line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
1
|
|
|
|
|
|
|
#include |
2
|
|
|
|
|
|
|
#include |
3
|
|
|
|
|
|
|
#include |
4
|
|
|
|
|
|
|
#include |
5
|
|
|
|
|
|
|
|
6
|
|
|
|
|
|
|
/***************************************************************************** |
7
|
|
|
|
|
|
|
* |
8
|
|
|
|
|
|
|
* Prime counts using the extended Lagarias-Miller-Odlyzko combinatorial method. |
9
|
|
|
|
|
|
|
* |
10
|
|
|
|
|
|
|
* Copyright (c) 2013-2014 Dana Jacobsen (dana@acm.org) |
11
|
|
|
|
|
|
|
* This is free software; you can redistribute it and/or modify it under |
12
|
|
|
|
|
|
|
* the same terms as the Perl 5 programming language system itself. |
13
|
|
|
|
|
|
|
* |
14
|
|
|
|
|
|
|
* This file is part of the Math::Prime::Util Perl module, but it should |
15
|
|
|
|
|
|
|
* not be difficult to turn it into standalone code. |
16
|
|
|
|
|
|
|
* |
17
|
|
|
|
|
|
|
* The structure of the main routine is based on Christian Bau's earlier work. |
18
|
|
|
|
|
|
|
* |
19
|
|
|
|
|
|
|
* References: |
20
|
|
|
|
|
|
|
* - Christian Bau's paper and example implementation, 2003, Christian Bau |
21
|
|
|
|
|
|
|
* This was of immense help. References to "step #" refer to this preprint. |
22
|
|
|
|
|
|
|
* - "Computing Pi(x): the combinatorial method", 2006, Tomás Oliveira e Silva |
23
|
|
|
|
|
|
|
* - "Computing Pi(x): The Meissel, Lehmer, Lagarias, Miller, Odlyzko Method" |
24
|
|
|
|
|
|
|
* 1996, Deléglise and Rivat. |
25
|
|
|
|
|
|
|
* |
26
|
|
|
|
|
|
|
* Comparisons to the other prime counting implementations in this package: |
27
|
|
|
|
|
|
|
* |
28
|
|
|
|
|
|
|
* Sieve: Segmented, single threaded, thread-safe. Small table enhanced, |
29
|
|
|
|
|
|
|
* fastest for n < 60M. Bad growth rate (like all sieves will have). |
30
|
|
|
|
|
|
|
* Legendre:Simple. Recursive caching phi. |
31
|
|
|
|
|
|
|
* Meissel: Simple. Non-recursive phi, lots of memory. |
32
|
|
|
|
|
|
|
* Lehmer: Non-recursive phi, tries to restrict memory. |
33
|
|
|
|
|
|
|
* LMOS: Simple. Non-recursive phi, less memory than Lehmer above. |
34
|
|
|
|
|
|
|
* LMO: Sieve phi. Much faster and less memory than the others. |
35
|
|
|
|
|
|
|
* |
36
|
|
|
|
|
|
|
* Timing below is single core Haswell 4770K using Math::Prime::Util. |
37
|
|
|
|
|
|
|
* |
38
|
|
|
|
|
|
|
* | n | Legendre | Meissel | Lehmer | LMOS | LMO | |
39
|
|
|
|
|
|
|
* +-------+----------+----------+----------+----------+-----------+ |
40
|
|
|
|
|
|
|
* | 10^19 | | | | | 2493.4 | |
41
|
|
|
|
|
|
|
* | 10^18 | | | | | 498.16 | |
42
|
|
|
|
|
|
|
* | 10^17 |10459.3 | 4348.3 | 6109.7 | 3478.0 | 103.03 | |
43
|
|
|
|
|
|
|
* | 10^16 | 1354.6 | 510.8 | 758.6 | 458.4 | 21.64 | |
44
|
|
|
|
|
|
|
* | 10^15 | 171.2 | 97.1 | 106.4 | 68.11 | 4.707 | |
45
|
|
|
|
|
|
|
* | 10^14 | 23.56 | 18.59 | 16.51 | 10.44 | 1.032 | |
46
|
|
|
|
|
|
|
* | 10^13 | 3.783 | 3.552 | 2.803 | 1.845 | 0.237 | |
47
|
|
|
|
|
|
|
* | 10^12 | 0.755 | 0.697 | 0.505 | 0.378 | 54.9ms | |
48
|
|
|
|
|
|
|
* | 10^11 | 0.165 | 0.144 | 93.7ms| 81.6ms| 13.80ms| |
49
|
|
|
|
|
|
|
* | 10^10 | 35.9ms| 29.9ms| 19.9ms| 17.8ms| 3.64ms| |
50
|
|
|
|
|
|
|
* |
51
|
|
|
|
|
|
|
* Run with high memory limits: Meissel uses 1GB for 10^16, ~3GB for 10^17. |
52
|
|
|
|
|
|
|
* Lehmer is limited at high n values by sieving speed. It is much faster |
53
|
|
|
|
|
|
|
* using parallel primesieve, though cannot come close to LMO. |
54
|
|
|
|
|
|
|
*/ |
55
|
|
|
|
|
|
|
|
56
|
|
|
|
|
|
|
/* Adjust to get best performance. Alpha from TOS paper. */ |
57
|
|
|
|
|
|
|
#define M_FACTOR(n) (UV) ((double)n * (log(n)/log(5.2)) * (log(log(n))-1.4)) |
58
|
|
|
|
|
|
|
/* Size of segment used for previous primes, must be >= 21 */ |
59
|
|
|
|
|
|
|
#define PREV_SIEVE_SIZE 512 |
60
|
|
|
|
|
|
|
/* Phi sieve multiplier, adjust for best performance and memory use. */ |
61
|
|
|
|
|
|
|
#define PHI_SIEVE_MULT 13 |
62
|
|
|
|
|
|
|
|
63
|
|
|
|
|
|
|
#define FUNC_isqrt 1 |
64
|
|
|
|
|
|
|
#define FUNC_icbrt 1 |
65
|
|
|
|
|
|
|
#include "lmo.h" |
66
|
|
|
|
|
|
|
#include "util.h" |
67
|
|
|
|
|
|
|
#include "constants.h" |
68
|
|
|
|
|
|
|
#include "prime_nth_count.h" |
69
|
|
|
|
|
|
|
#include "cache.h" |
70
|
|
|
|
|
|
|
#include "sieve.h" |
71
|
|
|
|
|
|
|
|
72
|
|
|
|
|
|
|
#ifdef _MSC_VER |
73
|
|
|
|
|
|
|
typedef unsigned __int8 uint8; |
74
|
|
|
|
|
|
|
typedef unsigned __int16 uint16; |
75
|
|
|
|
|
|
|
typedef unsigned __int32 uint32; |
76
|
|
|
|
|
|
|
#else |
77
|
|
|
|
|
|
|
typedef unsigned char uint8; |
78
|
|
|
|
|
|
|
typedef unsigned short uint16; |
79
|
|
|
|
|
|
|
typedef uint32_t uint32; |
80
|
|
|
|
|
|
|
#endif |
81
|
|
|
|
|
|
|
|
82
|
|
|
|
|
|
|
/* UV is either uint32 or uint64 depending on Perl. We use this native size |
83
|
|
|
|
|
|
|
* for the basic unit of the phi sieve. It can be easily overridden here. */ |
84
|
|
|
|
|
|
|
typedef UV sword_t; |
85
|
|
|
|
|
|
|
#define SWORD_BITS BITS_PER_WORD |
86
|
|
|
|
|
|
|
#define SWORD_ONES UV_MAX |
87
|
|
|
|
|
|
|
#define SWORD_MASKBIT(bits) (UVCONST(1) << ((bits) % SWORD_BITS)) |
88
|
|
|
|
|
|
|
#define SWORD_CLEAR(s,bits) s[bits/SWORD_BITS] &= ~SWORD_MASKBIT(bits) |
89
|
|
|
|
|
|
|
|
90
|
|
|
|
|
|
|
/* GCC 3.4 - 4.1 has broken 64-bit popcount. |
91
|
|
|
|
|
|
|
* GCC 4.2+ can generate awful code when it doesn't have asm (GCC bug 36041). |
92
|
|
|
|
|
|
|
* When the asm is present (e.g. compile with -march=native on a platform that |
93
|
|
|
|
|
|
|
* has them, like Nahelem+), then it is almost as fast as the direct asm. */ |
94
|
|
|
|
|
|
|
#if SWORD_BITS == 64 |
95
|
|
|
|
|
|
|
#if defined(__POPCNT__) && defined(__GNUC__) && (__GNUC__> 4 || (__GNUC__== 4 && __GNUC_MINOR__> 1)) |
96
|
|
|
|
|
|
|
#define bitcount(b) __builtin_popcountll(b) |
97
|
|
|
|
|
|
|
#else |
98
|
23671812
|
|
|
|
|
|
static sword_t bitcount(sword_t b) { |
99
|
23671812
|
|
|
|
|
|
b -= (b >> 1) & 0x5555555555555555; |
100
|
23671812
|
|
|
|
|
|
b = (b & 0x3333333333333333) + ((b >> 2) & 0x3333333333333333); |
101
|
23671812
|
|
|
|
|
|
b = (b + (b >> 4)) & 0x0f0f0f0f0f0f0f0f; |
102
|
23671812
|
|
|
|
|
|
return (b * 0x0101010101010101) >> 56; |
103
|
|
|
|
|
|
|
} |
104
|
|
|
|
|
|
|
#endif |
105
|
|
|
|
|
|
|
#else |
106
|
|
|
|
|
|
|
/* An 8-bit table version is usually a little faster, but this is simpler. */ |
107
|
|
|
|
|
|
|
static sword_t bitcount(sword_t b) { |
108
|
|
|
|
|
|
|
b -= (b >> 1) & 0x55555555; |
109
|
|
|
|
|
|
|
b = (b & 0x33333333) + ((b >> 2) & 0x33333333); |
110
|
|
|
|
|
|
|
b = (b + (b >> 4)) & 0x0f0f0f0f; |
111
|
|
|
|
|
|
|
return (b * 0x01010101) >> 24; |
112
|
|
|
|
|
|
|
} |
113
|
|
|
|
|
|
|
#endif |
114
|
|
|
|
|
|
|
|
115
|
|
|
|
|
|
|
|
116
|
|
|
|
|
|
|
/* Create array of small primes: 0,2,3,5,...,prev_prime(n+1) */ |
117
|
847
|
|
|
|
|
|
static uint32_t* make_primelist(uint32 n, uint32* number_of_primes) |
118
|
|
|
|
|
|
|
{ |
119
|
847
|
|
|
|
|
|
uint32 i = 0; |
120
|
|
|
|
|
|
|
uint32_t* plist; |
121
|
847
|
|
|
|
|
|
double logn = log(n); |
122
|
847
|
50
|
|
|
|
|
uint32 max_index = (n < 67) ? 18 |
|
|
50
|
|
|
|
|
|
123
|
847
|
|
|
|
|
|
: (n < 355991) ? 15+(n/(logn-1.09)) |
124
|
0
|
|
|
|
|
|
: (n/logn) * (1.0+1.0/logn+2.51/(logn*logn)); |
125
|
847
|
|
|
|
|
|
*number_of_primes = 0; |
126
|
847
|
50
|
|
|
|
|
New(0, plist, max_index+1, uint32_t); |
127
|
847
|
|
|
|
|
|
plist[0] = 0; |
128
|
|
|
|
|
|
|
/* We could do a simple SoE here. This is not time critical. */ |
129
|
237891
|
50
|
|
|
|
|
START_DO_FOR_EACH_PRIME(2, n) { |
|
|
100
|
|
|
|
|
|
|
|
100
|
|
|
|
|
|
|
|
100
|
|
|
|
|
|
|
|
100
|
|
|
|
|
|
|
|
100
|
|
|
|
|
|
|
|
100
|
|
|
|
|
|
|
|
100
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
|
|
100
|
|
|
|
|
|
130
|
237030
|
|
|
|
|
|
plist[++i] = p; |
131
|
237030
|
|
|
|
|
|
} END_DO_FOR_EACH_PRIME; |
132
|
847
|
|
|
|
|
|
*number_of_primes = i; |
133
|
847
|
|
|
|
|
|
return plist; |
134
|
|
|
|
|
|
|
} |
135
|
|
|
|
|
|
|
#if 0 /* primesieve 5.0 example */ |
136
|
|
|
|
|
|
|
#include |
137
|
|
|
|
|
|
|
static uint32_t* make_primelist(uint32 n, uint32* number_of_primes) { |
138
|
|
|
|
|
|
|
uint32_t plist; |
139
|
|
|
|
|
|
|
uint32_t* psprimes = generate_primes(2, n, number_of_primes, UINT_PRIMES); |
140
|
|
|
|
|
|
|
New(0, plist, *number_of_primes + 1, uint32_t); |
141
|
|
|
|
|
|
|
plist[0] = 0; |
142
|
|
|
|
|
|
|
memcpy(plist+1, psprimes, *number_of_primes * sizeof(uint32_t)); |
143
|
|
|
|
|
|
|
primesieve_free(psprimes); |
144
|
|
|
|
|
|
|
return plist; |
145
|
|
|
|
|
|
|
} |
146
|
|
|
|
|
|
|
#endif |
147
|
|
|
|
|
|
|
|
148
|
|
|
|
|
|
|
/* Given a max prime in small prime list, return max prev prime input */ |
149
|
847
|
|
|
|
|
|
static uint32 prev_sieve_max(UV maxprime) { |
150
|
847
|
|
|
|
|
|
UV limit = maxprime*maxprime - (maxprime*maxprime % (16*PREV_SIEVE_SIZE)) - 1; |
151
|
847
|
|
|
|
|
|
return (limit > U32_CONST(4294967295)) ? U32_CONST(4294967295) : limit; |
152
|
|
|
|
|
|
|
} |
153
|
|
|
|
|
|
|
|
154
|
|
|
|
|
|
|
/* Simple SoE filling a segment */ |
155
|
2571
|
|
|
|
|
|
static void _prev_sieve_fill(UV start, uint8* sieve, const uint32_t* primes) { |
156
|
|
|
|
|
|
|
UV i, j, p; |
157
|
2571
|
|
|
|
|
|
memset( sieve, 0xFF, PREV_SIEVE_SIZE ); |
158
|
94946
|
100
|
|
|
|
|
for (i = 2, p = 3; p*p < start + (16*PREV_SIEVE_SIZE); p = primes[++i]) |
159
|
14178014
|
100
|
|
|
|
|
for (j = (start == 0) ? p*p/2 : (p-1) - ((start+(p-1))/2) % p; |
|
|
100
|
|
|
|
|
|
160
|
14085639
|
|
|
|
|
|
j < (8*PREV_SIEVE_SIZE); j += p) |
161
|
14085639
|
|
|
|
|
|
sieve[j/8] &= ~(1U << (j%8)); |
162
|
2571
|
|
|
|
|
|
} |
163
|
|
|
|
|
|
|
|
164
|
|
|
|
|
|
|
/* Calculate previous prime using small segment */ |
165
|
1671328
|
|
|
|
|
|
static uint32 prev_sieve_prime(uint32 n, uint8* sieve, uint32* segment_start, uint32 sieve_max, const uint32_t* primes) |
166
|
|
|
|
|
|
|
{ |
167
|
|
|
|
|
|
|
uint32 sieve_start, bit_offset; |
168
|
1671328
|
50
|
|
|
|
|
if (n <= 3) return (n == 3) ? 2 : 0; |
|
|
0
|
|
|
|
|
|
169
|
1671328
|
50
|
|
|
|
|
if (n > sieve_max) croak("ps overflow\n"); |
170
|
|
|
|
|
|
|
|
171
|
|
|
|
|
|
|
/* If n > 3 && n <= sieve_max, then there is an odd prime we can find. */ |
172
|
1671328
|
|
|
|
|
|
n -= 2; |
173
|
1671328
|
|
|
|
|
|
bit_offset = n % (16*PREV_SIEVE_SIZE); |
174
|
1671328
|
|
|
|
|
|
sieve_start = n - bit_offset; |
175
|
1671328
|
|
|
|
|
|
bit_offset >>= 1; |
176
|
|
|
|
|
|
|
|
177
|
|
|
|
|
|
|
while (1) { |
178
|
1672926
|
100
|
|
|
|
|
if (sieve_start != *segment_start) { /* Fill sieve if necessary */ |
179
|
2571
|
|
|
|
|
|
_prev_sieve_fill(sieve_start, sieve, primes); |
180
|
2571
|
|
|
|
|
|
*segment_start = sieve_start; |
181
|
|
|
|
|
|
|
} |
182
|
|
|
|
|
|
|
do { /* Look for a set bit in sieve */ |
183
|
7894821
|
100
|
|
|
|
|
if (sieve[bit_offset / 8] & (1u << (bit_offset % 8))) |
184
|
1671328
|
|
|
|
|
|
return sieve_start + 2*bit_offset + 1; |
185
|
6223493
|
100
|
|
|
|
|
} while (bit_offset-- > 0); |
186
|
1598
|
|
|
|
|
|
sieve_start -= (16 * PREV_SIEVE_SIZE); |
187
|
1598
|
|
|
|
|
|
bit_offset = ((16 * PREV_SIEVE_SIZE) - 1) / 2; |
188
|
1598
|
|
|
|
|
|
} |
189
|
|
|
|
|
|
|
} |
190
|
|
|
|
|
|
|
|
191
|
|
|
|
|
|
|
/* Create factor table. |
192
|
|
|
|
|
|
|
* In lehmer.c we create mu and lpf arrays. Here we use Christian Bau's |
193
|
|
|
|
|
|
|
* method, which is slightly more memory efficient and also a bit faster than |
194
|
|
|
|
|
|
|
* the code there (which does not use our fast ranged moebius). It makes |
195
|
|
|
|
|
|
|
* very little difference -- mainly using this table is more convenient. |
196
|
|
|
|
|
|
|
* |
197
|
|
|
|
|
|
|
* In a uint16 we have stored: |
198
|
|
|
|
|
|
|
* 0 moebius(n) = 0 |
199
|
|
|
|
|
|
|
* even moebius(n) = 1 |
200
|
|
|
|
|
|
|
* odd moebius(n) = -1 (last bit indicates even/odd number of factors) |
201
|
|
|
|
|
|
|
* v smallest odd prime factor of n is v&1 |
202
|
|
|
|
|
|
|
* 65535 large prime |
203
|
|
|
|
|
|
|
*/ |
204
|
847
|
|
|
|
|
|
static uint16* ft_create(uint32 max) |
205
|
|
|
|
|
|
|
{ |
206
|
|
|
|
|
|
|
uint16* factor_table; |
207
|
|
|
|
|
|
|
uint32 i; |
208
|
847
|
|
|
|
|
|
uint32 tableLimit = max + 338 + 1; /* At least one more prime */ |
209
|
847
|
|
|
|
|
|
uint32 tableSize = tableLimit/2; |
210
|
847
|
|
|
|
|
|
uint32 max_prime = (tableLimit - 1) / 3 + 1; |
211
|
|
|
|
|
|
|
|
212
|
847
|
|
|
|
|
|
New(0, factor_table, tableSize, uint16); |
213
|
|
|
|
|
|
|
|
214
|
|
|
|
|
|
|
/* Set all values to 65535 (a large prime), set 0 to 65534. */ |
215
|
847
|
|
|
|
|
|
factor_table[0] = 65534; |
216
|
720378
|
100
|
|
|
|
|
for (i = 1; i < tableSize; ++i) |
217
|
719531
|
|
|
|
|
|
factor_table[i] = 65535; |
218
|
|
|
|
|
|
|
|
219
|
|
|
|
|
|
|
/* Process each odd. */ |
220
|
720378
|
100
|
|
|
|
|
for (i = 1; i < tableSize; ++i) { |
221
|
|
|
|
|
|
|
uint32 factor, max_factor; |
222
|
719531
|
|
|
|
|
|
uint32 p = i*2+1; |
223
|
719531
|
100
|
|
|
|
|
if (factor_table[i] != 65535) /* Already marked. */ |
224
|
502159
|
|
|
|
|
|
continue; |
225
|
217372
|
50
|
|
|
|
|
if (p < 65535) /* p is a small prime, so set the number. */ |
226
|
217372
|
|
|
|
|
|
factor_table[i] = p; |
227
|
217372
|
100
|
|
|
|
|
if (p >= max_prime) /* No multiples will be in the table */ |
228
|
132060
|
|
|
|
|
|
continue; |
229
|
|
|
|
|
|
|
|
230
|
85312
|
|
|
|
|
|
max_factor = (tableLimit - 1) / p + 1; |
231
|
|
|
|
|
|
|
/* Look for odd multiples of the prime p. */ |
232
|
1189737
|
100
|
|
|
|
|
for (factor = 3; factor < max_factor; factor += 2) { |
233
|
1104425
|
|
|
|
|
|
uint32 index = (p*factor)/2; |
234
|
1104425
|
100
|
|
|
|
|
if (factor_table[index] == 65535) /* p is smallest factor */ |
235
|
502159
|
|
|
|
|
|
factor_table[index] = p; |
236
|
602266
|
100
|
|
|
|
|
else if (factor_table[index] > 0) /* Change number of factors */ |
237
|
476142
|
|
|
|
|
|
factor_table[index] ^= 0x01; |
238
|
|
|
|
|
|
|
} |
239
|
|
|
|
|
|
|
|
240
|
|
|
|
|
|
|
/* Change all odd multiples of p*p to 0 to indicate non-square-free. */ |
241
|
228229
|
100
|
|
|
|
|
for (factor = p; factor < max_factor; factor += 2*p) |
242
|
142917
|
|
|
|
|
|
factor_table[ (p*factor) / 2] = 0; |
243
|
|
|
|
|
|
|
} |
244
|
847
|
|
|
|
|
|
return factor_table; |
245
|
|
|
|
|
|
|
} |
246
|
|
|
|
|
|
|
|
247
|
|
|
|
|
|
|
#define PHIC 6 |
248
|
|
|
|
|
|
|
|
249
|
|
|
|
|
|
|
/* static const uint8_t _s0[ 1] = {0}; |
250
|
|
|
|
|
|
|
static const uint8_t _s1[ 2] = {0,1}; |
251
|
|
|
|
|
|
|
static const uint8_t _s2[ 6] = {0,1,1,1,1,2}; */ |
252
|
|
|
|
|
|
|
static const uint8_t _s3[30] = {0,1,1,1,1,1,1,2,2,2,2,3,3,4,4,4,4,5,5,6,6,6,6,7,7,7,7,7,7,8}; |
253
|
|
|
|
|
|
|
static const uint8_t _s4[210]= {0,1,1,1,1,1,1,1,1,1,1,2,2,3,3,3,3,4,4,5,5,5,5,6,6,6,6,6,6,7,7,8,8,8,8,8,8,9,9,9,9,10,10,11,11,11,11,12,12,12,12,12,12,13,13,13,13,13,13,14,14,15,15,15,15,15,15,16,16,16,16,17,17,18,18,18,18,18,18,19,19,19,19,20,20,20,20,20,20,21,21,21,21,21,21,21,21,22,22,22,22,23,23,24,24,24,24,25,25,26,26,26,26,27,27,27,27,27,27,27,27,28,28,28,28,28,28,29,29,29,29,30,30,30,30,30,30,31,31,32,32,32,32,33,33,33,33,33,33,34,34,35,35,35,35,35,35,36,36,36,36,36,36,37,37,37,37,38,38,39,39,39,39,40,40,40,40,40,40,41,41,42,42,42,42,42,42,43,43,43,43,44,44,45,45,45,45,46,46,47,47,47,47,47,47,47,47,47,47,48}; |
254
|
411299
|
|
|
|
|
|
static UV tablephi(UV x, uint32 a) |
255
|
|
|
|
|
|
|
{ |
256
|
411299
|
|
|
|
|
|
switch (a) { |
257
|
0
|
|
|
|
|
|
case 0: return x; |
258
|
0
|
|
|
|
|
|
case 1: return x-x/2; |
259
|
0
|
|
|
|
|
|
case 2: return x-x/2-x/3+x/6; |
260
|
0
|
|
|
|
|
|
case 3: return (x/ 30U) * 8U + _s3[x % 30U]; |
261
|
6
|
|
|
|
|
|
case 4: return (x/ 210U) * 48U + _s4[x % 210U]; |
262
|
|
|
|
|
|
|
case 5: { |
263
|
2
|
|
|
|
|
|
UV xp = x / 11U; |
264
|
2
|
|
|
|
|
|
return ((x /210) * 48 + _s4[x % 210]) - |
265
|
2
|
|
|
|
|
|
((xp/210) * 48 + _s4[xp % 210]); |
266
|
|
|
|
|
|
|
} |
267
|
|
|
|
|
|
|
case 6: |
268
|
|
|
|
|
|
|
default:{ |
269
|
411291
|
|
|
|
|
|
UV xp = x / 11U; |
270
|
411291
|
|
|
|
|
|
UV x2 = x / 13U; |
271
|
411291
|
|
|
|
|
|
UV x2p = x2 / 11U; |
272
|
411291
|
|
|
|
|
|
return ((x /210) * 48 + _s4[x % 210]) - |
273
|
822582
|
|
|
|
|
|
((xp /210) * 48 + _s4[xp % 210]) - |
274
|
411291
|
|
|
|
|
|
((x2 /210) * 48 + _s4[x2 % 210]) + |
275
|
411291
|
|
|
|
|
|
((x2p/210) * 48 + _s4[x2p% 210]); |
276
|
|
|
|
|
|
|
} |
277
|
|
|
|
|
|
|
/* case 7: return tablephi(x,a-1)-tablephi(x/17,a-1); */ /* Hack hack */ |
278
|
|
|
|
|
|
|
} |
279
|
|
|
|
|
|
|
} |
280
|
|
|
|
|
|
|
|
281
|
|
|
|
|
|
|
/****************************************************************************/ |
282
|
|
|
|
|
|
|
/* Legendre Phi. Not used by LMO, but exported. */ |
283
|
|
|
|
|
|
|
/****************************************************************************/ |
284
|
|
|
|
|
|
|
|
285
|
|
|
|
|
|
|
/* |
286
|
|
|
|
|
|
|
* Choices include: |
287
|
|
|
|
|
|
|
* 1) recursive, memory-less. We use this for small values. |
288
|
|
|
|
|
|
|
* 2) recursive, caching. We use a this for larger values w/ 32MB cache. |
289
|
|
|
|
|
|
|
* 3) a-walker sorted list. lehmer.c has this implementation. It is |
290
|
|
|
|
|
|
|
* faster for some values, but big and memory intensive. |
291
|
|
|
|
|
|
|
*/ |
292
|
3299
|
|
|
|
|
|
static UV _phi_recurse(UV x, UV a) { |
293
|
3299
|
|
|
|
|
|
UV i, c = (a > PHIC) ? PHIC : a; |
294
|
3299
|
|
|
|
|
|
UV sum = tablephi(x, c); |
295
|
3299
|
100
|
|
|
|
|
if (a > c) { |
296
|
2745
|
|
|
|
|
|
UV p = nth_prime(c); |
297
|
2745
|
|
|
|
|
|
UV pa = nth_prime(a); |
298
|
6029
|
100
|
|
|
|
|
for (i = c+1; i <= a; i++) { |
299
|
|
|
|
|
|
|
UV xp; |
300
|
5877
|
|
|
|
|
|
p = next_prime(p); |
301
|
5877
|
|
|
|
|
|
xp = x/p; |
302
|
5877
|
100
|
|
|
|
|
if (xp < p) { |
303
|
2593
|
50
|
|
|
|
|
while (x < pa) { |
304
|
0
|
|
|
|
|
|
a--; |
305
|
0
|
|
|
|
|
|
pa = prev_prime(pa); |
306
|
|
|
|
|
|
|
} |
307
|
2593
|
|
|
|
|
|
return (sum - a + i - 1); |
308
|
|
|
|
|
|
|
} |
309
|
3284
|
|
|
|
|
|
sum -= legendre_phi(xp, i-1); |
310
|
|
|
|
|
|
|
} |
311
|
|
|
|
|
|
|
} |
312
|
706
|
|
|
|
|
|
return sum; |
313
|
|
|
|
|
|
|
} |
314
|
|
|
|
|
|
|
|
315
|
|
|
|
|
|
|
#define PHICACHEA 256 |
316
|
|
|
|
|
|
|
#define PHICACHEX 65536 |
317
|
|
|
|
|
|
|
#define PHICACHE_EXISTS(x,a) \ |
318
|
|
|
|
|
|
|
((x < PHICACHEX && a < PHICACHEA) ? cache[a*PHICACHEX+x] : 0) |
319
|
0
|
|
|
|
|
|
static IV _phi(UV x, UV a, int sign, const uint32_t* const primes, const uint32_t lastidx, uint16_t* cache) |
320
|
|
|
|
|
|
|
{ |
321
|
|
|
|
|
|
|
IV sum; |
322
|
0
|
0
|
|
|
|
|
if (PHICACHE_EXISTS(x,a)) return sign * cache[a*PHICACHEX+x]; |
|
|
0
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
323
|
0
|
0
|
|
|
|
|
else if (a <= PHIC) return sign * tablephi(x, a); |
324
|
0
|
0
|
|
|
|
|
else if (x < primes[a+1]) sum = sign; |
325
|
|
|
|
|
|
|
else { |
326
|
|
|
|
|
|
|
/* sum = _phi(x, a-1, sign, primes, lastidx, cache) + */ |
327
|
|
|
|
|
|
|
/* _phi(x/primes[a], a-1, -sign, primes, lastidx, cache); */ |
328
|
0
|
0
|
|
|
|
|
UV a2, iters = (a*a > x) ? segment_prime_count(2,isqrt(x)) : a; |
329
|
0
|
|
|
|
|
|
UV c = (iters > PHIC) ? PHIC : iters; |
330
|
0
|
0
|
|
|
|
|
IV phixc = PHICACHE_EXISTS(x,c) ? cache[a*PHICACHEX+x] : tablephi(x,c); |
|
|
0
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
331
|
0
|
|
|
|
|
|
sum = sign * (iters - a + phixc); |
332
|
0
|
0
|
|
|
|
|
for (a2 = c+1; a2 <= iters; a2++) |
333
|
0
|
|
|
|
|
|
sum += _phi(x/primes[a2], a2-1, -sign, primes, lastidx, cache); |
334
|
|
|
|
|
|
|
} |
335
|
0
|
0
|
|
|
|
|
if (x < PHICACHEX && a < PHICACHEA && sign*sum <= SHRT_MAX) |
|
|
0
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
336
|
0
|
|
|
|
|
|
cache[a*PHICACHEX+x] = sign * sum; |
337
|
0
|
|
|
|
|
|
return sum; |
338
|
|
|
|
|
|
|
} |
339
|
3301
|
|
|
|
|
|
UV legendre_phi(UV x, UV a) |
340
|
|
|
|
|
|
|
{ |
341
|
|
|
|
|
|
|
/* If 'x' is very small, give a quick answer with any 'a' */ |
342
|
3301
|
100
|
|
|
|
|
if (x <= PHIC) |
343
|
2
|
|
|
|
|
|
return tablephi(x, (a > PHIC) ? PHIC : a); |
344
|
|
|
|
|
|
|
|
345
|
|
|
|
|
|
|
/* Shortcuts for large values, from R. Andrew Ohana */ |
346
|
3299
|
50
|
|
|
|
|
if (a > (x >> 1)) return 1; |
347
|
|
|
|
|
|
|
/* If a > prime_count(2^32), then we need not be concerned with composite |
348
|
|
|
|
|
|
|
* x values with all factors > 2^32, as x is limited to 64-bit. */ |
349
|
3299
|
50
|
|
|
|
|
if (a > 203280221) { /* prime_count(2**32) */ |
350
|
0
|
|
|
|
|
|
UV pc = LMO_prime_count(x); |
351
|
0
|
0
|
|
|
|
|
return (a > pc) ? 1 : pc - a + 1; |
352
|
|
|
|
|
|
|
} |
353
|
|
|
|
|
|
|
/* If a is large enough, check the ratios */ |
354
|
3299
|
50
|
|
|
|
|
if (a > 1000000 && x < a*21) { /* x always less than 2^32 */ |
|
|
0
|
|
|
|
|
|
355
|
0
|
0
|
|
|
|
|
if ( LMO_prime_count(x) < a) return 1; |
356
|
|
|
|
|
|
|
} |
357
|
|
|
|
|
|
|
|
358
|
|
|
|
|
|
|
/* TODO: R. Andrew Ohana's 2011 SAGE code is faster as the a value |
359
|
|
|
|
|
|
|
* increases. It uses a primelist as in the caching code below, as |
360
|
|
|
|
|
|
|
* well as a binary search prime count on it (like in our lehmer). */ |
361
|
|
|
|
|
|
|
|
362
|
3299
|
50
|
|
|
|
|
if ( a > 254 || (x > 1000000000 && a > 30) ) { |
|
|
50
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
363
|
|
|
|
|
|
|
uint16_t* cache; |
364
|
|
|
|
|
|
|
uint32_t* primes; |
365
|
|
|
|
|
|
|
uint32_t lastidx; |
366
|
0
|
0
|
|
|
|
|
UV res, max_cache_a = (a >= PHICACHEA) ? PHICACHEA : a+1; |
367
|
0
|
0
|
|
|
|
|
Newz(0, cache, PHICACHEX * max_cache_a, uint16_t); |
368
|
0
|
|
|
|
|
|
primes = make_primelist(nth_prime(a+1), &lastidx); |
369
|
0
|
|
|
|
|
|
res = (UV) _phi(x, a, 1, primes, lastidx, cache); |
370
|
0
|
|
|
|
|
|
Safefree(primes); |
371
|
0
|
|
|
|
|
|
Safefree(cache); |
372
|
0
|
|
|
|
|
|
return res; |
373
|
|
|
|
|
|
|
} |
374
|
|
|
|
|
|
|
|
375
|
3299
|
|
|
|
|
|
return _phi_recurse(x, a); |
376
|
|
|
|
|
|
|
} |
377
|
|
|
|
|
|
|
/****************************************************************************/ |
378
|
|
|
|
|
|
|
|
379
|
|
|
|
|
|
|
|
380
|
|
|
|
|
|
|
typedef struct { |
381
|
|
|
|
|
|
|
sword_t *sieve; /* segment bit mask */ |
382
|
|
|
|
|
|
|
uint8 *word_count; /* bit count in each 64-bit word */ |
383
|
|
|
|
|
|
|
uint32 *word_count_sum; /* cumulative sum of word_count */ |
384
|
|
|
|
|
|
|
UV *totals; /* total bit count for all phis at index */ |
385
|
|
|
|
|
|
|
uint32 *prime_index; /* index of prime where phi(n/p/p(k+1))=1 */ |
386
|
|
|
|
|
|
|
uint32 *first_bit_index; /* offset relative to start for this prime */ |
387
|
|
|
|
|
|
|
uint8 *multiplier; /* mod-30 wheel of each prime */ |
388
|
|
|
|
|
|
|
UV start; /* x value of first bit of segment */ |
389
|
|
|
|
|
|
|
UV phi_total; /* cumulative bit count before removal */ |
390
|
|
|
|
|
|
|
uint32 size; /* segment size in bits */ |
391
|
|
|
|
|
|
|
uint32 first_prime; /* index of first prime in segment */ |
392
|
|
|
|
|
|
|
uint32 last_prime; /* index of last prime in segment */ |
393
|
|
|
|
|
|
|
uint32 last_prime_to_remove; /* index of last prime p, p^2 in segment */ |
394
|
|
|
|
|
|
|
} sieve_t; |
395
|
|
|
|
|
|
|
|
396
|
|
|
|
|
|
|
/* Size of phi sieve in words. Multiple of 3*5*7*11 words. */ |
397
|
|
|
|
|
|
|
#define PHI_SIEVE_WORDS (1155 * PHI_SIEVE_MULT) |
398
|
|
|
|
|
|
|
|
399
|
|
|
|
|
|
|
/* Bit counting using cumulative sums. A bit slower than using a running sum, |
400
|
|
|
|
|
|
|
* but a little simpler and can be run in parallel. */ |
401
|
97443
|
|
|
|
|
|
static uint32 make_sieve_sums(uint32 sieve_size, const uint8* sieve_word_count, uint32* sieve_word_count_sum) { |
402
|
97443
|
|
|
|
|
|
uint32 i, bc, words = (sieve_size + 2*SWORD_BITS-1) / (2*SWORD_BITS); |
403
|
97443
|
|
|
|
|
|
sieve_word_count_sum[0] = 0; |
404
|
40468260
|
100
|
|
|
|
|
for (i = 0, bc = 0; i+7 < words; i += 8) { |
405
|
40370817
|
|
|
|
|
|
const uint8* cntptr = sieve_word_count + i; |
406
|
40370817
|
|
|
|
|
|
uint32* sumptr = sieve_word_count_sum + i; |
407
|
40370817
|
|
|
|
|
|
sumptr[1] = bc += cntptr[0]; |
408
|
40370817
|
|
|
|
|
|
sumptr[2] = bc += cntptr[1]; |
409
|
40370817
|
|
|
|
|
|
sumptr[3] = bc += cntptr[2]; |
410
|
40370817
|
|
|
|
|
|
sumptr[4] = bc += cntptr[3]; |
411
|
40370817
|
|
|
|
|
|
sumptr[5] = bc += cntptr[4]; |
412
|
40370817
|
|
|
|
|
|
sumptr[6] = bc += cntptr[5]; |
413
|
40370817
|
|
|
|
|
|
sumptr[7] = bc += cntptr[6]; |
414
|
40370817
|
|
|
|
|
|
sumptr[8] = bc += cntptr[7]; |
415
|
|
|
|
|
|
|
} |
416
|
465234
|
100
|
|
|
|
|
for (; i < words; i++) |
417
|
367791
|
|
|
|
|
|
sieve_word_count_sum[i+1] = sieve_word_count_sum[i] + sieve_word_count[i]; |
418
|
97443
|
|
|
|
|
|
return sieve_word_count_sum[words]; |
419
|
|
|
|
|
|
|
} |
420
|
|
|
|
|
|
|
|
421
|
21715908
|
|
|
|
|
|
static UV _sieve_phi(UV segment_x, const sword_t* sieve, const uint32* sieve_word_count_sum) { |
422
|
21715908
|
|
|
|
|
|
uint32 bits = (segment_x + 1) / 2; |
423
|
21715908
|
|
|
|
|
|
uint32 words = bits / SWORD_BITS; |
424
|
21715908
|
|
|
|
|
|
uint32 sieve_sum = sieve_word_count_sum[words]; |
425
|
21715908
|
|
|
|
|
|
sieve_sum += bitcount( sieve[words] & ~(SWORD_ONES << (bits % SWORD_BITS)) ); |
426
|
21715908
|
|
|
|
|
|
return sieve_sum; |
427
|
|
|
|
|
|
|
} |
428
|
|
|
|
|
|
|
|
429
|
|
|
|
|
|
|
/* Erasing primes from the sieve is done using Christian Bau's |
430
|
|
|
|
|
|
|
* case statement walker. It's not pretty, but it is short, fast, |
431
|
|
|
|
|
|
|
* clever, and does the job. */ |
432
|
|
|
|
|
|
|
|
433
|
|
|
|
|
|
|
#define sieve_zero(sieve, si, wordcount) \ |
434
|
|
|
|
|
|
|
{ uint32 index_ = si/SWORD_BITS; \ |
435
|
|
|
|
|
|
|
sword_t mask_ = SWORD_MASKBIT(si); \ |
436
|
|
|
|
|
|
|
if (sieve[index_] & mask_) { \ |
437
|
|
|
|
|
|
|
sieve[index_] &= ~mask_; \ |
438
|
|
|
|
|
|
|
wordcount[index_]--; \ |
439
|
|
|
|
|
|
|
} } |
440
|
|
|
|
|
|
|
|
441
|
|
|
|
|
|
|
#define sieve_case_zero(casenum, skip, si, p, size, mult, sieve, wordcount) \ |
442
|
|
|
|
|
|
|
case casenum: sieve_zero(sieve, si, wordcount); \ |
443
|
|
|
|
|
|
|
si += skip * p; \ |
444
|
|
|
|
|
|
|
mult = (casenum+1) % 8; \ |
445
|
|
|
|
|
|
|
if (si >= size) break; |
446
|
|
|
|
|
|
|
|
447
|
97443
|
|
|
|
|
|
static void remove_primes(uint32 index, uint32 last_index, sieve_t* s, const uint32_t* primes) |
448
|
|
|
|
|
|
|
{ |
449
|
97443
|
|
|
|
|
|
uint32 size = (s->size + 1) / 2; |
450
|
97443
|
|
|
|
|
|
sword_t *sieve = s->sieve; |
451
|
97443
|
|
|
|
|
|
uint8 *word_count = s->word_count; |
452
|
|
|
|
|
|
|
|
453
|
97443
|
|
|
|
|
|
s->phi_total = s->totals[last_index]; |
454
|
207857
|
100
|
|
|
|
|
for ( ;index <= last_index; index++) { |
455
|
110414
|
100
|
|
|
|
|
if (index >= s->first_prime && index <= s->last_prime) { |
|
|
50
|
|
|
|
|
|
456
|
96696
|
|
|
|
|
|
uint32 b = (primes[index] - (uint32) s->start - 1) / 2; |
457
|
96696
|
50
|
|
|
|
|
sieve_zero(sieve, b, word_count); |
458
|
|
|
|
|
|
|
} |
459
|
110414
|
100
|
|
|
|
|
if (index <= s->last_prime_to_remove) { |
460
|
78980
|
|
|
|
|
|
uint32 b = s->first_bit_index[index]; |
461
|
78980
|
50
|
|
|
|
|
if (b < size) { |
462
|
78980
|
|
|
|
|
|
uint32 p = primes[index]; |
463
|
78980
|
|
|
|
|
|
uint32 mult = s->multiplier[index]; |
464
|
78980
|
|
|
|
|
|
switch (mult) { |
465
|
|
|
|
|
|
|
reloop: ; |
466
|
6677343
|
100
|
|
|
|
|
sieve_case_zero(0, 3, b, p, size, mult, sieve, word_count); |
|
|
100
|
|
|
|
|
|
467
|
6672453
|
100
|
|
|
|
|
sieve_case_zero(1, 2, b, p, size, mult, sieve, word_count); |
|
|
100
|
|
|
|
|
|
468
|
6671341
|
100
|
|
|
|
|
sieve_case_zero(2, 1, b, p, size, mult, sieve, word_count); |
|
|
100
|
|
|
|
|
|
469
|
6676432
|
100
|
|
|
|
|
sieve_case_zero(3, 2, b, p, size, mult, sieve, word_count); |
|
|
100
|
|
|
|
|
|
470
|
6676293
|
100
|
|
|
|
|
sieve_case_zero(4, 1, b, p, size, mult, sieve, word_count); |
|
|
100
|
|
|
|
|
|
471
|
6679526
|
100
|
|
|
|
|
sieve_case_zero(5, 2, b, p, size, mult, sieve, word_count); |
|
|
100
|
|
|
|
|
|
472
|
6679326
|
100
|
|
|
|
|
sieve_case_zero(6, 3, b, p, size, mult, sieve, word_count); |
|
|
100
|
|
|
|
|
|
473
|
6673916
|
100
|
|
|
|
|
sieve_case_zero(7, 1, b, p, size, mult, sieve, word_count); |
|
|
100
|
|
|
|
|
|
474
|
6668725
|
|
|
|
|
|
goto reloop; |
475
|
|
|
|
|
|
|
} |
476
|
78980
|
|
|
|
|
|
s->multiplier[index] = mult; |
477
|
|
|
|
|
|
|
} |
478
|
78980
|
|
|
|
|
|
s->first_bit_index[index] = b - size; |
479
|
|
|
|
|
|
|
} |
480
|
|
|
|
|
|
|
} |
481
|
97443
|
|
|
|
|
|
s->totals[last_index] += make_sieve_sums(s->size, s->word_count, s->word_count_sum); |
482
|
97443
|
|
|
|
|
|
} |
483
|
|
|
|
|
|
|
|
484
|
3468
|
|
|
|
|
|
static void word_tile (sword_t* source, uint32 from, uint32 to) { |
485
|
13030
|
100
|
|
|
|
|
while (from < to) { |
486
|
9562
|
100
|
|
|
|
|
uint32 words = (2*from > to) ? to-from : from; |
487
|
9562
|
|
|
|
|
|
memcpy(source+from, source, sizeof(sword_t)*words); |
488
|
9562
|
|
|
|
|
|
from += words; |
489
|
|
|
|
|
|
|
} |
490
|
3468
|
|
|
|
|
|
} |
491
|
|
|
|
|
|
|
|
492
|
867
|
|
|
|
|
|
static void init_segment(sieve_t* s, UV segment_start, uint32 size, uint32 start_prime_index, uint32 sieve_last, const uint32_t* primes) |
493
|
|
|
|
|
|
|
{ |
494
|
|
|
|
|
|
|
uint32 i, words; |
495
|
867
|
|
|
|
|
|
sword_t* sieve = s->sieve; |
496
|
867
|
|
|
|
|
|
uint8* word_count = s->word_count; |
497
|
|
|
|
|
|
|
|
498
|
867
|
|
|
|
|
|
s->start = segment_start; |
499
|
867
|
|
|
|
|
|
s->size = size; |
500
|
|
|
|
|
|
|
|
501
|
867
|
100
|
|
|
|
|
if (segment_start == 0) { |
502
|
847
|
|
|
|
|
|
s->last_prime = 0; |
503
|
847
|
|
|
|
|
|
s->last_prime_to_remove = 0; |
504
|
|
|
|
|
|
|
} |
505
|
867
|
|
|
|
|
|
s->first_prime = s->last_prime + 1; |
506
|
101798
|
100
|
|
|
|
|
while (s->last_prime < sieve_last) { |
507
|
100931
|
|
|
|
|
|
uint32 p = primes[s->last_prime + 1]; |
508
|
100931
|
50
|
|
|
|
|
if (p >= segment_start + size) |
509
|
0
|
|
|
|
|
|
break; |
510
|
100931
|
|
|
|
|
|
s->last_prime++; |
511
|
|
|
|
|
|
|
} |
512
|
78126
|
50
|
|
|
|
|
while (s->last_prime_to_remove < sieve_last) { |
513
|
78126
|
|
|
|
|
|
UV p = primes[s->last_prime_to_remove + 1]; |
514
|
78126
|
|
|
|
|
|
UV p2 = p*p; |
515
|
78126
|
100
|
|
|
|
|
if (p2 >= segment_start + size) |
516
|
867
|
|
|
|
|
|
break; |
517
|
77259
|
|
|
|
|
|
s->last_prime_to_remove++; |
518
|
77259
|
|
|
|
|
|
s->first_bit_index[s->last_prime_to_remove] = (p2 - segment_start - 1) / 2; |
519
|
77259
|
|
|
|
|
|
s->multiplier[s->last_prime_to_remove] = (uint8) ((p % 30) * 8 / 30); |
520
|
|
|
|
|
|
|
} |
521
|
|
|
|
|
|
|
|
522
|
867
|
|
|
|
|
|
memset(sieve, 0xFF, 3*sizeof(sword_t)); /* Set first 3 words to all 1 bits */ |
523
|
867
|
50
|
|
|
|
|
if (start_prime_index >= 3) /* Remove multiples of 3. */ |
524
|
56355
|
100
|
|
|
|
|
for (i = 3/2; i < 3 * SWORD_BITS; i += 3) |
525
|
55488
|
|
|
|
|
|
SWORD_CLEAR(sieve, i); |
526
|
|
|
|
|
|
|
|
527
|
867
|
|
|
|
|
|
word_tile(sieve, 3, 15); /* Copy to first 15 = 3*5 words */ |
528
|
867
|
50
|
|
|
|
|
if (start_prime_index >= 3) /* Remove multiples of 5. */ |
529
|
167331
|
100
|
|
|
|
|
for (i = 5/2; i < 15 * SWORD_BITS; i += 5) |
530
|
166464
|
|
|
|
|
|
SWORD_CLEAR(sieve, i); |
531
|
|
|
|
|
|
|
|
532
|
867
|
|
|
|
|
|
word_tile(sieve, 15, 105); /* Copy to first 105 = 3*5*7 words */ |
533
|
867
|
50
|
|
|
|
|
if (start_prime_index >= 4) /* Remove multiples of 7. */ |
534
|
833187
|
100
|
|
|
|
|
for (i = 7/2; i < 105 * SWORD_BITS; i += 7) |
535
|
832320
|
|
|
|
|
|
SWORD_CLEAR(sieve, i); |
536
|
|
|
|
|
|
|
|
537
|
867
|
|
|
|
|
|
word_tile(sieve, 105, 1155); /* Copy to first 1155 = 3*5*7*11 words */ |
538
|
867
|
50
|
|
|
|
|
if (start_prime_index >= 5) /* Remove multiples of 11. */ |
539
|
5827107
|
100
|
|
|
|
|
for (i = 11/2; i < 1155 * SWORD_BITS; i += 11) |
540
|
5826240
|
|
|
|
|
|
SWORD_CLEAR(sieve, i); |
541
|
|
|
|
|
|
|
|
542
|
867
|
|
|
|
|
|
size = (size+1) / 2; /* size to odds */ |
543
|
867
|
|
|
|
|
|
words = (size + SWORD_BITS-1) / SWORD_BITS; /* sieve size in words */ |
544
|
867
|
|
|
|
|
|
word_tile(sieve, 1155, words); /* Copy first 1155 words to rest */ |
545
|
|
|
|
|
|
|
/* Zero all unused bits and words */ |
546
|
867
|
100
|
|
|
|
|
if (size % SWORD_BITS) |
547
|
829
|
|
|
|
|
|
sieve[words-1] &= ~(SWORD_ONES << (size % SWORD_BITS)); |
548
|
867
|
|
|
|
|
|
memset(sieve + words, 0x00, sizeof(sword_t)*(PHI_SIEVE_WORDS+2 - words)); |
549
|
|
|
|
|
|
|
|
550
|
|
|
|
|
|
|
/* Create counts, remove primes (updating counts and sums). */ |
551
|
1956771
|
100
|
|
|
|
|
for (i = 0; i < words; i++) |
552
|
1955904
|
|
|
|
|
|
word_count[i] = (uint8) bitcount(sieve[i]); |
553
|
867
|
|
|
|
|
|
remove_primes(6, start_prime_index, s, primes); |
554
|
867
|
|
|
|
|
|
} |
555
|
|
|
|
|
|
|
|
556
|
|
|
|
|
|
|
/* However we want to handle reduced prime counts */ |
557
|
|
|
|
|
|
|
#define simple_pi(n) LMO_prime_count(n) |
558
|
|
|
|
|
|
|
/* Macros to hide all the variables being passed */ |
559
|
|
|
|
|
|
|
#define prev_sieve_prime(n) \ |
560
|
|
|
|
|
|
|
prev_sieve_prime(n, &prev_sieve[0], &ps_start, ps_max, primes) |
561
|
|
|
|
|
|
|
#define sieve_phi(x) \ |
562
|
|
|
|
|
|
|
ss.phi_total + _sieve_phi((x) - ss.start, ss.sieve, ss.word_count_sum) |
563
|
|
|
|
|
|
|
|
564
|
|
|
|
|
|
|
|
565
|
52460
|
|
|
|
|
|
UV LMO_prime_count(UV n) |
566
|
|
|
|
|
|
|
{ |
567
|
|
|
|
|
|
|
UV N2, N3, K2, K3, M, sum1, sum2, phi_value; |
568
|
|
|
|
|
|
|
UV sieve_start, sieve_end, least_divisor, step7_max, last_phi_sieve; |
569
|
|
|
|
|
|
|
uint32 j, k, piM, KM, end, prime, prime_index; |
570
|
|
|
|
|
|
|
uint32 ps_start, ps_max, smallest_divisor, nprimes; |
571
|
|
|
|
|
|
|
uint8 prev_sieve[PREV_SIEVE_SIZE]; |
572
|
|
|
|
|
|
|
uint32_t *primes; |
573
|
|
|
|
|
|
|
uint16 *factor_table; |
574
|
|
|
|
|
|
|
sieve_t ss; |
575
|
|
|
|
|
|
|
|
576
|
52460
|
|
|
|
|
|
const uint32 c = PHIC; /* We can use our fast function for this */ |
577
|
|
|
|
|
|
|
|
578
|
|
|
|
|
|
|
/* For "small" n, use our table+segment sieve. */ |
579
|
52460
|
100
|
|
|
|
|
if (n < _MPU_LMO_CROSSOVER || n < 10000) return segment_prime_count(2, n); |
|
|
50
|
|
|
|
|
|
580
|
|
|
|
|
|
|
/* n should now be reasonably sized (not tiny). */ |
581
|
|
|
|
|
|
|
|
582
|
|
|
|
|
|
|
#ifdef USE_PRIMECOUNT_FOR_LARGE_LMO |
583
|
|
|
|
|
|
|
if (n > 110000000000UL) { |
584
|
|
|
|
|
|
|
FILE *f; |
585
|
|
|
|
|
|
|
char cmd[100]; |
586
|
|
|
|
|
|
|
sprintf(cmd, "primecount %lu", n); |
587
|
|
|
|
|
|
|
f = popen(cmd, "r"); |
588
|
|
|
|
|
|
|
fscanf(f, "%lu", &sum1); |
589
|
|
|
|
|
|
|
pclose(f); |
590
|
|
|
|
|
|
|
return sum1; |
591
|
|
|
|
|
|
|
} |
592
|
|
|
|
|
|
|
#endif |
593
|
|
|
|
|
|
|
|
594
|
847
|
|
|
|
|
|
N2 = isqrt(n); /* floor(N^1/2) */ |
595
|
847
|
|
|
|
|
|
N3 = icbrt(n); /* floor(N^1/3) */ |
596
|
847
|
|
|
|
|
|
K2 = simple_pi(N2); /* Pi(N2) */ |
597
|
847
|
|
|
|
|
|
K3 = simple_pi(N3); /* Pi(N3) */ |
598
|
|
|
|
|
|
|
|
599
|
|
|
|
|
|
|
/* M is N^1/3 times a tunable performance factor. */ |
600
|
847
|
100
|
|
|
|
|
M = (N3 > 500) ? M_FACTOR(N3) : N3+N3/2; |
601
|
847
|
50
|
|
|
|
|
if (M >= N2) M = N2 - 1; /* M must be smaller than N^1/2 */ |
602
|
847
|
50
|
|
|
|
|
if (M < N3) M = N3; /* M must be at least N^1/3 */ |
603
|
|
|
|
|
|
|
|
604
|
|
|
|
|
|
|
/* Create the array of small primes, and least-prime-factor/moebius table */ |
605
|
847
|
|
|
|
|
|
primes = make_primelist( M + 500, &nprimes ); |
606
|
847
|
|
|
|
|
|
factor_table = ft_create( M ); |
607
|
|
|
|
|
|
|
|
608
|
|
|
|
|
|
|
/* Create other arrays */ |
609
|
847
|
|
|
|
|
|
New(0, ss.sieve, PHI_SIEVE_WORDS + 2, sword_t); |
610
|
847
|
|
|
|
|
|
New(0, ss.word_count, PHI_SIEVE_WORDS + 2, uint8); |
611
|
847
|
|
|
|
|
|
New(0, ss.word_count_sum, PHI_SIEVE_WORDS + 2, uint32); |
612
|
847
|
50
|
|
|
|
|
New(0, ss.totals, K3+2, UV); |
613
|
847
|
50
|
|
|
|
|
New(0, ss.prime_index, K3+2, uint32); |
614
|
847
|
50
|
|
|
|
|
New(0, ss.first_bit_index, K3+2, uint32); |
615
|
847
|
|
|
|
|
|
New(0, ss.multiplier, K3+2, uint8); |
616
|
|
|
|
|
|
|
|
617
|
847
|
50
|
|
|
|
|
if (ss.sieve == 0 || ss.word_count == 0 || ss.word_count_sum == 0 || |
|
|
50
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
618
|
847
|
50
|
|
|
|
|
ss.totals == 0 || ss.prime_index == 0 || ss.first_bit_index == 0 || |
|
|
50
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
619
|
847
|
|
|
|
|
|
ss.multiplier == 0) |
620
|
0
|
|
|
|
|
|
croak("Allocation failure in LMO Pi\n"); |
621
|
|
|
|
|
|
|
|
622
|
|
|
|
|
|
|
/* Variables for fast prev_prime using small segment sieves (up to M^2) */ |
623
|
847
|
|
|
|
|
|
ps_max = prev_sieve_max( primes[nprimes] ); |
624
|
847
|
|
|
|
|
|
ps_start = U32_CONST(0xFFFFFFFF); |
625
|
|
|
|
|
|
|
|
626
|
|
|
|
|
|
|
/* Look for the smallest divisor: the smallest number > M which is |
627
|
|
|
|
|
|
|
* square-free and not divisible by any prime covered by our Mapes |
628
|
|
|
|
|
|
|
* small-phi case. The largest value we will look up in the phi |
629
|
|
|
|
|
|
|
* sieve is n/smallest_divisor. */ |
630
|
1792
|
100
|
|
|
|
|
for (j = (M+1)/2; factor_table[j] <= primes[c]; j++) /* */; |
631
|
847
|
|
|
|
|
|
smallest_divisor = 2*j+1; |
632
|
|
|
|
|
|
|
/* largest_divisor = (N2 > (UV)M * (UV)M) ? N2 : (UV)M * (UV)M; */ |
633
|
|
|
|
|
|
|
|
634
|
847
|
|
|
|
|
|
M = smallest_divisor - 1; /* Increase M if possible */ |
635
|
847
|
|
|
|
|
|
piM = simple_pi(M); |
636
|
847
|
50
|
|
|
|
|
if (piM < c) croak("N too small for LMO\n"); |
637
|
847
|
|
|
|
|
|
last_phi_sieve = n / smallest_divisor + 1; |
638
|
|
|
|
|
|
|
|
639
|
|
|
|
|
|
|
/* KM = smallest k, c <= k <= piM, s.t. primes[k+1] * primes[k+2] > M. */ |
640
|
4645
|
100
|
|
|
|
|
for (KM = c; primes[KM+1] * primes[KM+2] <= M && KM < piM; KM++) /* */; |
|
|
50
|
|
|
|
|
|
641
|
847
|
50
|
|
|
|
|
if (K3 < KM) K3 = KM; /* Ensure K3 >= KM */ |
642
|
|
|
|
|
|
|
|
643
|
|
|
|
|
|
|
/* Start calculating Pi(n). Steps 4-10 from Bau. */ |
644
|
847
|
|
|
|
|
|
sum1 = (K2 - 1) + (UV) (piM - K3 - 1) * (UV) (piM - K3) / 2; |
645
|
847
|
|
|
|
|
|
sum2 = 0; |
646
|
847
|
|
|
|
|
|
end = (M+1)/2; |
647
|
|
|
|
|
|
|
|
648
|
|
|
|
|
|
|
/* Start at index K2, which is the prime preceeding N^1/2 */ |
649
|
847
|
50
|
|
|
|
|
prime = prev_sieve_prime( (N2 >= ps_start) ? ps_start : N2+1 ); |
650
|
847
|
|
|
|
|
|
prime_index = K2 - 1; |
651
|
847
|
|
|
|
|
|
step7_max = K3; |
652
|
|
|
|
|
|
|
|
653
|
|
|
|
|
|
|
/* Step 4: For 1 <= x <= M where x is square-free and has no |
654
|
|
|
|
|
|
|
* factor <= primes[c], sum phi(n / x, c). */ |
655
|
579027
|
100
|
|
|
|
|
for (j = 0; j < end; j++) { |
656
|
578180
|
|
|
|
|
|
uint32 lpf = factor_table[j]; |
657
|
578180
|
100
|
|
|
|
|
if (lpf > primes[c]) { |
658
|
216352
|
|
|
|
|
|
phi_value = tablephi(n / (2*j+1), c); /* x = 2j+1 */ |
659
|
216352
|
100
|
|
|
|
|
if (lpf & 0x01) sum2 += phi_value; else sum1 += phi_value; |
660
|
|
|
|
|
|
|
} |
661
|
|
|
|
|
|
|
} |
662
|
|
|
|
|
|
|
|
663
|
|
|
|
|
|
|
/* Step 5: For 1+M/primes[c+1] <= x <= M, x square-free and |
664
|
|
|
|
|
|
|
* has no factor <= primes[c+1], sum phi(n / (x*primes[c+1]), c). */ |
665
|
847
|
50
|
|
|
|
|
if (c < piM) { |
666
|
847
|
|
|
|
|
|
UV pc_1 = primes[c+1]; |
667
|
545039
|
100
|
|
|
|
|
for (j = (1+M/pc_1)/2; j < end; j++) { |
668
|
544192
|
|
|
|
|
|
uint32 lpf = factor_table[j]; |
669
|
544192
|
100
|
|
|
|
|
if (lpf > pc_1) { |
670
|
191646
|
|
|
|
|
|
phi_value = tablephi(n / (pc_1 * (2*j+1)), c); /* x = 2j+1 */ |
671
|
191646
|
100
|
|
|
|
|
if (lpf & 0x01) sum1 += phi_value; else sum2 += phi_value; |
672
|
|
|
|
|
|
|
} |
673
|
|
|
|
|
|
|
} |
674
|
|
|
|
|
|
|
} |
675
|
|
|
|
|
|
|
|
676
|
102625
|
100
|
|
|
|
|
for (k = 0; k <= K3; k++) ss.totals[k] = 0; |
677
|
9727
|
100
|
|
|
|
|
for (k = 0; k < KM; k++) ss.prime_index[k] = end; |
678
|
|
|
|
|
|
|
|
679
|
|
|
|
|
|
|
/* Instead of dividing by all primes up to pi(M), once a divisor is large |
680
|
|
|
|
|
|
|
* enough then phi(n / (p*primes[k+1]), k) = 1. */ |
681
|
|
|
|
|
|
|
{ |
682
|
847
|
|
|
|
|
|
uint32 last_prime = piM; |
683
|
92898
|
100
|
|
|
|
|
for (k = KM; k < K3; k++) { |
684
|
92051
|
|
|
|
|
|
UV pk = primes[k+1]; |
685
|
168721
|
100
|
|
|
|
|
while (last_prime > k+1 && pk * pk * primes[last_prime] > n) |
|
|
100
|
|
|
|
|
|
686
|
76670
|
|
|
|
|
|
last_prime--; |
687
|
92051
|
|
|
|
|
|
ss.prime_index[k] = last_prime; |
688
|
92051
|
|
|
|
|
|
sum1 += piM - last_prime; |
689
|
|
|
|
|
|
|
} |
690
|
|
|
|
|
|
|
} |
691
|
|
|
|
|
|
|
|
692
|
1714
|
100
|
|
|
|
|
for (sieve_start = 0; sieve_start < last_phi_sieve; sieve_start = sieve_end) { |
693
|
|
|
|
|
|
|
/* This phi segment goes from sieve_start to sieve_end. */ |
694
|
867
|
|
|
|
|
|
sieve_end = ((sieve_start + 2*SWORD_BITS*PHI_SIEVE_WORDS) < last_phi_sieve) |
695
|
867
|
|
|
|
|
|
? sieve_start + 2*SWORD_BITS*PHI_SIEVE_WORDS : last_phi_sieve; |
696
|
|
|
|
|
|
|
/* Only divisors s.t. sieve_start <= N / divisor < sieve_end considered. */ |
697
|
867
|
|
|
|
|
|
least_divisor = n / sieve_end; |
698
|
|
|
|
|
|
|
/* Initialize the sieve segment and all associated variables. */ |
699
|
867
|
|
|
|
|
|
init_segment(&ss, sieve_start, sieve_end - sieve_start, c, K3, primes); |
700
|
|
|
|
|
|
|
|
701
|
|
|
|
|
|
|
/* Step 6: For c < k < KM: For 1+M/primes[k+1] <= x <= M, x square-free |
702
|
|
|
|
|
|
|
* and has no factor <= primes[k+1], sum phi(n / (x*primes[k+1]), k). */ |
703
|
4330
|
100
|
|
|
|
|
for (k = c+1; k < KM; k++) { |
704
|
3463
|
|
|
|
|
|
UV pk = primes[k+1]; |
705
|
3463
|
50
|
|
|
|
|
uint32 start = (least_divisor >= pk * U32_CONST(0xFFFFFFFE)) |
706
|
|
|
|
|
|
|
? U32_CONST(0xFFFFFFFF) |
707
|
3463
|
|
|
|
|
|
: (least_divisor / pk + 1)/2; |
708
|
3463
|
|
|
|
|
|
remove_primes(k, k, &ss, primes); |
709
|
4143648
|
100
|
|
|
|
|
for (j = ss.prime_index[k] - 1; j >= start; j--) { |
710
|
4140185
|
|
|
|
|
|
uint32 lpf = factor_table[j]; |
711
|
4140185
|
100
|
|
|
|
|
if (lpf > pk) { |
712
|
1186073
|
|
|
|
|
|
phi_value = sieve_phi(n / (pk * (2*j+1))); |
713
|
1186073
|
100
|
|
|
|
|
if (lpf & 0x01) sum1 += phi_value; else sum2 += phi_value; |
714
|
|
|
|
|
|
|
} |
715
|
|
|
|
|
|
|
} |
716
|
3463
|
100
|
|
|
|
|
if (start < ss.prime_index[k]) |
717
|
3446
|
|
|
|
|
|
ss.prime_index[k] = start; |
718
|
|
|
|
|
|
|
} |
719
|
|
|
|
|
|
|
/* Step 7: For KM <= K < Pi_M: For primes[k+2] <= x <= M, sum |
720
|
|
|
|
|
|
|
* phi(n / (x*primes[k+1]), k). The inner for loop can be parallelized. */ |
721
|
93113
|
100
|
|
|
|
|
for (; k < step7_max; k++) { |
722
|
92246
|
|
|
|
|
|
remove_primes(k, k, &ss, primes); |
723
|
92246
|
|
|
|
|
|
j = ss.prime_index[k]; |
724
|
92246
|
100
|
|
|
|
|
if (j >= k+2) { |
725
|
91971
|
|
|
|
|
|
UV pk = primes[k+1]; |
726
|
91971
|
|
|
|
|
|
UV endj = j; |
727
|
2409155
|
50
|
|
|
|
|
while (endj > 7 && endj-7 >= k+2 && pk*primes[endj-7] > least_divisor) endj -= 8; |
|
|
100
|
|
|
|
|
|
|
|
100
|
|
|
|
|
|
728
|
413853
|
100
|
|
|
|
|
while ( endj >= k+2 && pk*primes[endj ] > least_divisor) endj--; |
|
|
100
|
|
|
|
|
|
729
|
|
|
|
|
|
|
/* Now that we know how far to go, do the summations */ |
730
|
18951325
|
100
|
|
|
|
|
for ( ; j > endj; j--) |
731
|
18859354
|
|
|
|
|
|
sum1 += sieve_phi(n / (pk*primes[j])); |
732
|
91971
|
|
|
|
|
|
ss.prime_index[k] = endj; |
733
|
|
|
|
|
|
|
} |
734
|
|
|
|
|
|
|
} |
735
|
|
|
|
|
|
|
/* Restrict work for the above loop when we know it will be empty. */ |
736
|
92918
|
100
|
|
|
|
|
while (step7_max > KM && ss.prime_index[step7_max-1] < (step7_max-1)+2) |
|
|
100
|
|
|
|
|
|
737
|
92051
|
|
|
|
|
|
step7_max--; |
738
|
|
|
|
|
|
|
|
739
|
|
|
|
|
|
|
/* Step 8: For KM <= K < K3, sum -phi(n / primes[k+1], k) */ |
740
|
867
|
|
|
|
|
|
remove_primes(k, K3, &ss, primes); |
741
|
|
|
|
|
|
|
/* Step 9: For K3 <= k < K2, sum -phi(n / primes[k+1], k) + (k-K3). */ |
742
|
1671348
|
100
|
|
|
|
|
while (prime > least_divisor && prime_index >= piM) { |
|
|
50
|
|
|
|
|
|
743
|
1670481
|
|
|
|
|
|
sum1 += prime_index - K3; |
744
|
1670481
|
|
|
|
|
|
sum2 += sieve_phi(n / prime); |
745
|
1670481
|
|
|
|
|
|
prime_index--; |
746
|
1670481
|
|
|
|
|
|
prime = prev_sieve_prime(prime); |
747
|
|
|
|
|
|
|
} |
748
|
|
|
|
|
|
|
} |
749
|
|
|
|
|
|
|
|
750
|
847
|
|
|
|
|
|
Safefree(ss.sieve); |
751
|
847
|
|
|
|
|
|
Safefree(ss.word_count); |
752
|
847
|
|
|
|
|
|
Safefree(ss.word_count_sum); |
753
|
847
|
|
|
|
|
|
Safefree(ss.totals); |
754
|
847
|
|
|
|
|
|
Safefree(ss.prime_index); |
755
|
847
|
|
|
|
|
|
Safefree(ss.first_bit_index); |
756
|
847
|
|
|
|
|
|
Safefree(ss.multiplier); |
757
|
847
|
|
|
|
|
|
Safefree(factor_table); |
758
|
847
|
|
|
|
|
|
Safefree(primes); |
759
|
|
|
|
|
|
|
|
760
|
52460
|
|
|
|
|
|
return sum1 - sum2; |
761
|
|
|
|
|
|
|
} |