line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
1
|
|
|
|
|
|
|
package Math::Primality; |
2
|
|
|
|
|
|
|
{ |
3
|
|
|
|
|
|
|
$Math::Primality::VERSION = '0.08'; |
4
|
|
|
|
|
|
|
} |
5
|
9
|
|
|
9
|
|
264835
|
use warnings; |
|
9
|
|
|
|
|
25
|
|
|
9
|
|
|
|
|
340
|
|
6
|
9
|
|
|
9
|
|
55
|
use strict; |
|
9
|
|
|
|
|
17
|
|
|
9
|
|
|
|
|
331
|
|
7
|
9
|
|
|
9
|
|
12874
|
use Data::Dumper; |
|
9
|
|
|
|
|
124529
|
|
|
9
|
|
|
|
|
904
|
|
8
|
9
|
|
|
9
|
|
16616
|
use Math::GMPz qw/:mpz/; |
|
0
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
9
|
|
|
|
|
|
|
use base 'Exporter'; |
10
|
|
|
|
|
|
|
use Carp qw/croak/; |
11
|
|
|
|
|
|
|
my %small_primes = ( |
12
|
|
|
|
|
|
|
2 => 2, |
13
|
|
|
|
|
|
|
3 => 2, |
14
|
|
|
|
|
|
|
5 => 2, |
15
|
|
|
|
|
|
|
7 => 2, |
16
|
|
|
|
|
|
|
11 => 2, |
17
|
|
|
|
|
|
|
13 => 2, |
18
|
|
|
|
|
|
|
17 => 2, |
19
|
|
|
|
|
|
|
19 => 2, |
20
|
|
|
|
|
|
|
23 => 2, |
21
|
|
|
|
|
|
|
29 => 2, |
22
|
|
|
|
|
|
|
31 => 2, |
23
|
|
|
|
|
|
|
37 => 2, |
24
|
|
|
|
|
|
|
41 => 2, |
25
|
|
|
|
|
|
|
43 => 2, |
26
|
|
|
|
|
|
|
47 => 2, |
27
|
|
|
|
|
|
|
53 => 2, |
28
|
|
|
|
|
|
|
59 => 2, |
29
|
|
|
|
|
|
|
61 => 2, |
30
|
|
|
|
|
|
|
67 => 2, |
31
|
|
|
|
|
|
|
71 => 2, |
32
|
|
|
|
|
|
|
73 => 2, |
33
|
|
|
|
|
|
|
79 => 2, |
34
|
|
|
|
|
|
|
83 => 2, |
35
|
|
|
|
|
|
|
89 => 2, |
36
|
|
|
|
|
|
|
97 => 2, |
37
|
|
|
|
|
|
|
101 => 2, |
38
|
|
|
|
|
|
|
103 => 2, |
39
|
|
|
|
|
|
|
107 => 2, |
40
|
|
|
|
|
|
|
109 => 2, |
41
|
|
|
|
|
|
|
113 => 2, |
42
|
|
|
|
|
|
|
127 => 2, |
43
|
|
|
|
|
|
|
131 => 2, |
44
|
|
|
|
|
|
|
137 => 2, |
45
|
|
|
|
|
|
|
139 => 2, |
46
|
|
|
|
|
|
|
149 => 2, |
47
|
|
|
|
|
|
|
151 => 2, |
48
|
|
|
|
|
|
|
157 => 2, |
49
|
|
|
|
|
|
|
163 => 2, |
50
|
|
|
|
|
|
|
167 => 2, |
51
|
|
|
|
|
|
|
173 => 2, |
52
|
|
|
|
|
|
|
179 => 2, |
53
|
|
|
|
|
|
|
181 => 2, |
54
|
|
|
|
|
|
|
191 => 2, |
55
|
|
|
|
|
|
|
193 => 2, |
56
|
|
|
|
|
|
|
197 => 2, |
57
|
|
|
|
|
|
|
199 => 2, |
58
|
|
|
|
|
|
|
211 => 2, |
59
|
|
|
|
|
|
|
223 => 2, |
60
|
|
|
|
|
|
|
227 => 2, |
61
|
|
|
|
|
|
|
229 => 2, |
62
|
|
|
|
|
|
|
233 => 2, |
63
|
|
|
|
|
|
|
239 => 2, |
64
|
|
|
|
|
|
|
241 => 2, |
65
|
|
|
|
|
|
|
251 => 2, |
66
|
|
|
|
|
|
|
257 => 2, |
67
|
|
|
|
|
|
|
); |
68
|
|
|
|
|
|
|
|
69
|
|
|
|
|
|
|
use constant |
70
|
|
|
|
|
|
|
DEBUG => 0 |
71
|
|
|
|
|
|
|
; |
72
|
|
|
|
|
|
|
|
73
|
|
|
|
|
|
|
use constant GMP => 'Math::GMPz'; |
74
|
|
|
|
|
|
|
|
75
|
|
|
|
|
|
|
# ABSTRACT: Check for primes with Perl |
76
|
|
|
|
|
|
|
|
77
|
|
|
|
|
|
|
|
78
|
|
|
|
|
|
|
|
79
|
|
|
|
|
|
|
our @EXPORT_OK = qw/is_pseudoprime is_strong_pseudoprime is_strong_lucas_pseudoprime is_prime next_prime prev_prime prime_count/; |
80
|
|
|
|
|
|
|
|
81
|
|
|
|
|
|
|
our %EXPORT_TAGS = ( all => \@EXPORT_OK ); |
82
|
|
|
|
|
|
|
|
83
|
|
|
|
|
|
|
|
84
|
|
|
|
|
|
|
sub is_pseudoprime($;$) |
85
|
|
|
|
|
|
|
{ |
86
|
|
|
|
|
|
|
my ($n, $base) = @_; |
87
|
|
|
|
|
|
|
return 0 unless $n; |
88
|
|
|
|
|
|
|
$base ||= 2; |
89
|
|
|
|
|
|
|
# we should check if we are passed a GMPz object |
90
|
|
|
|
|
|
|
$base = GMP->new("$base"); |
91
|
|
|
|
|
|
|
$n = GMP->new("$n"); |
92
|
|
|
|
|
|
|
|
93
|
|
|
|
|
|
|
my $m = GMP->new(); |
94
|
|
|
|
|
|
|
Rmpz_sub_ui($m, $n, 1); # $m = $n - 1 |
95
|
|
|
|
|
|
|
|
96
|
|
|
|
|
|
|
my $mod = GMP->new(); |
97
|
|
|
|
|
|
|
Rmpz_powm($mod, $base, $m, $n ); # $mod = ($base ^ $m) mod $n |
98
|
|
|
|
|
|
|
return ! Rmpz_cmp_ui($mod, 1); # pseudoprime if $mod = 1 |
99
|
|
|
|
|
|
|
} |
100
|
|
|
|
|
|
|
|
101
|
|
|
|
|
|
|
# checks if $n is in %small_primes |
102
|
|
|
|
|
|
|
# private functions expect a Math::GMPz object |
103
|
|
|
|
|
|
|
sub _is_small_prime |
104
|
|
|
|
|
|
|
{ |
105
|
|
|
|
|
|
|
my $n = shift; |
106
|
|
|
|
|
|
|
$n = Rmpz_get_ui($n); |
107
|
|
|
|
|
|
|
return $small_primes{$n} ? 2 : 0; |
108
|
|
|
|
|
|
|
|
109
|
|
|
|
|
|
|
} |
110
|
|
|
|
|
|
|
|
111
|
|
|
|
|
|
|
sub debug { |
112
|
|
|
|
|
|
|
if ( DEBUG ) { |
113
|
|
|
|
|
|
|
warn $_[0]; |
114
|
|
|
|
|
|
|
} |
115
|
|
|
|
|
|
|
} |
116
|
|
|
|
|
|
|
|
117
|
|
|
|
|
|
|
|
118
|
|
|
|
|
|
|
sub is_strong_pseudoprime($;$) |
119
|
|
|
|
|
|
|
{ |
120
|
|
|
|
|
|
|
my ($n, $base) = @_; |
121
|
|
|
|
|
|
|
|
122
|
|
|
|
|
|
|
$base ||= 2; |
123
|
|
|
|
|
|
|
$base = GMP->new("$base"); |
124
|
|
|
|
|
|
|
$n = GMP->new("$n"); |
125
|
|
|
|
|
|
|
|
126
|
|
|
|
|
|
|
# unnecessary but faster if $n is even |
127
|
|
|
|
|
|
|
my $cmp = _check_two_and_even($n); |
128
|
|
|
|
|
|
|
return $cmp if $cmp != 2; |
129
|
|
|
|
|
|
|
|
130
|
|
|
|
|
|
|
my $m = GMP->new(); |
131
|
|
|
|
|
|
|
Rmpz_sub_ui($m,$n,1); # $m = $n - 1 |
132
|
|
|
|
|
|
|
|
133
|
|
|
|
|
|
|
my ($s,$d) = _find_s_d($m); |
134
|
|
|
|
|
|
|
debug "m=$m, s=$s, d=$d" if DEBUG; |
135
|
|
|
|
|
|
|
|
136
|
|
|
|
|
|
|
my $residue = GMP->new(); |
137
|
|
|
|
|
|
|
Rmpz_powm($residue, $base,$d, $n); # $residue = ($base ^ $d) mod $n |
138
|
|
|
|
|
|
|
debug "$base^$d % $n = $residue" if DEBUG; |
139
|
|
|
|
|
|
|
|
140
|
|
|
|
|
|
|
# if $base^$d = +-1 (mod $n) , $n is a strong pseudoprime |
141
|
|
|
|
|
|
|
|
142
|
|
|
|
|
|
|
if ( Rmpz_cmp_ui($residue,1) == 0 ) { |
143
|
|
|
|
|
|
|
debug "found $n as spsp since $base^$d % $n == $residue == 1\n" if DEBUG; |
144
|
|
|
|
|
|
|
return 1; |
145
|
|
|
|
|
|
|
} |
146
|
|
|
|
|
|
|
|
147
|
|
|
|
|
|
|
if ( Rmpz_cmp($residue,$m) == 0 ) { |
148
|
|
|
|
|
|
|
debug "found $n as spsp since $base^$d % $n == $residue == $m\n" if DEBUG; |
149
|
|
|
|
|
|
|
return 1; |
150
|
|
|
|
|
|
|
} |
151
|
|
|
|
|
|
|
|
152
|
|
|
|
|
|
|
map { |
153
|
|
|
|
|
|
|
Rmpz_powm($residue, $residue, GMP->new(2), $n); |
154
|
|
|
|
|
|
|
if (Rmpz_cmp($residue, $m) == 0) { |
155
|
|
|
|
|
|
|
debug "$_:$residue == $m => spsp!" if DEBUG; |
156
|
|
|
|
|
|
|
return 1; |
157
|
|
|
|
|
|
|
} |
158
|
|
|
|
|
|
|
} ( 1 .. $s-1 ); |
159
|
|
|
|
|
|
|
|
160
|
|
|
|
|
|
|
return 0; |
161
|
|
|
|
|
|
|
} |
162
|
|
|
|
|
|
|
|
163
|
|
|
|
|
|
|
# given an odd number N find (s, d) such that N = d * 2^s + 1 |
164
|
|
|
|
|
|
|
# private functions expect a Math::GMPz object |
165
|
|
|
|
|
|
|
sub _find_s_d($) |
166
|
|
|
|
|
|
|
{ |
167
|
|
|
|
|
|
|
my $m = $_[0]; |
168
|
|
|
|
|
|
|
my $s = Rmpz_scan1($m,1); |
169
|
|
|
|
|
|
|
my $d = GMP->new(); |
170
|
|
|
|
|
|
|
Rmpz_tdiv_q_2exp($d,$m,$s); |
171
|
|
|
|
|
|
|
return ($s,$d); |
172
|
|
|
|
|
|
|
} |
173
|
|
|
|
|
|
|
|
174
|
|
|
|
|
|
|
|
175
|
|
|
|
|
|
|
sub is_strong_lucas_pseudoprime($) |
176
|
|
|
|
|
|
|
{ |
177
|
|
|
|
|
|
|
my ($n) = @_; |
178
|
|
|
|
|
|
|
$n = GMP->new("$n"); |
179
|
|
|
|
|
|
|
# we also need to handle all N < 3 and all even N |
180
|
|
|
|
|
|
|
my $cmp = _check_two_and_even($n); |
181
|
|
|
|
|
|
|
return $cmp if $cmp != 2; |
182
|
|
|
|
|
|
|
# handle all perfect squares |
183
|
|
|
|
|
|
|
if ( Rmpz_perfect_square_p($n) ) { |
184
|
|
|
|
|
|
|
return 0; |
185
|
|
|
|
|
|
|
} |
186
|
|
|
|
|
|
|
# determine Selfridge parameters D, P and Q |
187
|
|
|
|
|
|
|
my ($D, $P, $Q) = _find_dpq_selfridge($n); |
188
|
|
|
|
|
|
|
if ($D == 0) { #_find_dpq_selfridge found a factor of N |
189
|
|
|
|
|
|
|
return 0; |
190
|
|
|
|
|
|
|
} |
191
|
|
|
|
|
|
|
my $m = GMP->new(); |
192
|
|
|
|
|
|
|
Rmpz_add_ui($m, $n, 1); # $m = $n + 1 |
193
|
|
|
|
|
|
|
|
194
|
|
|
|
|
|
|
# determine $s and $d such that $m = $d * 2^$s + 1 |
195
|
|
|
|
|
|
|
my ($s,$d) = _find_s_d($m); |
196
|
|
|
|
|
|
|
# compute U_d and V_d |
197
|
|
|
|
|
|
|
# initalize $U, $V, $U_2m, $V_2m |
198
|
|
|
|
|
|
|
my $U = GMP->new(1); # $U = U_1 = 1 |
199
|
|
|
|
|
|
|
my $V = GMP->new($P); # $V = V_1 = P |
200
|
|
|
|
|
|
|
my $U_2m = GMP->new(1); # $U_2m = U_1 |
201
|
|
|
|
|
|
|
my $V_2m = GMP->new($P); # $V_2m = P |
202
|
|
|
|
|
|
|
# initalize Q values (eventually need to calculate Q^d, which will be used in later stages of test) |
203
|
|
|
|
|
|
|
my $Q_m = GMP->new($Q); |
204
|
|
|
|
|
|
|
my $Q2_m = GMP->new(2 * $Q); # Really 2Q_m, but perl will barf with a variable named like that |
205
|
|
|
|
|
|
|
my $Qkd = GMP->new($Q); |
206
|
|
|
|
|
|
|
# start doubling the indicies! |
207
|
|
|
|
|
|
|
my $dbits = Rmpz_sizeinbase($d,2); |
208
|
|
|
|
|
|
|
for (my $i = 1; $i < $dbits; $i++) { #since d is odd, the zeroth bit is on so we skip it |
209
|
|
|
|
|
|
|
# U_2m = U_m * V_m (mod N) |
210
|
|
|
|
|
|
|
Rmpz_mul($U_2m, $U_2m, $V_2m); # U_2m = U_m * V_m |
211
|
|
|
|
|
|
|
Rmpz_mod($U_2m, $U_2m, $n); # U_2m = U_2m mod N |
212
|
|
|
|
|
|
|
# V_2m = V_m * V_m - 2 * Q^m (mod N) |
213
|
|
|
|
|
|
|
Rmpz_mul($V_2m, $V_2m, $V_2m); # V_2m = V_2m * V_2m |
214
|
|
|
|
|
|
|
Rmpz_sub($V_2m, $V_2m, $Q2_m); # V_2m = V_2m - 2Q_m |
215
|
|
|
|
|
|
|
Rmpz_mod($V_2m, $V_2m, $n); # V_2m = V_2m mod N |
216
|
|
|
|
|
|
|
# calculate powers of Q for V_2m and Q^d (used later) |
217
|
|
|
|
|
|
|
# 2Q_m = 2 * Q_m * Q_m (mod N) |
218
|
|
|
|
|
|
|
Rmpz_mul($Q_m, $Q_m, $Q_m); # Q_m = Q_m * Q_m |
219
|
|
|
|
|
|
|
Rmpz_mod($Q_m, $Q_m, $n); # Q_m = Q_m mod N |
220
|
|
|
|
|
|
|
Rmpz_mul_2exp($Q2_m, $Q_m, 1); # 2Q_m = Q_m * 2 |
221
|
|
|
|
|
|
|
if (Rmpz_tstbit($d, $i)) { # if bit i of d is set |
222
|
|
|
|
|
|
|
# add some indicies |
223
|
|
|
|
|
|
|
# initalize some temporary variables |
224
|
|
|
|
|
|
|
my $T1 = GMP->new(); |
225
|
|
|
|
|
|
|
my $T2 = GMP->new(); |
226
|
|
|
|
|
|
|
my $T3 = GMP->new(); |
227
|
|
|
|
|
|
|
my $T4 = GMP->new(); |
228
|
|
|
|
|
|
|
# this is how we do it |
229
|
|
|
|
|
|
|
# U_(m+n) = (U_m * V_n + U_n * V_m) / 2 |
230
|
|
|
|
|
|
|
# V_(m+n) = (V_m * V_n + D * U_m * U_n) / 2 |
231
|
|
|
|
|
|
|
Rmpz_mul($T1, $U_2m, $V); # T1 = U_2m * V |
232
|
|
|
|
|
|
|
Rmpz_mul($T2, $U, $V_2m); # T2 = U * V_2m |
233
|
|
|
|
|
|
|
Rmpz_mul($T3, $V_2m, $V); # T3 = V_2m * V |
234
|
|
|
|
|
|
|
Rmpz_mul($T4, $U_2m, $U); # T4 = U_2m * U |
235
|
|
|
|
|
|
|
Rmpz_mul_si($T4, $T4, $D); # T4 = T4 * D = U_2m * U * D |
236
|
|
|
|
|
|
|
Rmpz_add($U, $T1, $T2); # U = T1 + T2 = U_2m * V - U * V_2m |
237
|
|
|
|
|
|
|
if (Rmpz_odd_p($U)) { # if U is odd |
238
|
|
|
|
|
|
|
Rmpz_add($U, $U, $n); # U = U + n |
239
|
|
|
|
|
|
|
} |
240
|
|
|
|
|
|
|
Rmpz_fdiv_q_2exp($U, $U, 1); # U = floor(U / 2) |
241
|
|
|
|
|
|
|
Rmpz_add($V, $T3, $T4); # V = T3 + T4 = V_2m * V + U_2m * U * D |
242
|
|
|
|
|
|
|
if (Rmpz_odd_p($V)) { # if V is odd |
243
|
|
|
|
|
|
|
Rmpz_add($V, $V, $n); # V = V + n |
244
|
|
|
|
|
|
|
} |
245
|
|
|
|
|
|
|
Rmpz_fdiv_q_2exp($V, $V, 1); # V = floor(V / 2) |
246
|
|
|
|
|
|
|
Rmpz_mod($U, $U, $n); # U = U mod N |
247
|
|
|
|
|
|
|
Rmpz_mod($V, $V, $n); # V = V mod N |
248
|
|
|
|
|
|
|
# Get our Q^d calculating on (to be used later) |
249
|
|
|
|
|
|
|
Rmpz_mul($Qkd, $Qkd, $Q_m); # Qkd = Qkd * Q_m |
250
|
|
|
|
|
|
|
Rmpz_mod($Qkd, $Qkd, $n); # Qkd = Qkd mod N |
251
|
|
|
|
|
|
|
} |
252
|
|
|
|
|
|
|
} |
253
|
|
|
|
|
|
|
# if U_d or V_d = 0 mod N, then N is prime or a strong Lucas pseudoprime |
254
|
|
|
|
|
|
|
if(Rmpz_sgn($U) == 0 || Rmpz_sgn($V) == 0) { |
255
|
|
|
|
|
|
|
return 1; |
256
|
|
|
|
|
|
|
} |
257
|
|
|
|
|
|
|
# ok, if we're still here, we have to compute V_2d, V_4d, V_8d, ..., V_{2^(s-1)*d} |
258
|
|
|
|
|
|
|
# initalize 2Qkd |
259
|
|
|
|
|
|
|
my $Q2kd = GMP->new; |
260
|
|
|
|
|
|
|
Rmpz_mul_2exp($Q2kd, $Qkd, 1); # 2Qkd = 2 * Qkd |
261
|
|
|
|
|
|
|
# V_2m = V_m * V_m - 2 * Q^m (mod N) |
262
|
|
|
|
|
|
|
for (my $r = 1; $r < $s; $r++) { |
263
|
|
|
|
|
|
|
Rmpz_mul($V, $V, $V); # V = V * V; |
264
|
|
|
|
|
|
|
Rmpz_sub($V, $V, $Q2kd); # V = V - 2Qkd |
265
|
|
|
|
|
|
|
Rmpz_mod($V, $V, $n); # V = V mod N |
266
|
|
|
|
|
|
|
# if V = 0 mod N then N is a prime or a strong Lucas pseudoprime |
267
|
|
|
|
|
|
|
if(Rmpz_sgn($V) == 0) { |
268
|
|
|
|
|
|
|
return 1; |
269
|
|
|
|
|
|
|
} |
270
|
|
|
|
|
|
|
# calculate Q ^(d * 2^r) for next r (unless on final iteration) |
271
|
|
|
|
|
|
|
if ($r < ($s - 1)) { |
272
|
|
|
|
|
|
|
Rmpz_mul($Qkd, $Qkd, $Qkd); # Qkd = Qkd * Qkd |
273
|
|
|
|
|
|
|
Rmpz_mod($Qkd, $Qkd, $n); # Qkd = Qkd mod N |
274
|
|
|
|
|
|
|
Rmpz_mul_2exp($Q2kd, $Qkd, 1); # 2Qkd = 2 * Qkd |
275
|
|
|
|
|
|
|
} |
276
|
|
|
|
|
|
|
} |
277
|
|
|
|
|
|
|
# otherwise N is definitely composite |
278
|
|
|
|
|
|
|
return 0; |
279
|
|
|
|
|
|
|
} |
280
|
|
|
|
|
|
|
|
281
|
|
|
|
|
|
|
# selfridge's method for finding the tuple (D,P,Q) for is_strong_lucas_pseudoprime |
282
|
|
|
|
|
|
|
# private functions expect a Math::GMPz object |
283
|
|
|
|
|
|
|
sub _find_dpq_selfridge($) { |
284
|
|
|
|
|
|
|
my $n = $_[0]; |
285
|
|
|
|
|
|
|
my ($d,$sign,$wd) = (5,1,0); |
286
|
|
|
|
|
|
|
my $gcd = GMP->new; |
287
|
|
|
|
|
|
|
|
288
|
|
|
|
|
|
|
# determine D |
289
|
|
|
|
|
|
|
while (1) { |
290
|
|
|
|
|
|
|
$wd = $d * $sign; |
291
|
|
|
|
|
|
|
|
292
|
|
|
|
|
|
|
Rmpz_gcd_ui($gcd, $n, abs $wd); |
293
|
|
|
|
|
|
|
if ($gcd > 1 && Rmpz_cmp($n, $gcd) > 0) { |
294
|
|
|
|
|
|
|
debug "1 < $gcd < $n => $n is composite with factor $wd" if DEBUG; |
295
|
|
|
|
|
|
|
return 0; |
296
|
|
|
|
|
|
|
} |
297
|
|
|
|
|
|
|
my $j = Rmpz_jacobi(GMP->new($wd), $n); |
298
|
|
|
|
|
|
|
if ($j == -1) { |
299
|
|
|
|
|
|
|
debug "Rmpz_jacobi($wd, $n) == -1 => found D" if DEBUG; |
300
|
|
|
|
|
|
|
last; |
301
|
|
|
|
|
|
|
} |
302
|
|
|
|
|
|
|
# didn't find D, increment and swap sign |
303
|
|
|
|
|
|
|
$d += 2; |
304
|
|
|
|
|
|
|
$sign = -$sign; |
305
|
|
|
|
|
|
|
} |
306
|
|
|
|
|
|
|
# P = 1 |
307
|
|
|
|
|
|
|
my ($p,$q) = (1,0); |
308
|
|
|
|
|
|
|
{ |
309
|
|
|
|
|
|
|
use integer; |
310
|
|
|
|
|
|
|
# Q = (1 - D) / 4 |
311
|
|
|
|
|
|
|
$q = (1 - $wd) / 4; |
312
|
|
|
|
|
|
|
} |
313
|
|
|
|
|
|
|
debug "found P and Q: ($p, $q)" if DEBUG; |
314
|
|
|
|
|
|
|
return ($wd, $p, $q); |
315
|
|
|
|
|
|
|
} |
316
|
|
|
|
|
|
|
|
317
|
|
|
|
|
|
|
# method returns 0 if N < two or even, returns 1 if N == 2 |
318
|
|
|
|
|
|
|
# returns 2 if N > 2 and odd |
319
|
|
|
|
|
|
|
# private functions expect a Math::GMPz object |
320
|
|
|
|
|
|
|
sub _check_two_and_even($) { |
321
|
|
|
|
|
|
|
my $n = $_[0]; |
322
|
|
|
|
|
|
|
|
323
|
|
|
|
|
|
|
my $cmp = Rmpz_cmp_ui($n, 2); |
324
|
|
|
|
|
|
|
return 1 if $cmp == 0; |
325
|
|
|
|
|
|
|
return 0 if $cmp < 0; |
326
|
|
|
|
|
|
|
return 0 if Rmpz_even_p($n); |
327
|
|
|
|
|
|
|
return 2; |
328
|
|
|
|
|
|
|
} |
329
|
|
|
|
|
|
|
|
330
|
|
|
|
|
|
|
|
331
|
|
|
|
|
|
|
sub is_prime($) { |
332
|
|
|
|
|
|
|
my $n = shift; |
333
|
|
|
|
|
|
|
$n = GMP->new("$n"); |
334
|
|
|
|
|
|
|
|
335
|
|
|
|
|
|
|
if (Rmpz_cmp_ui($n, 2) == -1) { |
336
|
|
|
|
|
|
|
return 0; |
337
|
|
|
|
|
|
|
} |
338
|
|
|
|
|
|
|
if (Rmpz_cmp_ui($n, 257) == -1) { |
339
|
|
|
|
|
|
|
return _is_small_prime($n); |
340
|
|
|
|
|
|
|
} elsif ( Rmpz_cmp_ui($n, 9_080_191) == -1 ) { |
341
|
|
|
|
|
|
|
return 0 unless is_strong_pseudoprime($n,31); |
342
|
|
|
|
|
|
|
return 0 unless is_strong_pseudoprime($n,73); |
343
|
|
|
|
|
|
|
return 2; |
344
|
|
|
|
|
|
|
} elsif ( Rmpz_cmp_ui($n, 4_759_123_141) == -1 ) { |
345
|
|
|
|
|
|
|
return 0 unless is_strong_pseudoprime($n,2); |
346
|
|
|
|
|
|
|
return 0 unless is_strong_pseudoprime($n,7); |
347
|
|
|
|
|
|
|
return 0 unless is_strong_pseudoprime($n,61); |
348
|
|
|
|
|
|
|
return 2; |
349
|
|
|
|
|
|
|
} |
350
|
|
|
|
|
|
|
# the strong_pseudoprime test is quicker, do it first |
351
|
|
|
|
|
|
|
return is_strong_pseudoprime($n,2) && is_strong_lucas_pseudoprime($n); |
352
|
|
|
|
|
|
|
} |
353
|
|
|
|
|
|
|
|
354
|
|
|
|
|
|
|
|
355
|
|
|
|
|
|
|
sub next_prime($) { |
356
|
|
|
|
|
|
|
my $n = shift; |
357
|
|
|
|
|
|
|
$n = GMP->new("$n"); |
358
|
|
|
|
|
|
|
my $cmp = Rmpz_cmp_ui($n, 2 ); #check if $n < 2 |
359
|
|
|
|
|
|
|
if ($cmp < 0) { |
360
|
|
|
|
|
|
|
return GMP->new(2); |
361
|
|
|
|
|
|
|
} |
362
|
|
|
|
|
|
|
if (Rmpz_odd_p($n)) { # if N is odd |
363
|
|
|
|
|
|
|
Rmpz_add_ui($n, $n, 2); # N = N + 2 |
364
|
|
|
|
|
|
|
} else { |
365
|
|
|
|
|
|
|
Rmpz_add_ui($n, $n, 1); # N = N + 1 |
366
|
|
|
|
|
|
|
} |
367
|
|
|
|
|
|
|
# N is now the next odd number |
368
|
|
|
|
|
|
|
while (1) { |
369
|
|
|
|
|
|
|
return $n if is_prime($n); # check primality of that number, return if prime |
370
|
|
|
|
|
|
|
Rmpz_add_ui($n, $n, 2); # N = N + 2 |
371
|
|
|
|
|
|
|
} |
372
|
|
|
|
|
|
|
} |
373
|
|
|
|
|
|
|
|
374
|
|
|
|
|
|
|
|
375
|
|
|
|
|
|
|
sub prev_prime($) { |
376
|
|
|
|
|
|
|
my $n = shift; |
377
|
|
|
|
|
|
|
$n = GMP->new("$n"); |
378
|
|
|
|
|
|
|
my $cmp = Rmpz_cmp_ui($n, 3); # compare N with 3 |
379
|
|
|
|
|
|
|
if ($cmp == 0) { # N = 3 |
380
|
|
|
|
|
|
|
return GMP->new(2); |
381
|
|
|
|
|
|
|
} elsif ($cmp < 0) { # N < 3 |
382
|
|
|
|
|
|
|
return undef; |
383
|
|
|
|
|
|
|
} else { |
384
|
|
|
|
|
|
|
if (Rmpz_odd_p($n)) { # if N is odd |
385
|
|
|
|
|
|
|
Rmpz_sub_ui($n, $n, 2); # N = N - 2 |
386
|
|
|
|
|
|
|
} else { |
387
|
|
|
|
|
|
|
Rmpz_sub_ui($n, $n, 1); # N = N - 1 |
388
|
|
|
|
|
|
|
} |
389
|
|
|
|
|
|
|
# N is now the previous odd number |
390
|
|
|
|
|
|
|
while (1) { |
391
|
|
|
|
|
|
|
return $n if is_prime($n); # check primality of that number, return if prime |
392
|
|
|
|
|
|
|
Rmpz_sub_ui($n, $n, 2); # N = N - 2 |
393
|
|
|
|
|
|
|
} |
394
|
|
|
|
|
|
|
} |
395
|
|
|
|
|
|
|
} |
396
|
|
|
|
|
|
|
|
397
|
|
|
|
|
|
|
|
398
|
|
|
|
|
|
|
sub prime_count($) { |
399
|
|
|
|
|
|
|
my $n = shift; |
400
|
|
|
|
|
|
|
$n = GMP->new("$n") unless ref($n) eq 'Math::GMPz'; |
401
|
|
|
|
|
|
|
my $primes = 0; |
402
|
|
|
|
|
|
|
|
403
|
|
|
|
|
|
|
return 0 if $n <= 1; |
404
|
|
|
|
|
|
|
|
405
|
|
|
|
|
|
|
do { $primes++ if $n >= $_ } for (2,3,5,7,11,13,17,19,23,29); |
406
|
|
|
|
|
|
|
for (my $i = GMP->new(31); Rmpz_cmp($i, $n) <= 0; Rmpz_add_ui($i, $i, 2)) { |
407
|
|
|
|
|
|
|
next unless 1 == Rmpz_gcd_ui($Math::GMPz::NULL, $i, 3234846615); |
408
|
|
|
|
|
|
|
$primes++ if is_prime($i); |
409
|
|
|
|
|
|
|
} |
410
|
|
|
|
|
|
|
|
411
|
|
|
|
|
|
|
return $primes; |
412
|
|
|
|
|
|
|
} |
413
|
|
|
|
|
|
|
|
414
|
|
|
|
|
|
|
|
415
|
|
|
|
|
|
|
exp(0); # End of Math::Primality |
416
|
|
|
|
|
|
|
|
417
|
|
|
|
|
|
|
__END__ |