line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
1
|
|
|
|
|
|
|
// Copyright 2018 Ulf Adams |
2
|
|
|
|
|
|
|
// |
3
|
|
|
|
|
|
|
// The contents of this file may be used under the terms of the Apache License, |
4
|
|
|
|
|
|
|
// Version 2.0. |
5
|
|
|
|
|
|
|
// |
6
|
|
|
|
|
|
|
// (See accompanying file LICENSE-Apache or copy at |
7
|
|
|
|
|
|
|
// http://www.apache.org/licenses/LICENSE-2.0) |
8
|
|
|
|
|
|
|
// |
9
|
|
|
|
|
|
|
// Alternatively, the contents of this file may be used under the terms of |
10
|
|
|
|
|
|
|
// the Boost Software License, Version 1.0. |
11
|
|
|
|
|
|
|
// (See accompanying file LICENSE-Boost or copy at |
12
|
|
|
|
|
|
|
// https://www.boost.org/LICENSE_1_0.txt) |
13
|
|
|
|
|
|
|
// |
14
|
|
|
|
|
|
|
// Unless required by applicable law or agreed to in writing, this software |
15
|
|
|
|
|
|
|
// is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY |
16
|
|
|
|
|
|
|
// KIND, either express or implied. |
17
|
|
|
|
|
|
|
#ifndef RYU_D2S_INTRINSICS_H |
18
|
|
|
|
|
|
|
#define RYU_D2S_INTRINSICS_H |
19
|
|
|
|
|
|
|
|
20
|
|
|
|
|
|
|
#include |
21
|
|
|
|
|
|
|
#include |
22
|
|
|
|
|
|
|
|
23
|
|
|
|
|
|
|
// Defines RYU_32_BIT_PLATFORM if applicable. |
24
|
|
|
|
|
|
|
#include "common.h" |
25
|
|
|
|
|
|
|
|
26
|
|
|
|
|
|
|
// ABSL avoids uint128_t on Win32 even if __SIZEOF_INT128__ is defined. |
27
|
|
|
|
|
|
|
// Let's do the same for now. |
28
|
|
|
|
|
|
|
#if defined(__SIZEOF_INT128__) && !defined(_MSC_VER) && !defined(RYU_ONLY_64_BIT_OPS) |
29
|
|
|
|
|
|
|
#define HAS_UINT128 |
30
|
|
|
|
|
|
|
#elif defined(_MSC_VER) && !defined(RYU_ONLY_64_BIT_OPS) && defined(_M_X64) |
31
|
|
|
|
|
|
|
#define HAS_64_BIT_INTRINSICS |
32
|
|
|
|
|
|
|
#endif |
33
|
|
|
|
|
|
|
|
34
|
|
|
|
|
|
|
#if defined(HAS_UINT128) |
35
|
|
|
|
|
|
|
typedef __uint128_t uint128_t; |
36
|
|
|
|
|
|
|
#endif |
37
|
|
|
|
|
|
|
|
38
|
|
|
|
|
|
|
#if defined(HAS_64_BIT_INTRINSICS) |
39
|
|
|
|
|
|
|
|
40
|
|
|
|
|
|
|
#include |
41
|
|
|
|
|
|
|
|
42
|
|
|
|
|
|
|
static inline uint64_t umul128(const uint64_t a, const uint64_t b, uint64_t* const productHi) { |
43
|
|
|
|
|
|
|
return _umul128(a, b, productHi); |
44
|
|
|
|
|
|
|
} |
45
|
|
|
|
|
|
|
|
46
|
|
|
|
|
|
|
// Returns the lower 64 bits of (hi*2^64 + lo) >> dist, with 0 < dist < 64. |
47
|
|
|
|
|
|
|
static inline uint64_t shiftright128(const uint64_t lo, const uint64_t hi, const uint32_t dist) { |
48
|
|
|
|
|
|
|
// For the __shiftright128 intrinsic, the shift value is always |
49
|
|
|
|
|
|
|
// modulo 64. |
50
|
|
|
|
|
|
|
// In the current implementation of the double-precision version |
51
|
|
|
|
|
|
|
// of Ryu, the shift value is always < 64. (In the case |
52
|
|
|
|
|
|
|
// RYU_OPTIMIZE_SIZE == 0, the shift value is in the range [49, 58]. |
53
|
|
|
|
|
|
|
// Otherwise in the range [2, 59].) |
54
|
|
|
|
|
|
|
// However, this function is now also called by s2d, which requires supporting |
55
|
|
|
|
|
|
|
// the larger shift range (TODO: what is the actual range?). |
56
|
|
|
|
|
|
|
// Check this here in case a future change requires larger shift |
57
|
|
|
|
|
|
|
// values. In this case this function needs to be adjusted. |
58
|
|
|
|
|
|
|
assert(dist < 64); |
59
|
|
|
|
|
|
|
return __shiftright128(lo, hi, (unsigned char) dist); |
60
|
|
|
|
|
|
|
} |
61
|
|
|
|
|
|
|
|
62
|
|
|
|
|
|
|
#else // defined(HAS_64_BIT_INTRINSICS) |
63
|
|
|
|
|
|
|
|
64
|
|
|
|
|
|
|
static inline uint64_t umul128(const uint64_t a, const uint64_t b, uint64_t* const productHi) { |
65
|
|
|
|
|
|
|
// The casts here help MSVC to avoid calls to the __allmul library function. |
66
|
|
|
|
|
|
|
const uint32_t aLo = (uint32_t)a; |
67
|
|
|
|
|
|
|
const uint32_t aHi = (uint32_t)(a >> 32); |
68
|
|
|
|
|
|
|
const uint32_t bLo = (uint32_t)b; |
69
|
|
|
|
|
|
|
const uint32_t bHi = (uint32_t)(b >> 32); |
70
|
|
|
|
|
|
|
|
71
|
|
|
|
|
|
|
const uint64_t b00 = (uint64_t)aLo * bLo; |
72
|
|
|
|
|
|
|
const uint64_t b01 = (uint64_t)aLo * bHi; |
73
|
|
|
|
|
|
|
const uint64_t b10 = (uint64_t)aHi * bLo; |
74
|
|
|
|
|
|
|
const uint64_t b11 = (uint64_t)aHi * bHi; |
75
|
|
|
|
|
|
|
|
76
|
|
|
|
|
|
|
const uint32_t b00Lo = (uint32_t)b00; |
77
|
|
|
|
|
|
|
const uint32_t b00Hi = (uint32_t)(b00 >> 32); |
78
|
|
|
|
|
|
|
|
79
|
|
|
|
|
|
|
const uint64_t mid1 = b10 + b00Hi; |
80
|
|
|
|
|
|
|
const uint32_t mid1Lo = (uint32_t)(mid1); |
81
|
|
|
|
|
|
|
const uint32_t mid1Hi = (uint32_t)(mid1 >> 32); |
82
|
|
|
|
|
|
|
|
83
|
|
|
|
|
|
|
const uint64_t mid2 = b01 + mid1Lo; |
84
|
|
|
|
|
|
|
const uint32_t mid2Lo = (uint32_t)(mid2); |
85
|
|
|
|
|
|
|
const uint32_t mid2Hi = (uint32_t)(mid2 >> 32); |
86
|
|
|
|
|
|
|
|
87
|
|
|
|
|
|
|
const uint64_t pHi = b11 + mid1Hi + mid2Hi; |
88
|
|
|
|
|
|
|
const uint64_t pLo = ((uint64_t)mid2Lo << 32) | b00Lo; |
89
|
|
|
|
|
|
|
|
90
|
|
|
|
|
|
|
*productHi = pHi; |
91
|
|
|
|
|
|
|
return pLo; |
92
|
|
|
|
|
|
|
} |
93
|
|
|
|
|
|
|
|
94
|
|
|
|
|
|
|
static inline uint64_t shiftright128(const uint64_t lo, const uint64_t hi, const uint32_t dist) { |
95
|
|
|
|
|
|
|
// We don't need to handle the case dist >= 64 here (see above). |
96
|
|
|
|
|
|
|
assert(dist < 64); |
97
|
|
|
|
|
|
|
assert(dist > 0); |
98
|
|
|
|
|
|
|
return (hi << (64 - dist)) | (lo >> dist); |
99
|
|
|
|
|
|
|
} |
100
|
|
|
|
|
|
|
|
101
|
|
|
|
|
|
|
#endif // defined(HAS_64_BIT_INTRINSICS) |
102
|
|
|
|
|
|
|
|
103
|
|
|
|
|
|
|
#if defined(RYU_32_BIT_PLATFORM) |
104
|
|
|
|
|
|
|
|
105
|
|
|
|
|
|
|
// Returns the high 64 bits of the 128-bit product of a and b. |
106
|
|
|
|
|
|
|
static inline uint64_t umulh(const uint64_t a, const uint64_t b) { |
107
|
|
|
|
|
|
|
// Reuse the umul128 implementation. |
108
|
|
|
|
|
|
|
// Optimizers will likely eliminate the instructions used to compute the |
109
|
|
|
|
|
|
|
// low part of the product. |
110
|
|
|
|
|
|
|
uint64_t hi; |
111
|
|
|
|
|
|
|
umul128(a, b, &hi); |
112
|
|
|
|
|
|
|
return hi; |
113
|
|
|
|
|
|
|
} |
114
|
|
|
|
|
|
|
|
115
|
|
|
|
|
|
|
// On 32-bit platforms, compilers typically generate calls to library |
116
|
|
|
|
|
|
|
// functions for 64-bit divisions, even if the divisor is a constant. |
117
|
|
|
|
|
|
|
// |
118
|
|
|
|
|
|
|
// E.g.: |
119
|
|
|
|
|
|
|
// https://bugs.llvm.org/show_bug.cgi?id=37932 |
120
|
|
|
|
|
|
|
// https://gcc.gnu.org/bugzilla/show_bug.cgi?id=17958 |
121
|
|
|
|
|
|
|
// https://gcc.gnu.org/bugzilla/show_bug.cgi?id=37443 |
122
|
|
|
|
|
|
|
// |
123
|
|
|
|
|
|
|
// The functions here perform division-by-constant using multiplications |
124
|
|
|
|
|
|
|
// in the same way as 64-bit compilers would do. |
125
|
|
|
|
|
|
|
// |
126
|
|
|
|
|
|
|
// NB: |
127
|
|
|
|
|
|
|
// The multipliers and shift values are the ones generated by clang x64 |
128
|
|
|
|
|
|
|
// for expressions like x/5, x/10, etc. |
129
|
|
|
|
|
|
|
|
130
|
|
|
|
|
|
|
static inline uint64_t div5(const uint64_t x) { |
131
|
|
|
|
|
|
|
return umulh(x, 0xCCCCCCCCCCCCCCCDu) >> 2; |
132
|
|
|
|
|
|
|
} |
133
|
|
|
|
|
|
|
|
134
|
|
|
|
|
|
|
static inline uint64_t div10(const uint64_t x) { |
135
|
|
|
|
|
|
|
return umulh(x, 0xCCCCCCCCCCCCCCCDu) >> 3; |
136
|
|
|
|
|
|
|
} |
137
|
|
|
|
|
|
|
|
138
|
|
|
|
|
|
|
static inline uint64_t div100(const uint64_t x) { |
139
|
|
|
|
|
|
|
return umulh(x >> 2, 0x28F5C28F5C28F5C3u) >> 2; |
140
|
|
|
|
|
|
|
} |
141
|
|
|
|
|
|
|
|
142
|
|
|
|
|
|
|
static inline uint64_t div1e8(const uint64_t x) { |
143
|
|
|
|
|
|
|
return umulh(x, 0xABCC77118461CEFDu) >> 26; |
144
|
|
|
|
|
|
|
} |
145
|
|
|
|
|
|
|
|
146
|
|
|
|
|
|
|
static inline uint64_t div1e9(const uint64_t x) { |
147
|
|
|
|
|
|
|
return umulh(x >> 9, 0x44B82FA09B5A53u) >> 11; |
148
|
|
|
|
|
|
|
} |
149
|
|
|
|
|
|
|
|
150
|
|
|
|
|
|
|
static inline uint32_t mod1e9(const uint64_t x) { |
151
|
|
|
|
|
|
|
// Avoid 64-bit math as much as possible. |
152
|
|
|
|
|
|
|
// Returning (uint32_t) (x - 1000000000 * div1e9(x)) would |
153
|
|
|
|
|
|
|
// perform 32x64-bit multiplication and 64-bit subtraction. |
154
|
|
|
|
|
|
|
// x and 1000000000 * div1e9(x) are guaranteed to differ by |
155
|
|
|
|
|
|
|
// less than 10^9, so their highest 32 bits must be identical, |
156
|
|
|
|
|
|
|
// so we can truncate both sides to uint32_t before subtracting. |
157
|
|
|
|
|
|
|
// We can also simplify (uint32_t) (1000000000 * div1e9(x)). |
158
|
|
|
|
|
|
|
// We can truncate before multiplying instead of after, as multiplying |
159
|
|
|
|
|
|
|
// the highest 32 bits of div1e9(x) can't affect the lowest 32 bits. |
160
|
|
|
|
|
|
|
return ((uint32_t) x) - 1000000000 * ((uint32_t) div1e9(x)); |
161
|
|
|
|
|
|
|
} |
162
|
|
|
|
|
|
|
|
163
|
|
|
|
|
|
|
#else // defined(RYU_32_BIT_PLATFORM) |
164
|
|
|
|
|
|
|
|
165
|
|
|
|
|
|
|
static inline uint64_t div5(const uint64_t x) { |
166
|
|
|
|
|
|
|
return x / 5; |
167
|
|
|
|
|
|
|
} |
168
|
|
|
|
|
|
|
|
169
|
|
|
|
|
|
|
static inline uint64_t div10(const uint64_t x) { |
170
|
|
|
|
|
|
|
return x / 10; |
171
|
|
|
|
|
|
|
} |
172
|
|
|
|
|
|
|
|
173
|
|
|
|
|
|
|
static inline uint64_t div100(const uint64_t x) { |
174
|
|
|
|
|
|
|
return x / 100; |
175
|
|
|
|
|
|
|
} |
176
|
|
|
|
|
|
|
|
177
|
|
|
|
|
|
|
static inline uint64_t div1e8(const uint64_t x) { |
178
|
|
|
|
|
|
|
return x / 100000000; |
179
|
|
|
|
|
|
|
} |
180
|
|
|
|
|
|
|
|
181
|
|
|
|
|
|
|
static inline uint64_t div1e9(const uint64_t x) { |
182
|
|
|
|
|
|
|
return x / 1000000000; |
183
|
|
|
|
|
|
|
} |
184
|
|
|
|
|
|
|
|
185
|
|
|
|
|
|
|
static inline uint32_t mod1e9(const uint64_t x) { |
186
|
|
|
|
|
|
|
return (uint32_t) (x - 1000000000 * div1e9(x)); |
187
|
|
|
|
|
|
|
} |
188
|
|
|
|
|
|
|
|
189
|
|
|
|
|
|
|
#endif // defined(RYU_32_BIT_PLATFORM) |
190
|
|
|
|
|
|
|
|
191
|
0
|
|
|
|
|
|
static inline uint32_t pow5Factor(uint64_t value) { |
192
|
0
|
|
|
|
|
|
const uint64_t m_inv_5 = 14757395258967641293u; // 5 * m_inv_5 = 1 (mod 2^64) |
193
|
0
|
|
|
|
|
|
const uint64_t n_div_5 = 3689348814741910323u; // #{ n | n = 0 (mod 2^64) } = 2^64 / 5 |
194
|
0
|
|
|
|
|
|
uint32_t count = 0; |
195
|
|
|
|
|
|
|
for (;;) { |
196
|
0
|
0
|
|
|
|
|
assert(value != 0); |
197
|
0
|
|
|
|
|
|
value *= m_inv_5; |
198
|
0
|
0
|
|
|
|
|
if (value > n_div_5) |
199
|
0
|
|
|
|
|
|
break; |
200
|
0
|
|
|
|
|
|
++count; |
201
|
0
|
|
|
|
|
|
} |
202
|
0
|
|
|
|
|
|
return count; |
203
|
|
|
|
|
|
|
} |
204
|
|
|
|
|
|
|
|
205
|
|
|
|
|
|
|
// Returns true if value is divisible by 5^p. |
206
|
0
|
|
|
|
|
|
static inline bool multipleOfPowerOf5(const uint64_t value, const uint32_t p) { |
207
|
|
|
|
|
|
|
// I tried a case distinction on p, but there was no performance difference. |
208
|
0
|
|
|
|
|
|
return pow5Factor(value) >= p; |
209
|
|
|
|
|
|
|
} |
210
|
|
|
|
|
|
|
|
211
|
|
|
|
|
|
|
// Returns true if value is divisible by 2^p. |
212
|
0
|
|
|
|
|
|
static inline bool multipleOfPowerOf2(const uint64_t value, const uint32_t p) { |
213
|
0
|
0
|
|
|
|
|
assert(value != 0); |
214
|
0
|
0
|
|
|
|
|
assert(p < 64); |
215
|
|
|
|
|
|
|
// __builtin_ctzll doesn't appear to be faster here. |
216
|
0
|
|
|
|
|
|
return (value & ((1ull << p) - 1)) == 0; |
217
|
|
|
|
|
|
|
} |
218
|
|
|
|
|
|
|
|
219
|
|
|
|
|
|
|
// We need a 64x128-bit multiplication and a subsequent 128-bit shift. |
220
|
|
|
|
|
|
|
// Multiplication: |
221
|
|
|
|
|
|
|
// The 64-bit factor is variable and passed in, the 128-bit factor comes |
222
|
|
|
|
|
|
|
// from a lookup table. We know that the 64-bit factor only has 55 |
223
|
|
|
|
|
|
|
// significant bits (i.e., the 9 topmost bits are zeros). The 128-bit |
224
|
|
|
|
|
|
|
// factor only has 124 significant bits (i.e., the 4 topmost bits are |
225
|
|
|
|
|
|
|
// zeros). |
226
|
|
|
|
|
|
|
// Shift: |
227
|
|
|
|
|
|
|
// In principle, the multiplication result requires 55 + 124 = 179 bits to |
228
|
|
|
|
|
|
|
// represent. However, we then shift this value to the right by j, which is |
229
|
|
|
|
|
|
|
// at least j >= 115, so the result is guaranteed to fit into 179 - 115 = 64 |
230
|
|
|
|
|
|
|
// bits. This means that we only need the topmost 64 significant bits of |
231
|
|
|
|
|
|
|
// the 64x128-bit multiplication. |
232
|
|
|
|
|
|
|
// |
233
|
|
|
|
|
|
|
// There are several ways to do this: |
234
|
|
|
|
|
|
|
// 1. Best case: the compiler exposes a 128-bit type. |
235
|
|
|
|
|
|
|
// We perform two 64x64-bit multiplications, add the higher 64 bits of the |
236
|
|
|
|
|
|
|
// lower result to the higher result, and shift by j - 64 bits. |
237
|
|
|
|
|
|
|
// |
238
|
|
|
|
|
|
|
// We explicitly cast from 64-bit to 128-bit, so the compiler can tell |
239
|
|
|
|
|
|
|
// that these are only 64-bit inputs, and can map these to the best |
240
|
|
|
|
|
|
|
// possible sequence of assembly instructions. |
241
|
|
|
|
|
|
|
// x64 machines happen to have matching assembly instructions for |
242
|
|
|
|
|
|
|
// 64x64-bit multiplications and 128-bit shifts. |
243
|
|
|
|
|
|
|
// |
244
|
|
|
|
|
|
|
// 2. Second best case: the compiler exposes intrinsics for the x64 assembly |
245
|
|
|
|
|
|
|
// instructions mentioned in 1. |
246
|
|
|
|
|
|
|
// |
247
|
|
|
|
|
|
|
// 3. We only have 64x64 bit instructions that return the lower 64 bits of |
248
|
|
|
|
|
|
|
// the result, i.e., we have to use plain C. |
249
|
|
|
|
|
|
|
// Our inputs are less than the full width, so we have three options: |
250
|
|
|
|
|
|
|
// a. Ignore this fact and just implement the intrinsics manually. |
251
|
|
|
|
|
|
|
// b. Split both into 31-bit pieces, which guarantees no internal overflow, |
252
|
|
|
|
|
|
|
// but requires extra work upfront (unless we change the lookup table). |
253
|
|
|
|
|
|
|
// c. Split only the first factor into 31-bit pieces, which also guarantees |
254
|
|
|
|
|
|
|
// no internal overflow, but requires extra work since the intermediate |
255
|
|
|
|
|
|
|
// results are not perfectly aligned. |
256
|
|
|
|
|
|
|
#if defined(HAS_UINT128) |
257
|
|
|
|
|
|
|
|
258
|
|
|
|
|
|
|
// Best case: use 128-bit type. |
259
|
|
|
|
|
|
|
static inline uint64_t mulShift64(const uint64_t m, const uint64_t* const mul, const int32_t j) { |
260
|
|
|
|
|
|
|
const uint128_t b0 = ((uint128_t) m) * mul[0]; |
261
|
|
|
|
|
|
|
const uint128_t b2 = ((uint128_t) m) * mul[1]; |
262
|
|
|
|
|
|
|
return (uint64_t) (((b0 >> 64) + b2) >> (j - 64)); |
263
|
|
|
|
|
|
|
} |
264
|
|
|
|
|
|
|
|
265
|
|
|
|
|
|
|
static inline uint64_t mulShiftAll64(const uint64_t m, const uint64_t* const mul, const int32_t j, |
266
|
|
|
|
|
|
|
uint64_t* const vp, uint64_t* const vm, const uint32_t mmShift) { |
267
|
|
|
|
|
|
|
// m <<= 2; |
268
|
|
|
|
|
|
|
// uint128_t b0 = ((uint128_t) m) * mul[0]; // 0 |
269
|
|
|
|
|
|
|
// uint128_t b2 = ((uint128_t) m) * mul[1]; // 64 |
270
|
|
|
|
|
|
|
// |
271
|
|
|
|
|
|
|
// uint128_t hi = (b0 >> 64) + b2; |
272
|
|
|
|
|
|
|
// uint128_t lo = b0 & 0xffffffffffffffffull; |
273
|
|
|
|
|
|
|
// uint128_t factor = (((uint128_t) mul[1]) << 64) + mul[0]; |
274
|
|
|
|
|
|
|
// uint128_t vpLo = lo + (factor << 1); |
275
|
|
|
|
|
|
|
// *vp = (uint64_t) ((hi + (vpLo >> 64)) >> (j - 64)); |
276
|
|
|
|
|
|
|
// uint128_t vmLo = lo - (factor << mmShift); |
277
|
|
|
|
|
|
|
// *vm = (uint64_t) ((hi + (vmLo >> 64) - (((uint128_t) 1ull) << 64)) >> (j - 64)); |
278
|
|
|
|
|
|
|
// return (uint64_t) (hi >> (j - 64)); |
279
|
|
|
|
|
|
|
*vp = mulShift64(4 * m + 2, mul, j); |
280
|
|
|
|
|
|
|
*vm = mulShift64(4 * m - 1 - mmShift, mul, j); |
281
|
|
|
|
|
|
|
return mulShift64(4 * m, mul, j); |
282
|
|
|
|
|
|
|
} |
283
|
|
|
|
|
|
|
|
284
|
|
|
|
|
|
|
#elif defined(HAS_64_BIT_INTRINSICS) |
285
|
|
|
|
|
|
|
|
286
|
|
|
|
|
|
|
static inline uint64_t mulShift64(const uint64_t m, const uint64_t* const mul, const int32_t j) { |
287
|
|
|
|
|
|
|
// m is maximum 55 bits |
288
|
|
|
|
|
|
|
uint64_t high1; // 128 |
289
|
|
|
|
|
|
|
const uint64_t low1 = umul128(m, mul[1], &high1); // 64 |
290
|
|
|
|
|
|
|
uint64_t high0; // 64 |
291
|
|
|
|
|
|
|
umul128(m, mul[0], &high0); // 0 |
292
|
|
|
|
|
|
|
const uint64_t sum = high0 + low1; |
293
|
|
|
|
|
|
|
if (sum < high0) { |
294
|
|
|
|
|
|
|
++high1; // overflow into high1 |
295
|
|
|
|
|
|
|
} |
296
|
|
|
|
|
|
|
return shiftright128(sum, high1, j - 64); |
297
|
|
|
|
|
|
|
} |
298
|
|
|
|
|
|
|
|
299
|
|
|
|
|
|
|
static inline uint64_t mulShiftAll64(const uint64_t m, const uint64_t* const mul, const int32_t j, |
300
|
|
|
|
|
|
|
uint64_t* const vp, uint64_t* const vm, const uint32_t mmShift) { |
301
|
|
|
|
|
|
|
*vp = mulShift64(4 * m + 2, mul, j); |
302
|
|
|
|
|
|
|
*vm = mulShift64(4 * m - 1 - mmShift, mul, j); |
303
|
|
|
|
|
|
|
return mulShift64(4 * m, mul, j); |
304
|
|
|
|
|
|
|
} |
305
|
|
|
|
|
|
|
|
306
|
|
|
|
|
|
|
#else // !defined(HAS_UINT128) && !defined(HAS_64_BIT_INTRINSICS) |
307
|
|
|
|
|
|
|
|
308
|
|
|
|
|
|
|
static inline uint64_t mulShift64(const uint64_t m, const uint64_t* const mul, const int32_t j) { |
309
|
|
|
|
|
|
|
// m is maximum 55 bits |
310
|
|
|
|
|
|
|
uint64_t high1; // 128 |
311
|
|
|
|
|
|
|
const uint64_t low1 = umul128(m, mul[1], &high1); // 64 |
312
|
|
|
|
|
|
|
uint64_t high0; // 64 |
313
|
|
|
|
|
|
|
umul128(m, mul[0], &high0); // 0 |
314
|
|
|
|
|
|
|
const uint64_t sum = high0 + low1; |
315
|
|
|
|
|
|
|
if (sum < high0) { |
316
|
|
|
|
|
|
|
++high1; // overflow into high1 |
317
|
|
|
|
|
|
|
} |
318
|
|
|
|
|
|
|
return shiftright128(sum, high1, j - 64); |
319
|
|
|
|
|
|
|
} |
320
|
|
|
|
|
|
|
|
321
|
|
|
|
|
|
|
// This is faster if we don't have a 64x64->128-bit multiplication. |
322
|
|
|
|
|
|
|
static inline uint64_t mulShiftAll64(uint64_t m, const uint64_t* const mul, const int32_t j, |
323
|
|
|
|
|
|
|
uint64_t* const vp, uint64_t* const vm, const uint32_t mmShift) { |
324
|
|
|
|
|
|
|
m <<= 1; |
325
|
|
|
|
|
|
|
// m is maximum 55 bits |
326
|
|
|
|
|
|
|
uint64_t tmp; |
327
|
|
|
|
|
|
|
const uint64_t lo = umul128(m, mul[0], &tmp); |
328
|
|
|
|
|
|
|
uint64_t hi; |
329
|
|
|
|
|
|
|
const uint64_t mid = tmp + umul128(m, mul[1], &hi); |
330
|
|
|
|
|
|
|
hi += mid < tmp; // overflow into hi |
331
|
|
|
|
|
|
|
|
332
|
|
|
|
|
|
|
const uint64_t lo2 = lo + mul[0]; |
333
|
|
|
|
|
|
|
const uint64_t mid2 = mid + mul[1] + (lo2 < lo); |
334
|
|
|
|
|
|
|
const uint64_t hi2 = hi + (mid2 < mid); |
335
|
|
|
|
|
|
|
*vp = shiftright128(mid2, hi2, (uint32_t) (j - 64 - 1)); |
336
|
|
|
|
|
|
|
|
337
|
|
|
|
|
|
|
if (mmShift == 1) { |
338
|
|
|
|
|
|
|
const uint64_t lo3 = lo - mul[0]; |
339
|
|
|
|
|
|
|
const uint64_t mid3 = mid - mul[1] - (lo3 > lo); |
340
|
|
|
|
|
|
|
const uint64_t hi3 = hi - (mid3 > mid); |
341
|
|
|
|
|
|
|
*vm = shiftright128(mid3, hi3, (uint32_t) (j - 64 - 1)); |
342
|
|
|
|
|
|
|
} else { |
343
|
|
|
|
|
|
|
const uint64_t lo3 = lo + lo; |
344
|
|
|
|
|
|
|
const uint64_t mid3 = mid + mid + (lo3 < lo); |
345
|
|
|
|
|
|
|
const uint64_t hi3 = hi + hi + (mid3 < mid); |
346
|
|
|
|
|
|
|
const uint64_t lo4 = lo3 - mul[0]; |
347
|
|
|
|
|
|
|
const uint64_t mid4 = mid3 - mul[1] - (lo4 > lo3); |
348
|
|
|
|
|
|
|
const uint64_t hi4 = hi3 - (mid4 > mid3); |
349
|
|
|
|
|
|
|
*vm = shiftright128(mid4, hi4, (uint32_t) (j - 64)); |
350
|
|
|
|
|
|
|
} |
351
|
|
|
|
|
|
|
|
352
|
|
|
|
|
|
|
return shiftright128(mid, hi, (uint32_t) (j - 64 - 1)); |
353
|
|
|
|
|
|
|
} |
354
|
|
|
|
|
|
|
|
355
|
|
|
|
|
|
|
#endif // HAS_64_BIT_INTRINSICS |
356
|
|
|
|
|
|
|
|
357
|
|
|
|
|
|
|
#endif // RYU_D2S_INTRINSICS_H |