits, digits, result + index); |
706
|
0
|
|
|
|
|
|
index += availableDigits + 1; // +1 for decimal point |
707
|
|
|
|
|
|
|
} else { |
708
|
0
|
|
|
|
|
|
result[index++] = (char) ('0' + digits); |
709
|
|
|
|
|
|
|
} |
710
|
0
|
|
|
|
|
|
printedDigits = availableDigits; |
711
|
0
|
|
|
|
|
|
availableDigits = 0; |
712
|
|
|
|
|
|
|
} |
713
|
|
|
|
|
|
|
} |
714
|
|
|
|
|
|
|
} |
715
|
|
|
|
|
|
|
|
716
|
0
|
|
|
|
|
|
const uint32_t maximum = precision - printedDigits; |
717
|
|
|
|
|
|
|
#ifdef RYU_DEBUG |
718
|
0
|
|
|
|
|
|
printf("availableDigits=%u\n", availableDigits); |
719
|
0
|
|
|
|
|
|
printf("digits=%u\n", digits); |
720
|
0
|
|
|
|
|
|
printf("maximum=%u\n", maximum); |
721
|
|
|
|
|
|
|
#endif |
722
|
0
|
0
|
|
|
|
|
if (availableDigits == 0) { |
723
|
0
|
|
|
|
|
|
digits = 0; |
724
|
|
|
|
|
|
|
} |
725
|
0
|
|
|
|
|
|
uint32_t lastDigit = 0; |
726
|
|
|
|
|
|
|
uint32_t k; |
727
|
0
|
0
|
|
|
|
|
if (availableDigits > maximum) { |
728
|
0
|
0
|
|
|
|
|
for (k = 0; k < availableDigits - maximum; ++k) { |
729
|
0
|
|
|
|
|
|
lastDigit = digits % 10; |
730
|
0
|
|
|
|
|
|
digits /= 10; |
731
|
|
|
|
|
|
|
} |
732
|
|
|
|
|
|
|
} |
733
|
|
|
|
|
|
|
#ifdef RYU_DEBUG |
734
|
0
|
|
|
|
|
|
printf("lastDigit=%u\n", lastDigit); |
735
|
|
|
|
|
|
|
#endif |
736
|
|
|
|
|
|
|
// 0 = don't round up; 1 = round up unconditionally; 2 = round up if odd. |
737
|
0
|
|
|
|
|
|
int roundUp = 0; |
738
|
0
|
0
|
|
|
|
|
if (lastDigit != 5) { |
739
|
0
|
|
|
|
|
|
roundUp = lastDigit > 5; |
740
|
|
|
|
|
|
|
} else { |
741
|
|
|
|
|
|
|
// Is m * 2^e2 * 10^(precision + 1 - exp) integer? |
742
|
|
|
|
|
|
|
// precision was already increased by 1, so we don't need to write + 1 here. |
743
|
0
|
|
|
|
|
|
const int32_t rexp = (int32_t) precision - exp; |
744
|
0
|
|
|
|
|
|
const int32_t requiredTwos = -e2 - rexp; |
745
|
0
|
|
|
|
|
|
bool trailingZeros = requiredTwos <= 0 |
746
|
0
|
0
|
|
|
|
|
|| (requiredTwos < 60 && multipleOfPowerOf2(m2, (uint32_t) requiredTwos)); |
|
|
0
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
747
|
0
|
0
|
|
|
|
|
if (rexp < 0) { |
748
|
0
|
|
|
|
|
|
const int32_t requiredFives = -rexp; |
749
|
0
|
0
|
|
|
|
|
trailingZeros = trailingZeros && multipleOfPowerOf5(m2, (uint32_t) requiredFives); |
|
|
0
|
|
|
|
|
|
750
|
|
|
|
|
|
|
} |
751
|
0
|
0
|
|
|
|
|
roundUp = trailingZeros ? 2 : 1; |
752
|
|
|
|
|
|
|
#ifdef RYU_DEBUG |
753
|
0
|
|
|
|
|
|
printf("requiredTwos=%d\n", requiredTwos); |
754
|
0
|
0
|
|
|
|
|
printf("trailingZeros=%s\n", trailingZeros ? "true" : "false"); |
755
|
|
|
|
|
|
|
#endif |
756
|
|
|
|
|
|
|
} |
757
|
0
|
0
|
|
|
|
|
if (printedDigits != 0) { |
758
|
0
|
0
|
|
|
|
|
if (digits == 0) { |
759
|
0
|
|
|
|
|
|
memset(result + index, '0', maximum); |
760
|
|
|
|
|
|
|
} else { |
761
|
0
|
|
|
|
|
|
append_c_digits(maximum, digits, result + index); |
762
|
|
|
|
|
|
|
} |
763
|
0
|
|
|
|
|
|
index += maximum; |
764
|
|
|
|
|
|
|
} else { |
765
|
0
|
0
|
|
|
|
|
if (printDecimalPoint) { |
766
|
0
|
|
|
|
|
|
append_d_digits(maximum, digits, result + index); |
767
|
0
|
|
|
|
|
|
index += maximum + 1; // +1 for decimal point |
768
|
|
|
|
|
|
|
} else { |
769
|
0
|
|
|
|
|
|
result[index++] = (char) ('0' + digits); |
770
|
|
|
|
|
|
|
} |
771
|
|
|
|
|
|
|
} |
772
|
|
|
|
|
|
|
#ifdef RYU_DEBUG |
773
|
0
|
|
|
|
|
|
printf("roundUp=%d\n", roundUp); |
774
|
|
|
|
|
|
|
#endif |
775
|
0
|
0
|
|
|
|
|
if (roundUp != 0) { |
776
|
0
|
|
|
|
|
|
int roundIndex = index; |
777
|
|
|
|
|
|
|
while (true) { |
778
|
0
|
|
|
|
|
|
--roundIndex; |
779
|
|
|
|
|
|
|
char c; |
780
|
0
|
0
|
|
|
|
|
if (roundIndex == -1 || (c = result[roundIndex], c == '-')) { |
|
|
0
|
|
|
|
|
|
781
|
0
|
|
|
|
|
|
result[roundIndex + 1] = '1'; |
782
|
0
|
|
|
|
|
|
++exp; |
783
|
0
|
|
|
|
|
|
break; |
784
|
|
|
|
|
|
|
} |
785
|
0
|
0
|
|
|
|
|
if (c == '.') { |
786
|
0
|
|
|
|
|
|
continue; |
787
|
0
|
0
|
|
|
|
|
} else if (c == '9') { |
788
|
0
|
|
|
|
|
|
result[roundIndex] = '0'; |
789
|
0
|
|
|
|
|
|
roundUp = 1; |
790
|
0
|
|
|
|
|
|
continue; |
791
|
|
|
|
|
|
|
} else { |
792
|
0
|
0
|
|
|
|
|
if (roundUp == 2 && c % 2 == 0) { |
|
|
0
|
|
|
|
|
|
793
|
0
|
|
|
|
|
|
break; |
794
|
|
|
|
|
|
|
} |
795
|
0
|
|
|
|
|
|
result[roundIndex] = c + 1; |
796
|
0
|
|
|
|
|
|
break; |
797
|
|
|
|
|
|
|
} |
798
|
0
|
|
|
|
|
|
} |
799
|
|
|
|
|
|
|
} |
800
|
0
|
|
|
|
|
|
result[index++] = 'e'; |
801
|
0
|
0
|
|
|
|
|
if (exp < 0) { |
802
|
0
|
|
|
|
|
|
result[index++] = '-'; |
803
|
0
|
|
|
|
|
|
exp = -exp; |
804
|
|
|
|
|
|
|
} else { |
805
|
0
|
|
|
|
|
|
result[index++] = '+'; |
806
|
|
|
|
|
|
|
} |
807
|
|
|
|
|
|
|
|
808
|
0
|
0
|
|
|
|
|
if (exp >= 100) { |
809
|
0
|
|
|
|
|
|
const int32_t c = exp % 10; |
810
|
0
|
|
|
|
|
|
memcpy(result + index, DIGIT_TABLE + 2 * (exp / 10), 2); |
811
|
0
|
|
|
|
|
|
result[index + 2] = (char) ('0' + c); |
812
|
0
|
|
|
|
|
|
index += 3; |
813
|
|
|
|
|
|
|
} else { |
814
|
0
|
|
|
|
|
|
memcpy(result + index, DIGIT_TABLE + 2 * exp, 2); |
815
|
0
|
|
|
|
|
|
index += 2; |
816
|
|
|
|
|
|
|
} |
817
|
|
|
|
|
|
|
|
818
|
0
|
|
|
|
|
|
return index; |
819
|
|
|
|
|
|
|
} |
820
|
|
|
|
|
|
|
|
821
|
0
|
|
|
|
|
|
void d2exp_buffered(double d, uint32_t precision, char* result) { |
822
|
0
|
|
|
|
|
|
const int len = d2exp_buffered_n(d, precision, result); |
823
|
0
|
|
|
|
|
|
result[len] = '\0'; |
824
|
0
|
|
|
|
|
|
} |
825
|
|
|
|
|
|
|
|
826
|
0
|
|
|
|
|
|
char* d2exp(double d, uint32_t precision) { |
827
|
0
|
|
|
|
|
|
char* const buffer = (char*)malloc(2000); |
828
|
0
|
|
|
|
|
|
const int index = d2exp_buffered_n(d, precision, buffer); |
829
|
0
|
|
|
|
|
|
buffer[index] = '\0'; |
830
|
0
|
|
|
|
|
|
return buffer; |
831
|
|
|
|
|
|
|
} |