line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
1
|
|
|
|
|
|
|
package Math::Random::Normal::Leva; |
2
|
2
|
|
|
2
|
|
40518
|
use strict; |
|
2
|
|
|
|
|
4
|
|
|
2
|
|
|
|
|
72
|
|
3
|
2
|
|
|
2
|
|
7
|
use warnings; |
|
2
|
|
|
|
|
4
|
|
|
2
|
|
|
|
|
141
|
|
4
|
|
|
|
|
|
|
our $VERSION = "0.02"; |
5
|
|
|
|
|
|
|
$VERSION = eval $VERSION; |
6
|
|
|
|
|
|
|
require Exporter; |
7
|
|
|
|
|
|
|
our @ISA = qw(Exporter); |
8
|
|
|
|
|
|
|
our @EXPORT_OK = qw(gbm_sample random_normal); |
9
|
2
|
|
|
2
|
|
957
|
use Math::Random::Secure qw(rand); |
|
2
|
|
|
|
|
120331
|
|
|
2
|
|
|
|
|
630
|
|
10
|
|
|
|
|
|
|
|
11
|
|
|
|
|
|
|
=head1 NAME |
12
|
|
|
|
|
|
|
|
13
|
|
|
|
|
|
|
Math::Random::Normal::Leva - generate normally distributed PRN using Leva method |
14
|
|
|
|
|
|
|
|
15
|
|
|
|
|
|
|
=head1 VERSION |
16
|
|
|
|
|
|
|
|
17
|
|
|
|
|
|
|
This document describes Math::Random::Normal::Leva version 0.01 |
18
|
|
|
|
|
|
|
|
19
|
|
|
|
|
|
|
=head1 SYNOPSIS |
20
|
|
|
|
|
|
|
|
21
|
|
|
|
|
|
|
use Math::Random::Normal::Leva; |
22
|
|
|
|
|
|
|
my @normal = map { random_normal() } 1..1000; |
23
|
|
|
|
|
|
|
|
24
|
|
|
|
|
|
|
=head1 DESCRIPTION |
25
|
|
|
|
|
|
|
|
26
|
|
|
|
|
|
|
Generates normally distributed pseudorandom numbers using algorithm described |
27
|
|
|
|
|
|
|
in the paper "A Fast Normal Random Number Generator", Joseph L. Leva, 1992 |
28
|
|
|
|
|
|
|
(L) |
29
|
|
|
|
|
|
|
|
30
|
|
|
|
|
|
|
=head1 FUNCTIONS |
31
|
|
|
|
|
|
|
|
32
|
|
|
|
|
|
|
=cut |
33
|
|
|
|
|
|
|
|
34
|
|
|
|
|
|
|
=head2 random_normal($rand) |
35
|
|
|
|
|
|
|
|
36
|
|
|
|
|
|
|
Returns a random number sampled from the normal distribution. |
37
|
|
|
|
|
|
|
|
38
|
|
|
|
|
|
|
=over 4 |
39
|
|
|
|
|
|
|
|
40
|
|
|
|
|
|
|
=item I<$rand> |
41
|
|
|
|
|
|
|
|
42
|
|
|
|
|
|
|
is the value of the stock initially |
43
|
|
|
|
|
|
|
|
44
|
|
|
|
|
|
|
=cut |
45
|
|
|
|
|
|
|
|
46
|
|
|
|
|
|
|
# This algorithm comes from the paper |
47
|
|
|
|
|
|
|
# "A Fast Normal Random Number Generator" (Leva, 1992) |
48
|
|
|
|
|
|
|
|
49
|
|
|
|
|
|
|
sub random_normal { |
50
|
100000
|
|
50
|
100000
|
1
|
333655
|
my $rand = shift || \&rand; |
51
|
100000
|
|
|
|
|
85459
|
my ( $s, $t ) = ( 0.449871, -0.386595 ); # Center point |
52
|
100000
|
|
|
|
|
76531
|
my ( $a, $b ) = ( 0.19600, 0.25472 ); |
53
|
|
|
|
|
|
|
|
54
|
100000
|
|
|
|
|
64945
|
my $nv; |
55
|
100000
|
|
|
|
|
124513
|
while ( not defined $nv ) { |
56
|
136528
|
|
|
|
|
175947
|
my ( $u, $v ) = ( $rand->(), 1.7156 * ( $rand->() - 0.5 ) ); |
57
|
136528
|
|
|
|
|
2303209
|
my $x = $u - $s; |
58
|
136528
|
|
|
|
|
110224
|
my $y = abs($v) - $t; |
59
|
136528
|
|
|
|
|
145611
|
my $Q = $x**2 + $y * ( $a * $y - $b * $x ); |
60
|
136528
|
100
|
|
|
|
185317
|
if ( $Q >= 0.27597 ) { |
61
|
37129
|
100
|
100
|
|
|
92847
|
next if ( $Q > 0.27846 || $v**2 > -4 * $u**2 * log($u) ); |
62
|
|
|
|
|
|
|
} |
63
|
100000
|
|
|
|
|
159086
|
$nv = $v / $u; |
64
|
|
|
|
|
|
|
} |
65
|
|
|
|
|
|
|
|
66
|
100000
|
|
|
|
|
160463
|
return $nv; |
67
|
|
|
|
|
|
|
} |
68
|
|
|
|
|
|
|
|
69
|
|
|
|
|
|
|
=head2 gbm_sample($price, $vol, $t, $r, $q, $rand) |
70
|
|
|
|
|
|
|
|
71
|
|
|
|
|
|
|
Generates a random sample price of a stock following Geometric Brownian Motion after t years. |
72
|
|
|
|
|
|
|
|
73
|
|
|
|
|
|
|
=over 4 |
74
|
|
|
|
|
|
|
|
75
|
|
|
|
|
|
|
=item I<$price> |
76
|
|
|
|
|
|
|
|
77
|
|
|
|
|
|
|
is the value of the stock initially |
78
|
|
|
|
|
|
|
|
79
|
|
|
|
|
|
|
=item I<$vol> |
80
|
|
|
|
|
|
|
|
81
|
|
|
|
|
|
|
is the annual volatility of the stock |
82
|
|
|
|
|
|
|
|
83
|
|
|
|
|
|
|
=item I<$t> |
84
|
|
|
|
|
|
|
|
85
|
|
|
|
|
|
|
is the time elapsed in years |
86
|
|
|
|
|
|
|
|
87
|
|
|
|
|
|
|
=item I<$r> |
88
|
|
|
|
|
|
|
|
89
|
|
|
|
|
|
|
is the annualized drift rate |
90
|
|
|
|
|
|
|
|
91
|
|
|
|
|
|
|
=item I<$q> |
92
|
|
|
|
|
|
|
|
93
|
|
|
|
|
|
|
is the annualized dividend rate |
94
|
|
|
|
|
|
|
|
95
|
|
|
|
|
|
|
=item I<$rand> |
96
|
|
|
|
|
|
|
|
97
|
|
|
|
|
|
|
custom rand generated if not passed will use Math::Random::Secure::rand |
98
|
|
|
|
|
|
|
|
99
|
|
|
|
|
|
|
=back |
100
|
|
|
|
|
|
|
|
101
|
|
|
|
|
|
|
note: all rates are taken as decimals (.06 for 6%) |
102
|
|
|
|
|
|
|
|
103
|
|
|
|
|
|
|
=cut |
104
|
|
|
|
|
|
|
|
105
|
|
|
|
|
|
|
sub gbm_sample { |
106
|
0
|
|
|
0
|
1
|
|
my ( $price, $vol, $time, $r, $q, $rand ) = @_; |
107
|
|
|
|
|
|
|
|
108
|
0
|
|
|
|
|
|
confess( |
109
|
|
|
|
|
|
|
'All parameters are required to be set: generate_gbm($price, $annualized_vol, $time_in_years, $r_rate, $q_rate)' |
110
|
0
|
0
|
|
|
|
|
) if grep { not defined $_ } ( $price, $vol, $time, $r, $q ); |
111
|
|
|
|
|
|
|
|
112
|
0
|
|
|
|
|
|
return $price * |
113
|
|
|
|
|
|
|
exp( ( $r - $q - $vol * $vol / 2 ) * $time + $vol * sqrt($time) * random_normal($rand) ); |
114
|
|
|
|
|
|
|
} |
115
|
|
|
|
|
|
|
|
116
|
|
|
|
|
|
|
1; |
117
|
|
|
|
|
|
|
|
118
|
|
|
|
|
|
|
__END__ |