line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
1
|
|
|
|
|
|
|
#include |
2
|
|
|
|
|
|
|
#include |
3
|
|
|
|
|
|
|
#include "csprng.h" |
4
|
|
|
|
|
|
|
#include "primality.h" |
5
|
|
|
|
|
|
|
#include "util.h" |
6
|
|
|
|
|
|
|
#include "prime_nth_count.h" |
7
|
|
|
|
|
|
|
#include "lmo.h" |
8
|
|
|
|
|
|
|
#include "mulmod.h" |
9
|
|
|
|
|
|
|
#include "constants.h" |
10
|
|
|
|
|
|
|
#include "random_prime.h" |
11
|
|
|
|
|
|
|
|
12
|
254
|
|
|
|
|
|
UV random_nbit_prime(void* ctx, UV b) |
13
|
|
|
|
|
|
|
{ |
14
|
254
|
|
|
|
|
|
uint32_t start = 0, range; |
15
|
|
|
|
|
|
|
UV n, p; |
16
|
254
|
|
|
|
|
|
switch (b) { |
17
|
|
|
|
|
|
|
case 0: |
18
|
0
|
|
|
|
|
|
case 1: return 0; |
19
|
4
|
100
|
|
|
|
|
case 2: return urandomb(ctx,1) ? 2 : 3; |
20
|
4
|
100
|
|
|
|
|
case 3: return urandomb(ctx,1) ? 5 : 7; |
21
|
4
|
50
|
|
|
|
|
case 4: return urandomb(ctx,1) ? 11 : 13; |
22
|
4
|
|
|
|
|
|
case 5: start = 7; range = 5; break; |
23
|
4
|
|
|
|
|
|
case 6: start = 12; range = 7; break; |
24
|
4
|
|
|
|
|
|
case 7: start = 19; range = 13; break; |
25
|
4
|
|
|
|
|
|
case 8: start = 32; range = 23; break; |
26
|
4
|
|
|
|
|
|
case 9: start = 55; range = 43; break; |
27
|
222
|
|
|
|
|
|
default: break; |
28
|
|
|
|
|
|
|
} |
29
|
|
|
|
|
|
|
|
30
|
242
|
100
|
|
|
|
|
if (start) |
31
|
20
|
|
|
|
|
|
return nth_prime(start + urandomm32(ctx,range)); |
32
|
|
|
|
|
|
|
|
33
|
222
|
50
|
|
|
|
|
if (b > BITS_PER_WORD) |
34
|
0
|
|
|
|
|
|
return 0; |
35
|
|
|
|
|
|
|
|
36
|
|
|
|
|
|
|
/* Trivial method */ |
37
|
222
|
|
|
|
|
|
p = (UVCONST(1) << (b-1)) + 1; |
38
|
|
|
|
|
|
|
while (1) { |
39
|
2796
|
|
|
|
|
|
n = p + (urandomb(ctx,b-2) << 1); |
40
|
2796
|
100
|
|
|
|
|
if (is_prob_prime(n)) |
41
|
222
|
|
|
|
|
|
return n; |
42
|
2574
|
|
|
|
|
|
} |
43
|
|
|
|
|
|
|
} |
44
|
|
|
|
|
|
|
|
45
|
22
|
|
|
|
|
|
UV random_ndigit_prime(void* ctx, UV d) |
46
|
|
|
|
|
|
|
{ |
47
|
|
|
|
|
|
|
UV lo, hi; |
48
|
22
|
50
|
|
|
|
|
if ( (d == 0) || (BITS_PER_WORD == 32 && d >= 10) || (BITS_PER_WORD == 64 && d >= 20) ) return 0; |
|
|
100
|
|
|
|
|
|
49
|
19
|
100
|
|
|
|
|
if (d == 1) return nth_prime(1 + urandomm32(ctx,4)); |
50
|
18
|
100
|
|
|
|
|
if (d == 2) return nth_prime(5 + urandomm32(ctx,21)); |
51
|
17
|
|
|
|
|
|
lo = powmod(10,d-1,UV_MAX)+1; |
52
|
17
|
|
|
|
|
|
hi = 10*lo-11; |
53
|
|
|
|
|
|
|
while (1) { |
54
|
227
|
|
|
|
|
|
UV n = (lo + urandomm64(ctx,hi-lo+1)) | 1; |
55
|
227
|
100
|
|
|
|
|
if (is_prob_prime(n)) |
56
|
17
|
|
|
|
|
|
return n; |
57
|
210
|
|
|
|
|
|
} |
58
|
|
|
|
|
|
|
} |
59
|
|
|
|
|
|
|
|
60
|
22017
|
|
|
|
|
|
UV random_prime(void* ctx, UV lo, UV hi) |
61
|
|
|
|
|
|
|
{ |
62
|
|
|
|
|
|
|
UV n, oddrange; |
63
|
22017
|
100
|
|
|
|
|
if (lo > hi) return 0; |
64
|
|
|
|
|
|
|
/* Pull edges in to nearest primes */ |
65
|
22015
|
100
|
|
|
|
|
lo = (lo <= 2) ? 2 : next_prime(lo-1); |
66
|
22015
|
50
|
|
|
|
|
hi = (hi >= MPU_MAX_PRIME) ? MPU_MAX_PRIME : prev_prime(hi+1); |
67
|
22015
|
100
|
|
|
|
|
if (lo > hi) return 0; |
68
|
|
|
|
|
|
|
/* There must be at least one prime in the range */ |
69
|
22011
|
100
|
|
|
|
|
if (!(lo&1)) lo--; /* treat 2 as 1 */ |
70
|
22011
|
|
|
|
|
|
oddrange = ((hi-lo)>>1) + 1; /* look for odds */ |
71
|
|
|
|
|
|
|
while (1) { |
72
|
133867
|
|
|
|
|
|
n = lo + 2 * urandomm64(ctx, oddrange); |
73
|
133867
|
100
|
|
|
|
|
if (n == 1 || is_prob_prime(n)) |
|
|
100
|
|
|
|
|
|
74
|
22011
|
100
|
|
|
|
|
return (n == 1) ? 2 : n; |
75
|
111856
|
|
|
|
|
|
} |
76
|
|
|
|
|
|
|
} |
77
|
|
|
|
|
|
|
|
78
|
|
|
|
|
|
|
/* Note that 7 chosen bases or the first 12 prime bases are enough |
79
|
|
|
|
|
|
|
* to guarantee sucess. We could choose to limit to those. */ |
80
|
5
|
|
|
|
|
|
int is_mr_random(void* ctx, UV n, UV k) { |
81
|
5
|
50
|
|
|
|
|
if (k >= 3*(n/4)) |
82
|
0
|
|
|
|
|
|
return is_prob_prime(n); |
83
|
|
|
|
|
|
|
|
84
|
|
|
|
|
|
|
/* TODO: do 16 at a time */ |
85
|
23
|
100
|
|
|
|
|
while (k--) { |
86
|
20
|
|
|
|
|
|
UV base = 2 + urandomm64(ctx, n-2); |
87
|
20
|
100
|
|
|
|
|
if (!miller_rabin(n, &base, 1)) |
88
|
20
|
|
|
|
|
|
return 0; |
89
|
|
|
|
|
|
|
} |
90
|
3
|
|
|
|
|
|
return 1; |
91
|
|
|
|
|
|
|
} |
92
|
|
|
|
|
|
|
|
93
|
2
|
|
|
|
|
|
UV random_semiprime(void* ctx, UV b) { /* Even split of bits */ |
94
|
|
|
|
|
|
|
static const uint16_t small_semi[] = {35,35,49,65,77,91,143,143,169,299,319,341,377,403}; |
95
|
|
|
|
|
|
|
UV min, max, n, L, N; |
96
|
|
|
|
|
|
|
|
97
|
2
|
50
|
|
|
|
|
if (b < 4 || b > BITS_PER_WORD) |
|
|
50
|
|
|
|
|
|
98
|
0
|
|
|
|
|
|
return 0; |
99
|
|
|
|
|
|
|
|
100
|
2
|
|
|
|
|
|
switch (b) { |
101
|
1
|
|
|
|
|
|
case 4: return 9; |
102
|
0
|
|
|
|
|
|
case 5: return 21; |
103
|
0
|
|
|
|
|
|
case 6: return small_semi[ 0 + urandomm32(ctx,3) ]; |
104
|
0
|
|
|
|
|
|
case 7: return small_semi[ 3 + urandomm32(ctx,3) ]; |
105
|
0
|
|
|
|
|
|
case 8: return small_semi[ 6 + urandomm32(ctx,3) ]; |
106
|
0
|
|
|
|
|
|
case 9: return small_semi[ 9 + urandomm32(ctx,5) ]; |
107
|
1
|
|
|
|
|
|
default: break; |
108
|
|
|
|
|
|
|
} |
109
|
|
|
|
|
|
|
|
110
|
1
|
|
|
|
|
|
min = UVCONST(1) << (b-1); |
111
|
1
|
|
|
|
|
|
max = min + (min-1); |
112
|
1
|
|
|
|
|
|
L = b / 2; |
113
|
1
|
|
|
|
|
|
N = b - L; |
114
|
|
|
|
|
|
|
|
115
|
|
|
|
|
|
|
do { |
116
|
1
|
|
|
|
|
|
n = random_nbit_prime(ctx,L) * random_nbit_prime(ctx,N); |
117
|
1
|
50
|
|
|
|
|
} while (n < min || n > max); |
|
|
50
|
|
|
|
|
|
118
|
1
|
|
|
|
|
|
return n; |
119
|
|
|
|
|
|
|
} |
120
|
|
|
|
|
|
|
|
121
|
1
|
|
|
|
|
|
UV random_unrestricted_semiprime(void* ctx, UV b) { /* generic semiprime */ |
122
|
|
|
|
|
|
|
static const unsigned char small_semi[] = {4,6,9,10,14,15,21,22,25,26,33,34,35,38,39,46,49,51,55,57,58,62,65,69,74,77,82,85,86,87,91,93,94,95,106,111,115,118,119,121,122,123}; |
123
|
|
|
|
|
|
|
UV min, n; |
124
|
|
|
|
|
|
|
|
125
|
1
|
50
|
|
|
|
|
if (b < 3 || b > BITS_PER_WORD) |
|
|
50
|
|
|
|
|
|
126
|
0
|
|
|
|
|
|
return 0; |
127
|
|
|
|
|
|
|
|
128
|
1
|
|
|
|
|
|
switch (b) { |
129
|
1
|
|
|
|
|
|
case 3: return small_semi[ 0 + urandomm32(ctx, 2) ]; |
130
|
0
|
|
|
|
|
|
case 4: return small_semi[ 2 + urandomm32(ctx, 4) ]; |
131
|
0
|
|
|
|
|
|
case 5: return small_semi[ 6 + urandomm32(ctx, 4) ]; |
132
|
0
|
|
|
|
|
|
case 6: return small_semi[ 10 + urandomm32(ctx,12) ]; |
133
|
0
|
|
|
|
|
|
case 7: return small_semi[ 22 + urandomm32(ctx,20) ]; |
134
|
0
|
|
|
|
|
|
default: break; |
135
|
|
|
|
|
|
|
} |
136
|
|
|
|
|
|
|
/* There are faster ways to generate if we could be lax on distribution. |
137
|
|
|
|
|
|
|
* Picking a random prime followed by a second that makes a semiprime in |
138
|
|
|
|
|
|
|
* the range seems obvious and is fast, but the distribution is wrong. |
139
|
|
|
|
|
|
|
* With that method, some semiprimes are much more likely than others. */ |
140
|
0
|
|
|
|
|
|
min = UVCONST(1) << (b-1); |
141
|
|
|
|
|
|
|
do { |
142
|
0
|
|
|
|
|
|
n = min + urandomb(ctx,b-1); |
143
|
0
|
0
|
|
|
|
|
} while (!is_semiprime(n)); |
144
|
0
|
|
|
|
|
|
return n; |
145
|
|
|
|
|
|
|
} |