File Coverage

s2d.c
Criterion Covered Total %
statement 0 98 0.0
branch 0 88 0.0
condition n/a
subroutine n/a
pod n/a
total 0 186 0.0


line stmt bran cond sub pod time code
1             // Copyright 2019 Ulf Adams
2             //
3             // The contents of this file may be used under the terms of the Apache License,
4             // Version 2.0.
5             //
6             // (See accompanying file LICENSE-Apache or copy at
7             // http://www.apache.org/licenses/LICENSE-2.0)
8             //
9             // Alternatively, the contents of this file may be used under the terms of
10             // the Boost Software License, Version 1.0.
11             // (See accompanying file LICENSE-Boost or copy at
12             // https://www.boost.org/LICENSE_1_0.txt)
13             //
14             // Unless required by applicable law or agreed to in writing, this software
15             // is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
16             // KIND, either express or implied.
17              
18             /* The location of the headers, relative to this file, has been changed by
19             * Sisyphus */
20              
21             #include "ryu_headers/ryu_parse.h"
22              
23             #include
24             #include
25             #include
26             #include
27             #include
28              
29             #ifdef RYU_DEBUG
30             #include
31             #include
32             #endif
33              
34             #include "ryu_headers/common.h"
35             #include "ryu_headers/d2s_intrinsics.h"
36              
37             #if defined(RYU_OPTIMIZE_SIZE)
38             #include "ryu_headers/d2s_small_table.h"
39             #else
40             #include "ryu_headers/d2s_full_table.h"
41             #endif
42              
43             #define DOUBLE_MANTISSA_BITS 52
44             #define DOUBLE_EXPONENT_BITS 11
45             #define DOUBLE_EXPONENT_BIAS 1023
46              
47             #if defined(_MSC_VER)
48             #include
49              
50             static inline uint32_t floor_log2(const uint64_t value) {
51             long index;
52             return _BitScanReverse64(&index, value) ? index : 64;
53             }
54              
55             #else
56              
57 0           static inline uint32_t floor_log2(const uint64_t value) {
58 0           return 63 - __builtin_clzll(value);
59             }
60              
61             #endif
62              
63             // The max function is already defined on Windows.
64 0           static inline int32_t max32(int32_t a, int32_t b) {
65 0           return a < b ? b : a;
66             }
67              
68 0           static inline double int64Bits2Double(uint64_t bits) {
69             double f;
70 0           memcpy(&f, &bits, sizeof(double));
71 0           return f;
72             }
73              
74 0           enum Status s2d_n(const char * buffer, const int len, double * result) {
75 0 0         if (len == 0) {
76 0           return INPUT_TOO_SHORT;
77             }
78 0           int m10digits = 0;
79 0           int e10digits = 0;
80 0           int dotIndex = len;
81 0           int eIndex = len;
82 0           uint64_t m10 = 0;
83 0           int32_t e10 = 0;
84 0           bool signedM = false;
85 0           bool signedE = false;
86 0           int i = 0;
87 0 0         if (buffer[i] == '-') {
88 0           signedM = true;
89 0           i++;
90             }
91 0 0         for (; i < len; i++) {
92 0           char c = buffer[i];
93 0 0         if (c == '.') {
94 0 0         if (dotIndex != len) {
95 0           return MALFORMED_INPUT;
96             }
97 0           dotIndex = i;
98 0           continue;
99             }
100 0 0         if ((c < '0') || (c > '9')) {
    0          
101             break;
102             }
103 0 0         if (m10digits >= 17) {
104 0           return INPUT_TOO_LONG;
105             }
106 0           m10 = 10 * m10 + (c - '0');
107 0 0         if (m10 != 0) {
108 0           m10digits++;
109             }
110             }
111 0 0         if (i < len && ((buffer[i] == 'e') || (buffer[i] == 'E'))) {
    0          
    0          
112 0           eIndex = i;
113 0           i++;
114 0 0         if (i < len && ((buffer[i] == '-') || (buffer[i] == '+'))) {
    0          
    0          
115 0           signedE = buffer[i] == '-';
116 0           i++;
117             }
118 0 0         for (; i < len; i++) {
119 0           char c = buffer[i];
120 0 0         if ((c < '0') || (c > '9')) {
    0          
121 0           return MALFORMED_INPUT;
122             }
123 0 0         if (e10digits > 3) {
124             // TODO: Be more lenient. Return +/-Infinity or +/-0 instead.
125 0           return INPUT_TOO_LONG;
126             }
127 0           e10 = 10 * e10 + (c - '0');
128 0 0         if (e10 != 0) {
129 0           e10digits++;
130             }
131             }
132             }
133 0 0         if (i < len) {
134 0           return MALFORMED_INPUT;
135             }
136 0 0         if (signedE) {
137 0           e10 = -e10;
138             }
139 0 0         e10 -= dotIndex < eIndex ? eIndex - dotIndex - 1 : 0;
140 0 0         if (m10 == 0) {
141 0 0         *result = signedM ? -0.0 : 0.0;
142 0           return SUCCESS;
143             }
144              
145             #ifdef RYU_DEBUG
146             printf("Input=%s\n", buffer);
147             printf("m10digits = %d\n", m10digits);
148             printf("e10digits = %d\n", e10digits);
149             printf("m10 * 10^e10 = %" PRIu64 " * 10^%d\n", m10, e10);
150             #endif
151              
152 0 0         if ((m10digits + e10 <= -324) || (m10 == 0)) {
    0          
153             // Number is less than 1e-324, which should be rounded down to 0; return +/-0.0.
154 0           uint64_t ieee = ((uint64_t) signedM) << (DOUBLE_EXPONENT_BITS + DOUBLE_MANTISSA_BITS);
155 0           *result = int64Bits2Double(ieee);
156 0           return SUCCESS;
157             }
158 0 0         if (m10digits + e10 >= 310) {
159             // Number is larger than 1e+309, which should be rounded to +/-Infinity.
160 0           uint64_t ieee = (((uint64_t) signedM) << (DOUBLE_EXPONENT_BITS + DOUBLE_MANTISSA_BITS)) | (0x7ffull << DOUBLE_MANTISSA_BITS);
161 0           *result = int64Bits2Double(ieee);
162 0           return SUCCESS;
163             }
164              
165             // Convert to binary float m2 * 2^e2, while retaining information about whether the conversion
166             // was exact (trailingZeros).
167             int32_t e2;
168             uint64_t m2;
169             bool trailingZeros;
170 0 0         if (e10 >= 0) {
171             // The length of m * 10^e in bits is:
172             // log2(m10 * 10^e10) = log2(m10) + e10 log2(10) = log2(m10) + e10 + e10 * log2(5)
173             //
174             // We want to compute the DOUBLE_MANTISSA_BITS + 1 top-most bits (+1 for the implicit leading
175             // one in IEEE format). We therefore choose a binary output exponent of
176             // log2(m10 * 10^e10) - (DOUBLE_MANTISSA_BITS + 1).
177             //
178             // We use floor(log2(5^e10)) so that we get at least this many bits; better to
179             // have an additional bit than to not have enough bits.
180 0           e2 = floor_log2(m10) + e10 + log2pow5(e10) - (DOUBLE_MANTISSA_BITS + 1);
181              
182             // We now compute [m10 * 10^e10 / 2^e2] = [m10 * 5^e10 / 2^(e2-e10)].
183             // To that end, we use the DOUBLE_POW5_SPLIT table.
184 0           int j = e2 - e10 - ceil_log2pow5(e10) + DOUBLE_POW5_BITCOUNT;
185 0 0         assert(j >= 0);
186             #if defined(RYU_OPTIMIZE_SIZE)
187             uint64_t pow5[2];
188             double_computePow5(e10, pow5);
189             m2 = mulShift64(m10, pow5, j);
190             #else
191 0 0         assert(e10 < DOUBLE_POW5_TABLE_SIZE);
192 0           m2 = mulShift64(m10, DOUBLE_POW5_SPLIT[e10], j);
193             #endif
194             // We also compute if the result is exact, i.e.,
195             // [m10 * 10^e10 / 2^e2] == m10 * 10^e10 / 2^e2.
196             // This can only be the case if 2^e2 divides m10 * 10^e10, which in turn requires that the
197             // largest power of 2 that divides m10 + e10 is greater than e2. If e2 is less than e10, then
198             // the result must be exact. Otherwise we use the existing multipleOfPowerOf2 function.
199 0 0         trailingZeros = e2 < e10 || (e2 - e10 < 64 && multipleOfPowerOf2(m10, e2 - e10));
    0          
    0          
200             } else {
201 0           e2 = floor_log2(m10) + e10 - ceil_log2pow5(-e10) - (DOUBLE_MANTISSA_BITS + 1);
202 0           int j = e2 - e10 + ceil_log2pow5(-e10) - 1 + DOUBLE_POW5_INV_BITCOUNT;
203             #if defined(RYU_OPTIMIZE_SIZE)
204             uint64_t pow5[2];
205             double_computeInvPow5(-e10, pow5);
206             m2 = mulShift64(m10, pow5, j);
207             #else
208 0 0         assert(-e10 < DOUBLE_POW5_INV_TABLE_SIZE);
209 0           m2 = mulShift64(m10, DOUBLE_POW5_INV_SPLIT[-e10], j);
210             #endif
211 0           trailingZeros = multipleOfPowerOf5(m10, -e10);
212             }
213              
214             #ifdef RYU_DEBUG
215             printf("m2 * 2^e2 = %" PRIu64 " * 2^%d\n", m2, e2);
216             #endif
217              
218             // Compute the final IEEE exponent.
219 0           uint32_t ieee_e2 = (uint32_t) max32(0, e2 + DOUBLE_EXPONENT_BIAS + floor_log2(m2));
220              
221 0 0         if (ieee_e2 > 0x7fe) {
222             // Final IEEE exponent is larger than the maximum representable; return +/-Infinity.
223 0           uint64_t ieee = (((uint64_t) signedM) << (DOUBLE_EXPONENT_BITS + DOUBLE_MANTISSA_BITS)) | (0x7ffull << DOUBLE_MANTISSA_BITS);
224 0           *result = int64Bits2Double(ieee);
225 0           return SUCCESS;
226             }
227              
228             // We need to figure out how much we need to shift m2. The tricky part is that we need to take
229             // the final IEEE exponent into account, so we need to reverse the bias and also special-case
230             // the value 0.
231 0 0         int32_t shift = (ieee_e2 == 0 ? 1 : ieee_e2) - e2 - DOUBLE_EXPONENT_BIAS - DOUBLE_MANTISSA_BITS;
232 0 0         assert(shift >= 0);
233             #ifdef RYU_DEBUG
234             printf("ieee_e2 = %d\n", ieee_e2);
235             printf("shift = %d\n", shift);
236             #endif
237              
238             // We need to round up if the exact value is more than 0.5 above the value we computed. That's
239             // equivalent to checking if the last removed bit was 1 and either the value was not just
240             // trailing zeros or the result would otherwise be odd.
241             //
242             // We need to update trailingZeros given that we have the exact output exponent ieee_e2 now.
243 0           trailingZeros &= (m2 & ((1ull << (shift - 1)) - 1)) == 0;
244 0           uint64_t lastRemovedBit = (m2 >> (shift - 1)) & 1;
245 0 0         bool roundUp = (lastRemovedBit != 0) && (!trailingZeros || (((m2 >> shift) & 1) != 0));
    0          
    0          
246              
247             #ifdef RYU_DEBUG
248             printf("roundUp = %d\n", roundUp);
249             printf("ieee_m2 = %" PRIu64 "\n", (m2 >> shift) + roundUp);
250             #endif
251 0           uint64_t ieee_m2 = (m2 >> shift) + roundUp;
252 0 0         assert(ieee_m2 <= (1ull << (DOUBLE_MANTISSA_BITS + 1)));
253 0           ieee_m2 &= (1ull << DOUBLE_MANTISSA_BITS) - 1;
254 0 0         if (ieee_m2 == 0 && roundUp) {
    0          
255             // Due to how the IEEE represents +/-Infinity, we don't need to check for overflow here.
256 0           ieee_e2++;
257             }
258              
259 0           uint64_t ieee = (((((uint64_t) signedM) << DOUBLE_EXPONENT_BITS) | (uint64_t)ieee_e2) << DOUBLE_MANTISSA_BITS) | ieee_m2;
260 0           *result = int64Bits2Double(ieee);
261 0           return SUCCESS;
262             }
263              
264 0           enum Status s2d(const char * buffer, double * result) {
265 0           return s2d_n(buffer, strlen(buffer), result);
266             }