line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
1
|
|
|
|
|
|
|
#include |
2
|
|
|
|
|
|
|
#include |
3
|
|
|
|
|
|
|
#include |
4
|
|
|
|
|
|
|
#include |
5
|
|
|
|
|
|
|
|
6
|
|
|
|
|
|
|
#define FUNC_isqrt 1 |
7
|
|
|
|
|
|
|
#define FUNC_icbrt 1 |
8
|
|
|
|
|
|
|
#define FUNC_gcd_ui 1 |
9
|
|
|
|
|
|
|
#define FUNC_is_perfect_square 1 |
10
|
|
|
|
|
|
|
#define FUNC_clz 1 |
11
|
|
|
|
|
|
|
#include "ptypes.h" |
12
|
|
|
|
|
|
|
#include "factor.h" |
13
|
|
|
|
|
|
|
#include "sieve.h" |
14
|
|
|
|
|
|
|
#include "util.h" |
15
|
|
|
|
|
|
|
#include "mulmod.h" |
16
|
|
|
|
|
|
|
#include "cache.h" |
17
|
|
|
|
|
|
|
#include "primality.h" |
18
|
|
|
|
|
|
|
#include "montmath.h" |
19
|
|
|
|
|
|
|
static int holf32(uint32_t n, UV *factors, uint32_t rounds); |
20
|
|
|
|
|
|
|
|
21
|
|
|
|
|
|
|
/* |
22
|
|
|
|
|
|
|
* You need to remember to use UV for unsigned and IV for signed types that |
23
|
|
|
|
|
|
|
* are large enough to hold our data. |
24
|
|
|
|
|
|
|
* If you use int, that's 32-bit on LP64 and LLP64 machines. You lose. |
25
|
|
|
|
|
|
|
* If you use long, that's 32-bit on LLP64 machines. You lose. |
26
|
|
|
|
|
|
|
* If you use long long, you may be too large which isn't so bad, but some |
27
|
|
|
|
|
|
|
* compilers may not understand the type at all. |
28
|
|
|
|
|
|
|
* perl.h already figured all this out, and provided us with these types which |
29
|
|
|
|
|
|
|
* match the native integer type used inside our Perl, so just use those. |
30
|
|
|
|
|
|
|
*/ |
31
|
|
|
|
|
|
|
|
32
|
|
|
|
|
|
|
static const unsigned short primes_small[] = |
33
|
|
|
|
|
|
|
{0,2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97, |
34
|
|
|
|
|
|
|
101,103,107,109,113,127,131,137,139,149,151,157,163,167,173,179,181,191, |
35
|
|
|
|
|
|
|
193,197,199,211,223,227,229,233,239,241,251,257,263,269,271,277,281,283, |
36
|
|
|
|
|
|
|
293,307,311,313,317,331,337,347,349,353,359,367,373,379,383,389,397,401, |
37
|
|
|
|
|
|
|
409,419,421,431,433,439,443,449,457,461,463,467,479,487,491,499,503,509, |
38
|
|
|
|
|
|
|
521,523,541,547,557,563,569,571,577,587,593,599,601,607,613,617,619,631, |
39
|
|
|
|
|
|
|
641,643,647,653,659,661,673,677,683,691,701,709,719,727,733,739,743,751, |
40
|
|
|
|
|
|
|
757,761,769,773,787,797,809,811,821,823,827,829,839,853,857,859,863,877, |
41
|
|
|
|
|
|
|
881,883,887,907,911,919,929,937,941,947,953,967,971,977,983,991,997,1009, |
42
|
|
|
|
|
|
|
1013,1019,1021,1031,1033,1039,1049,1051,1061,1063,1069,1087,1091,1093, |
43
|
|
|
|
|
|
|
1097,1103,1109,1117,1123,1129,1151,1153,1163,1171,1181,1187,1193,1201, |
44
|
|
|
|
|
|
|
1213,1217,1223,1229,1231,1237,1249,1259,1277,1279,1283,1289,1291,1297, |
45
|
|
|
|
|
|
|
1301,1303,1307,1319,1321,1327,1361,1367,1373,1381,1399,1409,1423,1427, |
46
|
|
|
|
|
|
|
1429,1433,1439,1447,1451,1453,1459,1471,1481,1483,1487,1489,1493,1499, |
47
|
|
|
|
|
|
|
1511,1523,1531,1543,1549,1553,1559,1567,1571,1579,1583,1597,1601,1607, |
48
|
|
|
|
|
|
|
1609,1613,1619,1621,1627,1637,1657,1663,1667,1669,1693,1697,1699,1709, |
49
|
|
|
|
|
|
|
1721,1723,1733,1741,1747,1753,1759,1777,1783,1787,1789,1801,1811,1823, |
50
|
|
|
|
|
|
|
1831,1847,1861,1867,1871,1873,1877,1879,1889,1901,1907,1913,1931,1933, |
51
|
|
|
|
|
|
|
1949,1951,1973,1979,1987,1993,1997,1999,2003,2011}; |
52
|
|
|
|
|
|
|
#define NPRIMES_SMALL (sizeof(primes_small)/sizeof(primes_small[0])) |
53
|
|
|
|
|
|
|
|
54
|
34004
|
|
|
|
|
|
static int _small_trial_factor(UV n, UV *factors, UV *newn, uint32_t *lastf) |
55
|
|
|
|
|
|
|
{ |
56
|
34004
|
|
|
|
|
|
int nfactors = 0; |
57
|
34004
|
|
|
|
|
|
uint32_t f = 7; |
58
|
|
|
|
|
|
|
|
59
|
34004
|
100
|
|
|
|
|
if (n > 1) { |
60
|
48737
|
100
|
|
|
|
|
while ( (n & 1) == 0 ) { factors[nfactors++] = 2; n /= 2; } |
61
|
44379
|
100
|
|
|
|
|
while ( (n % 3) == 0 ) { factors[nfactors++] = 3; n /= 3; } |
62
|
39785
|
100
|
|
|
|
|
while ( (n % 5) == 0 ) { factors[nfactors++] = 5; n /= 5; } |
63
|
|
|
|
|
|
|
} |
64
|
|
|
|
|
|
|
|
65
|
34004
|
100
|
|
|
|
|
if (f*f <= n) { |
66
|
26728
|
|
|
|
|
|
uint32_t const lastsp = 83; |
67
|
26728
|
|
|
|
|
|
uint32_t sp = 4; |
68
|
|
|
|
|
|
|
/* Trial division from 7 to 421. Use 32-bit if possible. */ |
69
|
26728
|
100
|
|
|
|
|
if (n <= 4294967295U) { |
70
|
26561
|
|
|
|
|
|
uint32_t un = n; |
71
|
238949
|
100
|
|
|
|
|
while (sp < lastsp) { |
72
|
251168
|
100
|
|
|
|
|
while ( (un%f) == 0 ) { |
73
|
12438
|
|
|
|
|
|
factors[nfactors++] = f; |
74
|
12438
|
|
|
|
|
|
un /= f; |
75
|
|
|
|
|
|
|
} |
76
|
238730
|
|
|
|
|
|
f = primes_small[++sp]; |
77
|
238730
|
100
|
|
|
|
|
if (f*f > un) break; |
78
|
|
|
|
|
|
|
} |
79
|
26561
|
|
|
|
|
|
n = un; |
80
|
|
|
|
|
|
|
} else { |
81
|
12632
|
100
|
|
|
|
|
while (sp < lastsp) { |
82
|
12697
|
100
|
|
|
|
|
while ( (n%f) == 0 ) { |
83
|
220
|
|
|
|
|
|
factors[nfactors++] = f; |
84
|
220
|
|
|
|
|
|
n /= f; |
85
|
|
|
|
|
|
|
} |
86
|
12477
|
|
|
|
|
|
f = primes_small[++sp]; |
87
|
12477
|
100
|
|
|
|
|
if (f*f > n) break; |
88
|
|
|
|
|
|
|
} |
89
|
|
|
|
|
|
|
} |
90
|
|
|
|
|
|
|
/* If n is small and still composite, finish it here */ |
91
|
26728
|
100
|
|
|
|
|
if (n < 2011*2011 && f*f <= n) { /* Trial division from 431 to 2003 */ |
|
|
100
|
|
|
|
|
|
92
|
65
|
|
|
|
|
|
uint32_t un = n; |
93
|
5934
|
50
|
|
|
|
|
while (sp < NPRIMES_SMALL) { |
94
|
5955
|
100
|
|
|
|
|
while ( (un%f) == 0 ) { |
95
|
21
|
|
|
|
|
|
factors[nfactors++] = f; |
96
|
21
|
|
|
|
|
|
un /= f; |
97
|
|
|
|
|
|
|
} |
98
|
5934
|
|
|
|
|
|
f = primes_small[++sp]; |
99
|
5934
|
100
|
|
|
|
|
if (f*f > un) break; |
100
|
|
|
|
|
|
|
} |
101
|
65
|
|
|
|
|
|
n = un; |
102
|
|
|
|
|
|
|
} |
103
|
|
|
|
|
|
|
} |
104
|
34004
|
100
|
|
|
|
|
if (f*f > n && n != 1) { |
|
|
100
|
|
|
|
|
|
105
|
30179
|
|
|
|
|
|
factors[nfactors++] = n; |
106
|
30179
|
|
|
|
|
|
n = 1; |
107
|
|
|
|
|
|
|
} |
108
|
34004
|
50
|
|
|
|
|
if (newn) *newn = n; |
109
|
34004
|
50
|
|
|
|
|
if (lastf) *lastf = f; |
110
|
34004
|
|
|
|
|
|
return nfactors; |
111
|
|
|
|
|
|
|
} |
112
|
|
|
|
|
|
|
|
113
|
205
|
|
|
|
|
|
static int _power_factor(UV n, UV *factors) |
114
|
|
|
|
|
|
|
{ |
115
|
205
|
|
|
|
|
|
int nfactors, i, j, k = powerof(n); |
116
|
205
|
100
|
|
|
|
|
if (k > 1) { |
117
|
5
|
|
|
|
|
|
UV p = rootof(n, k); |
118
|
5
|
|
|
|
|
|
nfactors = factor(p, factors); |
119
|
17
|
100
|
|
|
|
|
for (i = nfactors; i >= 0; i--) |
120
|
38
|
100
|
|
|
|
|
for (j = 0; j < k; j++) |
121
|
26
|
|
|
|
|
|
factors[k*i+j] = factors[i]; |
122
|
5
|
|
|
|
|
|
return k*nfactors; |
123
|
|
|
|
|
|
|
} |
124
|
200
|
|
|
|
|
|
factors[0] = n; |
125
|
200
|
|
|
|
|
|
return 1; |
126
|
|
|
|
|
|
|
} |
127
|
|
|
|
|
|
|
|
128
|
|
|
|
|
|
|
/* Find one factor of an input n. */ |
129
|
190
|
|
|
|
|
|
int factor_one(UV n, UV *factors, int primality, int trial) |
130
|
|
|
|
|
|
|
{ |
131
|
|
|
|
|
|
|
int nfactors; |
132
|
190
|
50
|
|
|
|
|
if (n < 4) { |
133
|
0
|
|
|
|
|
|
factors[0] = n; |
134
|
0
|
|
|
|
|
|
return (n == 1) ? 0 : 1; |
135
|
|
|
|
|
|
|
} |
136
|
|
|
|
|
|
|
/* TODO: deal with small n */ |
137
|
190
|
50
|
|
|
|
|
if (trial) { |
138
|
|
|
|
|
|
|
uint32_t sp, f; |
139
|
0
|
0
|
|
|
|
|
if (!(n&1)) { factors[0] = 2; factors[1] = n >> 1; return 2; } |
140
|
0
|
0
|
|
|
|
|
if (!(n%3)) { factors[0] = 3; factors[1] = n / 3; return 2; } |
141
|
0
|
0
|
|
|
|
|
if (!(n%5)) { factors[0] = 5; factors[1] = n / 5; return 2; } |
142
|
0
|
0
|
|
|
|
|
for (sp = 4; (f = primes_small[sp]) < 2011; sp++) { |
143
|
0
|
0
|
|
|
|
|
if ( (n % f) == 0 ) |
144
|
0
|
|
|
|
|
|
{ factors[0] = f; factors[1] = n/f; return 2; } |
145
|
|
|
|
|
|
|
} |
146
|
0
|
0
|
|
|
|
|
if (n < f*f) { factors[0] = n; return 1; } |
147
|
|
|
|
|
|
|
} |
148
|
190
|
50
|
|
|
|
|
if (primality && is_prime(n)) { |
|
|
0
|
|
|
|
|
|
149
|
0
|
|
|
|
|
|
factors[0] = n; |
150
|
0
|
|
|
|
|
|
return 1; |
151
|
|
|
|
|
|
|
} |
152
|
|
|
|
|
|
|
#if 0 /* Simple solution, just fine on x86_64 */ |
153
|
|
|
|
|
|
|
nfactors = (n < 1073741824UL) ? holf32(n, factors, 1000000) |
154
|
|
|
|
|
|
|
: pbrent_factor(n, factors, 500000, 1); |
155
|
|
|
|
|
|
|
if (nfactors < 2) croak("factor_one failed on %lu\n", n); |
156
|
|
|
|
|
|
|
#endif |
157
|
|
|
|
|
|
|
{ |
158
|
|
|
|
|
|
|
/* Adjust the number of rounds based on the number size and speed */ |
159
|
190
|
50
|
|
|
|
|
UV const nbits = BITS_PER_WORD - clz(n); |
160
|
|
|
|
|
|
|
#if USE_MONTMATH |
161
|
190
|
100
|
|
|
|
|
UV const br_rounds = 8000 + (9000 * ((nbits <= 45) ? 0 : (nbits-45))); |
162
|
190
|
|
|
|
|
|
UV const sq_rounds = 200000; |
163
|
|
|
|
|
|
|
#elif MULMODS_ARE_FAST |
164
|
|
|
|
|
|
|
UV const br_rounds = 500 + ( 200 * ((nbits <= 45) ? 0 : (nbits-45))); |
165
|
|
|
|
|
|
|
UV const sq_rounds = 100000; |
166
|
|
|
|
|
|
|
#else |
167
|
|
|
|
|
|
|
UV const br_rounds = (nbits >= 63) ? 120000 : (nbits >= 58) ? 500 : 0; |
168
|
|
|
|
|
|
|
UV const sq_rounds = 200000; |
169
|
|
|
|
|
|
|
#endif |
170
|
|
|
|
|
|
|
|
171
|
|
|
|
|
|
|
#if BITS_PER_WORD == 64 |
172
|
|
|
|
|
|
|
/* For small semiprimes the fastest solution is HOLF under 32, then |
173
|
|
|
|
|
|
|
* Lehman (no trial) under 38. However on random inputs, HOLF is |
174
|
|
|
|
|
|
|
* best only under 28-30 bits, and adding Lehman is always slower. */ |
175
|
190
|
100
|
|
|
|
|
if (nbits <= 30) { /* This should always succeed */ |
176
|
35
|
|
|
|
|
|
nfactors = holf32(n, factors, 1000000); |
177
|
35
|
50
|
|
|
|
|
if (nfactors > 1) return nfactors; |
178
|
|
|
|
|
|
|
} |
179
|
|
|
|
|
|
|
#endif |
180
|
|
|
|
|
|
|
/* Almost all inputs are factored here */ |
181
|
155
|
50
|
|
|
|
|
if (br_rounds > 0) { |
182
|
155
|
|
|
|
|
|
nfactors = pbrent_factor(n, factors, br_rounds, 1); |
183
|
155
|
50
|
|
|
|
|
if (nfactors > 1) return nfactors; |
184
|
|
|
|
|
|
|
} |
185
|
|
|
|
|
|
|
#if USE_MONTMATH |
186
|
0
|
|
|
|
|
|
nfactors = pbrent_factor(n, factors, 2*br_rounds, 3); |
187
|
0
|
0
|
|
|
|
|
if (nfactors > 1) return nfactors; |
188
|
|
|
|
|
|
|
#endif |
189
|
|
|
|
|
|
|
/* Random 64-bit inputs at this point: |
190
|
|
|
|
|
|
|
* About 3.1% are small enough that we did with HOLF. |
191
|
|
|
|
|
|
|
* montmath: 96.89% pbrent, 0.01% pbrent2 |
192
|
|
|
|
|
|
|
* fast: 73.43% pbrent, 21.97% squfof, 1.09% p-1, 0.49% prho, long |
193
|
|
|
|
|
|
|
* slow: 75.34% squfof, 19.47% pbrent, 0.20% p-1, 0.06% prho |
194
|
|
|
|
|
|
|
*/ |
195
|
|
|
|
|
|
|
/* SQUFOF with these parameters gets 99.9% of everything left */ |
196
|
0
|
0
|
|
|
|
|
if (nbits <= 62) { |
197
|
0
|
|
|
|
|
|
nfactors = squfof_factor(n, factors, sq_rounds); |
198
|
0
|
0
|
|
|
|
|
if (nfactors > 1) return nfactors; |
199
|
|
|
|
|
|
|
} |
200
|
|
|
|
|
|
|
/* At this point we should only have 16+ digit semiprimes. */ |
201
|
0
|
|
|
|
|
|
nfactors = pminus1_factor(n, factors, 8000, 120000); |
202
|
0
|
0
|
|
|
|
|
if (nfactors > 1) return nfactors; |
203
|
|
|
|
|
|
|
/* Get the stragglers */ |
204
|
0
|
|
|
|
|
|
nfactors = prho_factor(n, factors, 120000); |
205
|
0
|
0
|
|
|
|
|
if (nfactors > 1) return nfactors; |
206
|
0
|
|
|
|
|
|
nfactors = pbrent_factor(n, factors, 500000, 5); |
207
|
0
|
0
|
|
|
|
|
if (nfactors > 1) return nfactors; |
208
|
0
|
|
|
|
|
|
nfactors = prho_factor(n, factors, 120000); |
209
|
0
|
0
|
|
|
|
|
if (nfactors > 1) return nfactors; |
210
|
0
|
|
|
|
|
|
croak("factor_one failed on %lu\n", n); |
211
|
|
|
|
|
|
|
} |
212
|
|
|
|
|
|
|
return nfactors; |
213
|
|
|
|
|
|
|
} |
214
|
|
|
|
|
|
|
|
215
|
|
|
|
|
|
|
/******************************************************************************/ |
216
|
|
|
|
|
|
|
/* Main factor loop */ |
217
|
|
|
|
|
|
|
/* */ |
218
|
|
|
|
|
|
|
/* Puts factors in factors[] and returns the number found. */ |
219
|
|
|
|
|
|
|
/******************************************************************************/ |
220
|
34004
|
|
|
|
|
|
int factor(UV n, UV *factors) |
221
|
|
|
|
|
|
|
{ |
222
|
|
|
|
|
|
|
UV tofac_stack[MPU_MAX_FACTORS+1]; |
223
|
34004
|
|
|
|
|
|
int nsmallfactors, npowerfactors, nfactors, i, j, ntofac = 0; |
224
|
|
|
|
|
|
|
uint32_t f; |
225
|
|
|
|
|
|
|
|
226
|
34004
|
|
|
|
|
|
nfactors = _small_trial_factor(n, factors, &n, &f); |
227
|
34004
|
100
|
|
|
|
|
if (n == 1) return nfactors; |
228
|
|
|
|
|
|
|
|
229
|
|
|
|
|
|
|
#if BITS_PER_WORD == 64 |
230
|
|
|
|
|
|
|
/* For small values less than f^3, use simple factor to split semiprime */ |
231
|
309
|
100
|
|
|
|
|
if (n < 100000000 && n < f*f*f) { |
|
|
100
|
|
|
|
|
|
232
|
104
|
100
|
|
|
|
|
if (MR32(n)) factors[nfactors++] = n; |
233
|
52
|
|
|
|
|
|
else nfactors += holf32(n, factors+nfactors, 10000); |
234
|
104
|
|
|
|
|
|
return nfactors; |
235
|
|
|
|
|
|
|
} |
236
|
|
|
|
|
|
|
#endif |
237
|
|
|
|
|
|
|
|
238
|
205
|
|
|
|
|
|
nsmallfactors = nfactors; |
239
|
|
|
|
|
|
|
|
240
|
|
|
|
|
|
|
/* Perfect powers. Factor root only once. */ |
241
|
205
|
|
|
|
|
|
npowerfactors = _power_factor(n, factors+nsmallfactors); |
242
|
205
|
100
|
|
|
|
|
if (npowerfactors > 1) return nsmallfactors + npowerfactors; |
243
|
|
|
|
|
|
|
|
244
|
|
|
|
|
|
|
/* loop over each remaining factor, until ntofac == 0 */ |
245
|
|
|
|
|
|
|
do { |
246
|
530
|
100
|
|
|
|
|
while ( (n >= f*f) && (!is_def_prime(n)) ) { |
|
|
100
|
|
|
|
|
|
|
|
100
|
|
|
|
|
|
|
|
100
|
|
|
|
|
|
247
|
165
|
|
|
|
|
|
int split_success = factor_one(n, tofac_stack+ntofac, 0, 0) - 1; |
248
|
165
|
50
|
|
|
|
|
if (split_success != 1 || tofac_stack[ntofac] == 1 || tofac_stack[ntofac] == n) |
|
|
50
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
249
|
0
|
|
|
|
|
|
croak("internal: factor_one failed to factor %"UVuf"\n", n); |
250
|
165
|
|
|
|
|
|
ntofac++; /* Leave one on the to-be-factored stack */ |
251
|
165
|
|
|
|
|
|
n = tofac_stack[ntofac]; /* Set n to the other one */ |
252
|
|
|
|
|
|
|
} |
253
|
|
|
|
|
|
|
/* n is now prime (or 1), so add to already-factored stack */ |
254
|
365
|
50
|
|
|
|
|
if (n != 1) factors[nfactors++] = n; |
255
|
|
|
|
|
|
|
/* Pop the next number off the to-factor stack */ |
256
|
365
|
100
|
|
|
|
|
if (ntofac > 0) n = tofac_stack[ntofac-1]; |
257
|
365
|
100
|
|
|
|
|
} while (ntofac-- > 0); |
258
|
|
|
|
|
|
|
|
259
|
|
|
|
|
|
|
/* Sort the non-small factors */ |
260
|
365
|
100
|
|
|
|
|
for (i = nsmallfactors+1; i < nfactors; i++) { |
261
|
165
|
|
|
|
|
|
UV fi = factors[i]; |
262
|
358
|
100
|
|
|
|
|
for (j = i; j > 0 && factors[j-1] > fi; j--) |
|
|
100
|
|
|
|
|
|
263
|
193
|
|
|
|
|
|
factors[j] = factors[j-1]; |
264
|
165
|
|
|
|
|
|
factors[j] = fi; |
265
|
|
|
|
|
|
|
} |
266
|
34004
|
|
|
|
|
|
return nfactors; |
267
|
|
|
|
|
|
|
} |
268
|
|
|
|
|
|
|
|
269
|
|
|
|
|
|
|
|
270
|
12675
|
|
|
|
|
|
int factor_exp(UV n, UV *factors, UV* exponents) |
271
|
|
|
|
|
|
|
{ |
272
|
12675
|
|
|
|
|
|
int i = 1, j = 1, nfactors; |
273
|
|
|
|
|
|
|
|
274
|
12675
|
100
|
|
|
|
|
if (n == 1) return 0; |
275
|
12664
|
|
|
|
|
|
nfactors = factor(n, factors); |
276
|
|
|
|
|
|
|
|
277
|
12664
|
100
|
|
|
|
|
if (exponents == 0) { |
278
|
218
|
100
|
|
|
|
|
for (; i < nfactors; i++) |
279
|
165
|
100
|
|
|
|
|
if (factors[i] != factors[i-1]) |
280
|
111
|
|
|
|
|
|
factors[j++] = factors[i]; |
281
|
|
|
|
|
|
|
} else { |
282
|
12611
|
|
|
|
|
|
exponents[0] = 1; |
283
|
29074
|
100
|
|
|
|
|
for (; i < nfactors; i++) { |
284
|
16463
|
100
|
|
|
|
|
if (factors[i] != factors[i-1]) { |
285
|
12924
|
|
|
|
|
|
exponents[j] = 1; |
286
|
12924
|
|
|
|
|
|
factors[j++] = factors[i]; |
287
|
|
|
|
|
|
|
} else { |
288
|
3539
|
|
|
|
|
|
exponents[j-1]++; |
289
|
|
|
|
|
|
|
} |
290
|
|
|
|
|
|
|
} |
291
|
|
|
|
|
|
|
} |
292
|
12664
|
|
|
|
|
|
return j; |
293
|
|
|
|
|
|
|
} |
294
|
|
|
|
|
|
|
|
295
|
1619
|
|
|
|
|
|
int trial_factor(UV n, UV *factors, UV f, UV last) |
296
|
|
|
|
|
|
|
{ |
297
|
1619
|
|
|
|
|
|
int sp, nfactors = 0; |
298
|
|
|
|
|
|
|
|
299
|
1619
|
50
|
|
|
|
|
if (f < 2) f = 2; |
300
|
1619
|
100
|
|
|
|
|
if (last == 0 || last*last > n) last = UV_MAX; |
|
|
100
|
|
|
|
|
|
301
|
|
|
|
|
|
|
|
302
|
1619
|
100
|
|
|
|
|
if (n < 4 || last < f) { |
|
|
50
|
|
|
|
|
|
303
|
8
|
|
|
|
|
|
factors[0] = n; |
304
|
8
|
|
|
|
|
|
return (n == 1) ? 0 : 1; |
305
|
|
|
|
|
|
|
} |
306
|
|
|
|
|
|
|
|
307
|
|
|
|
|
|
|
/* possibly do uint32_t specific code here */ |
308
|
|
|
|
|
|
|
|
309
|
1611
|
50
|
|
|
|
|
if (f < primes_small[NPRIMES_SMALL-1]) { |
310
|
3232
|
100
|
|
|
|
|
while ( (n & 1) == 0 ) { factors[nfactors++] = 2; n >>= 1; } |
311
|
2415
|
100
|
|
|
|
|
if (3<=last) while ( (n % 3) == 0 ) { factors[nfactors++] = 3; n /= 3; } |
|
|
100
|
|
|
|
|
|
312
|
1983
|
100
|
|
|
|
|
if (5<=last) while ( (n % 5) == 0 ) { factors[nfactors++] = 5; n /= 5; } |
|
|
100
|
|
|
|
|
|
313
|
5601
|
100
|
|
|
|
|
for (sp = 4; sp < (int)NPRIMES_SMALL; sp++) { |
314
|
5598
|
|
|
|
|
|
f = primes_small[sp]; |
315
|
5598
|
100
|
|
|
|
|
if (f*f > n || f > last) break; |
|
|
100
|
|
|
|
|
|
316
|
4374
|
100
|
|
|
|
|
while ( (n%f) == 0 ) { |
317
|
384
|
|
|
|
|
|
factors[nfactors++] = f; |
318
|
384
|
|
|
|
|
|
n /= f; |
319
|
|
|
|
|
|
|
} |
320
|
|
|
|
|
|
|
} |
321
|
|
|
|
|
|
|
} |
322
|
|
|
|
|
|
|
/* Trial division using a mod-30 wheel for larger values */ |
323
|
1611
|
100
|
|
|
|
|
if (f*f <= n && f <= last) { |
|
|
100
|
|
|
|
|
|
324
|
3
|
|
|
|
|
|
UV m, newlimit, limit = isqrt(n); |
325
|
3
|
100
|
|
|
|
|
if (limit > last) limit = last; |
326
|
3
|
|
|
|
|
|
m = f % 30; |
327
|
7906
|
100
|
|
|
|
|
while (f <= limit) { |
328
|
7903
|
100
|
|
|
|
|
if ( (n%f) == 0 ) { |
329
|
|
|
|
|
|
|
do { |
330
|
2
|
|
|
|
|
|
factors[nfactors++] = f; |
331
|
2
|
|
|
|
|
|
n /= f; |
332
|
2
|
50
|
|
|
|
|
} while ( (n%f) == 0 ); |
333
|
2
|
|
|
|
|
|
newlimit = isqrt(n); |
334
|
2
|
50
|
|
|
|
|
if (newlimit < limit) limit = newlimit; |
335
|
|
|
|
|
|
|
} |
336
|
7903
|
|
|
|
|
|
f += wheeladvance30[m]; |
337
|
7903
|
|
|
|
|
|
m = nextwheel30[m]; |
338
|
|
|
|
|
|
|
} |
339
|
|
|
|
|
|
|
} |
340
|
|
|
|
|
|
|
/* All done! */ |
341
|
1611
|
100
|
|
|
|
|
if (n != 1) |
342
|
1485
|
|
|
|
|
|
factors[nfactors++] = n; |
343
|
1611
|
|
|
|
|
|
return nfactors; |
344
|
|
|
|
|
|
|
} |
345
|
|
|
|
|
|
|
|
346
|
|
|
|
|
|
|
|
347
|
3834
|
|
|
|
|
|
static void _divisors_from_factors(UV nfactors, UV* fp, UV* fe, UV* res) { |
348
|
3834
|
|
|
|
|
|
UV s, count = 1; |
349
|
|
|
|
|
|
|
|
350
|
3834
|
|
|
|
|
|
res[0] = 1; |
351
|
12779
|
100
|
|
|
|
|
for (s = 0; s < nfactors; s++) { |
352
|
8945
|
|
|
|
|
|
UV i, j, scount = count, p = fp[s], e = fe[s], mult = 1; |
353
|
21065
|
100
|
|
|
|
|
for (j = 0; j < e; j++) { |
354
|
12120
|
|
|
|
|
|
mult *= p; |
355
|
40537
|
100
|
|
|
|
|
for (i = 0; i < scount; i++) |
356
|
28417
|
|
|
|
|
|
res[count++] = res[i] * mult; |
357
|
|
|
|
|
|
|
} |
358
|
|
|
|
|
|
|
} |
359
|
3834
|
|
|
|
|
|
} |
360
|
|
|
|
|
|
|
|
361
|
3838
|
|
|
|
|
|
UV* _divisor_list(UV n, UV *num_divisors) |
362
|
|
|
|
|
|
|
{ |
363
|
|
|
|
|
|
|
UV factors[MPU_MAX_FACTORS+1]; |
364
|
|
|
|
|
|
|
UV exponents[MPU_MAX_FACTORS+1]; |
365
|
|
|
|
|
|
|
UV* divs; |
366
|
|
|
|
|
|
|
int i, nfactors, ndivisors; |
367
|
|
|
|
|
|
|
|
368
|
3838
|
100
|
|
|
|
|
if (n <= 1) { |
369
|
4
|
|
|
|
|
|
New(0, divs, 2, UV); |
370
|
4
|
100
|
|
|
|
|
if (n == 0) { divs[0] = 0; divs[1] = 1; *num_divisors = 2; } |
371
|
4
|
100
|
|
|
|
|
if (n == 1) { divs[0] = 1; *num_divisors = 1; } |
372
|
4
|
|
|
|
|
|
return divs; |
373
|
|
|
|
|
|
|
} |
374
|
|
|
|
|
|
|
/* Factor and convert to factor/exponent pair */ |
375
|
3834
|
|
|
|
|
|
nfactors = factor_exp(n, factors, exponents); |
376
|
|
|
|
|
|
|
/* Calculate number of divisors, allocate space, fill with divisors */ |
377
|
3834
|
|
|
|
|
|
ndivisors = exponents[0] + 1; |
378
|
8945
|
100
|
|
|
|
|
for (i = 1; i < nfactors; i++) |
379
|
5111
|
|
|
|
|
|
ndivisors *= (exponents[i] + 1); |
380
|
3834
|
50
|
|
|
|
|
New(0, divs, ndivisors, UV); |
381
|
3834
|
|
|
|
|
|
_divisors_from_factors(nfactors, factors, exponents, divs); |
382
|
|
|
|
|
|
|
/* Sort divisors (numeric ascending) */ |
383
|
3834
|
|
|
|
|
|
qsort(divs, ndivisors, sizeof(UV), _numcmp); |
384
|
|
|
|
|
|
|
/* Return number of divisors and list */ |
385
|
3834
|
|
|
|
|
|
*num_divisors = ndivisors; |
386
|
3838
|
|
|
|
|
|
return divs; |
387
|
|
|
|
|
|
|
} |
388
|
|
|
|
|
|
|
|
389
|
|
|
|
|
|
|
|
390
|
|
|
|
|
|
|
/* The usual method, on OEIS for instance, is: |
391
|
|
|
|
|
|
|
* (p^(k*(e+1))-1) / (p^k-1) |
392
|
|
|
|
|
|
|
* but that overflows quicky. Instead we rearrange as: |
393
|
|
|
|
|
|
|
* 1 + p^k + p^k^2 + ... p^k^e |
394
|
|
|
|
|
|
|
* Return 0 if the result overflowed. |
395
|
|
|
|
|
|
|
*/ |
396
|
|
|
|
|
|
|
static const UV sigma_overflow[11] = |
397
|
|
|
|
|
|
|
#if BITS_PER_WORD == 64 |
398
|
|
|
|
|
|
|
{UVCONST(3000000000000000000),UVCONST(3000000000),2487240,64260,7026, |
399
|
|
|
|
|
|
|
1622, 566, 256, 139, 85, 57}; |
400
|
|
|
|
|
|
|
#else |
401
|
|
|
|
|
|
|
{UVCONST(845404560), 52560, 1548, 252, 84, 41, 24, 16, 12, 10, 8}; |
402
|
|
|
|
|
|
|
#endif |
403
|
1505
|
|
|
|
|
|
UV divisor_sum(UV n, UV k) |
404
|
|
|
|
|
|
|
{ |
405
|
|
|
|
|
|
|
UV factors[MPU_MAX_FACTORS+1]; |
406
|
|
|
|
|
|
|
int nfac, i, j; |
407
|
1505
|
|
|
|
|
|
UV product = 1; |
408
|
|
|
|
|
|
|
|
409
|
1505
|
50
|
|
|
|
|
if (k > 11 || (k > 0 && n >= sigma_overflow[k-1])) return 0; |
|
|
100
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
410
|
1505
|
100
|
|
|
|
|
if (n <= 1) /* n=0 divisors are [0,1] */ |
411
|
287
|
100
|
|
|
|
|
return (n == 1) ? 1 : (k == 0) ? 2 : 1; /* n=1 divisors are [1] */ |
|
|
100
|
|
|
|
|
|
412
|
1218
|
|
|
|
|
|
nfac = factor(n,factors); |
413
|
1218
|
100
|
|
|
|
|
if (k == 0) { |
414
|
2339
|
100
|
|
|
|
|
for (i = 0; i < nfac; i++) { |
415
|
1365
|
|
|
|
|
|
UV e = 1, f = factors[i]; |
416
|
1806
|
100
|
|
|
|
|
while (i+1 < nfac && f == factors[i+1]) { e++; i++; } |
|
|
100
|
|
|
|
|
|
417
|
1365
|
|
|
|
|
|
product *= (e+1); |
418
|
|
|
|
|
|
|
} |
419
|
244
|
100
|
|
|
|
|
} else if (k == 1) { |
420
|
427
|
100
|
|
|
|
|
for (i = 0; i < nfac; i++) { |
421
|
270
|
|
|
|
|
|
UV f = factors[i]; |
422
|
270
|
|
|
|
|
|
UV pke = f, fmult = 1 + f; |
423
|
372
|
100
|
|
|
|
|
while (i+1 < nfac && f == factors[i+1]) { |
|
|
100
|
|
|
|
|
|
424
|
102
|
|
|
|
|
|
pke *= f; |
425
|
102
|
|
|
|
|
|
fmult += pke; |
426
|
102
|
|
|
|
|
|
i++; |
427
|
|
|
|
|
|
|
} |
428
|
270
|
|
|
|
|
|
product *= fmult; |
429
|
|
|
|
|
|
|
} |
430
|
|
|
|
|
|
|
} else { |
431
|
222
|
100
|
|
|
|
|
for (i = 0; i < nfac; i++) { |
432
|
135
|
|
|
|
|
|
UV f = factors[i]; |
433
|
135
|
|
|
|
|
|
UV fmult, pke, pk = f; |
434
|
328
|
100
|
|
|
|
|
for (j = 1; j < (int)k; j++) pk *= f; |
435
|
135
|
|
|
|
|
|
fmult = 1 + pk; |
436
|
135
|
|
|
|
|
|
pke = pk; |
437
|
188
|
100
|
|
|
|
|
while (i+1 < nfac && f == factors[i+1]) { |
|
|
100
|
|
|
|
|
|
438
|
53
|
|
|
|
|
|
pke *= pk; |
439
|
53
|
|
|
|
|
|
fmult += pke; |
440
|
53
|
|
|
|
|
|
i++; |
441
|
|
|
|
|
|
|
} |
442
|
135
|
|
|
|
|
|
product *= fmult; |
443
|
|
|
|
|
|
|
} |
444
|
|
|
|
|
|
|
} |
445
|
1505
|
|
|
|
|
|
return product; |
446
|
|
|
|
|
|
|
} |
447
|
|
|
|
|
|
|
|
448
|
|
|
|
|
|
|
|
449
|
|
|
|
|
|
|
|
450
|
|
|
|
|
|
|
|
451
|
255
|
|
|
|
|
|
static int found_factor(UV n, UV f, UV* factors) |
452
|
|
|
|
|
|
|
{ |
453
|
255
|
|
|
|
|
|
UV f2 = n/f; |
454
|
255
|
|
|
|
|
|
int i = f > f2; |
455
|
255
|
50
|
|
|
|
|
if (f == 1 || f2 == 1) { |
|
|
50
|
|
|
|
|
|
456
|
0
|
|
|
|
|
|
factors[0] = n; |
457
|
0
|
|
|
|
|
|
return 1; |
458
|
|
|
|
|
|
|
} |
459
|
255
|
|
|
|
|
|
factors[i] = f; |
460
|
255
|
|
|
|
|
|
factors[1-i] = f2; |
461
|
255
|
50
|
|
|
|
|
MPUassert( factors[0] * factors[1] == n , "incorrect factoring"); |
462
|
255
|
|
|
|
|
|
return 2; |
463
|
|
|
|
|
|
|
} |
464
|
|
|
|
|
|
|
|
465
|
|
|
|
|
|
|
/* Knuth volume 2, algorithm C. |
466
|
|
|
|
|
|
|
* Can't compete with HOLF, SQUFOF, pbrent, etc. |
467
|
|
|
|
|
|
|
*/ |
468
|
2
|
|
|
|
|
|
int fermat_factor(UV n, UV *factors, UV rounds) |
469
|
|
|
|
|
|
|
{ |
470
|
|
|
|
|
|
|
IV sqn, x, y, r; |
471
|
2
|
50
|
|
|
|
|
MPUassert( (n >= 3) && ((n%2) != 0) , "bad n in fermat_factor"); |
|
|
50
|
|
|
|
|
|
472
|
2
|
|
|
|
|
|
sqn = isqrt(n); |
473
|
2
|
|
|
|
|
|
x = 2 * sqn + 1; |
474
|
2
|
|
|
|
|
|
y = 1; |
475
|
2
|
|
|
|
|
|
r = (sqn*sqn) - n; |
476
|
|
|
|
|
|
|
|
477
|
10
|
100
|
|
|
|
|
while (r != 0) { |
478
|
8
|
50
|
|
|
|
|
if (rounds-- == 0) { factors[0] = n; return 1; } |
479
|
8
|
|
|
|
|
|
r += x; |
480
|
8
|
|
|
|
|
|
x += 2; |
481
|
|
|
|
|
|
|
do { |
482
|
26
|
|
|
|
|
|
r -= y; |
483
|
26
|
|
|
|
|
|
y += 2; |
484
|
26
|
100
|
|
|
|
|
} while (r > 0); |
485
|
|
|
|
|
|
|
} |
486
|
2
|
|
|
|
|
|
r = (x-y)/2; |
487
|
2
|
|
|
|
|
|
return found_factor(n, r, factors); |
488
|
|
|
|
|
|
|
} |
489
|
|
|
|
|
|
|
|
490
|
|
|
|
|
|
|
/* Hart's One Line Factorization. */ |
491
|
2
|
|
|
|
|
|
int holf_factor(UV n, UV *factors, UV rounds) |
492
|
|
|
|
|
|
|
{ |
493
|
|
|
|
|
|
|
UV i, s, m, f; |
494
|
|
|
|
|
|
|
|
495
|
2
|
50
|
|
|
|
|
MPUassert( (n >= 3) && ((n%2) != 0) , "bad n in holf_factor"); |
|
|
50
|
|
|
|
|
|
496
|
|
|
|
|
|
|
|
497
|
|
|
|
|
|
|
/* We skip the perfect-square test for s in the loop, so we |
498
|
|
|
|
|
|
|
* will never succeed if n is a perfect square. Test that now. */ |
499
|
2
|
50
|
|
|
|
|
if (is_perfect_square(n)) |
500
|
0
|
|
|
|
|
|
return found_factor(n, isqrt(n), factors); |
501
|
|
|
|
|
|
|
|
502
|
2
|
50
|
|
|
|
|
if (n <= (UV_MAX >> 6)) { /* Try with premultiplier first */ |
503
|
2
|
50
|
|
|
|
|
UV npre = n * ( (n <= (UV_MAX >> 13)) ? 720 : |
|
|
0
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
504
|
|
|
|
|
|
|
(n <= (UV_MAX >> 11)) ? 480 : |
505
|
|
|
|
|
|
|
(n <= (UV_MAX >> 10)) ? 360 : |
506
|
|
|
|
|
|
|
(n <= (UV_MAX >> 8)) ? 60 : 30 ); |
507
|
2
|
|
|
|
|
|
UV ni = npre; |
508
|
|
|
|
|
|
|
#if 0 /* Straightforward */ |
509
|
|
|
|
|
|
|
while (rounds--) { |
510
|
|
|
|
|
|
|
s = isqrt(ni) + 1; |
511
|
|
|
|
|
|
|
m = (s*s) - ni; |
512
|
|
|
|
|
|
|
if (is_perfect_square(m)) { |
513
|
|
|
|
|
|
|
f = gcd_ui(n, s - isqrt(m)); |
514
|
|
|
|
|
|
|
if (f > 1 && f < n) |
515
|
|
|
|
|
|
|
return found_factor(n, f, factors); |
516
|
|
|
|
|
|
|
} |
517
|
|
|
|
|
|
|
if (ni >= (ni+npre)) break; |
518
|
|
|
|
|
|
|
ni += npre; |
519
|
|
|
|
|
|
|
} |
520
|
|
|
|
|
|
|
#else /* More optimized */ |
521
|
3
|
50
|
|
|
|
|
while (rounds--) { |
522
|
3
|
|
|
|
|
|
s = 1 + (UV)sqrt((double)ni); |
523
|
3
|
|
|
|
|
|
m = (s*s) - ni; |
524
|
3
|
|
|
|
|
|
f = m & 127; |
525
|
3
|
100
|
|
|
|
|
if (!((f*0x8bc40d7d) & (f*0xa1e2f5d1) & 0x14020a)) { |
526
|
2
|
|
|
|
|
|
f = (UV)sqrt((double)m); |
527
|
2
|
50
|
|
|
|
|
if (m == f*f) { |
528
|
2
|
|
|
|
|
|
f = gcd_ui(n, s - f); |
529
|
2
|
50
|
|
|
|
|
if (f > 1 && f < n) |
|
|
50
|
|
|
|
|
|
530
|
2
|
|
|
|
|
|
return found_factor(n, f, factors); |
531
|
|
|
|
|
|
|
} |
532
|
|
|
|
|
|
|
} |
533
|
1
|
50
|
|
|
|
|
if (ni >= (ni+npre)) break; |
534
|
1
|
|
|
|
|
|
ni += npre; |
535
|
|
|
|
|
|
|
} |
536
|
|
|
|
|
|
|
#endif |
537
|
|
|
|
|
|
|
} |
538
|
|
|
|
|
|
|
|
539
|
0
|
0
|
|
|
|
|
for (i = 1; i <= rounds; i++) { |
540
|
0
|
|
|
|
|
|
s = (UV) sqrt( (double)n * (double)i ); |
541
|
|
|
|
|
|
|
/* Assume s^2 isn't a perfect square. We're rapidly losing precision |
542
|
|
|
|
|
|
|
* so we won't be able to accurately detect it anyway. */ |
543
|
0
|
|
|
|
|
|
s++; /* s = ceil(sqrt(n*i)) */ |
544
|
0
|
|
|
|
|
|
m = sqrmod(s, n); |
545
|
0
|
0
|
|
|
|
|
if (is_perfect_square(m)) { |
546
|
0
|
|
|
|
|
|
f = isqrt(m); |
547
|
0
|
0
|
|
|
|
|
f = gcd_ui( (s>f) ? s-f : f-s, n); |
548
|
|
|
|
|
|
|
/* This should always succeed, but with overflow concerns.... */ |
549
|
0
|
|
|
|
|
|
return found_factor(n, f, factors); |
550
|
|
|
|
|
|
|
} |
551
|
|
|
|
|
|
|
} |
552
|
0
|
|
|
|
|
|
factors[0] = n; |
553
|
0
|
|
|
|
|
|
return 1; |
554
|
|
|
|
|
|
|
} |
555
|
87
|
|
|
|
|
|
static int holf32(uint32_t n, UV *factors, uint32_t rounds) { |
556
|
|
|
|
|
|
|
UV npre, ni; /* These should be 64-bit */ |
557
|
|
|
|
|
|
|
uint32_t s, m, f; |
558
|
|
|
|
|
|
|
|
559
|
87
|
50
|
|
|
|
|
if (n < 3) { factors[0] = n; return 1; } |
560
|
87
|
50
|
|
|
|
|
if (!(n&1)) { factors[0] = 2; factors[1] = n/2; return 2; } |
561
|
87
|
100
|
|
|
|
|
if (is_perfect_square(n)) { factors[0] = factors[1] = isqrt(n); return 2; } |
562
|
|
|
|
|
|
|
|
563
|
86
|
|
|
|
|
|
ni = npre = (UV) n * ((BITS_PER_WORD == 64) ? 5040 : 1); |
564
|
2649
|
50
|
|
|
|
|
while (rounds--) { |
565
|
2649
|
|
|
|
|
|
s = 1 + (uint32_t)sqrt((double)ni); |
566
|
2649
|
|
|
|
|
|
m = ((UV)s*(UV)s) - ni; |
567
|
2649
|
|
|
|
|
|
f = m & 127; |
568
|
2649
|
100
|
|
|
|
|
if (!((f*0x8bc40d7d) & (f*0xa1e2f5d1) & 0x14020a)) { |
569
|
2059
|
|
|
|
|
|
f = (uint32_t)sqrt((double)m); |
570
|
2059
|
100
|
|
|
|
|
if (m == f*f) { |
571
|
86
|
|
|
|
|
|
f = gcd_ui(n, s - f); |
572
|
86
|
50
|
|
|
|
|
if (f > 1 && f < n) |
|
|
50
|
|
|
|
|
|
573
|
86
|
|
|
|
|
|
return found_factor(n, f, factors); |
574
|
|
|
|
|
|
|
} |
575
|
|
|
|
|
|
|
} |
576
|
2563
|
50
|
|
|
|
|
if (ni >= (ni+npre)) break; /* We've overflowed */ |
577
|
2563
|
|
|
|
|
|
ni += npre; |
578
|
|
|
|
|
|
|
} |
579
|
0
|
|
|
|
|
|
factors[0] = n; |
580
|
0
|
|
|
|
|
|
return 1; |
581
|
|
|
|
|
|
|
} |
582
|
|
|
|
|
|
|
|
583
|
|
|
|
|
|
|
|
584
|
|
|
|
|
|
|
#define ABSDIFF(x,y) (x>y) ? x-y : y-x |
585
|
|
|
|
|
|
|
#if USE_MONTMATH |
586
|
|
|
|
|
|
|
/* Pollard Rho with Brent's updates, using Montgomery reduction. */ |
587
|
157
|
|
|
|
|
|
int pbrent_factor(UV n, UV *factors, UV rounds, UV a) |
588
|
|
|
|
|
|
|
{ |
589
|
157
|
50
|
|
|
|
|
UV const nbits = BITS_PER_WORD - clz(n); |
590
|
157
|
100
|
|
|
|
|
const UV inner = (nbits <= 31) ? 32 : (nbits <= 35) ? 64 : (nbits <= 40) ? 160 : (nbits <= 52) ? 256 : 320; |
|
|
100
|
|
|
|
|
|
|
|
100
|
|
|
|
|
|
|
|
100
|
|
|
|
|
|
591
|
|
|
|
|
|
|
UV f, m, r, rleft, Xi, Xm, Xs; |
592
|
157
|
|
|
|
|
|
int irounds, fails = 6; |
593
|
157
|
|
|
|
|
|
const uint64_t npi = mont_inverse(n), mont1 = mont_get1(n); |
594
|
|
|
|
|
|
|
|
595
|
157
|
50
|
|
|
|
|
MPUassert( (n >= 3) && ((n%2) != 0) , "bad n in pbrent_factor"); |
|
|
50
|
|
|
|
|
|
596
|
157
|
|
|
|
|
|
r = f = 1; |
597
|
157
|
|
|
|
|
|
Xi = Xm = Xs = mont1; |
598
|
157
|
|
|
|
|
|
a = mont_geta(a,n); |
599
|
|
|
|
|
|
|
|
600
|
1219
|
50
|
|
|
|
|
while (rounds > 0) { |
601
|
1219
|
|
|
|
|
|
rleft = (r > rounds) ? rounds : r; |
602
|
1219
|
|
|
|
|
|
Xm = Xi; |
603
|
|
|
|
|
|
|
/* Do rleft rounds, inner at a time */ |
604
|
3157
|
100
|
|
|
|
|
while (rleft > 0) { |
605
|
2095
|
|
|
|
|
|
irounds = (rleft > (UV)inner) ? inner : rleft; |
606
|
2095
|
|
|
|
|
|
rleft -= irounds; |
607
|
2095
|
|
|
|
|
|
rounds -= irounds; |
608
|
2095
|
|
|
|
|
|
Xs = Xi; |
609
|
2095
|
100
|
|
|
|
|
if (n < (1ULL << 63)) { |
610
|
1741
|
|
|
|
|
|
Xi = mont_mulmod63(Xi,Xi+a,n); |
611
|
1741
|
100
|
|
|
|
|
m = ABSDIFF(Xi,Xm); |
612
|
222990
|
100
|
|
|
|
|
while (--irounds > 0) { |
613
|
221249
|
|
|
|
|
|
Xi = mont_mulmod63(Xi,Xi+a,n); |
614
|
221249
|
100
|
|
|
|
|
f = ABSDIFF(Xi,Xm); |
615
|
221249
|
|
|
|
|
|
m = mont_mulmod63(m, f, n); |
616
|
|
|
|
|
|
|
} |
617
|
354
|
50
|
|
|
|
|
} else if (a == mont1) { |
618
|
354
|
|
|
|
|
|
Xi = mont_mulmod64(Xi,Xi+a,n); |
619
|
354
|
100
|
|
|
|
|
m = ABSDIFF(Xi,Xm); |
620
|
104189
|
100
|
|
|
|
|
while (--irounds > 0) { |
621
|
103835
|
|
|
|
|
|
Xi = mont_mulmod64(Xi,Xi+a,n); |
622
|
103835
|
100
|
|
|
|
|
f = ABSDIFF(Xi,Xm); |
623
|
103835
|
|
|
|
|
|
m = mont_mulmod64(m, f, n); |
624
|
|
|
|
|
|
|
} |
625
|
|
|
|
|
|
|
} else { |
626
|
0
|
|
|
|
|
|
Xi = addmod(mont_mulmod64(Xi,Xi,n), a, n); |
627
|
0
|
0
|
|
|
|
|
m = ABSDIFF(Xi,Xm); |
628
|
0
|
0
|
|
|
|
|
while (--irounds > 0) { |
629
|
0
|
|
|
|
|
|
Xi = addmod(mont_mulmod64(Xi,Xi,n), a, n); |
630
|
0
|
0
|
|
|
|
|
f = ABSDIFF(Xi,Xm); |
631
|
0
|
|
|
|
|
|
m = mont_mulmod64(m, f, n); |
632
|
|
|
|
|
|
|
} |
633
|
|
|
|
|
|
|
} |
634
|
2095
|
|
|
|
|
|
f = gcd_ui(m, n); |
635
|
2095
|
100
|
|
|
|
|
if (f != 1) |
636
|
157
|
|
|
|
|
|
break; |
637
|
|
|
|
|
|
|
} |
638
|
|
|
|
|
|
|
/* If f == 1, then we didn't find a factor. Move on. */ |
639
|
1219
|
100
|
|
|
|
|
if (f == 1) { |
640
|
1062
|
|
|
|
|
|
r *= 2; |
641
|
1062
|
|
|
|
|
|
continue; |
642
|
|
|
|
|
|
|
} |
643
|
157
|
50
|
|
|
|
|
if (f == n) { /* back up, with safety */ |
644
|
0
|
|
|
|
|
|
Xi = Xs; |
645
|
|
|
|
|
|
|
do { |
646
|
0
|
0
|
|
|
|
|
if (n < (1ULL << 63) || a == mont1) |
|
|
0
|
|
|
|
|
|
647
|
0
|
0
|
|
|
|
|
Xi = mont_mulmod(Xi,Xi+a,n); |
648
|
|
|
|
|
|
|
else |
649
|
0
|
0
|
|
|
|
|
Xi = addmod(mont_mulmod(Xi,Xi,n),a,n); |
650
|
0
|
0
|
|
|
|
|
m = ABSDIFF(Xi,Xm); |
651
|
0
|
|
|
|
|
|
f = gcd_ui(m, n); |
652
|
0
|
0
|
|
|
|
|
} while (f == 1 && r-- != 0); |
|
|
0
|
|
|
|
|
|
653
|
|
|
|
|
|
|
} |
654
|
157
|
50
|
|
|
|
|
if (f == 0 || f == n) { |
|
|
50
|
|
|
|
|
|
655
|
0
|
0
|
|
|
|
|
if (fails-- <= 0) break; |
656
|
0
|
|
|
|
|
|
Xi = Xm = mont1; |
657
|
0
|
|
|
|
|
|
a = addmod(a, mont_geta(11,n), n); |
658
|
0
|
|
|
|
|
|
continue; |
659
|
|
|
|
|
|
|
} |
660
|
157
|
|
|
|
|
|
return found_factor(n, f, factors); |
661
|
|
|
|
|
|
|
} |
662
|
0
|
|
|
|
|
|
factors[0] = n; |
663
|
0
|
|
|
|
|
|
return 1; |
664
|
|
|
|
|
|
|
} |
665
|
|
|
|
|
|
|
#else |
666
|
|
|
|
|
|
|
/* Pollard Rho with Brent's updates. */ |
667
|
|
|
|
|
|
|
int pbrent_factor(UV n, UV *factors, UV rounds, UV a) |
668
|
|
|
|
|
|
|
{ |
669
|
|
|
|
|
|
|
UV f, m, r, Xi, Xm; |
670
|
|
|
|
|
|
|
const UV inner = (n <= 4000000000UL) ? 32 : 160; |
671
|
|
|
|
|
|
|
int fails = 6; |
672
|
|
|
|
|
|
|
|
673
|
|
|
|
|
|
|
MPUassert( (n >= 3) && ((n%2) != 0) , "bad n in pbrent_factor"); |
674
|
|
|
|
|
|
|
|
675
|
|
|
|
|
|
|
r = f = Xi = Xm = 1; |
676
|
|
|
|
|
|
|
while (rounds > 0) { |
677
|
|
|
|
|
|
|
UV rleft = (r > rounds) ? rounds : r; |
678
|
|
|
|
|
|
|
UV saveXi = Xi; |
679
|
|
|
|
|
|
|
/* Do rleft rounds, inner at a time */ |
680
|
|
|
|
|
|
|
while (rleft > 0) { |
681
|
|
|
|
|
|
|
UV dorounds = (rleft > inner) ? inner : rleft; |
682
|
|
|
|
|
|
|
saveXi = Xi; |
683
|
|
|
|
|
|
|
rleft -= dorounds; |
684
|
|
|
|
|
|
|
rounds -= dorounds; |
685
|
|
|
|
|
|
|
Xi = sqraddmod(Xi, a, n); /* First iteration, no mulmod needed */ |
686
|
|
|
|
|
|
|
m = ABSDIFF(Xi,Xm); |
687
|
|
|
|
|
|
|
while (--dorounds > 0) { /* Now do inner-1=63 more iterations */ |
688
|
|
|
|
|
|
|
Xi = sqraddmod(Xi, a, n); |
689
|
|
|
|
|
|
|
f = ABSDIFF(Xi,Xm); |
690
|
|
|
|
|
|
|
m = mulmod(m, f, n); |
691
|
|
|
|
|
|
|
} |
692
|
|
|
|
|
|
|
f = gcd_ui(m, n); |
693
|
|
|
|
|
|
|
if (f != 1) |
694
|
|
|
|
|
|
|
break; |
695
|
|
|
|
|
|
|
} |
696
|
|
|
|
|
|
|
/* If f == 1, then we didn't find a factor. Move on. */ |
697
|
|
|
|
|
|
|
if (f == 1) { |
698
|
|
|
|
|
|
|
r *= 2; |
699
|
|
|
|
|
|
|
Xm = Xi; |
700
|
|
|
|
|
|
|
continue; |
701
|
|
|
|
|
|
|
} |
702
|
|
|
|
|
|
|
if (f == n) { /* back up, with safety */ |
703
|
|
|
|
|
|
|
Xi = saveXi; |
704
|
|
|
|
|
|
|
do { |
705
|
|
|
|
|
|
|
Xi = sqraddmod(Xi, a, n); |
706
|
|
|
|
|
|
|
f = gcd_ui( ABSDIFF(Xi,Xm), n); |
707
|
|
|
|
|
|
|
} while (f == 1 && r-- != 0); |
708
|
|
|
|
|
|
|
} |
709
|
|
|
|
|
|
|
if (f == 0 || f == n) { |
710
|
|
|
|
|
|
|
if (fails-- <= 0) break; |
711
|
|
|
|
|
|
|
Xm = addmod(Xm, 11, n); |
712
|
|
|
|
|
|
|
Xi = Xm; |
713
|
|
|
|
|
|
|
a++; |
714
|
|
|
|
|
|
|
continue; |
715
|
|
|
|
|
|
|
} |
716
|
|
|
|
|
|
|
return found_factor(n, f, factors); |
717
|
|
|
|
|
|
|
} |
718
|
|
|
|
|
|
|
factors[0] = n; |
719
|
|
|
|
|
|
|
return 1; |
720
|
|
|
|
|
|
|
} |
721
|
|
|
|
|
|
|
#endif |
722
|
|
|
|
|
|
|
|
723
|
|
|
|
|
|
|
/* Pollard's Rho. */ |
724
|
2
|
|
|
|
|
|
int prho_factor(UV n, UV *factors, UV rounds) |
725
|
|
|
|
|
|
|
{ |
726
|
|
|
|
|
|
|
UV a, f, i, m, oldU, oldV; |
727
|
2
|
|
|
|
|
|
const UV inner = 64; |
728
|
2
|
|
|
|
|
|
UV U = 7; |
729
|
2
|
|
|
|
|
|
UV V = 7; |
730
|
2
|
|
|
|
|
|
int fails = 3; |
731
|
|
|
|
|
|
|
|
732
|
2
|
50
|
|
|
|
|
MPUassert( (n >= 3) && ((n%2) != 0) , "bad n in prho_factor"); |
|
|
50
|
|
|
|
|
|
733
|
|
|
|
|
|
|
|
734
|
|
|
|
|
|
|
/* We could just as well say a = 1 */ |
735
|
2
|
|
|
|
|
|
switch (n%8) { |
736
|
0
|
|
|
|
|
|
case 1: a = 1; break; |
737
|
2
|
|
|
|
|
|
case 3: a = 2; break; |
738
|
0
|
|
|
|
|
|
case 5: a = 3; break; |
739
|
0
|
|
|
|
|
|
case 7: a = 5; break; |
740
|
0
|
|
|
|
|
|
default: a = 7; break; |
741
|
|
|
|
|
|
|
} |
742
|
|
|
|
|
|
|
|
743
|
2
|
|
|
|
|
|
rounds = (rounds + inner - 1) / inner; |
744
|
|
|
|
|
|
|
|
745
|
2
|
50
|
|
|
|
|
while (rounds-- > 0) { |
746
|
2
|
|
|
|
|
|
m = 1; oldU = U; oldV = V; |
747
|
130
|
100
|
|
|
|
|
for (i = 0; i < inner; i++) { |
748
|
128
|
|
|
|
|
|
U = sqraddmod(U, a, n); |
749
|
128
|
|
|
|
|
|
V = sqraddmod(V, a, n); |
750
|
128
|
|
|
|
|
|
V = sqraddmod(V, a, n); |
751
|
128
|
100
|
|
|
|
|
f = (U > V) ? U-V : V-U; |
752
|
128
|
|
|
|
|
|
m = mulmod(m, f, n); |
753
|
|
|
|
|
|
|
} |
754
|
2
|
|
|
|
|
|
f = gcd_ui(m, n); |
755
|
2
|
50
|
|
|
|
|
if (f == 1) |
756
|
0
|
|
|
|
|
|
continue; |
757
|
2
|
50
|
|
|
|
|
if (f == n) { /* back up to find a factor*/ |
758
|
2
|
|
|
|
|
|
U = oldU; V = oldV; |
759
|
2
|
|
|
|
|
|
i = inner; |
760
|
|
|
|
|
|
|
do { |
761
|
6
|
|
|
|
|
|
U = sqraddmod(U, a, n); |
762
|
6
|
|
|
|
|
|
V = sqraddmod(V, a, n); |
763
|
6
|
|
|
|
|
|
V = sqraddmod(V, a, n); |
764
|
6
|
100
|
|
|
|
|
f = gcd_ui( (U > V) ? U-V : V-U, n); |
765
|
6
|
100
|
|
|
|
|
} while (f == 1 && i-- != 0); |
|
|
50
|
|
|
|
|
|
766
|
|
|
|
|
|
|
} |
767
|
2
|
50
|
|
|
|
|
if (f == 0 || f == n) { |
|
|
50
|
|
|
|
|
|
768
|
0
|
0
|
|
|
|
|
if (fails-- <= 0) break; |
769
|
0
|
|
|
|
|
|
U = addmod(U,2,n); |
770
|
0
|
|
|
|
|
|
V = U; |
771
|
0
|
|
|
|
|
|
a++; |
772
|
0
|
|
|
|
|
|
continue; |
773
|
|
|
|
|
|
|
} |
774
|
2
|
|
|
|
|
|
return found_factor(n, f, factors); |
775
|
|
|
|
|
|
|
} |
776
|
0
|
|
|
|
|
|
factors[0] = n; |
777
|
0
|
|
|
|
|
|
return 1; |
778
|
|
|
|
|
|
|
} |
779
|
|
|
|
|
|
|
|
780
|
|
|
|
|
|
|
/* Pollard's P-1 */ |
781
|
2
|
|
|
|
|
|
int pminus1_factor(UV n, UV *factors, UV B1, UV B2) |
782
|
|
|
|
|
|
|
{ |
783
|
|
|
|
|
|
|
UV f, k, kmin; |
784
|
2
|
|
|
|
|
|
UV a = 2, q = 2; |
785
|
2
|
|
|
|
|
|
UV savea = 2, saveq = 2; |
786
|
2
|
|
|
|
|
|
UV j = 1; |
787
|
2
|
|
|
|
|
|
UV sqrtB1 = isqrt(B1); |
788
|
|
|
|
|
|
|
#if USE_MONTMATH |
789
|
2
|
|
|
|
|
|
const uint64_t npi = mont_inverse(n), mont1 = mont_get1(n); |
790
|
2
|
|
|
|
|
|
UV ma = mont_geta(a,n); |
791
|
|
|
|
|
|
|
#define PMINUS1_APPLY_POWER ma = mont_powmod(ma, k, n) |
792
|
|
|
|
|
|
|
#define PMINUS1_RECOVER_A a = mont_recover(ma,n) |
793
|
|
|
|
|
|
|
#else |
794
|
|
|
|
|
|
|
#define PMINUS1_APPLY_POWER a = powmod(a, k, n) |
795
|
|
|
|
|
|
|
#define PMINUS1_RECOVER_A |
796
|
|
|
|
|
|
|
#endif |
797
|
2
|
50
|
|
|
|
|
MPUassert( (n >= 3) && ((n%2) != 0) , "bad n in pminus1_factor"); |
|
|
50
|
|
|
|
|
|
798
|
|
|
|
|
|
|
|
799
|
2
|
50
|
|
|
|
|
if (B1 <= primes_small[NPRIMES_SMALL-2]) { |
800
|
|
|
|
|
|
|
UV i; |
801
|
0
|
0
|
|
|
|
|
for (i = 1; primes_small[i] <= B1; i++) { |
802
|
0
|
|
|
|
|
|
q = k = primes_small[i]; |
803
|
0
|
0
|
|
|
|
|
if (q <= sqrtB1) { |
804
|
0
|
|
|
|
|
|
k = q*q; kmin = B1/q; |
805
|
0
|
0
|
|
|
|
|
while (k <= kmin) k *= q; |
806
|
|
|
|
|
|
|
} |
807
|
0
|
|
|
|
|
|
PMINUS1_APPLY_POWER; |
808
|
0
|
0
|
|
|
|
|
if ( (j++ % 32) == 0) { |
809
|
0
|
0
|
|
|
|
|
PMINUS1_RECOVER_A; |
810
|
0
|
0
|
|
|
|
|
if (a == 0 || gcd_ui(a-1, n) != 1) |
|
|
0
|
|
|
|
|
|
811
|
|
|
|
|
|
|
break; |
812
|
0
|
|
|
|
|
|
savea = a; saveq = q; |
813
|
|
|
|
|
|
|
} |
814
|
|
|
|
|
|
|
} |
815
|
0
|
0
|
|
|
|
|
PMINUS1_RECOVER_A; |
816
|
|
|
|
|
|
|
} else { |
817
|
64
|
50
|
|
|
|
|
START_DO_FOR_EACH_PRIME(2, B1) { |
|
|
100
|
|
|
|
|
|
|
|
100
|
|
|
|
|
|
|
|
100
|
|
|
|
|
|
|
|
100
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
818
|
64
|
|
|
|
|
|
q = k = p; |
819
|
64
|
50
|
|
|
|
|
if (q <= sqrtB1) { |
820
|
64
|
|
|
|
|
|
k = q*q; kmin = B1/q; |
821
|
200
|
100
|
|
|
|
|
while (k <= kmin) k *= q; |
822
|
|
|
|
|
|
|
} |
823
|
64
|
|
|
|
|
|
PMINUS1_APPLY_POWER; |
824
|
64
|
100
|
|
|
|
|
if ( (j++ % 32) == 0) { |
825
|
2
|
50
|
|
|
|
|
PMINUS1_RECOVER_A; |
826
|
2
|
50
|
|
|
|
|
if (a == 0 || gcd_ui(a-1, n) != 1) |
|
|
50
|
|
|
|
|
|
827
|
|
|
|
|
|
|
break; |
828
|
0
|
|
|
|
|
|
savea = a; saveq = q; |
829
|
|
|
|
|
|
|
} |
830
|
62
|
|
|
|
|
|
} END_DO_FOR_EACH_PRIME |
831
|
2
|
50
|
|
|
|
|
PMINUS1_RECOVER_A; |
832
|
|
|
|
|
|
|
} |
833
|
2
|
50
|
|
|
|
|
if (a == 0) { factors[0] = n; return 1; } |
834
|
2
|
|
|
|
|
|
f = gcd_ui(a-1, n); |
835
|
|
|
|
|
|
|
|
836
|
|
|
|
|
|
|
/* If we found more than one factor in stage 1, backup and single step */ |
837
|
2
|
50
|
|
|
|
|
if (f == n) { |
838
|
2
|
|
|
|
|
|
a = savea; |
839
|
4
|
50
|
|
|
|
|
START_DO_FOR_EACH_PRIME(saveq, B1) { |
|
|
50
|
|
|
|
|
|
|
|
100
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
840
|
4
|
|
|
|
|
|
k = p; kmin = B1/p; |
841
|
62
|
100
|
|
|
|
|
while (k <= kmin) k *= p; |
842
|
4
|
|
|
|
|
|
a = powmod(a, k, n); |
843
|
4
|
|
|
|
|
|
f = gcd_ui(a-1, n); |
844
|
4
|
|
|
|
|
|
q = p; |
845
|
4
|
100
|
|
|
|
|
if (f != 1) |
846
|
2
|
|
|
|
|
|
break; |
847
|
4
|
|
|
|
|
|
} END_DO_FOR_EACH_PRIME |
848
|
|
|
|
|
|
|
/* If f == n again, we could do: |
849
|
|
|
|
|
|
|
* for (savea = 3; f == n && savea < 100; savea = next_prime(savea)) { |
850
|
|
|
|
|
|
|
* a = savea; |
851
|
|
|
|
|
|
|
* for (q = 2; q <= B1; q = next_prime(q)) { |
852
|
|
|
|
|
|
|
* ... |
853
|
|
|
|
|
|
|
* } |
854
|
|
|
|
|
|
|
* } |
855
|
|
|
|
|
|
|
* but this could be a huge time sink if B1 is large, so just fail. |
856
|
|
|
|
|
|
|
*/ |
857
|
|
|
|
|
|
|
} |
858
|
|
|
|
|
|
|
|
859
|
|
|
|
|
|
|
/* STAGE 2 */ |
860
|
2
|
50
|
|
|
|
|
if (f == 1 && B2 > B1) { |
|
|
0
|
|
|
|
|
|
861
|
0
|
|
|
|
|
|
UV bm = a; |
862
|
0
|
|
|
|
|
|
UV b = 1; |
863
|
|
|
|
|
|
|
UV bmdiff; |
864
|
0
|
|
|
|
|
|
UV precomp_bm[111] = {0}; /* Enough for B2 = 189M */ |
865
|
|
|
|
|
|
|
|
866
|
|
|
|
|
|
|
/* calculate (a^q)^2, (a^q)^4, etc. */ |
867
|
0
|
|
|
|
|
|
bmdiff = sqrmod(bm, n); |
868
|
0
|
|
|
|
|
|
precomp_bm[0] = bmdiff; |
869
|
0
|
0
|
|
|
|
|
for (j = 1; j < 20; j++) { |
870
|
0
|
|
|
|
|
|
bmdiff = mulmod(bmdiff,bm,n); |
871
|
0
|
|
|
|
|
|
bmdiff = mulmod(bmdiff,bm,n); |
872
|
0
|
|
|
|
|
|
precomp_bm[j] = bmdiff; |
873
|
|
|
|
|
|
|
} |
874
|
|
|
|
|
|
|
|
875
|
0
|
|
|
|
|
|
a = powmod(a, q, n); |
876
|
0
|
|
|
|
|
|
j = 1; |
877
|
0
|
0
|
|
|
|
|
START_DO_FOR_EACH_PRIME( q+1, B2 ) { |
|
|
0
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
878
|
0
|
|
|
|
|
|
UV lastq = q; |
879
|
|
|
|
|
|
|
UV qdiff; |
880
|
0
|
|
|
|
|
|
q = p; |
881
|
|
|
|
|
|
|
/* compute a^q = a^lastq * a^(q-lastq) */ |
882
|
0
|
|
|
|
|
|
qdiff = (q - lastq) / 2 - 1; |
883
|
0
|
0
|
|
|
|
|
if (qdiff >= 111) { |
884
|
0
|
|
|
|
|
|
bmdiff = powmod(bm, q-lastq, n); /* Big gap */ |
885
|
|
|
|
|
|
|
} else { |
886
|
0
|
|
|
|
|
|
bmdiff = precomp_bm[qdiff]; |
887
|
0
|
0
|
|
|
|
|
if (bmdiff == 0) { |
888
|
0
|
0
|
|
|
|
|
if (precomp_bm[qdiff-1] != 0) |
889
|
0
|
|
|
|
|
|
bmdiff = mulmod(mulmod(precomp_bm[qdiff-1],bm,n),bm,n); |
890
|
|
|
|
|
|
|
else |
891
|
0
|
|
|
|
|
|
bmdiff = powmod(bm, q-lastq, n); |
892
|
0
|
|
|
|
|
|
precomp_bm[qdiff] = bmdiff; |
893
|
|
|
|
|
|
|
} |
894
|
|
|
|
|
|
|
} |
895
|
0
|
|
|
|
|
|
a = mulmod(a, bmdiff, n); |
896
|
0
|
0
|
|
|
|
|
if (a == 0) break; |
897
|
0
|
|
|
|
|
|
b = mulmod(b, a-1, n); /* if b == 0, we found multiple factors */ |
898
|
0
|
0
|
|
|
|
|
if ( (j++ % 64) == 0 ) { |
899
|
0
|
|
|
|
|
|
f = gcd_ui(b, n); |
900
|
0
|
0
|
|
|
|
|
if (f != 1) |
901
|
0
|
|
|
|
|
|
break; |
902
|
|
|
|
|
|
|
} |
903
|
0
|
|
|
|
|
|
} END_DO_FOR_EACH_PRIME |
904
|
0
|
|
|
|
|
|
f = gcd_ui(b, n); |
905
|
|
|
|
|
|
|
} |
906
|
2
|
|
|
|
|
|
return found_factor(n, f, factors); |
907
|
|
|
|
|
|
|
} |
908
|
|
|
|
|
|
|
|
909
|
|
|
|
|
|
|
/* Simple Williams p+1 */ |
910
|
6
|
|
|
|
|
|
static void pp1_pow(UV *cX, UV exp, UV n) |
911
|
|
|
|
|
|
|
{ |
912
|
6
|
|
|
|
|
|
UV X0 = *cX; |
913
|
6
|
|
|
|
|
|
UV X = *cX; |
914
|
6
|
|
|
|
|
|
UV Y = mulsubmod(X, X, 2, n); |
915
|
6
|
50
|
|
|
|
|
UV bit = UVCONST(1) << (clz(exp)-1); |
916
|
345
|
100
|
|
|
|
|
while (bit) { |
917
|
339
|
|
|
|
|
|
UV T = mulsubmod(X, Y, X0, n); |
918
|
339
|
100
|
|
|
|
|
if ( exp & bit ) { |
919
|
15
|
|
|
|
|
|
X = T; |
920
|
15
|
|
|
|
|
|
Y = mulsubmod(Y, Y, 2, n); |
921
|
|
|
|
|
|
|
} else { |
922
|
324
|
|
|
|
|
|
Y = T; |
923
|
324
|
|
|
|
|
|
X = mulsubmod(X, X, 2, n); |
924
|
|
|
|
|
|
|
} |
925
|
339
|
|
|
|
|
|
bit >>= 1; |
926
|
|
|
|
|
|
|
} |
927
|
6
|
|
|
|
|
|
*cX = X; |
928
|
6
|
|
|
|
|
|
} |
929
|
2
|
|
|
|
|
|
int pplus1_factor(UV n, UV *factors, UV B1) |
930
|
|
|
|
|
|
|
{ |
931
|
|
|
|
|
|
|
UV X1, X2, f; |
932
|
2
|
|
|
|
|
|
UV sqrtB1 = isqrt(B1); |
933
|
2
|
50
|
|
|
|
|
MPUassert( (n >= 3) && ((n%2) != 0) , "bad n in pplus1_factor"); |
|
|
50
|
|
|
|
|
|
934
|
|
|
|
|
|
|
|
935
|
2
|
|
|
|
|
|
X1 = 7 % n; |
936
|
2
|
|
|
|
|
|
X2 = 11 % n; |
937
|
2
|
|
|
|
|
|
f = 1; |
938
|
4
|
50
|
|
|
|
|
START_DO_FOR_EACH_PRIME(2, B1) { |
|
|
50
|
|
|
|
|
|
|
|
100
|
|
|
|
|
|
|
|
100
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
939
|
4
|
|
|
|
|
|
UV k = p; |
940
|
4
|
50
|
|
|
|
|
if (p < sqrtB1) { |
941
|
4
|
|
|
|
|
|
UV kmin = B1/p; |
942
|
21
|
100
|
|
|
|
|
while (k <= kmin) |
943
|
17
|
|
|
|
|
|
k *= p; |
944
|
|
|
|
|
|
|
} |
945
|
4
|
|
|
|
|
|
pp1_pow(&X1, k, n); |
946
|
4
|
50
|
|
|
|
|
if (X1 != 2) { |
947
|
4
|
|
|
|
|
|
f = gcd_ui( submod(X1, 2, n) , n); |
948
|
4
|
100
|
|
|
|
|
if (f != 1 && f != n) break; |
|
|
50
|
|
|
|
|
|
949
|
|
|
|
|
|
|
} |
950
|
2
|
|
|
|
|
|
pp1_pow(&X2, k, n); |
951
|
2
|
50
|
|
|
|
|
if (X2 != 2) { |
952
|
0
|
|
|
|
|
|
f = gcd_ui( submod(X2, 2, n) , n); |
953
|
0
|
0
|
|
|
|
|
if (f != 1 && f != n) break; |
|
|
0
|
|
|
|
|
|
954
|
|
|
|
|
|
|
} |
955
|
2
|
|
|
|
|
|
} END_DO_FOR_EACH_PRIME |
956
|
|
|
|
|
|
|
|
957
|
2
|
|
|
|
|
|
return found_factor(n, f, factors); |
958
|
|
|
|
|
|
|
} |
959
|
|
|
|
|
|
|
|
960
|
|
|
|
|
|
|
|
961
|
|
|
|
|
|
|
/* SQUFOF, based on Ben Buhrow's racing version. */ |
962
|
|
|
|
|
|
|
#if 1 |
963
|
|
|
|
|
|
|
/* limit to 62-bit inputs, use 32-bit types, faster */ |
964
|
|
|
|
|
|
|
#define SQUFOF_TYPE uint32_t |
965
|
|
|
|
|
|
|
#define SQUFOF_MAX (UV_MAX >> 2) |
966
|
|
|
|
|
|
|
#else |
967
|
|
|
|
|
|
|
/* All 64-bit inputs possible, though we severely limit multipliers */ |
968
|
|
|
|
|
|
|
#define SQUFOF_TYPE UV |
969
|
|
|
|
|
|
|
#define SQUFOF_MAX UV_MAX |
970
|
|
|
|
|
|
|
#endif |
971
|
|
|
|
|
|
|
typedef struct |
972
|
|
|
|
|
|
|
{ |
973
|
|
|
|
|
|
|
int valid; |
974
|
|
|
|
|
|
|
SQUFOF_TYPE P; |
975
|
|
|
|
|
|
|
SQUFOF_TYPE bn; |
976
|
|
|
|
|
|
|
SQUFOF_TYPE Qn; |
977
|
|
|
|
|
|
|
SQUFOF_TYPE Q0; |
978
|
|
|
|
|
|
|
SQUFOF_TYPE b0; |
979
|
|
|
|
|
|
|
SQUFOF_TYPE it; |
980
|
|
|
|
|
|
|
SQUFOF_TYPE imax; |
981
|
|
|
|
|
|
|
SQUFOF_TYPE mult; |
982
|
|
|
|
|
|
|
} mult_t; |
983
|
|
|
|
|
|
|
|
984
|
|
|
|
|
|
|
/* N < 2^63 (or 2^31). Returns 0 or a factor */ |
985
|
3
|
|
|
|
|
|
static UV squfof_unit(UV n, mult_t* mult_save) |
986
|
|
|
|
|
|
|
{ |
987
|
|
|
|
|
|
|
SQUFOF_TYPE imax,i,Q0,Qn,bn,b0,P,bbn,Ro,S,So,t1,t2; |
988
|
|
|
|
|
|
|
|
989
|
3
|
|
|
|
|
|
P = mult_save->P; |
990
|
3
|
|
|
|
|
|
bn = mult_save->bn; |
991
|
3
|
|
|
|
|
|
Qn = mult_save->Qn; |
992
|
3
|
|
|
|
|
|
Q0 = mult_save->Q0; |
993
|
3
|
|
|
|
|
|
b0 = mult_save->b0; |
994
|
3
|
|
|
|
|
|
i = mult_save->it; |
995
|
3
|
|
|
|
|
|
imax = i + mult_save->imax; |
996
|
|
|
|
|
|
|
|
997
|
|
|
|
|
|
|
#define SQUARE_SEARCH_ITERATION \ |
998
|
|
|
|
|
|
|
t1 = P; \ |
999
|
|
|
|
|
|
|
P = bn*Qn - P; \ |
1000
|
|
|
|
|
|
|
t2 = Qn; \ |
1001
|
|
|
|
|
|
|
Qn = Q0 + bn*(t1-P); \ |
1002
|
|
|
|
|
|
|
Q0 = t2; \ |
1003
|
|
|
|
|
|
|
bn = (b0 + P) / Qn; \ |
1004
|
|
|
|
|
|
|
i++; |
1005
|
|
|
|
|
|
|
|
1006
|
|
|
|
|
|
|
while (1) { |
1007
|
3
|
|
|
|
|
|
int j = 0; |
1008
|
3
|
50
|
|
|
|
|
if (i & 0x1) { |
1009
|
0
|
|
|
|
|
|
SQUARE_SEARCH_ITERATION; |
1010
|
|
|
|
|
|
|
} |
1011
|
|
|
|
|
|
|
/* i is now even */ |
1012
|
|
|
|
|
|
|
while (1) { |
1013
|
|
|
|
|
|
|
/* We need to know P, bn, Qn, Q0, iteration count, i from prev */ |
1014
|
4
|
50
|
|
|
|
|
if (i >= imax) { |
1015
|
|
|
|
|
|
|
/* save state and try another multiplier. */ |
1016
|
0
|
|
|
|
|
|
mult_save->P = P; |
1017
|
0
|
|
|
|
|
|
mult_save->bn = bn; |
1018
|
0
|
|
|
|
|
|
mult_save->Qn = Qn; |
1019
|
0
|
|
|
|
|
|
mult_save->Q0 = Q0; |
1020
|
0
|
|
|
|
|
|
mult_save->it = i; |
1021
|
0
|
|
|
|
|
|
return 0; |
1022
|
|
|
|
|
|
|
} |
1023
|
|
|
|
|
|
|
|
1024
|
4
|
|
|
|
|
|
SQUARE_SEARCH_ITERATION; |
1025
|
|
|
|
|
|
|
|
1026
|
|
|
|
|
|
|
/* Even iteration. Check for square: Qn = S*S */ |
1027
|
4
|
|
|
|
|
|
t2 = Qn & 127; |
1028
|
4
|
100
|
|
|
|
|
if (!((t2*0x8bc40d7d) & (t2*0xa1e2f5d1) & 0x14020a)) { |
1029
|
3
|
|
|
|
|
|
t1 = (uint32_t) sqrt(Qn); |
1030
|
3
|
50
|
|
|
|
|
if (Qn == t1*t1) |
1031
|
3
|
|
|
|
|
|
break; |
1032
|
|
|
|
|
|
|
} |
1033
|
|
|
|
|
|
|
|
1034
|
|
|
|
|
|
|
/* Odd iteration. */ |
1035
|
1
|
|
|
|
|
|
SQUARE_SEARCH_ITERATION; |
1036
|
1
|
|
|
|
|
|
} |
1037
|
3
|
|
|
|
|
|
S = t1; /* isqrt(Qn); */ |
1038
|
3
|
|
|
|
|
|
mult_save->it = i; |
1039
|
|
|
|
|
|
|
|
1040
|
|
|
|
|
|
|
/* Reduce to G0 */ |
1041
|
3
|
|
|
|
|
|
Ro = P + S*((b0 - P)/S); |
1042
|
3
|
|
|
|
|
|
So = (n - (UV)Ro*(UV)Ro)/(UV)S; |
1043
|
3
|
|
|
|
|
|
bbn = (b0+Ro)/So; |
1044
|
|
|
|
|
|
|
|
1045
|
|
|
|
|
|
|
/* Search for symmetry point */ |
1046
|
|
|
|
|
|
|
#define SYMMETRY_POINT_ITERATION \ |
1047
|
|
|
|
|
|
|
t1 = Ro; \ |
1048
|
|
|
|
|
|
|
Ro = bbn*So - Ro; \ |
1049
|
|
|
|
|
|
|
t2 = So; \ |
1050
|
|
|
|
|
|
|
So = S + bbn*(t1-Ro); \ |
1051
|
|
|
|
|
|
|
S = t2; \ |
1052
|
|
|
|
|
|
|
bbn = (b0+Ro)/So; \ |
1053
|
|
|
|
|
|
|
if (Ro == t1) break; |
1054
|
|
|
|
|
|
|
|
1055
|
3
|
|
|
|
|
|
j = 0; |
1056
|
|
|
|
|
|
|
while (1) { |
1057
|
3
|
100
|
|
|
|
|
SYMMETRY_POINT_ITERATION; |
1058
|
1
|
50
|
|
|
|
|
SYMMETRY_POINT_ITERATION; |
1059
|
0
|
0
|
|
|
|
|
SYMMETRY_POINT_ITERATION; |
1060
|
0
|
0
|
|
|
|
|
SYMMETRY_POINT_ITERATION; |
1061
|
0
|
0
|
|
|
|
|
if (j++ > 2000000) { |
1062
|
0
|
|
|
|
|
|
mult_save->valid = 0; |
1063
|
0
|
|
|
|
|
|
return 0; |
1064
|
|
|
|
|
|
|
} |
1065
|
0
|
|
|
|
|
|
} |
1066
|
|
|
|
|
|
|
|
1067
|
3
|
|
|
|
|
|
t1 = gcd_ui(Ro, n); |
1068
|
3
|
50
|
|
|
|
|
if (t1 > 1) |
1069
|
3
|
|
|
|
|
|
return t1; |
1070
|
0
|
|
|
|
|
|
} |
1071
|
|
|
|
|
|
|
} |
1072
|
|
|
|
|
|
|
|
1073
|
|
|
|
|
|
|
/* Gower and Wagstaff 2008: |
1074
|
|
|
|
|
|
|
* http://www.ams.org/journals/mcom/2008-77-261/S0025-5718-07-02010-8/ |
1075
|
|
|
|
|
|
|
* Section 5.3. I've added some with 13,17,19. Sorted by F(). */ |
1076
|
|
|
|
|
|
|
static const UV squfof_multipliers[] = |
1077
|
|
|
|
|
|
|
/* { 3*5*7*11, 3*5*7, 3*5*11, 3*5, 3*7*11, 3*7, 5*7*11, 5*7, |
1078
|
|
|
|
|
|
|
3*11, 3, 5*11, 5, 7*11, 7, 11, 1 }; */ |
1079
|
|
|
|
|
|
|
{ 3*5*7*11, 3*5*7, 3*5*7*11*13, 3*5*7*13, 3*5*7*11*17, 3*5*11, |
1080
|
|
|
|
|
|
|
3*5*7*17, 3*5, 3*5*7*11*19, 3*5*11*13,3*5*7*19, 3*5*7*13*17, |
1081
|
|
|
|
|
|
|
3*5*13, 3*7*11, 3*7, 5*7*11, 3*7*13, 5*7, |
1082
|
|
|
|
|
|
|
3*5*17, 5*7*13, 3*5*19, 3*11, 3*7*17, 3, |
1083
|
|
|
|
|
|
|
3*11*13, 5*11, 3*7*19, 3*13, 5, 5*11*13, |
1084
|
|
|
|
|
|
|
5*7*19, 5*13, 7*11, 7, 3*17, 7*13, |
1085
|
|
|
|
|
|
|
11, 1 }; |
1086
|
|
|
|
|
|
|
#define NSQUFOF_MULT (sizeof(squfof_multipliers)/sizeof(squfof_multipliers[0])) |
1087
|
|
|
|
|
|
|
|
1088
|
2
|
|
|
|
|
|
int squfof_factor(UV n, UV *factors, UV rounds) |
1089
|
|
|
|
|
|
|
{ |
1090
|
|
|
|
|
|
|
mult_t mult_save[NSQUFOF_MULT]; |
1091
|
2
|
|
|
|
|
|
UV i, nn64, sqrtnn64, mult, f64,rounds_done = 0; |
1092
|
2
|
|
|
|
|
|
int mults_racing = NSQUFOF_MULT; |
1093
|
|
|
|
|
|
|
|
1094
|
|
|
|
|
|
|
/* Caller should have handled these trivial cases */ |
1095
|
2
|
50
|
|
|
|
|
MPUassert( (n >= 3) && ((n%2) != 0) , "bad n in squfof_factor"); |
|
|
50
|
|
|
|
|
|
1096
|
|
|
|
|
|
|
|
1097
|
|
|
|
|
|
|
/* Too big */ |
1098
|
2
|
50
|
|
|
|
|
if (n > SQUFOF_MAX) { |
1099
|
0
|
|
|
|
|
|
factors[0] = n; return 1; |
1100
|
|
|
|
|
|
|
} |
1101
|
|
|
|
|
|
|
|
1102
|
78
|
100
|
|
|
|
|
for (i = 0; i < NSQUFOF_MULT; i++) { |
1103
|
76
|
|
|
|
|
|
mult_save[i].valid = -1; |
1104
|
76
|
|
|
|
|
|
mult_save[i].it = 0; |
1105
|
|
|
|
|
|
|
} |
1106
|
|
|
|
|
|
|
|
1107
|
|
|
|
|
|
|
/* Race each multiplier for a bit (20-20k rounds) */ |
1108
|
2
|
50
|
|
|
|
|
while (mults_racing > 0 && rounds_done < rounds) { |
|
|
50
|
|
|
|
|
|
1109
|
3
|
50
|
|
|
|
|
for (i = 0; i < NSQUFOF_MULT && rounds_done < rounds; i++) { |
|
|
50
|
|
|
|
|
|
1110
|
3
|
50
|
|
|
|
|
if (mult_save[i].valid == 0) continue; |
1111
|
3
|
|
|
|
|
|
mult = squfof_multipliers[i]; |
1112
|
3
|
|
|
|
|
|
nn64 = n * mult; |
1113
|
3
|
50
|
|
|
|
|
if (mult_save[i].valid == -1) { |
1114
|
3
|
50
|
|
|
|
|
if ((SQUFOF_MAX / mult) < n) { |
1115
|
0
|
|
|
|
|
|
mult_save[i].valid = 0; /* This multiplier would overflow 64-bit */ |
1116
|
0
|
|
|
|
|
|
mults_racing--; |
1117
|
0
|
|
|
|
|
|
continue; |
1118
|
|
|
|
|
|
|
} |
1119
|
3
|
|
|
|
|
|
sqrtnn64 = isqrt(nn64); |
1120
|
3
|
|
|
|
|
|
mult_save[i].valid = 1; |
1121
|
3
|
|
|
|
|
|
mult_save[i].Q0 = 1; |
1122
|
3
|
|
|
|
|
|
mult_save[i].b0 = sqrtnn64; |
1123
|
3
|
|
|
|
|
|
mult_save[i].P = sqrtnn64; |
1124
|
3
|
|
|
|
|
|
mult_save[i].Qn = (SQUFOF_TYPE)(nn64 - sqrtnn64 * sqrtnn64); |
1125
|
3
|
50
|
|
|
|
|
if (mult_save[i].Qn == 0) |
1126
|
0
|
|
|
|
|
|
return found_factor(n, sqrtnn64, factors); |
1127
|
3
|
|
|
|
|
|
mult_save[i].bn = (2 * sqrtnn64) / (UV)mult_save[i].Qn; |
1128
|
3
|
|
|
|
|
|
mult_save[i].it = 0; |
1129
|
3
|
|
|
|
|
|
mult_save[i].mult = mult; |
1130
|
3
|
|
|
|
|
|
mult_save[i].imax = (UV) (sqrt(sqrtnn64) / 16); |
1131
|
3
|
50
|
|
|
|
|
if (mult_save[i].imax < 20) mult_save[i].imax = 20; |
1132
|
3
|
50
|
|
|
|
|
if (mult_save[i].imax > rounds) mult_save[i].imax = rounds; |
1133
|
|
|
|
|
|
|
} |
1134
|
3
|
50
|
|
|
|
|
if (mults_racing == 1) /* Do all rounds if only one multiplier left */ |
1135
|
0
|
|
|
|
|
|
mult_save[i].imax = (rounds - rounds_done); |
1136
|
3
|
|
|
|
|
|
f64 = squfof_unit(nn64, &mult_save[i]); |
1137
|
3
|
50
|
|
|
|
|
if (f64 > 1) { |
1138
|
3
|
|
|
|
|
|
UV f64red = f64 / gcd_ui(f64, mult); |
1139
|
3
|
100
|
|
|
|
|
if (f64red > 1) { |
1140
|
|
|
|
|
|
|
/* unsigned long totiter = 0; |
1141
|
|
|
|
|
|
|
{int K; for (K = 0; K < NSQUFOF_MULT; K++) totiter += mult_save[K].it; } |
1142
|
|
|
|
|
|
|
printf(" n %lu mult %lu it %lu (%lu)\n",n,mult,totiter,(UV)mult_save[i].it); */ |
1143
|
2
|
|
|
|
|
|
return found_factor(n, f64red, factors); |
1144
|
|
|
|
|
|
|
} |
1145
|
|
|
|
|
|
|
/* Found trivial factor. Quit working with this multiplier. */ |
1146
|
1
|
|
|
|
|
|
mult_save[i].valid = 0; |
1147
|
|
|
|
|
|
|
} |
1148
|
1
|
50
|
|
|
|
|
if (mult_save[i].valid == 0) |
1149
|
1
|
|
|
|
|
|
mults_racing--; |
1150
|
1
|
|
|
|
|
|
rounds_done += mult_save[i].imax; /* Assume we did all rounds */ |
1151
|
|
|
|
|
|
|
} |
1152
|
|
|
|
|
|
|
} |
1153
|
|
|
|
|
|
|
|
1154
|
|
|
|
|
|
|
/* No factors found */ |
1155
|
0
|
|
|
|
|
|
factors[0] = n; |
1156
|
2
|
|
|
|
|
|
return 1; |
1157
|
|
|
|
|
|
|
} |
1158
|
|
|
|
|
|
|
|
1159
|
|
|
|
|
|
|
#define SQR_TAB_SIZE 512 |
1160
|
|
|
|
|
|
|
static int sqr_tab_init = 0; |
1161
|
|
|
|
|
|
|
static double sqr_tab[SQR_TAB_SIZE]; |
1162
|
0
|
|
|
|
|
|
static void make_sqr_tab(void) { |
1163
|
|
|
|
|
|
|
int i; |
1164
|
0
|
0
|
|
|
|
|
for (i = 0; i < SQR_TAB_SIZE; i++) |
1165
|
0
|
|
|
|
|
|
sqr_tab[i] = sqrt((double)i); |
1166
|
0
|
|
|
|
|
|
sqr_tab_init = 1; |
1167
|
0
|
|
|
|
|
|
} |
1168
|
|
|
|
|
|
|
|
1169
|
|
|
|
|
|
|
/* Lehman written and tuned by Warren D. Smith. |
1170
|
|
|
|
|
|
|
* Revised by Ben Buhrow and Dana Jacobsen. */ |
1171
|
0
|
|
|
|
|
|
int lehman_factor(UV n, UV *factors, int do_trial) { |
1172
|
0
|
0
|
|
|
|
|
const double Tune = ((n >> 31) >> 5) ? 3.5 : 5.0; |
1173
|
|
|
|
|
|
|
double x, sqrtn; |
1174
|
|
|
|
|
|
|
UV a,c,kN,kN4,B2; |
1175
|
0
|
|
|
|
|
|
uint32_t b,p,k,r,B,U,Bred,inc,ip=2; |
1176
|
|
|
|
|
|
|
|
1177
|
0
|
0
|
|
|
|
|
if (!(n&1)) return found_factor(n, 2, factors); |
1178
|
|
|
|
|
|
|
|
1179
|
0
|
|
|
|
|
|
B = Tune * (1+rootof(n,3)); |
1180
|
|
|
|
|
|
|
|
1181
|
0
|
0
|
|
|
|
|
if (do_trial) { |
1182
|
0
|
|
|
|
|
|
uint32_t FirstCut = 0.1 * B; |
1183
|
0
|
0
|
|
|
|
|
if (FirstCut < 84) FirstCut = 84; |
1184
|
0
|
0
|
|
|
|
|
if (FirstCut > 65535) FirstCut = 65535; |
1185
|
0
|
0
|
|
|
|
|
for (ip = 2; ip < NPRIMES_SMALL; ip++) { |
1186
|
0
|
|
|
|
|
|
p = primes_small[ip]; |
1187
|
0
|
0
|
|
|
|
|
if (p >= FirstCut) |
1188
|
0
|
|
|
|
|
|
break; |
1189
|
0
|
0
|
|
|
|
|
if (n % p == 0) |
1190
|
0
|
|
|
|
|
|
return found_factor(n, p, factors); |
1191
|
|
|
|
|
|
|
} |
1192
|
|
|
|
|
|
|
} |
1193
|
|
|
|
|
|
|
|
1194
|
0
|
0
|
|
|
|
|
if (n >= UVCONST(8796393022207)) { factors[0] = n; return 1; } |
1195
|
0
|
|
|
|
|
|
Bred = B / (Tune * Tune * Tune); |
1196
|
0
|
|
|
|
|
|
B2 = B*B; |
1197
|
0
|
|
|
|
|
|
kN = 0; |
1198
|
|
|
|
|
|
|
|
1199
|
0
|
0
|
|
|
|
|
if (!sqr_tab_init) make_sqr_tab(); |
1200
|
0
|
|
|
|
|
|
sqrtn = sqrt(n); |
1201
|
|
|
|
|
|
|
|
1202
|
0
|
0
|
|
|
|
|
for (k = 1; k <= Bred; k++) { |
1203
|
0
|
0
|
|
|
|
|
if (k&1) { inc = 4; r = (k+n) % 4; } |
1204
|
0
|
|
|
|
|
|
else { inc = 2; r = 1; } |
1205
|
0
|
|
|
|
|
|
kN += n; |
1206
|
0
|
0
|
|
|
|
|
if (kN >= UVCONST(1152921504606846976)) { factors[0] = n; return 1; } |
1207
|
0
|
|
|
|
|
|
kN4 = kN*4; |
1208
|
|
|
|
|
|
|
|
1209
|
0
|
0
|
|
|
|
|
x = (k < SQR_TAB_SIZE) ? sqrtn * sqr_tab[k] : sqrt((double)kN); |
1210
|
0
|
|
|
|
|
|
a = x; |
1211
|
0
|
0
|
|
|
|
|
if ((UV)a * (UV)a == kN) |
1212
|
0
|
|
|
|
|
|
return found_factor(n, gcd_ui(a,n), factors); |
1213
|
0
|
|
|
|
|
|
x *= 2; |
1214
|
0
|
|
|
|
|
|
a = x + 0.9999999665; /* Magic constant */ |
1215
|
0
|
|
|
|
|
|
b = a % inc; |
1216
|
0
|
|
|
|
|
|
b = a + (inc+r-b) % inc; |
1217
|
0
|
|
|
|
|
|
c = (UV)b*(UV)b - kN4; |
1218
|
0
|
|
|
|
|
|
U = x + B2/(2*x); |
1219
|
0
|
0
|
|
|
|
|
for (a = b; a <= U; c += inc*(a+a+inc), a += inc) { |
1220
|
|
|
|
|
|
|
/* Check for perfect square */ |
1221
|
0
|
|
|
|
|
|
b = c & 127; |
1222
|
0
|
0
|
|
|
|
|
if (!((b*0x8bc40d7d) & (b*0xa1e2f5d1) & 0x14020a)) { |
1223
|
0
|
|
|
|
|
|
b = (uint32_t) sqrt(c); |
1224
|
0
|
0
|
|
|
|
|
if (c == b*b) { |
1225
|
0
|
|
|
|
|
|
B2 = gcd_ui(a+b, n); |
1226
|
0
|
|
|
|
|
|
return found_factor(n, B2, factors); |
1227
|
|
|
|
|
|
|
} |
1228
|
|
|
|
|
|
|
} |
1229
|
|
|
|
|
|
|
} |
1230
|
|
|
|
|
|
|
} |
1231
|
0
|
0
|
|
|
|
|
if (do_trial) { |
1232
|
0
|
0
|
|
|
|
|
if (B > 65535) B = 65535; |
1233
|
|
|
|
|
|
|
/* trial divide from primes[ip] to B. We could: |
1234
|
|
|
|
|
|
|
* 1) use table of 6542 shorts for the primes. |
1235
|
|
|
|
|
|
|
* 2) use a wheel |
1236
|
|
|
|
|
|
|
* 3) let trial_factor handle it |
1237
|
|
|
|
|
|
|
*/ |
1238
|
0
|
0
|
|
|
|
|
if (ip >= NPRIMES_SMALL) ip = NPRIMES_SMALL-1; |
1239
|
0
|
|
|
|
|
|
return trial_factor(n, factors, primes_small[ip], B); |
1240
|
|
|
|
|
|
|
} |
1241
|
0
|
|
|
|
|
|
factors[0] = n; |
1242
|
0
|
|
|
|
|
|
return 1; |
1243
|
|
|
|
|
|
|
} |
1244
|
|
|
|
|
|
|
|
1245
|
|
|
|
|
|
|
static const uint32_t _fr_chunk = 8192; |
1246
|
|
|
|
|
|
|
static const uint32_t _fr_sieve_crossover = 10000000; /* About 10^14 */ |
1247
|
|
|
|
|
|
|
|
1248
|
1
|
|
|
|
|
|
static void _vec_factor(UV lo, UV hi, UV *nfactors, UV *farray, UV noffset, int square_free) |
1249
|
|
|
|
|
|
|
{ |
1250
|
|
|
|
|
|
|
UV *N, j, n, sqrthi, sievelim; |
1251
|
1
|
|
|
|
|
|
sqrthi = isqrt(hi); |
1252
|
1
|
|
|
|
|
|
n = hi-lo+1; |
1253
|
1
|
50
|
|
|
|
|
New(0, N, hi-lo+1, UV); |
1254
|
999
|
100
|
|
|
|
|
for (j = 0; j < n; j++) { |
1255
|
998
|
|
|
|
|
|
N[j] = 1; |
1256
|
998
|
|
|
|
|
|
nfactors[j] = 0; |
1257
|
|
|
|
|
|
|
} |
1258
|
1
|
50
|
|
|
|
|
sievelim = (sqrthi < _fr_sieve_crossover) ? sqrthi : icbrt(hi); |
1259
|
12
|
50
|
|
|
|
|
START_DO_FOR_EACH_PRIME(2, sievelim) { |
|
|
100
|
|
|
|
|
|
|
|
100
|
|
|
|
|
|
|
|
100
|
|
|
|
|
|
|
|
100
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
|
|
100
|
|
|
|
|
|
1260
|
|
|
|
|
|
|
UV q, t, A; |
1261
|
11
|
50
|
|
|
|
|
if (square_free == 0) { |
1262
|
0
|
|
|
|
|
|
UV kmin = hi / p; |
1263
|
0
|
0
|
|
|
|
|
for (q = p; q <= kmin; q *= p) { |
1264
|
0
|
|
|
|
|
|
t = lo / q, A = t * q; |
1265
|
0
|
0
|
|
|
|
|
if (A < lo) A += q; |
1266
|
0
|
0
|
|
|
|
|
for (j = A-lo; j < n; j += q) { |
1267
|
0
|
|
|
|
|
|
farray[ j*noffset + nfactors[j]++ ] = p; |
1268
|
0
|
|
|
|
|
|
N[j] *= p; |
1269
|
|
|
|
|
|
|
} |
1270
|
|
|
|
|
|
|
} |
1271
|
|
|
|
|
|
|
} else { |
1272
|
11
|
|
|
|
|
|
q = p*p, t = lo / q, A = t * q; |
1273
|
11
|
50
|
|
|
|
|
if (A < lo) A += q; |
1274
|
451
|
100
|
|
|
|
|
for (j = A-lo; j < n; j += q) { |
1275
|
440
|
|
|
|
|
|
N[j] = 0; |
1276
|
440
|
|
|
|
|
|
nfactors[j] = 0; |
1277
|
|
|
|
|
|
|
} |
1278
|
11
|
|
|
|
|
|
q = p, t = lo / q, A = t * q; |
1279
|
11
|
100
|
|
|
|
|
if (A < lo) A += q; |
1280
|
1569
|
100
|
|
|
|
|
for (j = A-lo; j < n; j += q) { |
1281
|
1558
|
100
|
|
|
|
|
if (N[j] > 0) { |
1282
|
824
|
|
|
|
|
|
farray[ j*noffset + nfactors[j]++ ] = p; |
1283
|
824
|
|
|
|
|
|
N[j] *= p; |
1284
|
|
|
|
|
|
|
} |
1285
|
|
|
|
|
|
|
} |
1286
|
|
|
|
|
|
|
} |
1287
|
11
|
|
|
|
|
|
} END_DO_FOR_EACH_PRIME |
1288
|
|
|
|
|
|
|
|
1289
|
1
|
50
|
|
|
|
|
if (sievelim == sqrthi) { |
1290
|
|
|
|
|
|
|
/* Handle the unsieved results, which are prime */ |
1291
|
999
|
100
|
|
|
|
|
for (j = 0; j < n; j++) { |
1292
|
998
|
100
|
|
|
|
|
if (N[j] == 1) |
1293
|
157
|
|
|
|
|
|
farray[ j*noffset + nfactors[j]++ ] = j+lo; |
1294
|
841
|
100
|
|
|
|
|
else if (N[j] > 0 && N[j] != j+lo) |
|
|
100
|
|
|
|
|
|
1295
|
298
|
|
|
|
|
|
farray[ j*noffset + nfactors[j]++ ] = (j+lo) / N[j]; |
1296
|
|
|
|
|
|
|
} |
1297
|
|
|
|
|
|
|
} else { |
1298
|
|
|
|
|
|
|
/* Handle the unsieved results, which are prime or semi-prime */ |
1299
|
0
|
0
|
|
|
|
|
for (j = 0; j < n; j++) { |
1300
|
0
|
|
|
|
|
|
UV rem = j+lo; |
1301
|
0
|
0
|
|
|
|
|
if (N[j] > 0 && N[j] != rem) { |
|
|
0
|
|
|
|
|
|
1302
|
0
|
0
|
|
|
|
|
if (N[j] != 1) |
1303
|
0
|
|
|
|
|
|
rem /= N[j]; |
1304
|
0
|
0
|
|
|
|
|
if (square_free && is_perfect_square(rem)) { |
|
|
0
|
|
|
|
|
|
1305
|
0
|
|
|
|
|
|
nfactors[j] = 0; |
1306
|
|
|
|
|
|
|
} else { |
1307
|
0
|
|
|
|
|
|
UV* f = farray + j*noffset + nfactors[j]; |
1308
|
0
|
|
|
|
|
|
nfactors[j] += factor_one(rem, f, 1, 0); |
1309
|
|
|
|
|
|
|
} |
1310
|
|
|
|
|
|
|
} |
1311
|
|
|
|
|
|
|
} |
1312
|
|
|
|
|
|
|
} |
1313
|
1
|
|
|
|
|
|
Safefree(N); |
1314
|
1
|
|
|
|
|
|
} |
1315
|
|
|
|
|
|
|
|
1316
|
5
|
|
|
|
|
|
factor_range_context_t factor_range_init(UV lo, UV hi, int square_free) { |
1317
|
|
|
|
|
|
|
factor_range_context_t ctx; |
1318
|
5
|
|
|
|
|
|
ctx.lo = lo; |
1319
|
5
|
|
|
|
|
|
ctx.hi = hi; |
1320
|
5
|
|
|
|
|
|
ctx.n = lo-1; |
1321
|
5
|
|
|
|
|
|
ctx.is_square_free = square_free ? 1 : 0; |
1322
|
5
|
100
|
|
|
|
|
if (hi-lo+1 > 100) { /* Sieve in chunks */ |
1323
|
1
|
50
|
|
|
|
|
if (square_free) ctx._noffset = (hi <= 42949672965UL) ? 10 : 15; |
|
|
50
|
|
|
|
|
|
1324
|
0
|
0
|
|
|
|
|
else ctx._noffset = BITS_PER_WORD - clz(hi); |
1325
|
1
|
|
|
|
|
|
ctx._coffset = _fr_chunk; |
1326
|
1
|
50
|
|
|
|
|
New(0, ctx._nfactors, _fr_chunk, UV); |
1327
|
1
|
50
|
|
|
|
|
New(0, ctx._farray, _fr_chunk * ctx._noffset, UV); |
1328
|
|
|
|
|
|
|
{ /* Prealloc all the sieving primes now. */ |
1329
|
1
|
|
|
|
|
|
UV t = isqrt(hi); |
1330
|
1
|
50
|
|
|
|
|
if (t >= _fr_sieve_crossover) t = icbrt(hi); |
1331
|
1
|
|
|
|
|
|
get_prime_cache(t, 0); |
1332
|
|
|
|
|
|
|
} |
1333
|
|
|
|
|
|
|
} else { /* factor each number */ |
1334
|
4
|
100
|
|
|
|
|
New(0, ctx.factors, square_free ? 15 : 63, UV); |
1335
|
4
|
|
|
|
|
|
ctx._nfactors = 0; |
1336
|
4
|
|
|
|
|
|
ctx._farray = ctx.factors; |
1337
|
4
|
|
|
|
|
|
ctx._noffset = 0; |
1338
|
|
|
|
|
|
|
} |
1339
|
5
|
|
|
|
|
|
return ctx; |
1340
|
|
|
|
|
|
|
} |
1341
|
|
|
|
|
|
|
|
1342
|
1207
|
|
|
|
|
|
int factor_range_next(factor_range_context_t *ctx) { |
1343
|
|
|
|
|
|
|
int j, nfactors; |
1344
|
|
|
|
|
|
|
UV n; |
1345
|
1207
|
50
|
|
|
|
|
if (ctx->n >= ctx->hi) |
1346
|
0
|
|
|
|
|
|
return -1; |
1347
|
1207
|
|
|
|
|
|
n = ++(ctx->n); |
1348
|
1207
|
100
|
|
|
|
|
if (ctx->_nfactors) { |
1349
|
998
|
100
|
|
|
|
|
if (ctx->_coffset >= _fr_chunk) { |
1350
|
1
|
|
|
|
|
|
UV clo = n; |
1351
|
1
|
|
|
|
|
|
UV chi = n + _fr_chunk - 1; |
1352
|
1
|
50
|
|
|
|
|
if (chi > ctx->hi) chi = ctx->hi; |
1353
|
1
|
|
|
|
|
|
_vec_factor(clo, chi, ctx->_nfactors, ctx->_farray, ctx->_noffset, ctx->is_square_free); |
1354
|
1
|
|
|
|
|
|
ctx->_coffset = 0; |
1355
|
|
|
|
|
|
|
} |
1356
|
998
|
|
|
|
|
|
nfactors = ctx->_nfactors[ctx->_coffset]; |
1357
|
998
|
|
|
|
|
|
ctx->factors = ctx->_farray + ctx->_coffset * ctx->_noffset; |
1358
|
998
|
|
|
|
|
|
ctx->_coffset++; |
1359
|
|
|
|
|
|
|
} else { |
1360
|
209
|
100
|
|
|
|
|
if (ctx->is_square_free && n >= 49 && (!(n% 4) || !(n% 9) || !(n%25) || !(n%49))) |
|
|
100
|
|
|
|
|
|
|
|
100
|
|
|
|
|
|
|
|
100
|
|
|
|
|
|
|
|
100
|
|
|
|
|
|
|
|
100
|
|
|
|
|
|
1361
|
22
|
|
|
|
|
|
return 0; |
1362
|
187
|
|
|
|
|
|
nfactors = factor(n, ctx->factors); |
1363
|
187
|
100
|
|
|
|
|
if (ctx->is_square_free) { |
1364
|
118
|
100
|
|
|
|
|
for (j = 1; j < nfactors; j++) |
1365
|
58
|
100
|
|
|
|
|
if (ctx->factors[j] == ctx->factors[j-1]) |
1366
|
17
|
|
|
|
|
|
break; |
1367
|
77
|
100
|
|
|
|
|
if (j < nfactors) return 0; |
1368
|
|
|
|
|
|
|
} |
1369
|
|
|
|
|
|
|
} |
1370
|
1168
|
|
|
|
|
|
return nfactors; |
1371
|
|
|
|
|
|
|
} |
1372
|
|
|
|
|
|
|
|
1373
|
0
|
|
|
|
|
|
void factor_range_destroy(factor_range_context_t *ctx) { |
1374
|
0
|
0
|
|
|
|
|
if (ctx->_farray != 0) Safefree(ctx->_farray); |
1375
|
0
|
0
|
|
|
|
|
if (ctx->_nfactors != 0) Safefree(ctx->_nfactors); |
1376
|
0
|
|
|
|
|
|
ctx->_farray = ctx->_nfactors = ctx->factors = 0; |
1377
|
0
|
|
|
|
|
|
} |
1378
|
|
|
|
|
|
|
|
1379
|
|
|
|
|
|
|
|
1380
|
|
|
|
|
|
|
/******************************************************************************/ |
1381
|
|
|
|
|
|
|
/* DLP */ |
1382
|
|
|
|
|
|
|
/******************************************************************************/ |
1383
|
|
|
|
|
|
|
|
1384
|
23
|
|
|
|
|
|
static UV dlp_trial(UV a, UV g, UV p, UV maxrounds) { |
1385
|
|
|
|
|
|
|
UV k, t; |
1386
|
23
|
50
|
|
|
|
|
if (maxrounds > p) maxrounds = p; |
1387
|
|
|
|
|
|
|
|
1388
|
|
|
|
|
|
|
#if USE_MONTMATH |
1389
|
23
|
100
|
|
|
|
|
if (p&1) { |
1390
|
18
|
|
|
|
|
|
const uint64_t npi = mont_inverse(p), mont1 = mont_get1(p); |
1391
|
18
|
|
|
|
|
|
g = mont_geta(g, p); |
1392
|
18
|
|
|
|
|
|
a = mont_geta(a, p); |
1393
|
13930
|
50
|
|
|
|
|
for (t = g, k = 1; k < maxrounds; k++) { |
1394
|
13930
|
100
|
|
|
|
|
if (t == a) |
1395
|
18
|
|
|
|
|
|
return k; |
1396
|
13912
|
50
|
|
|
|
|
t = mont_mulmod(t, g, p); |
1397
|
13912
|
50
|
|
|
|
|
if (t == g) break; /* Stop at cycle */ |
1398
|
|
|
|
|
|
|
} |
1399
|
|
|
|
|
|
|
} else |
1400
|
|
|
|
|
|
|
#endif |
1401
|
|
|
|
|
|
|
{ |
1402
|
9
|
50
|
|
|
|
|
for (t = g, k = 1; k < maxrounds; k++) { |
1403
|
9
|
100
|
|
|
|
|
if (t == a) |
1404
|
4
|
|
|
|
|
|
return k; |
1405
|
5
|
|
|
|
|
|
t = mulmod(t, g, p); |
1406
|
5
|
100
|
|
|
|
|
if (t == g) break; /* Stop at cycle */ |
1407
|
|
|
|
|
|
|
} |
1408
|
|
|
|
|
|
|
} |
1409
|
1
|
|
|
|
|
|
return 0; |
1410
|
|
|
|
|
|
|
} |
1411
|
|
|
|
|
|
|
|
1412
|
|
|
|
|
|
|
/******************************************************************************/ |
1413
|
|
|
|
|
|
|
/* DLP - Pollard Rho */ |
1414
|
|
|
|
|
|
|
/******************************************************************************/ |
1415
|
|
|
|
|
|
|
|
1416
|
|
|
|
|
|
|
/* Compare with Pomerance paper (dartmouth dtalk4): |
1417
|
|
|
|
|
|
|
* Type I/II/III = our case 1, 0, 2. |
1418
|
|
|
|
|
|
|
* x_i = u, a_i = v, b_i = w |
1419
|
|
|
|
|
|
|
* |
1420
|
|
|
|
|
|
|
* Also see Bai/Brent 2008 for many ideas to speed this up. |
1421
|
|
|
|
|
|
|
* https://maths-people.anu.edu.au/~brent/pd/rpb231.pdf |
1422
|
|
|
|
|
|
|
* E.g. Teske adding-walk, Brent's cycle algo, Teske modified cycle |
1423
|
|
|
|
|
|
|
*/ |
1424
|
|
|
|
|
|
|
#define pollard_rho_cycle(u,v,w,p,n,a,g) \ |
1425
|
|
|
|
|
|
|
switch (u % 3) { \ |
1426
|
|
|
|
|
|
|
case 0: u = mulmod(u,u,p); v = mulmod(v,2,n); w = mulmod(w,2,n); break;\ |
1427
|
|
|
|
|
|
|
case 1: u = mulmod(u,a,p); v = addmod(v,1,n); break;\ |
1428
|
|
|
|
|
|
|
case 2: u = mulmod(u,g,p); w = addmod(w,1,n); break;\ |
1429
|
|
|
|
|
|
|
} |
1430
|
|
|
|
|
|
|
|
1431
|
|
|
|
|
|
|
typedef struct prho_state_t { |
1432
|
|
|
|
|
|
|
UV u; |
1433
|
|
|
|
|
|
|
UV v; |
1434
|
|
|
|
|
|
|
UV w; |
1435
|
|
|
|
|
|
|
UV U; |
1436
|
|
|
|
|
|
|
UV V; |
1437
|
|
|
|
|
|
|
UV W; |
1438
|
|
|
|
|
|
|
UV round; |
1439
|
|
|
|
|
|
|
int failed; |
1440
|
|
|
|
|
|
|
int verbose; |
1441
|
|
|
|
|
|
|
} prho_state_t; |
1442
|
|
|
|
|
|
|
|
1443
|
4
|
|
|
|
|
|
static UV dlp_prho_uvw(UV a, UV g, UV p, UV n, UV rounds, prho_state_t *s) { |
1444
|
4
|
|
|
|
|
|
UV i, k = 0; |
1445
|
4
|
|
|
|
|
|
UV u=s->u, v=s->v, w=s->w; |
1446
|
4
|
|
|
|
|
|
UV U=s->U, V=s->V, W=s->W; |
1447
|
4
|
|
|
|
|
|
int const verbose = s->verbose; |
1448
|
|
|
|
|
|
|
|
1449
|
4
|
50
|
|
|
|
|
if (s->failed) return 0; |
1450
|
4
|
50
|
|
|
|
|
if (s->round + rounds > n) rounds = n - s->round; |
1451
|
|
|
|
|
|
|
|
1452
|
26787
|
100
|
|
|
|
|
for (i = 1; i <= rounds; i++) { |
1453
|
26785
|
|
|
|
|
|
pollard_rho_cycle(u,v,w,p,n,a,g); /* xi, ai, bi */ |
1454
|
26785
|
|
|
|
|
|
pollard_rho_cycle(U,V,W,p,n,a,g); |
1455
|
26785
|
|
|
|
|
|
pollard_rho_cycle(U,V,W,p,n,a,g); /* x2i, a2i, b2i */ |
1456
|
26785
|
50
|
|
|
|
|
if (verbose > 3) printf( "%3"UVuf" %4"UVuf" %3"UVuf" %3"UVuf" %4"UVuf" %3"UVuf" %3"UVuf"\n", i, u, v, w, U, V, W ); |
1457
|
26785
|
100
|
|
|
|
|
if (u == U) { |
1458
|
|
|
|
|
|
|
UV r1, r2, G, G2; |
1459
|
2
|
|
|
|
|
|
r1 = submod(v, V, n); |
1460
|
2
|
50
|
|
|
|
|
if (r1 == 0) { |
1461
|
0
|
0
|
|
|
|
|
if (verbose) printf("DLP Rho failure, r=0\n"); |
1462
|
0
|
|
|
|
|
|
s->failed = 1; |
1463
|
0
|
|
|
|
|
|
k = 0; |
1464
|
0
|
|
|
|
|
|
break; |
1465
|
|
|
|
|
|
|
} |
1466
|
2
|
|
|
|
|
|
r2 = submod(W, w, n); |
1467
|
|
|
|
|
|
|
|
1468
|
2
|
|
|
|
|
|
G = gcd_ui(r1,n); |
1469
|
2
|
|
|
|
|
|
G2 = gcd_ui(G,r2); |
1470
|
2
|
|
|
|
|
|
k = divmod(r2/G2, r1/G2, n/G2); |
1471
|
2
|
50
|
|
|
|
|
if (G > 1) { |
1472
|
0
|
0
|
|
|
|
|
if (powmod(g,k,p) == a) { |
1473
|
0
|
0
|
|
|
|
|
if (verbose > 2) printf(" common GCD %"UVuf"\n", G2); |
1474
|
|
|
|
|
|
|
} else { |
1475
|
0
|
|
|
|
|
|
UV m, l = divmod(r2, r1, n/G); |
1476
|
0
|
0
|
|
|
|
|
for (m = 0; m < G; m++) { |
1477
|
0
|
|
|
|
|
|
k = addmod(l, mulmod(m,(n/G),n), n); |
1478
|
0
|
0
|
|
|
|
|
if (powmod(g,k,p) == a) break; |
1479
|
|
|
|
|
|
|
} |
1480
|
0
|
0
|
|
|
|
|
if (m 2) printf(" GCD %"UVuf", found with m=%"UVuf"\n", G, m); |
|
|
0
|
|
|
|
|
|
1481
|
|
|
|
|
|
|
} |
1482
|
|
|
|
|
|
|
} |
1483
|
|
|
|
|
|
|
|
1484
|
2
|
50
|
|
|
|
|
if (powmod(g,k,p) != a) { |
1485
|
0
|
0
|
|
|
|
|
if (verbose > 2) printf("r1 = %"UVuf" r2 = %"UVuf" k = %"UVuf"\n", r1, r2, k); |
1486
|
0
|
0
|
|
|
|
|
if (verbose) printf("Incorrect DLP Rho solution: %"UVuf"\n", k); |
1487
|
0
|
|
|
|
|
|
s->failed = 1; |
1488
|
0
|
|
|
|
|
|
k = 0; |
1489
|
|
|
|
|
|
|
} |
1490
|
2
|
|
|
|
|
|
break; |
1491
|
|
|
|
|
|
|
} |
1492
|
|
|
|
|
|
|
} |
1493
|
4
|
|
|
|
|
|
s->round += i-1; |
1494
|
4
|
50
|
|
|
|
|
if (verbose && k) printf("DLP Rho solution found after %"UVuf" steps\n", s->round + 1); |
|
|
0
|
|
|
|
|
|
1495
|
4
|
|
|
|
|
|
s->u = u; s->v = v; s->w = w; s->U = U; s->V = V; s->W = W; |
1496
|
4
|
|
|
|
|
|
return k; |
1497
|
|
|
|
|
|
|
} |
1498
|
|
|
|
|
|
|
|
1499
|
|
|
|
|
|
|
#if 0 |
1500
|
|
|
|
|
|
|
static UV dlp_prho(UV a, UV g, UV p, UV n, UV maxrounds) { |
1501
|
|
|
|
|
|
|
#ifdef DEBUG |
1502
|
|
|
|
|
|
|
int const verbose = _XS_get_verbose() |
1503
|
|
|
|
|
|
|
#else |
1504
|
|
|
|
|
|
|
int const verbose = 0; |
1505
|
|
|
|
|
|
|
#endif |
1506
|
|
|
|
|
|
|
prho_state_t s = {1, 0, 0, 1, 0, 0, 0, 0, verbose}; |
1507
|
|
|
|
|
|
|
return dlp_prho_uvw(a, g, p, n, maxrounds, &s); |
1508
|
|
|
|
|
|
|
} |
1509
|
|
|
|
|
|
|
#endif |
1510
|
|
|
|
|
|
|
|
1511
|
|
|
|
|
|
|
|
1512
|
|
|
|
|
|
|
/******************************************************************************/ |
1513
|
|
|
|
|
|
|
/* DLP - BSGS */ |
1514
|
|
|
|
|
|
|
/******************************************************************************/ |
1515
|
|
|
|
|
|
|
|
1516
|
|
|
|
|
|
|
typedef struct bsgs_hash_t { |
1517
|
|
|
|
|
|
|
UV M; /* The baby step index */ |
1518
|
|
|
|
|
|
|
UV V; /* The powmod value */ |
1519
|
|
|
|
|
|
|
struct bsgs_hash_t* next; |
1520
|
|
|
|
|
|
|
} bsgs_hash_t; |
1521
|
|
|
|
|
|
|
|
1522
|
|
|
|
|
|
|
/****************************************/ |
1523
|
|
|
|
|
|
|
/* Simple and limited pool allocation */ |
1524
|
|
|
|
|
|
|
#define BSGS_ENTRIES_PER_PAGE 8000 |
1525
|
|
|
|
|
|
|
typedef struct bsgs_page_top_t { |
1526
|
|
|
|
|
|
|
struct bsgs_page_t* first; |
1527
|
|
|
|
|
|
|
bsgs_hash_t** table; |
1528
|
|
|
|
|
|
|
UV size; |
1529
|
|
|
|
|
|
|
int nused; |
1530
|
|
|
|
|
|
|
int npages; |
1531
|
|
|
|
|
|
|
} bsgs_page_top_t; |
1532
|
|
|
|
|
|
|
|
1533
|
|
|
|
|
|
|
typedef struct bsgs_page_t { |
1534
|
|
|
|
|
|
|
bsgs_hash_t entries[BSGS_ENTRIES_PER_PAGE]; |
1535
|
|
|
|
|
|
|
struct bsgs_page_t* next; |
1536
|
|
|
|
|
|
|
} bsgs_page_t; |
1537
|
|
|
|
|
|
|
|
1538
|
4139
|
|
|
|
|
|
static bsgs_hash_t* get_entry(bsgs_page_top_t* top) { |
1539
|
4139
|
100
|
|
|
|
|
if (top->nused == 0 || top->nused >= BSGS_ENTRIES_PER_PAGE) { |
|
|
50
|
|
|
|
|
|
1540
|
|
|
|
|
|
|
bsgs_page_t* newpage; |
1541
|
2
|
|
|
|
|
|
Newz(0, newpage, 1, bsgs_page_t); |
1542
|
2
|
|
|
|
|
|
newpage->next = top->first; |
1543
|
2
|
|
|
|
|
|
top->first = newpage; |
1544
|
2
|
|
|
|
|
|
top->nused = 0; |
1545
|
2
|
|
|
|
|
|
top->npages++; |
1546
|
|
|
|
|
|
|
} |
1547
|
4139
|
|
|
|
|
|
return top->first->entries + top->nused++; |
1548
|
|
|
|
|
|
|
} |
1549
|
2
|
|
|
|
|
|
static void destroy_pages(bsgs_page_top_t* top) { |
1550
|
2
|
|
|
|
|
|
bsgs_page_t* head = top->first; |
1551
|
4
|
100
|
|
|
|
|
while (head != 0) { |
1552
|
2
|
|
|
|
|
|
bsgs_page_t* next = head->next; |
1553
|
2
|
|
|
|
|
|
Safefree(head); |
1554
|
2
|
|
|
|
|
|
head = next; |
1555
|
|
|
|
|
|
|
} |
1556
|
2
|
|
|
|
|
|
top->first = 0; |
1557
|
2
|
|
|
|
|
|
} |
1558
|
|
|
|
|
|
|
/****************************************/ |
1559
|
|
|
|
|
|
|
|
1560
|
2
|
|
|
|
|
|
static void bsgs_hash_put(bsgs_page_top_t* pagetop, UV v, UV i) { |
1561
|
2
|
|
|
|
|
|
UV idx = v % pagetop->size; |
1562
|
2
|
|
|
|
|
|
bsgs_hash_t** table = pagetop->table; |
1563
|
2
|
|
|
|
|
|
bsgs_hash_t* entry = table[idx]; |
1564
|
|
|
|
|
|
|
|
1565
|
2
|
50
|
|
|
|
|
while (entry && entry->V != v) |
|
|
0
|
|
|
|
|
|
1566
|
0
|
|
|
|
|
|
entry = entry->next; |
1567
|
|
|
|
|
|
|
|
1568
|
2
|
50
|
|
|
|
|
if (!entry) { |
1569
|
2
|
|
|
|
|
|
entry = get_entry(pagetop); |
1570
|
2
|
|
|
|
|
|
entry->M = i; |
1571
|
2
|
|
|
|
|
|
entry->V = v; |
1572
|
2
|
|
|
|
|
|
entry->next = table[idx]; |
1573
|
2
|
|
|
|
|
|
table[idx] = entry; |
1574
|
|
|
|
|
|
|
} |
1575
|
2
|
|
|
|
|
|
} |
1576
|
|
|
|
|
|
|
|
1577
|
0
|
|
|
|
|
|
static UV bsgs_hash_get(bsgs_page_top_t* pagetop, UV v) { |
1578
|
0
|
|
|
|
|
|
bsgs_hash_t* entry = pagetop->table[v % pagetop->size]; |
1579
|
0
|
0
|
|
|
|
|
while (entry && entry->V != v) |
|
|
0
|
|
|
|
|
|
1580
|
0
|
|
|
|
|
|
entry = entry->next; |
1581
|
0
|
0
|
|
|
|
|
return (entry) ? entry->M : 0; |
1582
|
|
|
|
|
|
|
} |
1583
|
|
|
|
|
|
|
|
1584
|
4137
|
|
|
|
|
|
static UV bsgs_hash_put_get(bsgs_page_top_t* pagetop, UV v, UV i) { |
1585
|
4137
|
|
|
|
|
|
UV idx = v % pagetop->size; |
1586
|
4137
|
|
|
|
|
|
bsgs_hash_t** table = pagetop->table; |
1587
|
4137
|
|
|
|
|
|
bsgs_hash_t* entry = table[idx]; |
1588
|
|
|
|
|
|
|
|
1589
|
4260
|
100
|
|
|
|
|
while (entry && entry->V != v) |
|
|
50
|
|
|
|
|
|
1590
|
123
|
|
|
|
|
|
entry = entry->next; |
1591
|
|
|
|
|
|
|
|
1592
|
4137
|
50
|
|
|
|
|
if (entry) |
1593
|
0
|
|
|
|
|
|
return entry->M; |
1594
|
|
|
|
|
|
|
|
1595
|
4137
|
|
|
|
|
|
entry = get_entry(pagetop); |
1596
|
4137
|
|
|
|
|
|
entry->M = i; |
1597
|
4137
|
|
|
|
|
|
entry->V = v; |
1598
|
4137
|
|
|
|
|
|
entry->next = table[idx]; |
1599
|
4137
|
|
|
|
|
|
table[idx] = entry; |
1600
|
4137
|
|
|
|
|
|
return 0; |
1601
|
|
|
|
|
|
|
} |
1602
|
|
|
|
|
|
|
|
1603
|
3
|
|
|
|
|
|
static UV dlp_bsgs(UV a, UV g, UV p, UV n, UV maxent, int race_rho) { |
1604
|
|
|
|
|
|
|
bsgs_page_top_t PAGES; |
1605
|
|
|
|
|
|
|
UV i, m, maxm, hashmap_count; |
1606
|
|
|
|
|
|
|
UV aa, S, gm, T, gs_i, bs_i; |
1607
|
3
|
|
|
|
|
|
UV result = 0; |
1608
|
|
|
|
|
|
|
#ifdef DEBUG |
1609
|
|
|
|
|
|
|
int const verbose = _XS_get_verbose(); |
1610
|
|
|
|
|
|
|
#else |
1611
|
3
|
|
|
|
|
|
int const verbose = 0; |
1612
|
|
|
|
|
|
|
#endif |
1613
|
3
|
|
|
|
|
|
prho_state_t rho_state = {1, 0, 0, 1, 0, 0, 0, 0, verbose}; |
1614
|
|
|
|
|
|
|
|
1615
|
3
|
50
|
|
|
|
|
if (n <= 2) return 0; /* Shouldn't be here with gorder this low */ |
1616
|
|
|
|
|
|
|
|
1617
|
3
|
50
|
|
|
|
|
if (race_rho) { |
1618
|
3
|
|
|
|
|
|
result = dlp_prho_uvw(a, g, p, n, 10000, &rho_state); |
1619
|
3
|
100
|
|
|
|
|
if (result) { |
1620
|
1
|
50
|
|
|
|
|
if (verbose) printf("rho found solution in BSGS step 0\n"); |
1621
|
1
|
|
|
|
|
|
return result; |
1622
|
|
|
|
|
|
|
} |
1623
|
|
|
|
|
|
|
} |
1624
|
|
|
|
|
|
|
|
1625
|
2
|
50
|
|
|
|
|
if (a == 0) return 0; /* We don't handle this case */ |
1626
|
|
|
|
|
|
|
|
1627
|
2
|
|
|
|
|
|
maxm = isqrt(n); |
1628
|
2
|
|
|
|
|
|
m = (maxent > maxm) ? maxm : maxent; |
1629
|
|
|
|
|
|
|
|
1630
|
2
|
50
|
|
|
|
|
hashmap_count = (m < 65537) ? 65537 : |
1631
|
0
|
0
|
|
|
|
|
(m > 40000000) ? 40000003 : |
1632
|
|
|
|
|
|
|
next_prime(m); /* Ave depth around 2 */ |
1633
|
|
|
|
|
|
|
|
1634
|
|
|
|
|
|
|
/* Create table. Size: 8*hashmap_count bytes. */ |
1635
|
2
|
|
|
|
|
|
PAGES.size = hashmap_count; |
1636
|
2
|
|
|
|
|
|
PAGES.first = 0; |
1637
|
2
|
|
|
|
|
|
PAGES.nused = 0; |
1638
|
2
|
|
|
|
|
|
PAGES.npages = 0; |
1639
|
2
|
50
|
|
|
|
|
Newz(0, PAGES.table, hashmap_count, bsgs_hash_t*); |
1640
|
|
|
|
|
|
|
|
1641
|
2
|
|
|
|
|
|
aa = mulmod(a,a,p); |
1642
|
2
|
|
|
|
|
|
S = a; |
1643
|
2
|
|
|
|
|
|
gm = powmod(g, m, p); |
1644
|
2
|
|
|
|
|
|
T = gm; |
1645
|
2
|
|
|
|
|
|
gs_i = 0; |
1646
|
2
|
|
|
|
|
|
bs_i = 0; |
1647
|
|
|
|
|
|
|
|
1648
|
2
|
|
|
|
|
|
bsgs_hash_put(&PAGES, S, 0); /* First baby step */ |
1649
|
2
|
|
|
|
|
|
S = mulmod(S, g, p); |
1650
|
|
|
|
|
|
|
/* Interleaved Baby Step Giant Step */ |
1651
|
2069
|
50
|
|
|
|
|
for (i = 1; i <= m; i++) { |
1652
|
2069
|
|
|
|
|
|
gs_i = bsgs_hash_put_get(&PAGES, S, i); |
1653
|
2069
|
50
|
|
|
|
|
if (gs_i) { bs_i = i; break; } |
1654
|
2069
|
|
|
|
|
|
S = mulmod(S, g, p); |
1655
|
2069
|
100
|
|
|
|
|
if (S == aa) { /* We discovered the solution! */ |
1656
|
1
|
50
|
|
|
|
|
if (verbose) printf(" dlp bsgs: solution at BS step %"UVuf"\n", i+1); |
1657
|
1
|
|
|
|
|
|
result = i+1; |
1658
|
1
|
|
|
|
|
|
break; |
1659
|
|
|
|
|
|
|
} |
1660
|
2068
|
|
|
|
|
|
bs_i = bsgs_hash_put_get(&PAGES, T, i); |
1661
|
2068
|
50
|
|
|
|
|
if (bs_i) { gs_i = i; break; } |
1662
|
2068
|
|
|
|
|
|
T = mulmod(T, gm, p); |
1663
|
2068
|
50
|
|
|
|
|
if (race_rho && (i % 2048) == 0) { |
|
|
100
|
|
|
|
|
|
1664
|
1
|
|
|
|
|
|
result = dlp_prho_uvw(a, g, p, n, 100000, &rho_state); |
1665
|
1
|
50
|
|
|
|
|
if (result) { |
1666
|
1
|
50
|
|
|
|
|
if (verbose) printf("rho found solution in BSGS step %"UVuf"\n", i); |
1667
|
1
|
|
|
|
|
|
break; |
1668
|
|
|
|
|
|
|
} |
1669
|
|
|
|
|
|
|
} |
1670
|
|
|
|
|
|
|
} |
1671
|
|
|
|
|
|
|
|
1672
|
2
|
50
|
|
|
|
|
if (!result) { |
1673
|
|
|
|
|
|
|
/* Extend Giant Step search */ |
1674
|
0
|
0
|
|
|
|
|
if (!(gs_i || bs_i)) { |
|
|
0
|
|
|
|
|
|
1675
|
0
|
|
|
|
|
|
UV b = (p+m-1)/m; |
1676
|
0
|
0
|
|
|
|
|
if (m < maxm && b > 8*m) b = 8*m; |
|
|
0
|
|
|
|
|
|
1677
|
0
|
0
|
|
|
|
|
for (i = m+1; i < b; i++) { |
1678
|
0
|
|
|
|
|
|
bs_i = bsgs_hash_get(&PAGES, T); |
1679
|
0
|
0
|
|
|
|
|
if (bs_i) { gs_i = i; break; } |
1680
|
0
|
|
|
|
|
|
T = mulmod(T, gm, p); |
1681
|
0
|
0
|
|
|
|
|
if (race_rho && (i % 2048) == 0) { |
|
|
0
|
|
|
|
|
|
1682
|
0
|
|
|
|
|
|
result = dlp_prho_uvw(a, g, p, n, 100000, &rho_state); |
1683
|
0
|
0
|
|
|
|
|
if (result) { |
1684
|
0
|
0
|
|
|
|
|
if (verbose) printf("rho found solution in BSGS step %"UVuf"\n", i); |
1685
|
0
|
|
|
|
|
|
break; |
1686
|
|
|
|
|
|
|
} |
1687
|
|
|
|
|
|
|
} |
1688
|
|
|
|
|
|
|
} |
1689
|
|
|
|
|
|
|
} |
1690
|
|
|
|
|
|
|
|
1691
|
0
|
0
|
|
|
|
|
if (gs_i || bs_i) { |
|
|
0
|
|
|
|
|
|
1692
|
0
|
|
|
|
|
|
result = submod(mulmod(gs_i, m, p), bs_i, p); |
1693
|
|
|
|
|
|
|
} |
1694
|
|
|
|
|
|
|
} |
1695
|
2
|
50
|
|
|
|
|
if (verbose) printf(" dlp bsgs using %d pages (%.1fMB+%.1fMB) for hash\n", PAGES.npages, ((double)PAGES.npages * sizeof(bsgs_page_t)) / (1024*1024), ((double)hashmap_count * sizeof(bsgs_hash_t*)) / (1024*1024)); |
1696
|
|
|
|
|
|
|
|
1697
|
2
|
|
|
|
|
|
destroy_pages(&PAGES); |
1698
|
2
|
|
|
|
|
|
Safefree(PAGES.table); |
1699
|
2
|
50
|
|
|
|
|
if (result != 0 && powmod(g,result,p) != a) { |
|
|
50
|
|
|
|
|
|
1700
|
0
|
0
|
|
|
|
|
if (verbose) printf("Incorrect DLP BSGS solution: %"UVuf"\n", result); |
1701
|
0
|
|
|
|
|
|
result = 0; |
1702
|
|
|
|
|
|
|
} |
1703
|
2
|
50
|
|
|
|
|
if (race_rho && result == 0) { |
|
|
50
|
|
|
|
|
|
1704
|
0
|
|
|
|
|
|
result = dlp_prho_uvw(a, g, p, n, 2000000000U, &rho_state); |
1705
|
|
|
|
|
|
|
} |
1706
|
3
|
|
|
|
|
|
return result; |
1707
|
|
|
|
|
|
|
} |
1708
|
|
|
|
|
|
|
|
1709
|
|
|
|
|
|
|
/* Find smallest k where a = g^k mod p */ |
1710
|
|
|
|
|
|
|
#define DLP_TRIAL_NUM 10000 |
1711
|
16
|
|
|
|
|
|
static UV znlog_solve(UV a, UV g, UV p, UV n) { |
1712
|
|
|
|
|
|
|
UV k, sqrtn; |
1713
|
16
|
|
|
|
|
|
const int verbose = _XS_get_verbose(); |
1714
|
|
|
|
|
|
|
|
1715
|
16
|
50
|
|
|
|
|
if (a >= p) a %= p; |
1716
|
16
|
50
|
|
|
|
|
if (g >= p) g %= p; |
1717
|
|
|
|
|
|
|
|
1718
|
16
|
100
|
|
|
|
|
if (a == 1 || g == 0 || p <= 2) |
|
|
50
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
1719
|
1
|
|
|
|
|
|
return 0; |
1720
|
|
|
|
|
|
|
|
1721
|
15
|
50
|
|
|
|
|
if (verbose > 1 && n != p-1) printf(" g=%"UVuf" p=%"UVuf", order %"UVuf"\n", g, p, n); |
|
|
0
|
|
|
|
|
|
1722
|
|
|
|
|
|
|
|
1723
|
|
|
|
|
|
|
/* printf(" solving znlog(%"UVuf",%"UVuf",%"UVuf") n=%"UVuf"\n", a, g, p, n); */ |
1724
|
|
|
|
|
|
|
|
1725
|
15
|
50
|
|
|
|
|
if (n == 0 || n <= DLP_TRIAL_NUM) { |
|
|
100
|
|
|
|
|
|
1726
|
12
|
|
|
|
|
|
k = dlp_trial(a, g, p, DLP_TRIAL_NUM); |
1727
|
12
|
50
|
|
|
|
|
if (verbose) printf(" dlp trial 10k %s\n", (k!=0 || p <= DLP_TRIAL_NUM) ? "success" : "failure"); |
|
|
0
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
1728
|
12
|
50
|
|
|
|
|
if (k != 0 || (n > 0 && n <= DLP_TRIAL_NUM)) return k; |
|
|
0
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
1729
|
|
|
|
|
|
|
} |
1730
|
|
|
|
|
|
|
|
1731
|
|
|
|
|
|
|
{ /* Existence checks */ |
1732
|
3
|
|
|
|
|
|
UV aorder, gorder = n; |
1733
|
3
|
50
|
|
|
|
|
if (gorder != 0 && powmod(a, gorder, p) != 1) return 0; |
|
|
50
|
|
|
|
|
|
1734
|
3
|
|
|
|
|
|
aorder = znorder(a,p); |
1735
|
3
|
50
|
|
|
|
|
if (aorder == 0 && gorder != 0) return 0; |
|
|
0
|
|
|
|
|
|
1736
|
3
|
50
|
|
|
|
|
if (aorder != 0 && gorder % aorder != 0) return 0; |
|
|
50
|
|
|
|
|
|
1737
|
|
|
|
|
|
|
} |
1738
|
|
|
|
|
|
|
|
1739
|
3
|
50
|
|
|
|
|
sqrtn = (n == 0) ? 0 : isqrt(n); |
1740
|
3
|
50
|
|
|
|
|
if (n == 0) n = p-1; |
1741
|
|
|
|
|
|
|
|
1742
|
|
|
|
|
|
|
{ |
1743
|
3
|
50
|
|
|
|
|
UV maxent = (sqrtn > 0) ? sqrtn+1 : 100000; |
1744
|
3
|
|
|
|
|
|
k = dlp_bsgs(a, g, p, n, maxent/2, /* race rho */ 1); |
1745
|
3
|
50
|
|
|
|
|
if (verbose) printf(" dlp bsgs %"UVuf"k %s\n", maxent/1000, k!=0 ? "success" : "failure"); |
|
|
0
|
|
|
|
|
|
1746
|
3
|
50
|
|
|
|
|
if (k != 0) return k; |
1747
|
0
|
0
|
|
|
|
|
if (sqrtn > 0 && sqrtn < maxent) return 0; |
|
|
0
|
|
|
|
|
|
1748
|
|
|
|
|
|
|
} |
1749
|
|
|
|
|
|
|
|
1750
|
0
|
0
|
|
|
|
|
if (verbose) printf(" dlp doing exhaustive trial\n"); |
1751
|
0
|
|
|
|
|
|
k = dlp_trial(a, g, p, p); |
1752
|
0
|
|
|
|
|
|
return k; |
1753
|
|
|
|
|
|
|
} |
1754
|
|
|
|
|
|
|
|
1755
|
|
|
|
|
|
|
/* Silver-Pohlig-Hellman */ |
1756
|
5
|
|
|
|
|
|
static UV znlog_ph(UV a, UV g, UV p, UV p1) { |
1757
|
|
|
|
|
|
|
UV fac[MPU_MAX_FACTORS+1]; |
1758
|
|
|
|
|
|
|
UV exp[MPU_MAX_FACTORS+1]; |
1759
|
|
|
|
|
|
|
int i, nfactors; |
1760
|
|
|
|
|
|
|
UV x, j; |
1761
|
|
|
|
|
|
|
|
1762
|
5
|
50
|
|
|
|
|
if (p1 == 0) return 0; /* TODO: Should we plow on with p1=p-1? */ |
1763
|
5
|
|
|
|
|
|
nfactors = factor_exp(p1, fac, exp); |
1764
|
5
|
50
|
|
|
|
|
if (nfactors == 1) |
1765
|
0
|
|
|
|
|
|
return znlog_solve(a, g, p, p1); |
1766
|
21
|
100
|
|
|
|
|
for (i = 0; i < nfactors; i++) { |
1767
|
|
|
|
|
|
|
UV pi, delta, gamma; |
1768
|
17
|
100
|
|
|
|
|
pi = fac[i]; for (j = 1; j < exp[i]; j++) pi *= fac[i]; |
1769
|
16
|
|
|
|
|
|
delta = powmod(a,p1/pi,p); |
1770
|
16
|
|
|
|
|
|
gamma = powmod(g,p1/pi,p); |
1771
|
|
|
|
|
|
|
/* printf(" solving znlog(%"UVuf",%"UVuf",%"UVuf")\n", delta, gamma, p); */ |
1772
|
16
|
|
|
|
|
|
fac[i] = znlog_solve( delta, gamma, p, znorder(gamma,p) ); |
1773
|
16
|
|
|
|
|
|
exp[i] = pi; |
1774
|
|
|
|
|
|
|
} |
1775
|
5
|
|
|
|
|
|
x = chinese(fac, exp, nfactors, &i); |
1776
|
5
|
50
|
|
|
|
|
if (i == 1 && powmod(g, x, p) == a) |
|
|
50
|
|
|
|
|
|
1777
|
5
|
|
|
|
|
|
return x; |
1778
|
5
|
|
|
|
|
|
return 0; |
1779
|
|
|
|
|
|
|
} |
1780
|
|
|
|
|
|
|
|
1781
|
|
|
|
|
|
|
/* Find smallest k where a = g^k mod p */ |
1782
|
20
|
|
|
|
|
|
UV znlog(UV a, UV g, UV p) { |
1783
|
|
|
|
|
|
|
UV k, gorder, aorder; |
1784
|
20
|
|
|
|
|
|
const int verbose = _XS_get_verbose(); |
1785
|
|
|
|
|
|
|
|
1786
|
20
|
50
|
|
|
|
|
if (a >= p) a %= p; |
1787
|
20
|
50
|
|
|
|
|
if (g >= p) g %= p; |
1788
|
|
|
|
|
|
|
|
1789
|
20
|
100
|
|
|
|
|
if (a == 1 || g == 0 || p <= 2) |
|
|
50
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
1790
|
2
|
|
|
|
|
|
return 0; |
1791
|
|
|
|
|
|
|
|
1792
|
|
|
|
|
|
|
/* TODO: We call znorder with the same p many times. We should have a |
1793
|
|
|
|
|
|
|
* method for znorder given {phi,nfactors,fac,exp} */ |
1794
|
|
|
|
|
|
|
|
1795
|
18
|
|
|
|
|
|
gorder = znorder(g,p); |
1796
|
18
|
100
|
|
|
|
|
if (gorder != 0 && powmod(a, gorder, p) != 1) return 0; |
|
|
100
|
|
|
|
|
|
1797
|
16
|
|
|
|
|
|
aorder = znorder(a,p); |
1798
|
16
|
100
|
|
|
|
|
if (aorder == 0 && gorder != 0) return 0; |
|
|
50
|
|
|
|
|
|
1799
|
16
|
100
|
|
|
|
|
if (aorder != 0 && gorder % aorder != 0) return 0; |
|
|
50
|
|
|
|
|
|
1800
|
|
|
|
|
|
|
|
1801
|
|
|
|
|
|
|
/* TODO: Come up with a better solution for a=0 */ |
1802
|
16
|
100
|
|
|
|
|
if (a == 0 || p < DLP_TRIAL_NUM || (gorder > 0 && gorder < DLP_TRIAL_NUM)) { |
|
|
100
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
1803
|
11
|
50
|
|
|
|
|
if (verbose > 1) printf(" dlp trial znlog(%"UVuf",%"UVuf",%"UVuf")\n",a,g,p); |
1804
|
11
|
|
|
|
|
|
k = dlp_trial(a, g, p, p); |
1805
|
11
|
|
|
|
|
|
return k; |
1806
|
|
|
|
|
|
|
} |
1807
|
|
|
|
|
|
|
|
1808
|
5
|
50
|
|
|
|
|
if (!is_prob_prime(gorder)) { |
1809
|
5
|
|
|
|
|
|
k = znlog_ph(a, g, p, gorder); |
1810
|
5
|
50
|
|
|
|
|
if (verbose) printf(" dlp PH %s\n", k!=0 ? "success" : "failure"); |
|
|
0
|
|
|
|
|
|
1811
|
5
|
50
|
|
|
|
|
if (k != 0) return k; |
1812
|
|
|
|
|
|
|
} |
1813
|
|
|
|
|
|
|
|
1814
|
0
|
|
|
|
|
|
return znlog_solve(a, g, p, gorder); |
1815
|
|
|
|
|
|
|
} |
1816
|
|
|
|
|
|
|
|
1817
|
|
|
|
|
|
|
|
1818
|
|
|
|
|
|
|
/* Compile with: |
1819
|
|
|
|
|
|
|
* gcc -O3 -fomit-frame-pointer -march=native -Wall -DSTANDALONE -DFACTOR_STANDALONE factor.c util.c primality.c cache.c sieve.c chacha.c csprng.c prime_nth_count.c lmo.c -lm |
1820
|
|
|
|
|
|
|
*/ |
1821
|
|
|
|
|
|
|
#ifdef FACTOR_STANDALONE |
1822
|
|
|
|
|
|
|
#include |
1823
|
|
|
|
|
|
|
int main(int argc, char *argv[]) |
1824
|
|
|
|
|
|
|
{ |
1825
|
|
|
|
|
|
|
UV n; |
1826
|
|
|
|
|
|
|
UV factors[MPU_MAX_FACTORS+1]; |
1827
|
|
|
|
|
|
|
int nfactors, i, a; |
1828
|
|
|
|
|
|
|
|
1829
|
|
|
|
|
|
|
if (argc <= 1) { |
1830
|
|
|
|
|
|
|
char line[1024]; |
1831
|
|
|
|
|
|
|
while (1) { |
1832
|
|
|
|
|
|
|
if (!fgets(line,sizeof(line),stdin)) break; |
1833
|
|
|
|
|
|
|
n = strtoull(line, 0, 10); |
1834
|
|
|
|
|
|
|
nfactors = factor(n, factors); |
1835
|
|
|
|
|
|
|
if (nfactors == 1) { |
1836
|
|
|
|
|
|
|
printf("%"UVuf": %"UVuf"\n",n,n); |
1837
|
|
|
|
|
|
|
} else if (nfactors == 2) { |
1838
|
|
|
|
|
|
|
printf("%"UVuf": %"UVuf" %"UVuf"\n",n,factors[0],factors[1]); |
1839
|
|
|
|
|
|
|
} else if (nfactors == 3) { |
1840
|
|
|
|
|
|
|
printf("%"UVuf": %"UVuf" %"UVuf" %"UVuf"\n",n,factors[0],factors[1],factors[2]); |
1841
|
|
|
|
|
|
|
} else { |
1842
|
|
|
|
|
|
|
printf("%"UVuf": %"UVuf" %"UVuf" %"UVuf" %"UVuf"",n,factors[0],factors[1],factors[2],factors[3]); |
1843
|
|
|
|
|
|
|
for (i = 4; i < nfactors; i++) printf(" %"UVuf"", factors[i]); |
1844
|
|
|
|
|
|
|
printf("\n"); |
1845
|
|
|
|
|
|
|
} |
1846
|
|
|
|
|
|
|
} |
1847
|
|
|
|
|
|
|
exit(0); |
1848
|
|
|
|
|
|
|
} |
1849
|
|
|
|
|
|
|
|
1850
|
|
|
|
|
|
|
for (a = 1; a < argc; a++) { |
1851
|
|
|
|
|
|
|
n = strtoul(argv[a], 0, 10); |
1852
|
|
|
|
|
|
|
if (n == ULONG_MAX && errno == ERANGE) { printf("Argument larger than ULONG_MAX\n"); return(-1); } |
1853
|
|
|
|
|
|
|
nfactors = factor(n, factors); |
1854
|
|
|
|
|
|
|
printf("%"UVuf":", n); |
1855
|
|
|
|
|
|
|
for (i = 0; i < nfactors; i++) |
1856
|
|
|
|
|
|
|
printf(" %"UVuf"", factors[i]); |
1857
|
|
|
|
|
|
|
printf("\n"); |
1858
|
|
|
|
|
|
|
} |
1859
|
|
|
|
|
|
|
|
1860
|
|
|
|
|
|
|
return(0); |
1861
|
|
|
|
|
|
|
} |
1862
|
|
|
|
|
|
|
#endif |