|  line  | 
 stmt  | 
 bran  | 
 cond  | 
 sub  | 
 pod  | 
 time  | 
 code  | 
| 
1
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 # Copyright (c) 2019-2021 by Martin Becker.  This package is free software,  | 
| 
2
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 # licensed under The Artistic License 2.0 (GPL compatible).  | 
| 
3
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
4
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 package Math::Polynomial::Cyclotomic;  | 
| 
5
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
6
 | 
3
 | 
 
 | 
 
 | 
  
3
  
 | 
 
 | 
19744
 | 
 use 5.006;  | 
| 
 
 | 
3
 | 
 
 | 
 
 | 
 
 | 
 
 | 
22
 | 
    | 
| 
7
 | 
3
 | 
 
 | 
 
 | 
  
3
  
 | 
 
 | 
14
 | 
 use strict;  | 
| 
 
 | 
3
 | 
 
 | 
 
 | 
 
 | 
 
 | 
5
 | 
    | 
| 
 
 | 
3
 | 
 
 | 
 
 | 
 
 | 
 
 | 
51
 | 
    | 
| 
8
 | 
3
 | 
 
 | 
 
 | 
  
3
  
 | 
 
 | 
11
 | 
 use warnings;  | 
| 
 
 | 
3
 | 
 
 | 
 
 | 
 
 | 
 
 | 
5
 | 
    | 
| 
 
 | 
3
 | 
 
 | 
 
 | 
 
 | 
 
 | 
146
 | 
    | 
| 
9
 | 
3
 | 
 
 | 
 
 | 
  
3
  
 | 
 
 | 
17
 | 
 use Carp qw(croak);  | 
| 
 
 | 
3
 | 
 
 | 
 
 | 
 
 | 
 
 | 
5
 | 
    | 
| 
 
 | 
3
 | 
 
 | 
 
 | 
 
 | 
 
 | 
191
 | 
    | 
| 
10
 | 
3
 | 
 
 | 
 
 | 
  
3
  
 | 
 
 | 
3352
 | 
 use Math::BigInt try => 'GMP';  | 
| 
 
 | 
3
 | 
 
 | 
 
 | 
 
 | 
 
 | 
83367
 | 
    | 
| 
 
 | 
3
 | 
 
 | 
 
 | 
 
 | 
 
 | 
20
 | 
    | 
| 
11
 | 
3
 | 
 
 | 
 
 | 
  
3
  
 | 
 
 | 
71274
 | 
 use Math::Polynomial 1.019;  | 
| 
 
 | 
3
 | 
 
 | 
 
 | 
 
 | 
 
 | 
6577
 | 
    | 
| 
 
 | 
3
 | 
 
 | 
 
 | 
 
 | 
 
 | 
102
 | 
    | 
| 
12
 | 
3
 | 
 
 | 
 
 | 
 
 | 
 
 | 
19
 | 
 use Math::Prime::Util qw(  | 
| 
13
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     divisors factor factor_exp euler_phi gcd is_square_free is_power  | 
| 
14
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     moebius kronecker vecprod  | 
| 
15
 | 
3
 | 
 
 | 
 
 | 
  
3
  
 | 
 
 | 
3487
 | 
 );  | 
| 
 
 | 
3
 | 
 
 | 
 
 | 
 
 | 
 
 | 
29623
 | 
    | 
| 
16
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 require Exporter;  | 
| 
17
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
18
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 our @ISA         = qw(Exporter);  | 
| 
19
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 our @EXPORT_OK   = qw(  | 
| 
20
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     cyclo_poly cyclo_factors cyclo_plusfactors cyclo_poly_iterate  | 
| 
21
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     cyclo_lucas_cd cyclo_schinzel_cd cyclo_int_factors cyclo_int_plusfactors  | 
| 
22
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 );  | 
| 
23
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 our %EXPORT_TAGS = (all => \@EXPORT_OK);  | 
| 
24
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 our $VERSION     = '0.004';  | 
| 
25
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
26
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 # some polynomial with coefficient type Math::BigInt  | 
| 
27
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 my $default = Math::Polynomial->new(Math::BigInt->new('1'));  | 
| 
28
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 $default->string_config({fold_sign => 1, times => '*'});  | 
| 
29
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
30
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 # ----- private subroutines -----  | 
| 
31
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
32
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 sub _cyclo_poly {  | 
| 
33
 | 
118
 | 
 
 | 
 
 | 
  
118
  
 | 
 
 | 
252
 | 
     my ($poly, $table, $n, $divisors) = @_;  | 
| 
34
 | 
118
 | 
  
100
  
 | 
 
 | 
 
 | 
 
 | 
402
 | 
     return $table->{$n} if exists $table->{$n};  | 
| 
35
 | 
62
 | 
 
 | 
 
 | 
 
 | 
 
 | 
302
 | 
     my $m = vecprod(map { $_->[0] } factor_exp($n));    # $m = radix($n)  | 
| 
 
 | 
81
 | 
 
 | 
 
 | 
 
 | 
 
 | 
247
 | 
    | 
| 
36
 | 
62
 | 
 
 | 
 
 | 
 
 | 
 
 | 
148
 | 
     my $o = $m & 1;  | 
| 
37
 | 
62
 | 
  
100
  
 | 
 
 | 
 
 | 
 
 | 
136
 | 
     $m >>= 1 if !$o;  | 
| 
38
 | 
62
 | 
 
 | 
 
 | 
 
 | 
 
 | 
87
 | 
     my $p;  | 
| 
39
 | 
62
 | 
  
100
  
 | 
 
 | 
 
 | 
 
 | 
152
 | 
     if (exists $table->{$m}) {  | 
| 
40
 | 
26
 | 
 
 | 
 
 | 
 
 | 
 
 | 
54
 | 
         $p = $table->{$m};  | 
| 
41
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     }  | 
| 
42
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     else {  | 
| 
43
 | 
36
 | 
 
 | 
 
 | 
 
 | 
 
 | 
98
 | 
         my $one = $poly->coeff_one;  | 
| 
44
 | 
36
 | 
  
100
  
 | 
 
 | 
 
 | 
 
 | 
259
 | 
         my @d = $divisors? (grep { not $m % $_ } @{$divisors}): divisors($m);  | 
| 
 
 | 
116
 | 
 
 | 
 
 | 
 
 | 
 
 | 
213
 | 
    | 
| 
 
 | 
23
 | 
 
 | 
 
 | 
 
 | 
 
 | 
44
 | 
    | 
| 
45
 | 
36
 | 
 
 | 
 
 | 
 
 | 
 
 | 
108
 | 
         $p = $poly->monomial(pop @d)->sub_const($one);  | 
| 
46
 | 
36
 | 
  
100
  
 | 
 
 | 
 
 | 
 
 | 
8847
 | 
         if (@d) {  | 
| 
47
 | 
26
 | 
 
 | 
 
 | 
 
 | 
 
 | 
48
 | 
             my $b = $d[-1];  | 
| 
48
 | 
26
 | 
 
 | 
 
 | 
 
 | 
 
 | 
63
 | 
             $p /= $poly->monomial($b)->sub_const($one);  | 
| 
49
 | 
26
 | 
 
 | 
 
 | 
 
 | 
 
 | 
276966
 | 
             for (my $i = 1; $i < $#d; ++$i) {  | 
| 
50
 | 
11
 | 
 
 | 
 
 | 
 
 | 
 
 | 
63333
 | 
                 my $r = $d[$i];  | 
| 
51
 | 
11
 | 
  
100
  
 | 
 
 | 
 
 | 
 
 | 
38
 | 
                 if ($b % $r) {  | 
| 
52
 | 
9
 | 
 
 | 
  
 66
  
 | 
 
 | 
 
 | 
49
 | 
                     $p /= $table->{$r} || _cyclo_poly($poly, $table, $r, \@d);  | 
| 
53
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
                 }  | 
| 
54
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
             }  | 
| 
55
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
         }  | 
| 
56
 | 
36
 | 
 
 | 
 
 | 
 
 | 
 
 | 
77479
 | 
         $table->{$m} = $p;  | 
| 
57
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     }  | 
| 
58
 | 
62
 | 
  
100
  
 | 
 
 | 
 
 | 
 
 | 
155
 | 
     if (!$o) {  | 
| 
59
 | 
29
 | 
  
100
  
 | 
 
 | 
 
 | 
 
 | 
95
 | 
         $p = -$p if $m == 1;  | 
| 
60
 | 
29
 | 
 
 | 
 
 | 
 
 | 
 
 | 
1191
 | 
         $m <<= 1;  | 
| 
61
 | 
29
 | 
 
 | 
 
 | 
 
 | 
 
 | 
91
 | 
         $p = $p->mirror;  | 
| 
62
 | 
29
 | 
 
 | 
 
 | 
 
 | 
 
 | 
2570
 | 
         $table->{$m} = $p;  | 
| 
63
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     }  | 
| 
64
 | 
62
 | 
  
100
  
 | 
 
 | 
 
 | 
 
 | 
149
 | 
     if ($m != $n) {  | 
| 
65
 | 
21
 | 
 
 | 
 
 | 
 
 | 
 
 | 
92
 | 
         $p = $p->inflate($n/$m);  | 
| 
66
 | 
21
 | 
 
 | 
 
 | 
 
 | 
 
 | 
1531
 | 
         $table->{$n} = $p;  | 
| 
67
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     }  | 
| 
68
 | 
62
 | 
 
 | 
 
 | 
 
 | 
 
 | 
230
 | 
     return $p;  | 
| 
69
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 }  | 
| 
70
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
71
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 # for a positive integer n, return r,s so that r is square-free and n=rs^2  | 
| 
72
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 sub _square_free_square {  | 
| 
73
 | 
16
 | 
 
 | 
 
 | 
  
16
  
 | 
 
 | 
40
 | 
     my ($n) = @_;  | 
| 
74
 | 
16
 | 
 
 | 
 
 | 
 
 | 
 
 | 
43
 | 
     my ($r, $s) = (1, 1);  | 
| 
75
 | 
16
 | 
 
 | 
 
 | 
 
 | 
 
 | 
117
 | 
     foreach my $be (factor_exp($n)) {  | 
| 
76
 | 
27
 | 
 
 | 
 
 | 
 
 | 
 
 | 
44
 | 
         my ($b, $e) = @{$be};  | 
| 
 
 | 
27
 | 
 
 | 
 
 | 
 
 | 
 
 | 
56
 | 
    | 
| 
77
 | 
27
 | 
  
100
  
 | 
 
 | 
 
 | 
 
 | 
69
 | 
         $r *= $b if $e & 1;  | 
| 
78
 | 
27
 | 
 
 | 
 
 | 
 
 | 
 
 | 
40
 | 
         $e >>= 1;  | 
| 
79
 | 
27
 | 
 
 | 
 
 | 
 
 | 
 
 | 
71
 | 
         while ($e) {  | 
| 
80
 | 
7
 | 
  
100
  
 | 
 
 | 
 
 | 
 
 | 
26
 | 
             $s *= $b if $e & 1;  | 
| 
81
 | 
7
 | 
  
100
  
 | 
 
 | 
 
 | 
 
 | 
23
 | 
             $e >>= 1 and $b *= $b;  | 
| 
82
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
         }  | 
| 
83
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     }  | 
| 
84
 | 
16
 | 
 
 | 
 
 | 
 
 | 
 
 | 
42
 | 
     return ($r, $s);  | 
| 
85
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 }  | 
| 
86
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
87
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 # generate polynomials C, D, satisfying the identity of Aurifeuille,  | 
| 
88
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 # Le Lasseur and Lucas: for n > 1, square-free,  | 
| 
89
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 #   n === 1 (mod 4): Phi_n(x)  = C^2 - n*x*D^2  | 
| 
90
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 #   else:            Phi_2n(x) = C^2 - n*x*D^2  | 
| 
91
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 sub _lucas_cd {  | 
| 
92
 | 
10
 | 
 
 | 
 
 | 
  
10
  
 | 
 
 | 
29
 | 
     my ($poly, $table, $n) = @_;  | 
| 
93
 | 
10
 | 
 
 | 
 
 | 
 
 | 
 
 | 
31
 | 
     my $c1 = 1 == ($n & 3);  | 
| 
94
 | 
10
 | 
  
100
  
 | 
 
 | 
 
 | 
 
 | 
31
 | 
     my $n1 = $c1? $n: $n + $n;  | 
| 
95
 | 
10
 | 
  
100
  
 | 
 
 | 
 
 | 
 
 | 
40
 | 
     if (exists $table->{"$n1 $n"}) {  | 
| 
96
 | 
3
 | 
 
 | 
 
 | 
 
 | 
 
 | 
6
 | 
         return (@{$table->{"$n1 $n"}})  | 
| 
 
 | 
3
 | 
 
 | 
 
 | 
 
 | 
 
 | 
14
 | 
    | 
| 
97
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     }  | 
| 
98
 | 
7
 | 
 
 | 
 
 | 
 
 | 
 
 | 
24
 | 
     my $c2 = !($n & 1);  | 
| 
99
 | 
7
 | 
 
 | 
 
 | 
 
 | 
 
 | 
28
 | 
     my $ee = euler_phi($n1);  | 
| 
100
 | 
7
 | 
 
 | 
 
 | 
 
 | 
 
 | 
17
 | 
     my $e  = $ee >> 1;  | 
| 
101
 | 
7
 | 
 
 | 
 
 | 
 
 | 
 
 | 
32
 | 
     my $one = $poly->coeff_one;  | 
| 
102
 | 
7
 | 
 
 | 
 
 | 
 
 | 
 
 | 
74
 | 
     my $nul = $poly->coeff_zero;  | 
| 
103
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
104
 | 
7
 | 
 
 | 
 
 | 
 
 | 
 
 | 
30
 | 
     my $E = $e | 1;  | 
| 
105
 | 
7
 | 
 
 | 
 
 | 
 
 | 
 
 | 
20
 | 
     my @q = ($one);  | 
| 
106
 | 
7
 | 
 
 | 
 
 | 
 
 | 
 
 | 
12
 | 
     my $cos = $one;  | 
| 
107
 | 
7
 | 
 
 | 
 
 | 
 
 | 
 
 | 
15
 | 
     my %MP = ();  | 
| 
108
 | 
7
 | 
 
 | 
 
 | 
 
 | 
 
 | 
27
 | 
     for (my $k = 2; $k <= $E; ++$k) {  | 
| 
109
 | 
30
 | 
  
100
  
 | 
 
 | 
 
 | 
 
 | 
2118
 | 
         if ($k & 1) {  | 
| 
110
 | 
15
 | 
 
 | 
 
 | 
 
 | 
 
 | 
94
 | 
             push @q, $nul + kronecker($n, $k);  | 
| 
111
 | 
15
 | 
 
 | 
 
 | 
 
 | 
 
 | 
2604
 | 
             next;  | 
| 
112
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
         }  | 
| 
113
 | 
15
 | 
  
100
  
 | 
  
100
  
 | 
 
 | 
 
 | 
45
 | 
         if ($c2 && $k & 2) {  | 
| 
114
 | 
2
 | 
 
 | 
 
 | 
 
 | 
 
 | 
3
 | 
             push @q, $nul;  | 
| 
115
 | 
2
 | 
 
 | 
 
 | 
 
 | 
 
 | 
5
 | 
             next;  | 
| 
116
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
         }  | 
| 
117
 | 
13
 | 
  
100
  
 | 
 
 | 
 
 | 
 
 | 
39
 | 
         $cos = -$cos if !$c1;           # $cos is cos((n-1)*k*pi/4)  | 
| 
118
 | 
13
 | 
 
 | 
 
 | 
 
 | 
 
 | 
295
 | 
         my $gk = gcd($n1, $k);  | 
| 
119
 | 
13
 | 
 
 | 
  
 66
  
 | 
 
 | 
 
 | 
114
 | 
         my $mp = $MP{$gk} ||= moebius($n1 / $gk) * euler_phi($gk);  | 
| 
120
 | 
13
 | 
 
 | 
 
 | 
 
 | 
 
 | 
85
 | 
         push @q, $cos * $mp;  | 
| 
121
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     }  | 
| 
122
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
123
 | 
7
 | 
 
 | 
 
 | 
 
 | 
 
 | 
18
 | 
     my @cs = ($one);  | 
| 
124
 | 
7
 | 
 
 | 
 
 | 
 
 | 
 
 | 
16
 | 
     my @ds = ($one);  | 
| 
125
 | 
7
 | 
 
 | 
 
 | 
 
 | 
 
 | 
20
 | 
     $cs[$e] = $ds[$e-1] = $one;  | 
| 
126
 | 
7
 | 
 
 | 
 
 | 
 
 | 
 
 | 
22
 | 
     for(my $k = 1, my $kk = $e - 1; $k <= $kk; ++$k, --$kk) {  | 
| 
127
 | 
15
 | 
 
 | 
 
 | 
 
 | 
 
 | 
2659
 | 
         my ($c, $d) = ($nul, $nul);  | 
| 
128
 | 
15
 | 
 
 | 
 
 | 
 
 | 
 
 | 
40
 | 
         for (my $i = 0, my $j = $k-1; $j >= 0; $i += 2, --$j) {  | 
| 
129
 | 
37
 | 
 
 | 
 
 | 
 
 | 
 
 | 
5422
 | 
             my $cc = $cs[$j];  | 
| 
130
 | 
37
 | 
 
 | 
 
 | 
 
 | 
 
 | 
57
 | 
             my $dd = $ds[$j];  | 
| 
131
 | 
37
 | 
 
 | 
 
 | 
 
 | 
 
 | 
78
 | 
             my ($q1, $q2) = @q[$i, $i+1];  | 
| 
132
 | 
37
 | 
 
 | 
 
 | 
 
 | 
 
 | 
72
 | 
             $c += $q1 * $n * $dd - $q2 * $cc;  | 
| 
133
 | 
37
 | 
 
 | 
 
 | 
 
 | 
 
 | 
14293
 | 
             $d += $q[$i+2] * $cc - $q2 * $dd;  | 
| 
134
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
         }  | 
| 
135
 | 
15
 | 
 
 | 
 
 | 
 
 | 
 
 | 
3603
 | 
         $c /= ($k + $k);  | 
| 
136
 | 
15
 | 
 
 | 
 
 | 
 
 | 
 
 | 
3337
 | 
         $cs[$k] = $cs[$kk] = $c;  | 
| 
137
 | 
15
 | 
  
100
  
 | 
 
 | 
 
 | 
 
 | 
64
 | 
         $ds[$k] = $ds[$kk-1] = ($d + $c) / ($k + $k + 1) if $k < $kk;  | 
| 
138
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     }  | 
| 
139
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
140
 | 
7
 | 
 
 | 
 
 | 
 
 | 
 
 | 
42
 | 
     my $cp = $poly->new(@cs);  | 
| 
141
 | 
7
 | 
 
 | 
 
 | 
 
 | 
 
 | 
391
 | 
     my $dp = $poly->new(@ds);  | 
| 
142
 | 
7
 | 
 
 | 
 
 | 
 
 | 
 
 | 
249
 | 
     $table->{"$n1 $n"} = [$cp, $dp];  | 
| 
143
 | 
7
 | 
 
 | 
 
 | 
 
 | 
 
 | 
70
 | 
     return ($cp, $dp);  | 
| 
144
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 }  | 
| 
145
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
146
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 # generate polynomials C, D, satisfying the identity of Beeger and Schinzel:  | 
| 
147
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 # for k > 1, square-free, k1 = k (if k === 1 (mod 4)), k1 = 2*k (else),  | 
| 
148
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 # n = odd multiple of k1: Phi_n(x) = C^2 - k*x*D^2  | 
| 
149
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 sub _schinzel_cd {  | 
| 
150
 | 
25
 | 
 
 | 
 
 | 
  
25
  
 | 
 
 | 
82
 | 
     my ($poly, $table, $n, $k) = @_;  | 
| 
151
 | 
25
 | 
  
100
  
 | 
 
 | 
 
 | 
 
 | 
124
 | 
     my $K = ($k & 3) == 1? $k: $k << 1;  | 
| 
152
 | 
25
 | 
 
 | 
 
 | 
 
 | 
 
 | 
69
 | 
     my $f = $n / $K;  | 
| 
153
 | 
25
 | 
  
100
  
 | 
 
 | 
 
 | 
 
 | 
71
 | 
     return () if not $f & 1;  | 
| 
154
 | 
23
 | 
 
 | 
 
 | 
 
 | 
 
 | 
144
 | 
     my $r = vecprod(map { $_->[0] } factor_exp($f));  | 
| 
 
 | 
10
 | 
 
 | 
 
 | 
 
 | 
 
 | 
47
 | 
    | 
| 
155
 | 
23
 | 
 
 | 
 
 | 
 
 | 
 
 | 
112
 | 
     my $m = $f / $r * gcd($f, $k);  | 
| 
156
 | 
23
 | 
  
100
  
 | 
 
 | 
 
 | 
 
 | 
62
 | 
     if ($m > 1) {  | 
| 
157
 | 
3
 | 
 
 | 
 
 | 
 
 | 
 
 | 
6
 | 
         $n /= $m;  | 
| 
158
 | 
3
 | 
 
 | 
 
 | 
 
 | 
 
 | 
5
 | 
         $f /= $m;  | 
| 
159
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     }  | 
| 
160
 | 
23
 | 
 
 | 
 
 | 
 
 | 
 
 | 
63
 | 
     my ($C, $D) = ();  | 
| 
161
 | 
23
 | 
  
100
  
 | 
 
 | 
 
 | 
 
 | 
123
 | 
     if (exists $table->{"$n $k"}) {  | 
| 
162
 | 
17
 | 
 
 | 
 
 | 
 
 | 
 
 | 
35
 | 
         ($C, $D) = @{$table->{"$n $k"}};  | 
| 
 
 | 
17
 | 
 
 | 
 
 | 
 
 | 
 
 | 
77
 | 
    | 
| 
163
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     }  | 
| 
164
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     else {  | 
| 
165
 | 
6
 | 
 
 | 
 
 | 
 
 | 
 
 | 
25
 | 
         ($C, $D) = _lucas_cd($poly, $table, $k);  | 
| 
166
 | 
6
 | 
 
 | 
 
 | 
 
 | 
 
 | 
16
 | 
         my ($L, $M, $Q) = ();  | 
| 
167
 | 
6
 | 
 
 | 
 
 | 
 
 | 
 
 | 
28
 | 
         foreach my $p (factor($f)) {  | 
| 
168
 | 
6
 | 
 
 | 
 
 | 
 
 | 
 
 | 
8632
 | 
             my $p2 = $p >> 1;  | 
| 
169
 | 
6
 | 
 
 | 
 
 | 
 
 | 
 
 | 
28
 | 
             my $kp2 = Math::BigInt->new($k)->bpow($p2);  | 
| 
170
 | 
6
 | 
  
100
  
 | 
 
 | 
 
 | 
 
 | 
1947
 | 
             if (!defined $M) {  | 
| 
171
 | 
5
 | 
 
 | 
 
 | 
 
 | 
 
 | 
24
 | 
                 $Q = $poly->monomial(2, $k);  | 
| 
172
 | 
5
 | 
 
 | 
 
 | 
 
 | 
 
 | 
733
 | 
                 my $CC = $C->nest($Q);  | 
| 
173
 | 
5
 | 
 
 | 
 
 | 
 
 | 
 
 | 
17113
 | 
                 my $DD = $D->nest($Q)->shift_up(1)->mul_const($k);  | 
| 
174
 | 
5
 | 
 
 | 
 
 | 
 
 | 
 
 | 
13709
 | 
                 $L = $CC - $DD;  | 
| 
175
 | 
5
 | 
 
 | 
 
 | 
 
 | 
 
 | 
2262
 | 
                 $M = $CC + $DD;  | 
| 
176
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
             }  | 
| 
177
 | 
6
 | 
  
100
  
 | 
 
 | 
 
 | 
 
 | 
2008
 | 
             if (kronecker($k, $p) < 0) {  | 
| 
178
 | 
5
 | 
 
 | 
 
 | 
 
 | 
 
 | 
22
 | 
                 ($L, $M) = (  | 
| 
179
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
                     $L->nest($poly->monomial($p, $kp2)) / $M,  | 
| 
180
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
                     $M->nest($poly->monomial($p, $kp2)) / $L,  | 
| 
181
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
                 );  | 
| 
182
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
             }  | 
| 
183
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
             else {  | 
| 
184
 | 
1
 | 
 
 | 
 
 | 
 
 | 
 
 | 
7
 | 
                 ($L, $M) = (  | 
| 
185
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
                     $M->nest($poly->monomial($p, $kp2)) / $M,  | 
| 
186
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
                     $L->nest($poly->monomial($p, $kp2)) / $L,  | 
| 
187
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
                 );  | 
| 
188
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
             }  | 
| 
189
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
         }  | 
| 
190
 | 
6
 | 
  
100
  
 | 
 
 | 
 
 | 
 
 | 
379886
 | 
         if (defined $M) {  | 
| 
191
 | 
5
 | 
 
 | 
 
 | 
 
 | 
 
 | 
27
 | 
             $C = ($M + $L)->div_const(2)->unnest($Q);  | 
| 
192
 | 
5
 | 
 
 | 
 
 | 
 
 | 
 
 | 
126731
 | 
             $D = (($M - $L) / $poly->monomial(1, $k << 1))->unnest($Q);  | 
| 
193
 | 
5
 | 
 
 | 
 
 | 
 
 | 
 
 | 
110447
 | 
             $table->{"$n $k"} = [$C, $D];  | 
| 
194
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
         }  | 
| 
195
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     }  | 
| 
196
 | 
23
 | 
  
100
  
 | 
 
 | 
 
 | 
 
 | 
80
 | 
     if ($m > 1) {  | 
| 
197
 | 
3
 | 
 
 | 
 
 | 
 
 | 
 
 | 
15
 | 
         $C = $C->inflate($m);  | 
| 
198
 | 
3
 | 
 
 | 
 
 | 
 
 | 
 
 | 
242
 | 
         $D = $D->inflate($m)->shift_up($m >> 1);  | 
| 
199
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     }  | 
| 
200
 | 
23
 | 
 
 | 
 
 | 
 
 | 
 
 | 
353
 | 
     return ($C, $D);  | 
| 
201
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 }  | 
| 
202
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
203
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 # for r > 1, integer, square-free, s > 0, integer, x = r*s^2,  | 
| 
204
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 # r1 = r (if r === 1 (mod 4)), r1 = 2*r (else), n = odd multiple of r1,  | 
| 
205
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 # generate integer factors l < m such that l * m = Phi_n(x).  | 
| 
206
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 # if l = 1, return (m) else (l, m).  | 
| 
207
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 sub _schinzel_lm {  | 
| 
208
 | 
16
 | 
 
 | 
 
 | 
  
16
  
 | 
 
 | 
89
 | 
     my ($poly, $table, $n, $r, $s, $x) = @_;  | 
| 
209
 | 
16
 | 
 
 | 
 
 | 
 
 | 
 
 | 
114
 | 
     my ($c, $d) = _schinzel_cd($poly, $table, $n, $r);  | 
| 
210
 | 
16
 | 
 
 | 
 
 | 
 
 | 
 
 | 
55
 | 
     my $cx = $c->evaluate($x);  | 
| 
211
 | 
16
 | 
 
 | 
 
 | 
 
 | 
 
 | 
16578
 | 
     my $dx = $d->evaluate($x) * $r * $s;  | 
| 
212
 | 
16
 | 
 
 | 
 
 | 
 
 | 
 
 | 
15936
 | 
     my ($l, $m) = ($cx - $dx, $cx + $dx);  | 
| 
213
 | 
16
 | 
  
100
  
 | 
 
 | 
 
 | 
 
 | 
3001
 | 
     return $m if $l == $poly->coeff_one;  | 
| 
214
 | 
14
 | 
 
 | 
 
 | 
 
 | 
 
 | 
791
 | 
     return ($l, $m);  | 
| 
215
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 }  | 
| 
216
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
217
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 # ----- Math::Polynomial extension -----  | 
| 
218
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
219
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 sub Math::Polynomial::cyclotomic {  | 
| 
220
 | 
12
 | 
 
 | 
 
 | 
  
12
  
 | 
  
0
  
 | 
5506
 | 
     my ($this, $n, $table) = @_;  | 
| 
221
 | 
12
 | 
 
 | 
  
100
  
 | 
 
 | 
 
 | 
56
 | 
     return _cyclo_poly($this, $table || {}, $n);  | 
| 
222
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 }  | 
| 
223
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
224
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 sub Math::Polynomial::cyclo_factors {  | 
| 
225
 | 
6
 | 
 
 | 
 
 | 
  
6
  
 | 
  
0
  
 | 
5964
 | 
     my ($this, $n, $table) = @_;  | 
| 
226
 | 
6
 | 
 
 | 
 
 | 
 
 | 
 
 | 
56
 | 
     my @d = divisors($n);  | 
| 
227
 | 
6
 | 
 
 | 
  
100
  
 | 
 
 | 
 
 | 
29
 | 
     $table ||= {};  | 
| 
228
 | 
6
 | 
 
 | 
 
 | 
 
 | 
 
 | 
16
 | 
     return map { _cyclo_poly($this, $table, $_, \@d) } @d;  | 
| 
 
 | 
28
 | 
 
 | 
 
 | 
 
 | 
 
 | 
58
 | 
    | 
| 
229
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 }  | 
| 
230
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
231
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 sub Math::Polynomial::cyclo_int_factors {  | 
| 
232
 | 
13
 | 
 
 | 
 
 | 
  
13
  
 | 
  
0
  
 | 
43
 | 
     my ($this, $x, $n, $table) = @_;  | 
| 
233
 | 
13
 | 
  
100
  
 | 
  
100
  
 | 
 
 | 
 
 | 
73
 | 
     return ($this->coeff_zero) if !$n || $x == $this->coeff_one;  | 
| 
234
 | 
11
 | 
  
100
  
 | 
  
100
  
 | 
 
 | 
 
 | 
1510
 | 
     return ($x - $this->coeff_one) if $n == 1 || !$x;  | 
| 
235
 | 
9
 | 
 
 | 
  
 50
  
 | 
 
 | 
 
 | 
34
 | 
     $table ||= {};  | 
| 
236
 | 
9
 | 
  
100
  
 | 
 
 | 
 
 | 
 
 | 
95
 | 
     if (my $exp = is_power($x, 0, \my $root)) {  | 
| 
237
 | 
2
 | 
 
 | 
 
 | 
 
 | 
 
 | 
5
 | 
         $x = $root;  | 
| 
238
 | 
2
 | 
 
 | 
 
 | 
 
 | 
 
 | 
5
 | 
         $n *= $exp;  | 
| 
239
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     }  | 
| 
240
 | 
9
 | 
 
 | 
 
 | 
 
 | 
 
 | 
37
 | 
     my ($r, $s) = _square_free_square($x);  | 
| 
241
 | 
9
 | 
  
100
  
 | 
 
 | 
 
 | 
 
 | 
35
 | 
     my $r1 = (1 == ($r & 3))? $r: $r+$r;  | 
| 
242
 | 
9
 | 
 
 | 
 
 | 
 
 | 
 
 | 
68
 | 
     my @d = divisors($n);  | 
| 
243
 | 
9
 | 
 
 | 
  
100
  
 | 
 
 | 
 
 | 
43
 | 
     my $i = $x == 2 || 0;  | 
| 
244
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     return  | 
| 
245
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
         map {  | 
| 
246
 | 
9
 | 
  
100
  
 | 
  
100
  
 | 
 
 | 
 
 | 
48
 | 
             !($_ % $r1) && ($_ / $r1) & 1?  | 
| 
 
 | 
45
 | 
 
 | 
 
 | 
 
 | 
 
 | 
19091
 | 
    | 
| 
247
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
             _schinzel_lm($this, $table, $_, $r, $s, $x):  | 
| 
248
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
             (_cyclo_poly($this, $table, $_, \@d))->evaluate($x)  | 
| 
249
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
         } @d[$i .. $#d];  | 
| 
250
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 }  | 
| 
251
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
252
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 sub Math::Polynomial::cyclo_plusfactors {  | 
| 
253
 | 
4
 | 
 
 | 
 
 | 
  
4
  
 | 
  
0
  
 | 
549
 | 
     my ($this, $n, $table) = @_;  | 
| 
254
 | 
4
 | 
 
 | 
 
 | 
 
 | 
 
 | 
27
 | 
     my @d = divisors($n << 1);  | 
| 
255
 | 
4
 | 
 
 | 
 
 | 
 
 | 
 
 | 
10
 | 
     my $m = $n ^ ($n - 1);  | 
| 
256
 | 
4
 | 
 
 | 
  
100
  
 | 
 
 | 
 
 | 
18
 | 
     $table ||= {};  | 
| 
257
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     return  | 
| 
258
 | 
8
 | 
 
 | 
 
 | 
 
 | 
 
 | 
18
 | 
         map { _cyclo_poly($this, $table, $_, \@d) }  | 
| 
259
 | 
4
 | 
 
 | 
 
 | 
 
 | 
 
 | 
10
 | 
         grep { !($_ & $m) } @d;  | 
| 
 
 | 
20
 | 
 
 | 
 
 | 
 
 | 
 
 | 
36
 | 
    | 
| 
260
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 }  | 
| 
261
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
262
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 sub Math::Polynomial::cyclo_int_plusfactors {  | 
| 
263
 | 
11
 | 
 
 | 
 
 | 
  
11
  
 | 
  
0
  
 | 
30
 | 
     my ($this, $x, $n, $table) = @_;  | 
| 
264
 | 
11
 | 
 
 | 
 
 | 
 
 | 
 
 | 
58
 | 
     my $u = $this->coeff_one;  | 
| 
265
 | 
11
 | 
  
100
  
 | 
 
 | 
 
 | 
 
 | 
58
 | 
     return ($u + $u) if !$n;  | 
| 
266
 | 
10
 | 
  
100
  
 | 
  
100
  
 | 
 
 | 
 
 | 
82
 | 
     return ($x + $u) if $n == 1 || !$x || $x == $u;  | 
| 
 
 | 
 
 | 
 
 | 
  
100
  
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
267
 | 
7
 | 
  
100
  
 | 
 
 | 
 
 | 
 
 | 
938
 | 
     if (my $exp = is_power($x, 0, \my $root)) {  | 
| 
268
 | 
2
 | 
 
 | 
 
 | 
 
 | 
 
 | 
7
 | 
         $x = $root;  | 
| 
269
 | 
2
 | 
 
 | 
 
 | 
 
 | 
 
 | 
6
 | 
         $n *= $exp;  | 
| 
270
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     }  | 
| 
271
 | 
7
 | 
 
 | 
 
 | 
 
 | 
 
 | 
27
 | 
     my ($r, $s) = _square_free_square($x);  | 
| 
272
 | 
7
 | 
  
100
  
 | 
 
 | 
 
 | 
 
 | 
31
 | 
     my $r1 = (1 == ($r & 3))? $r: $r+$r;  | 
| 
273
 | 
7
 | 
 
 | 
 
 | 
 
 | 
 
 | 
55
 | 
     my @d = divisors($n << 1);  | 
| 
274
 | 
7
 | 
 
 | 
 
 | 
 
 | 
 
 | 
21
 | 
     my $m = $n ^ ($n - 1);  | 
| 
275
 | 
7
 | 
 
 | 
  
 50
  
 | 
 
 | 
 
 | 
24
 | 
     $table ||= {};  | 
| 
276
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     return  | 
| 
277
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
         map {  | 
| 
278
 | 
23
 | 
  
100
  
 | 
  
100
  
 | 
 
 | 
 
 | 
10461
 | 
             !($_ % $r1) && ($_ / $r1) & 1?  | 
| 
279
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
             _schinzel_lm($this, $table, $_, $r, $s, $x):  | 
| 
280
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
             (_cyclo_poly($this, $table, $_, \@d))->evaluate($x)  | 
| 
281
 | 
7
 | 
 
 | 
 
 | 
 
 | 
 
 | 
16
 | 
         } grep { !($_ & $m) } @d;  | 
| 
 
 | 
58
 | 
 
 | 
 
 | 
 
 | 
 
 | 
100
 | 
    | 
| 
282
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 }  | 
| 
283
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
284
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 sub Math::Polynomial::cyclo_lucas_cd {  | 
| 
285
 | 
6
 | 
 
 | 
 
 | 
  
6
  
 | 
  
0
  
 | 
18
 | 
     my ($this, $n, $table) = @_;  | 
| 
286
 | 
6
 | 
  
100
  
 | 
  
100
  
 | 
 
 | 
 
 | 
73
 | 
     if ($n <= 1 || !is_square_free($n)) {  | 
| 
287
 | 
2
 | 
 
 | 
 
 | 
 
 | 
 
 | 
280
 | 
         croak "$n: not a square-free integer greater than one";  | 
| 
288
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     }  | 
| 
289
 | 
4
 | 
 
 | 
  
 50
  
 | 
 
 | 
 
 | 
21
 | 
     return _lucas_cd($this, $table || {}, $n);  | 
| 
290
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 }  | 
| 
291
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
292
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 sub Math::Polynomial::cyclo_schinzel_cd {  | 
| 
293
 | 
11
 | 
 
 | 
 
 | 
  
11
  
 | 
  
0
  
 | 
31
 | 
     my ($this, $n, $k, $table) = @_;  | 
| 
294
 | 
11
 | 
  
100
  
 | 
  
100
  
 | 
 
 | 
 
 | 
96
 | 
     if ($k <= 1 || !is_square_free($k)) {  | 
| 
295
 | 
2
 | 
 
 | 
 
 | 
 
 | 
 
 | 
190
 | 
         croak "$k: not a square-free integer greater than one";  | 
| 
296
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     }  | 
| 
297
 | 
9
 | 
 
 | 
  
100
  
 | 
 
 | 
 
 | 
46
 | 
     my @cd = _schinzel_cd($this, $table || {}, $n, $k);  | 
| 
298
 | 
9
 | 
  
100
  
 | 
 
 | 
 
 | 
 
 | 
32
 | 
     if (!@cd) {  | 
| 
299
 | 
2
 | 
  
100
  
 | 
 
 | 
 
 | 
 
 | 
6
 | 
         my $k1 = ($k & 3) == 1? 'k': '2*k';  | 
| 
300
 | 
2
 | 
 
 | 
 
 | 
 
 | 
 
 | 
177
 | 
         croak "$n: n is not an odd multiple of $k1";  | 
| 
301
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     }  | 
| 
302
 | 
7
 | 
 
 | 
 
 | 
 
 | 
 
 | 
37
 | 
     return @cd;  | 
| 
303
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 }  | 
| 
304
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
305
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 sub Math::Polynomial::cyclo_poly_iterate {  | 
| 
306
 | 
4
 | 
 
 | 
 
 | 
  
4
  
 | 
  
0
  
 | 
1733
 | 
     my ($this, $n, $table) = @_;  | 
| 
307
 | 
4
 | 
 
 | 
  
100
  
 | 
 
 | 
 
 | 
19
 | 
     $n ||= 1;  | 
| 
308
 | 
4
 | 
 
 | 
 
 | 
 
 | 
 
 | 
6
 | 
     --$n;  | 
| 
309
 | 
4
 | 
 
 | 
  
100
  
 | 
 
 | 
 
 | 
17
 | 
     $table ||= {};  | 
| 
310
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     return  | 
| 
311
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
         sub {  | 
| 
312
 | 
14
 | 
 
 | 
 
 | 
  
14
  
 | 
 
 | 
7489
 | 
             ++$n;  | 
| 
313
 | 
14
 | 
 
 | 
 
 | 
 
 | 
 
 | 
34
 | 
             _cyclo_poly($this, $table, $n);  | 
| 
314
 | 
4
 | 
 
 | 
 
 | 
 
 | 
 
 | 
45
 | 
         };  | 
| 
315
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 }  | 
| 
316
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
317
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 # ----- public subroutines -----  | 
| 
318
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
319
 | 
9
 | 
 
 | 
 
 | 
  
9
  
 | 
  
1
  
 | 
6429
 | 
 sub cyclo_poly            { $default->cyclotomic(@_)            }  | 
| 
320
 | 
2
 | 
 
 | 
 
 | 
  
2
  
 | 
  
1
  
 | 
1952
 | 
 sub cyclo_factors         { $default->cyclo_factors(@_)         }  | 
| 
321
 | 
3
 | 
 
 | 
 
 | 
  
3
  
 | 
  
1
  
 | 
3129
 | 
 sub cyclo_plusfactors     { $default->cyclo_plusfactors(@_)     }  | 
| 
322
 | 
2
 | 
 
 | 
 
 | 
  
2
  
 | 
  
1
  
 | 
1268
 | 
 sub cyclo_poly_iterate    { $default->cyclo_poly_iterate(@_)    }  | 
| 
323
 | 
6
 | 
 
 | 
 
 | 
  
6
  
 | 
  
1
  
 | 
8917
 | 
 sub cyclo_lucas_cd        { $default->cyclo_lucas_cd(@_)        }  | 
| 
324
 | 
11
 | 
 
 | 
 
 | 
  
11
  
 | 
  
1
  
 | 
11215
 | 
 sub cyclo_schinzel_cd     { $default->cyclo_schinzel_cd(@_)     }  | 
| 
325
 | 
13
 | 
 
 | 
 
 | 
  
13
  
 | 
  
1
  
 | 
10032
 | 
 sub cyclo_int_factors     { $default->cyclo_int_factors(@_)     }  | 
| 
326
 | 
11
 | 
 
 | 
 
 | 
  
11
  
 | 
  
1
  
 | 
15406
 | 
 sub cyclo_int_plusfactors { $default->cyclo_int_plusfactors(@_) }  | 
| 
327
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
328
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 1;  | 
| 
329
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
330
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 __END__  |