line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
1
|
|
|
|
|
|
|
# Copyright 2012, 2013, 2014, 2015 Kevin Ryde |
2
|
|
|
|
|
|
|
|
3
|
|
|
|
|
|
|
# This file is part of Math-PlanePath-Toothpick. |
4
|
|
|
|
|
|
|
# |
5
|
|
|
|
|
|
|
# Math-PlanePath-Toothpick is free software; you can redistribute it and/or |
6
|
|
|
|
|
|
|
# modify it under the terms of the GNU General Public License as published |
7
|
|
|
|
|
|
|
# by the Free Software Foundation; either version 3, or (at your option) any |
8
|
|
|
|
|
|
|
# later version. |
9
|
|
|
|
|
|
|
# |
10
|
|
|
|
|
|
|
# Math-PlanePath-Toothpick is distributed in the hope that it will be |
11
|
|
|
|
|
|
|
# useful, but WITHOUT ANY WARRANTY; without even the implied warranty of |
12
|
|
|
|
|
|
|
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General |
13
|
|
|
|
|
|
|
# Public License for more details. |
14
|
|
|
|
|
|
|
# |
15
|
|
|
|
|
|
|
# You should have received a copy of the GNU General Public License along |
16
|
|
|
|
|
|
|
# with Math-PlanePath-Toothpick. If not, see . |
17
|
|
|
|
|
|
|
|
18
|
|
|
|
|
|
|
# block_order => 'AB123' |
19
|
|
|
|
|
|
|
# block_order => 'A1B32' is depth first and finite parts first, |
20
|
|
|
|
|
|
|
# in parts=1 where single infinite spine |
21
|
|
|
|
|
|
|
# |
22
|
|
|
|
|
|
|
# maybe tree methods same structure as ToothpickTree |
23
|
|
|
|
|
|
|
# |
24
|
|
|
|
|
|
|
|
25
|
|
|
|
|
|
|
# cf A175262 odd binary length and middle digit 1 |
26
|
|
|
|
|
|
|
# A175263 odd binary length and middle digit 0 |
27
|
|
|
|
|
|
|
# |
28
|
|
|
|
|
|
|
|
29
|
|
|
|
|
|
|
package Math::PlanePath::ToothpickReplicate; |
30
|
1
|
|
|
1
|
|
1939
|
use 5.004; |
|
1
|
|
|
|
|
3
|
|
31
|
1
|
|
|
1
|
|
6
|
use strict; |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
43
|
|
32
|
|
|
|
|
|
|
#use List::Util 'max'; |
33
|
|
|
|
|
|
|
*max = \&Math::PlanePath::_max; |
34
|
|
|
|
|
|
|
|
35
|
1
|
|
|
1
|
|
4
|
use vars '$VERSION', '@ISA'; |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
61
|
|
36
|
|
|
|
|
|
|
$VERSION = 18; |
37
|
1
|
|
|
1
|
|
1111
|
use Math::PlanePath; |
|
1
|
|
|
|
|
6453
|
|
|
1
|
|
|
|
|
135
|
|
38
|
|
|
|
|
|
|
@ISA = ('Math::PlanePath'); |
39
|
|
|
|
|
|
|
|
40
|
|
|
|
|
|
|
|
41
|
|
|
|
|
|
|
# return ($quotient, $remainder) |
42
|
|
|
|
|
|
|
sub _divrem { |
43
|
14
|
|
|
14
|
|
20
|
my ($n, $d) = @_; |
44
|
14
|
50
|
33
|
|
|
32
|
if (ref $n && $n->isa('Math::BigInt')) { |
45
|
0
|
|
|
|
|
0
|
my ($quot,$rem) = $n->copy->bdiv($d); |
46
|
0
|
0
|
0
|
|
|
0
|
if (! ref $d || $d < 1_000_000) { |
47
|
0
|
|
|
|
|
0
|
$rem = $rem->numify; # plain remainder if fits |
48
|
|
|
|
|
|
|
} |
49
|
0
|
|
|
|
|
0
|
return ($quot, $rem); |
50
|
|
|
|
|
|
|
} |
51
|
14
|
|
|
|
|
19
|
my $rem = $n % $d; |
52
|
14
|
|
|
|
|
30
|
return (int(($n-$rem)/$d), # exact division stays in UV |
53
|
|
|
|
|
|
|
$rem); |
54
|
|
|
|
|
|
|
} |
55
|
|
|
|
|
|
|
|
56
|
|
|
|
|
|
|
|
57
|
|
|
|
|
|
|
use Math::PlanePath::Base::Generic |
58
|
1
|
|
|
|
|
51
|
'is_infinite', |
59
|
1
|
|
|
1
|
|
6
|
'round_nearest'; |
|
1
|
|
|
|
|
2
|
|
60
|
|
|
|
|
|
|
use Math::PlanePath::Base::Digits 119 # v.119 for round_up_pow() |
61
|
1
|
|
|
|
|
61
|
'round_up_pow', |
62
|
1
|
|
|
1
|
|
758
|
'round_down_pow'; |
|
1
|
|
|
|
|
1609
|
|
63
|
|
|
|
|
|
|
|
64
|
|
|
|
|
|
|
# uncomment this to run the ### lines |
65
|
|
|
|
|
|
|
# use Smart::Comments; |
66
|
|
|
|
|
|
|
|
67
|
1
|
|
|
1
|
|
1205
|
use Math::PlanePath::ToothpickTree; |
|
1
|
|
|
|
|
3
|
|
|
1
|
|
|
|
|
158
|
|
68
|
|
|
|
|
|
|
*new = \&Math::PlanePath::ToothpickTree::new; |
69
|
|
|
|
|
|
|
*x_negative = \&Math::PlanePath::ToothpickTree::x_negative; |
70
|
|
|
|
|
|
|
*y_negative = \&Math::PlanePath::ToothpickTree::y_negative; |
71
|
|
|
|
|
|
|
*rect_to_n_range = \&Math::PlanePath::ToothpickTree::rect_to_n_range; |
72
|
|
|
|
|
|
|
*x_minimum = \&Math::PlanePath::ToothpickTree::x_minimum; |
73
|
|
|
|
|
|
|
*y_minimum = \&Math::PlanePath::ToothpickTree::y_minimum; |
74
|
|
|
|
|
|
|
*sumxy_minimum = \&Math::PlanePath::ToothpickTree::sumxy_minimum; |
75
|
|
|
|
|
|
|
*sumabsxy_minimum = \&Math::PlanePath::ToothpickTree::sumabsxy_minimum; |
76
|
|
|
|
|
|
|
*rsquared_minimum = \&Math::PlanePath::ToothpickTree::rsquared_minimum; |
77
|
|
|
|
|
|
|
|
78
|
1
|
|
|
|
|
71
|
use constant parameter_info_array => |
79
|
|
|
|
|
|
|
[ { name => 'parts', |
80
|
|
|
|
|
|
|
share_key => 'parts_toothpickreplicate', |
81
|
|
|
|
|
|
|
display => 'Parts', |
82
|
|
|
|
|
|
|
type => 'enum', |
83
|
|
|
|
|
|
|
default => '4', |
84
|
|
|
|
|
|
|
choices => ['4','3','2','1'], |
85
|
|
|
|
|
|
|
choices_display => ['4','3','2','1'], |
86
|
|
|
|
|
|
|
description => 'Which parts of the pattern to generate.', |
87
|
|
|
|
|
|
|
}, |
88
|
1
|
|
|
1
|
|
7
|
]; |
|
1
|
|
|
|
|
2
|
|
89
|
|
|
|
|
|
|
|
90
|
1
|
|
|
1
|
|
5
|
use constant n_start => 0; |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
42
|
|
91
|
1
|
|
|
1
|
|
4
|
use constant class_x_negative => 1; |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
45
|
|
92
|
1
|
|
|
1
|
|
5
|
use constant class_y_negative => 1; |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
150
|
|
93
|
|
|
|
|
|
|
|
94
|
|
|
|
|
|
|
{ |
95
|
|
|
|
|
|
|
my @x_negative_at_n = (undef, |
96
|
|
|
|
|
|
|
undef, # 1 |
97
|
|
|
|
|
|
|
3, # 2 |
98
|
|
|
|
|
|
|
6, # 3 |
99
|
|
|
|
|
|
|
5, # 4 |
100
|
|
|
|
|
|
|
); |
101
|
|
|
|
|
|
|
sub x_negative_at_n { |
102
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
103
|
0
|
|
|
|
|
0
|
return $x_negative_at_n[$self->{'parts'}]; |
104
|
|
|
|
|
|
|
} |
105
|
|
|
|
|
|
|
} |
106
|
|
|
|
|
|
|
{ |
107
|
|
|
|
|
|
|
my @y_negative_at_n = (undef, |
108
|
|
|
|
|
|
|
undef, # 1 |
109
|
|
|
|
|
|
|
undef, # 2 |
110
|
|
|
|
|
|
|
2, # 3 |
111
|
|
|
|
|
|
|
2, # 4 |
112
|
|
|
|
|
|
|
); |
113
|
|
|
|
|
|
|
sub y_negative_at_n { |
114
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
115
|
0
|
|
|
|
|
0
|
return $y_negative_at_n[$self->{'parts'}]; |
116
|
|
|
|
|
|
|
} |
117
|
|
|
|
|
|
|
} |
118
|
|
|
|
|
|
|
|
119
|
|
|
|
|
|
|
# parts=1 same as parts=4 |
120
|
|
|
|
|
|
|
# parts=2 same as parts=4 |
121
|
|
|
|
|
|
|
# parts=3 same as parts=4 |
122
|
|
|
|
|
|
|
# parts=4 33,-12 |
123
|
|
|
|
|
|
|
# 133,-30 |
124
|
|
|
|
|
|
|
# 333,-112 |
125
|
|
|
|
|
|
|
# 1333,-230 |
126
|
|
|
|
|
|
|
# 3332,-1112 -> 3,-1 |
127
|
1
|
|
|
1
|
|
5
|
use constant dir_maximum_dxdy => (3,-1); |
|
1
|
|
|
|
|
1
|
|
|
1
|
|
|
|
|
1728
|
|
128
|
|
|
|
|
|
|
|
129
|
|
|
|
|
|
|
#------------------------------------------------------------------------------ |
130
|
|
|
|
|
|
|
# Fraction covered |
131
|
|
|
|
|
|
|
# Xlevel = 2^(level+1) - 1 |
132
|
|
|
|
|
|
|
# Ylevel = 2^(level+1) |
133
|
|
|
|
|
|
|
# Nend = (2*4^(level+1) + 1)/3 - 1 |
134
|
|
|
|
|
|
|
# |
135
|
|
|
|
|
|
|
# Nend / (Xlevel*Ylevel) |
136
|
|
|
|
|
|
|
# -> ((2*4^(level+1) + 1)/3 - 1) / 4^(level+1) |
137
|
|
|
|
|
|
|
# -> (2*4^(level+1) + 1)/3 / 4^(level+1) |
138
|
|
|
|
|
|
|
# -> 2*4^(level+1)/3 / 4^(level+1) |
139
|
|
|
|
|
|
|
# -> 2/3 |
140
|
|
|
|
|
|
|
|
141
|
|
|
|
|
|
|
# Leading diagonal 1,3, 7,11, |
142
|
|
|
|
|
|
|
# 23,25,29,43, +22,22,22,32 |
143
|
|
|
|
|
|
|
# 87,89,93,97, +86,86,86,86 |
144
|
|
|
|
|
|
|
# 109,111,115,171, +86,128 |
145
|
|
|
|
|
|
|
# 343 |
146
|
|
|
|
|
|
|
# part2start = (4^level + 5)/3 = 3,7,23,87,343 |
147
|
|
|
|
|
|
|
# sums of part2start(level), but +2 in second half of each |
148
|
|
|
|
|
|
|
# (3)/3=1 |
149
|
|
|
|
|
|
|
# (3+ 1+5)/3=3 |
150
|
|
|
|
|
|
|
# (3+ 1+5 + 4+5)/3=9 |
151
|
|
|
|
|
|
|
|
152
|
|
|
|
|
|
|
|
153
|
|
|
|
|
|
|
# v v |
154
|
|
|
|
|
|
|
# | -> | part 3 |
155
|
|
|
|
|
|
|
# +---h h---+ |
156
|
|
|
|
|
|
|
# |
157
|
|
|
|
|
|
|
# +---v h |
158
|
|
|
|
|
|
|
# | -> | part 1 rot then part 3 |
159
|
|
|
|
|
|
|
# h +---v |
160
|
|
|
|
|
|
|
# |
161
|
|
|
|
|
|
|
# v v |
162
|
|
|
|
|
|
|
# | -> | part 3 then part 3 again |
163
|
|
|
|
|
|
|
# h---+ +---h |
164
|
|
|
|
|
|
|
# |
165
|
|
|
|
|
|
|
|
166
|
|
|
|
|
|
|
# v +---v |
167
|
|
|
|
|
|
|
# | -> | part 1 |
168
|
|
|
|
|
|
|
# +---h h |
169
|
|
|
|
|
|
|
# |
170
|
|
|
|
|
|
|
# v v---+ |
171
|
|
|
|
|
|
|
# | -> | part 3 then part 1 rot is +90 |
172
|
|
|
|
|
|
|
# h---+ h |
173
|
|
|
|
|
|
|
|
174
|
|
|
|
|
|
|
# N = (2*4^level + 1)/3 + 1 is first of "level" |
175
|
|
|
|
|
|
|
# 3N-3 = 2*4^level + 1 |
176
|
|
|
|
|
|
|
# 2*4^level = 3N-4 |
177
|
|
|
|
|
|
|
# 4^(level+1) = 6N-8 |
178
|
|
|
|
|
|
|
# |
179
|
|
|
|
|
|
|
# part = (2*4^level - 2)/3 many points in "level" |
180
|
|
|
|
|
|
|
# above = (2*4^(level+1) - 2)/3 |
181
|
|
|
|
|
|
|
# = (4*2*4^level - 2)/3 |
182
|
|
|
|
|
|
|
# = 4*(2*4^level - 2/4)/3 |
183
|
|
|
|
|
|
|
# = 4*(2*4^level - 2)/3 + 4*(+ 2 - 2/4)/3 |
184
|
|
|
|
|
|
|
# = 4*(2*4^level - 2)/3 + 2 |
185
|
|
|
|
|
|
|
# = 4*part + 2 |
186
|
|
|
|
|
|
|
# part = (above-2)/4 |
187
|
|
|
|
|
|
|
|
188
|
|
|
|
|
|
|
my @quadrant_to_hdx = (1,-1, -1,1); |
189
|
|
|
|
|
|
|
my @quadrant_to_vdy = (1, 1, -1,-1); |
190
|
|
|
|
|
|
|
|
191
|
|
|
|
|
|
|
sub n_to_xy { |
192
|
54
|
|
|
54
|
1
|
4131
|
my ($self, $n) = @_; |
193
|
|
|
|
|
|
|
### ToothpickReplicate n_to_xy(): $n |
194
|
|
|
|
|
|
|
|
195
|
54
|
50
|
|
|
|
112
|
if ($n < 0) { return; } |
|
0
|
|
|
|
|
0
|
|
196
|
54
|
50
|
|
|
|
120
|
if (is_infinite($n)) { return ($n,$n); } |
|
0
|
|
|
|
|
0
|
|
197
|
|
|
|
|
|
|
|
198
|
|
|
|
|
|
|
{ |
199
|
54
|
|
|
|
|
316
|
my $int = int($n); |
|
54
|
|
|
|
|
69
|
|
200
|
|
|
|
|
|
|
### $int |
201
|
|
|
|
|
|
|
### $n |
202
|
54
|
50
|
|
|
|
99
|
if ($n != $int) { |
203
|
0
|
|
|
|
|
0
|
my ($x1,$y1) = $self->n_to_xy($int); |
204
|
0
|
|
|
|
|
0
|
my ($x2,$y2) = $self->n_to_xy($int+1); |
205
|
0
|
|
|
|
|
0
|
my $frac = $n - $int; # inherit possible BigFloat |
206
|
0
|
|
|
|
|
0
|
my $dx = $x2-$x1; |
207
|
0
|
|
|
|
|
0
|
my $dy = $y2-$y1; |
208
|
0
|
|
|
|
|
0
|
return ($frac*$dx + $x1, $frac*$dy + $y1); |
209
|
|
|
|
|
|
|
} |
210
|
54
|
|
|
|
|
71
|
$n = $int; # BigFloat int() gives BigInt, use that |
211
|
|
|
|
|
|
|
} |
212
|
|
|
|
|
|
|
|
213
|
54
|
|
|
|
|
71
|
my $parts = $self->{'parts'}; |
214
|
54
|
|
|
|
|
60
|
my $x = 0; |
215
|
54
|
|
|
|
|
57
|
my $y = 0; |
216
|
54
|
|
|
|
|
57
|
my $hdx = 1; |
217
|
54
|
|
|
|
|
60
|
my $hdy = 0; |
218
|
54
|
|
|
|
|
54
|
my $vdx = 0; |
219
|
54
|
|
|
|
|
58
|
my $vdy = 1; |
220
|
|
|
|
|
|
|
|
221
|
54
|
50
|
|
|
|
164
|
if ($parts eq '2') { |
|
|
100
|
|
|
|
|
|
|
|
100
|
|
|
|
|
|
222
|
0
|
0
|
|
|
|
0
|
if ($n == 0) { |
223
|
0
|
|
|
|
|
0
|
return (0,1); |
224
|
|
|
|
|
|
|
} |
225
|
|
|
|
|
|
|
|
226
|
|
|
|
|
|
|
# first of a replication level |
227
|
|
|
|
|
|
|
# Nlevel = 2*(2*4^level - 2)/3 + 1 |
228
|
|
|
|
|
|
|
# = (4*4^level - 4)/3 + 1 |
229
|
|
|
|
|
|
|
# = (4*4^level - 4 + 3)/3 |
230
|
|
|
|
|
|
|
# = (4*4^level - 1)/3 = 5,21 |
231
|
|
|
|
|
|
|
# 3N = 4*4^level - 1 |
232
|
|
|
|
|
|
|
# 4^(level+1) = 3N+1 |
233
|
|
|
|
|
|
|
|
234
|
0
|
|
|
|
|
0
|
my ($len,$level) = round_down_pow(3*$n+1, 4); |
235
|
0
|
|
|
|
|
0
|
my $three_parts = $len/2; |
236
|
|
|
|
|
|
|
|
237
|
|
|
|
|
|
|
### $len |
238
|
|
|
|
|
|
|
### $level |
239
|
|
|
|
|
|
|
### $three_parts |
240
|
|
|
|
|
|
|
### start this level: ($len-1)/3 |
241
|
|
|
|
|
|
|
### n reduced: $n-($len-1)/3 |
242
|
|
|
|
|
|
|
|
243
|
0
|
|
|
|
|
0
|
(my $quadrant, $n) = _divrem ($n-($len-1)/3, $three_parts); |
244
|
|
|
|
|
|
|
### $quadrant |
245
|
|
|
|
|
|
|
### n remainder: $n |
246
|
|
|
|
|
|
|
### assert: $quadrant >= 0 |
247
|
|
|
|
|
|
|
### assert: $quadrant <= 1 |
248
|
|
|
|
|
|
|
|
249
|
0
|
|
|
|
|
0
|
$n += ($len/2-2)/3; |
250
|
0
|
0
|
|
|
|
0
|
if ($quadrant) { $hdx = -1; } |
|
0
|
|
|
|
|
0
|
|
251
|
|
|
|
|
|
|
### n in quarter: $n |
252
|
|
|
|
|
|
|
|
253
|
|
|
|
|
|
|
} elsif ($parts == 3) { |
254
|
8
|
100
|
|
|
|
16
|
if ($n <= 1) { |
255
|
2
|
|
|
|
|
5
|
return (0,$n); |
256
|
|
|
|
|
|
|
} |
257
|
|
|
|
|
|
|
# Nend = 3*(2*4^level - 2)/3 + 2 |
258
|
|
|
|
|
|
|
# = (2*4^level - 2) + 2 |
259
|
|
|
|
|
|
|
# = 2*4^level = 2,8,32 |
260
|
|
|
|
|
|
|
# N-1 = 2*4^level |
261
|
|
|
|
|
|
|
# 4^(level+1) = 2N-2 |
262
|
|
|
|
|
|
|
|
263
|
6
|
|
|
|
|
17
|
my ($len,$level) = round_down_pow(2*$n, 4); |
264
|
6
|
|
|
|
|
62
|
my $three_parts = $len/2; |
265
|
|
|
|
|
|
|
|
266
|
|
|
|
|
|
|
### $len |
267
|
|
|
|
|
|
|
### $level |
268
|
|
|
|
|
|
|
### $three_parts |
269
|
|
|
|
|
|
|
### start this level: ($len/2+1) |
270
|
|
|
|
|
|
|
### n reduced: $n-($len/2+1) |
271
|
|
|
|
|
|
|
|
272
|
6
|
|
|
|
|
15
|
(my $quadrant, $n) = _divrem ($n-$len/2, $three_parts); |
273
|
|
|
|
|
|
|
### $quadrant |
274
|
|
|
|
|
|
|
### n remainder: $n |
275
|
|
|
|
|
|
|
### assert: $quadrant >= 0 |
276
|
|
|
|
|
|
|
### assert: $quadrant <= 2 |
277
|
|
|
|
|
|
|
|
278
|
6
|
|
|
|
|
12
|
$n += ($len/2-2)/3; |
279
|
|
|
|
|
|
|
### n in quarter: $n |
280
|
|
|
|
|
|
|
|
281
|
6
|
100
|
|
|
|
21
|
if ($quadrant == 0) { |
|
|
100
|
|
|
|
|
|
282
|
2
|
|
|
|
|
2
|
$hdx = 0; # rotate -90 |
283
|
2
|
|
|
|
|
3
|
$hdy = -1; |
284
|
2
|
|
|
|
|
2
|
$vdx = 1; |
285
|
2
|
|
|
|
|
33
|
$vdy = 0; |
286
|
2
|
|
|
|
|
3
|
$x = -1; # offset |
287
|
|
|
|
|
|
|
} elsif ($quadrant == 2) { |
288
|
2
|
|
|
|
|
4
|
$hdx = -1; # mirror |
289
|
|
|
|
|
|
|
} |
290
|
|
|
|
|
|
|
|
291
|
|
|
|
|
|
|
} elsif ($parts == 4) { |
292
|
11
|
100
|
|
|
|
21
|
if ($n <= 2) { |
293
|
3
|
100
|
|
|
|
7
|
if ($n == 0) { return (0,0); } |
|
1
|
|
|
|
|
3
|
|
294
|
2
|
100
|
|
|
|
5
|
if ($n == 1) { return (0,1); } |
|
1
|
|
|
|
|
3
|
|
295
|
1
|
|
|
|
|
3
|
return (0,-1); # N==2 |
296
|
|
|
|
|
|
|
} |
297
|
|
|
|
|
|
|
# first of a replication level |
298
|
|
|
|
|
|
|
# Nlevel = 4*(2*4^level - 2)/3 + 3 |
299
|
|
|
|
|
|
|
# = (8*4^level - 8)/3 + 3 |
300
|
|
|
|
|
|
|
# = (8*4^level - 8 + 9)/3 |
301
|
|
|
|
|
|
|
# = (8*4^level+1)/3 11,43,171 |
302
|
|
|
|
|
|
|
# 3N = 8*4^level+1 |
303
|
|
|
|
|
|
|
# 8*4^level = 3N-1 |
304
|
|
|
|
|
|
|
# 4^(level+2) = 6N-2 |
305
|
|
|
|
|
|
|
# |
306
|
|
|
|
|
|
|
# first of this level, using level+2 |
307
|
|
|
|
|
|
|
# Nlevel = (4^(level+2)/2+1)/3 |
308
|
|
|
|
|
|
|
# = (4^(level+2)+2)/6 |
309
|
|
|
|
|
|
|
# |
310
|
|
|
|
|
|
|
# three count = 3*(2*4^level - 2)/3 + 2 |
311
|
|
|
|
|
|
|
# = 2*4^level |
312
|
|
|
|
|
|
|
# 43-11 = 32 |
313
|
|
|
|
|
|
|
# 172-44 = 128 |
314
|
|
|
|
|
|
|
|
315
|
|
|
|
|
|
|
# getting level+2 and len = 4^(level+2) |
316
|
8
|
|
|
|
|
25
|
my ($len,$level) = round_down_pow(6*$n-2, 4); |
317
|
8
|
|
|
|
|
77
|
my $three_parts = $len/8; |
318
|
|
|
|
|
|
|
|
319
|
|
|
|
|
|
|
### all breakdown ... |
320
|
|
|
|
|
|
|
### $level |
321
|
|
|
|
|
|
|
### $len |
322
|
|
|
|
|
|
|
### $three_parts |
323
|
|
|
|
|
|
|
### Nlevel base: ($len+2)/6 |
324
|
|
|
|
|
|
|
|
325
|
8
|
|
|
|
|
21
|
(my $quadrant, $n) = _divrem ($n-($len+2)/6, $three_parts); |
326
|
|
|
|
|
|
|
### $quadrant |
327
|
|
|
|
|
|
|
### n remainder: $n |
328
|
|
|
|
|
|
|
### assert: $quadrant >= 0 |
329
|
|
|
|
|
|
|
### assert: $quadrant <= 3 |
330
|
|
|
|
|
|
|
|
331
|
|
|
|
|
|
|
# quarter middle |
332
|
|
|
|
|
|
|
# Nquarter = (2*4^level - 2)/3 = 2,10,42 |
333
|
8
|
|
|
|
|
13
|
$n += ($len/8-2)/3; |
334
|
8
|
|
|
|
|
11
|
$hdx = $quadrant_to_hdx[$quadrant]; |
335
|
8
|
|
|
|
|
13
|
$vdy = $quadrant_to_vdy[$quadrant]; |
336
|
|
|
|
|
|
|
### n in quarter: $n |
337
|
|
|
|
|
|
|
} |
338
|
|
|
|
|
|
|
|
339
|
|
|
|
|
|
|
# quarter first of a replication level |
340
|
|
|
|
|
|
|
# Nlevel = 4*(2*4^level - 2)/3 + 2 |
341
|
|
|
|
|
|
|
# = (8*4^level - 8)/3 + 2 |
342
|
|
|
|
|
|
|
# = (8*4^level - 8 + 6)/3 |
343
|
|
|
|
|
|
|
# = (8*4^level - 2)/3 2,10,42 |
344
|
|
|
|
|
|
|
# 3N = 8*4^level-2 |
345
|
|
|
|
|
|
|
# 8*4^level = 3N+2 |
346
|
|
|
|
|
|
|
# 4^(level+2) = 6N+4 |
347
|
|
|
|
|
|
|
# |
348
|
|
|
|
|
|
|
# using level+1 |
349
|
|
|
|
|
|
|
# Nlevel = (8*4^level - 2)/3 |
350
|
|
|
|
|
|
|
# = (2*4^(level+1) - 2)/3 |
351
|
|
|
|
|
|
|
|
352
|
|
|
|
|
|
|
|
353
|
|
|
|
|
|
|
# getting level+2 and 16*len |
354
|
49
|
|
|
|
|
142
|
my ($len,$level) = round_down_pow(6*$n+4, 4); |
355
|
49
|
|
|
|
|
458
|
my $part_n = (2*$len-2)/3; |
356
|
|
|
|
|
|
|
### $level |
357
|
|
|
|
|
|
|
### $part_n |
358
|
|
|
|
|
|
|
|
359
|
49
|
|
|
|
|
54
|
$len = 2**$level; |
360
|
49
|
|
|
|
|
106
|
for ( ; |
361
|
|
|
|
|
|
|
$level-- >= 0; |
362
|
|
|
|
|
|
|
$len /= 2, $part_n = ($part_n-2)/4) { |
363
|
|
|
|
|
|
|
|
364
|
|
|
|
|
|
|
### at: "x=$x,y=$y level=$level hxy=$hdx,$hdy vxy=$vdx,$vdy n=$n" |
365
|
|
|
|
|
|
|
### $len |
366
|
|
|
|
|
|
|
### $part_n |
367
|
|
|
|
|
|
|
### assert: $len == 2 ** ($level+1) |
368
|
|
|
|
|
|
|
### assert: $part_n == (2 * 4 ** ($level+1) - 2)/3 |
369
|
|
|
|
|
|
|
|
370
|
145
|
100
|
|
|
|
263
|
if ($n < $part_n) { |
371
|
|
|
|
|
|
|
### part 0, no change ... |
372
|
55
|
|
|
|
|
136
|
next; |
373
|
|
|
|
|
|
|
} |
374
|
|
|
|
|
|
|
|
375
|
90
|
|
|
|
|
100
|
$n -= $part_n; |
376
|
90
|
|
|
|
|
117
|
$x += $len * ($hdx + $vdx); # diagonal |
377
|
90
|
|
|
|
|
104
|
$y += $len * ($hdy + $vdy); |
378
|
|
|
|
|
|
|
|
379
|
90
|
100
|
|
|
|
155
|
if ($n == 0) { |
380
|
|
|
|
|
|
|
### toothpick A ... |
381
|
25
|
|
|
|
|
32
|
last; |
382
|
|
|
|
|
|
|
} |
383
|
65
|
100
|
|
|
|
114
|
if ($n == 1) { |
384
|
|
|
|
|
|
|
### toothpick B ... |
385
|
24
|
|
|
|
|
25
|
$x += $vdx; |
386
|
24
|
|
|
|
|
27
|
$y += $vdy; |
387
|
24
|
|
|
|
|
26
|
last; |
388
|
|
|
|
|
|
|
} |
389
|
41
|
|
|
|
|
49
|
$n -= 2; |
390
|
|
|
|
|
|
|
|
391
|
41
|
100
|
|
|
|
73
|
if ($n < $part_n) { |
392
|
|
|
|
|
|
|
### part 1, rotate ... |
393
|
16
|
|
|
|
|
18
|
$x -= $hdx; # offset |
394
|
16
|
|
|
|
|
17
|
$y -= $hdy; |
395
|
16
|
|
|
|
|
29
|
($hdx,$hdy, $vdx,$vdy) # rotate 90 in direction v toward h |
396
|
|
|
|
|
|
|
= (-$vdx,-$vdy, $hdx,$hdy); |
397
|
16
|
|
|
|
|
41
|
next; |
398
|
|
|
|
|
|
|
} |
399
|
25
|
|
|
|
|
26
|
$n -= $part_n; |
400
|
|
|
|
|
|
|
|
401
|
25
|
100
|
|
|
|
47
|
if ($n < $part_n) { |
402
|
|
|
|
|
|
|
### part 2 ... |
403
|
9
|
|
|
|
|
22
|
next; |
404
|
|
|
|
|
|
|
} |
405
|
16
|
|
|
|
|
16
|
$n -= $part_n; |
406
|
|
|
|
|
|
|
|
407
|
|
|
|
|
|
|
### part 3, mirror ... |
408
|
16
|
|
|
|
|
18
|
$hdx = -$hdx; |
409
|
16
|
|
|
|
|
54
|
$hdy = -$hdy; |
410
|
|
|
|
|
|
|
} |
411
|
|
|
|
|
|
|
|
412
|
|
|
|
|
|
|
### assert: $n == 0 || $n == 1 |
413
|
|
|
|
|
|
|
|
414
|
|
|
|
|
|
|
### final: "x=$x y=$y" |
415
|
49
|
|
|
|
|
111
|
return ($x,$y); |
416
|
|
|
|
|
|
|
} |
417
|
|
|
|
|
|
|
|
418
|
|
|
|
|
|
|
sub xy_to_n { |
419
|
0
|
|
|
0
|
1
|
0
|
my ($self, $x, $y) = @_; |
420
|
|
|
|
|
|
|
### ToothpickReplicate xy_to_n(): "$x, $y" |
421
|
|
|
|
|
|
|
|
422
|
0
|
|
|
|
|
0
|
$x = round_nearest ($x); |
423
|
0
|
|
|
|
|
0
|
$y = round_nearest ($y); |
424
|
|
|
|
|
|
|
|
425
|
0
|
|
|
|
|
0
|
my $parts = $self->{'parts'}; |
426
|
0
|
|
0
|
|
|
0
|
my $rotated = ($parts == 3 && $x >= 0 && $y < 0); |
427
|
0
|
0
|
|
|
|
0
|
if ($rotated) { |
428
|
0
|
|
|
|
|
0
|
($x,$y) = (-$y,$x+1); # rotate +90 and shift up |
429
|
|
|
|
|
|
|
### rotated: "x=$x y=$y" |
430
|
|
|
|
|
|
|
} |
431
|
|
|
|
|
|
|
|
432
|
0
|
|
|
|
|
0
|
my ($len,$level) = round_down_pow (max(abs($x), abs($y)-1), |
433
|
|
|
|
|
|
|
2); |
434
|
0
|
0
|
|
|
|
0
|
if (is_infinite($level)) { |
435
|
0
|
|
|
|
|
0
|
return $level; |
436
|
|
|
|
|
|
|
} |
437
|
|
|
|
|
|
|
### $level |
438
|
|
|
|
|
|
|
### $len |
439
|
|
|
|
|
|
|
|
440
|
0
|
|
|
|
|
0
|
my $zero = $x * 0 * $y; |
441
|
0
|
|
|
|
|
0
|
my $n = $zero; |
442
|
|
|
|
|
|
|
|
443
|
0
|
0
|
|
|
|
0
|
if ($parts == 2) { |
|
|
0
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
444
|
0
|
0
|
|
|
|
0
|
if ($x == 0) { |
445
|
0
|
0
|
|
|
|
0
|
if ($y == 1) { return 0; } |
|
0
|
|
|
|
|
0
|
|
446
|
|
|
|
|
|
|
} |
447
|
0
|
|
|
|
|
0
|
$n += (2*$len*$len+1)/3; # +1,+3,+11,+43 |
448
|
0
|
0
|
|
|
|
0
|
if ($x < 0) { |
449
|
0
|
|
|
|
|
0
|
$x = -$x; |
450
|
0
|
|
|
|
|
0
|
$n += 2*$len*$len; # second quad, +2,+8,+32 |
451
|
|
|
|
|
|
|
} |
452
|
|
|
|
|
|
|
|
453
|
|
|
|
|
|
|
} elsif ($parts == 3) { |
454
|
|
|
|
|
|
|
### 3/4 ... |
455
|
0
|
0
|
|
|
|
0
|
if ($x == 0) { |
456
|
0
|
0
|
|
|
|
0
|
if ($y == 0) { return 0; } |
|
0
|
|
|
|
|
0
|
|
457
|
0
|
0
|
|
|
|
0
|
if ($y == 1) { return 1; } |
|
0
|
|
|
|
|
0
|
|
458
|
|
|
|
|
|
|
} |
459
|
0
|
|
|
|
|
0
|
$n += (10*$len*$len+2)/3; # +4,+14,+54,+214,+854,+3414 |
460
|
0
|
0
|
|
|
|
0
|
if ($rotated) { |
|
|
0
|
|
|
|
|
|
461
|
0
|
|
|
|
|
0
|
$n -= 2*$len*$len; # fourth quad, -2, -8, -32 |
462
|
|
|
|
|
|
|
} elsif ($x < 0) { |
463
|
0
|
|
|
|
|
0
|
$x = -$x; |
464
|
0
|
0
|
|
|
|
0
|
if ($y > 0) { |
465
|
0
|
|
|
|
|
0
|
$n += 2*$len*$len; # second quad, +2, +8, +32 |
466
|
|
|
|
|
|
|
} else { |
467
|
0
|
|
|
|
|
0
|
return undef; # third quad, empty |
468
|
|
|
|
|
|
|
} |
469
|
|
|
|
|
|
|
} |
470
|
|
|
|
|
|
|
} elsif ($parts == 4) { |
471
|
0
|
0
|
|
|
|
0
|
if ($x == 0) { |
472
|
0
|
0
|
|
|
|
0
|
if ($y == 0) { return 0; } |
|
0
|
|
|
|
|
0
|
|
473
|
0
|
0
|
|
|
|
0
|
if ($y == 1) { return 1; } |
|
0
|
|
|
|
|
0
|
|
474
|
0
|
0
|
|
|
|
0
|
if ($y == -1) { return 2; } |
|
0
|
|
|
|
|
0
|
|
475
|
|
|
|
|
|
|
} |
476
|
0
|
|
|
|
|
0
|
$n += (2*$len*$len+1); |
477
|
0
|
0
|
|
|
|
0
|
if ($x < 0) { |
478
|
0
|
|
|
|
|
0
|
$x = -$x; |
479
|
0
|
0
|
|
|
|
0
|
if ($y > 0) { |
480
|
0
|
|
|
|
|
0
|
$n += 2*$len*$len; # second quad, +2, +8, +32 |
481
|
|
|
|
|
|
|
} else { |
482
|
0
|
|
|
|
|
0
|
$n += 4*$len*$len; # third quad, +4,+16 |
483
|
0
|
|
|
|
|
0
|
$y = -$y; |
484
|
|
|
|
|
|
|
} |
485
|
|
|
|
|
|
|
} else { |
486
|
0
|
0
|
|
|
|
0
|
if ($y < 0) { |
487
|
0
|
|
|
|
|
0
|
$n += 6*$len*$len; # fourth quad |
488
|
0
|
|
|
|
|
0
|
$y = -$y; |
489
|
|
|
|
|
|
|
} |
490
|
|
|
|
|
|
|
} |
491
|
|
|
|
|
|
|
} |
492
|
|
|
|
|
|
|
|
493
|
|
|
|
|
|
|
# 2^(level+1)-1 |
494
|
|
|
|
|
|
|
# v |
495
|
|
|
|
|
|
|
# +-----------+---------+ |
496
|
|
|
|
|
|
|
# | | | <- 2^(level+1) |
497
|
|
|
|
|
|
|
# | 3 2 | |
498
|
|
|
|
|
|
|
# | mirror same | |
499
|
|
|
|
|
|
|
# | --B-- | <- 2^level + 1 |
500
|
|
|
|
|
|
|
# | | | |
501
|
|
|
|
|
|
|
# +-- A --+ <- 2^level |
502
|
|
|
|
|
|
|
# | | |
503
|
|
|
|
|
|
|
# 1 | |
504
|
|
|
|
|
|
|
# rot | |
505
|
|
|
|
|
|
|
# 0 +90 | |
506
|
|
|
|
|
|
|
# | | |
507
|
|
|
|
|
|
|
# +-----------+ |
508
|
|
|
|
|
|
|
# ^ |
509
|
|
|
|
|
|
|
# 2^level |
510
|
|
|
|
|
|
|
|
511
|
0
|
|
|
|
|
0
|
my $part_n = (2*$len*$len - 2) / 3; |
512
|
|
|
|
|
|
|
### $part_n |
513
|
|
|
|
|
|
|
|
514
|
0
|
|
|
|
|
0
|
while ($level-- > 0) { |
515
|
|
|
|
|
|
|
### at: "x=$x,y=$y len=$len part_n=$part_n n=$n" |
516
|
|
|
|
|
|
|
### assert: $len == 2 ** ($level+1) |
517
|
|
|
|
|
|
|
### assert: $part_n == (2 * 4 ** ($level+1) - 2)/3 |
518
|
|
|
|
|
|
|
|
519
|
0
|
0
|
|
|
|
0
|
if ($x == $len) { |
520
|
0
|
0
|
|
|
|
0
|
if ($y == $len) { |
521
|
|
|
|
|
|
|
### toothpick A ... |
522
|
0
|
|
|
|
|
0
|
return $n + $part_n; |
523
|
|
|
|
|
|
|
} |
524
|
0
|
0
|
|
|
|
0
|
if ($y == $len+1) { |
525
|
|
|
|
|
|
|
### toothpick B ... |
526
|
0
|
|
|
|
|
0
|
return $n + $part_n + 1; |
527
|
|
|
|
|
|
|
} |
528
|
|
|
|
|
|
|
} |
529
|
|
|
|
|
|
|
|
530
|
0
|
0
|
|
|
|
0
|
if ($y <= $len) { |
531
|
0
|
0
|
|
|
|
0
|
if ($x < $len) { |
532
|
|
|
|
|
|
|
### part 0 ... |
533
|
|
|
|
|
|
|
} else { |
534
|
|
|
|
|
|
|
### part 1, rotate ... |
535
|
0
|
|
|
|
|
0
|
$n += $part_n + 2; |
536
|
0
|
|
|
|
|
0
|
($x,$y) = ($len-$y,$x-$len+1); # shift, rotate +90 |
537
|
|
|
|
|
|
|
} |
538
|
|
|
|
|
|
|
} else { |
539
|
0
|
|
|
|
|
0
|
$y -= $len; |
540
|
0
|
0
|
|
|
|
0
|
if ($x > $len) { |
541
|
|
|
|
|
|
|
### part 2 ... |
542
|
0
|
|
|
|
|
0
|
$n += 2*$part_n + 2; |
543
|
0
|
|
|
|
|
0
|
$x -= $len; |
544
|
|
|
|
|
|
|
} else { |
545
|
|
|
|
|
|
|
### part 3 ... |
546
|
0
|
|
|
|
|
0
|
$n += 3*$part_n + 2; |
547
|
0
|
|
|
|
|
0
|
$x = $len-$x; # mirror |
548
|
|
|
|
|
|
|
} |
549
|
|
|
|
|
|
|
} |
550
|
|
|
|
|
|
|
|
551
|
0
|
|
|
|
|
0
|
$len /= 2; |
552
|
0
|
|
|
|
|
0
|
$part_n = ($part_n-2)/4; |
553
|
|
|
|
|
|
|
} |
554
|
|
|
|
|
|
|
|
555
|
|
|
|
|
|
|
### end loop: "x=$x y=$y n=$n" |
556
|
|
|
|
|
|
|
|
557
|
0
|
0
|
|
|
|
0
|
if ($x == 1) { |
558
|
0
|
0
|
|
|
|
0
|
if ($y == 1) { |
|
|
0
|
|
|
|
|
|
559
|
0
|
|
|
|
|
0
|
return $n; |
560
|
|
|
|
|
|
|
} elsif ($y == 2) { |
561
|
0
|
|
|
|
|
0
|
return $n + 1; |
562
|
|
|
|
|
|
|
} |
563
|
|
|
|
|
|
|
} |
564
|
|
|
|
|
|
|
|
565
|
0
|
|
|
|
|
0
|
return undef; |
566
|
|
|
|
|
|
|
} |
567
|
|
|
|
|
|
|
|
568
|
|
|
|
|
|
|
#------------------------------------------------------------------------------ |
569
|
|
|
|
|
|
|
# levels |
570
|
|
|
|
|
|
|
|
571
|
|
|
|
|
|
|
# parts=1 |
572
|
|
|
|
|
|
|
# LevelPoints[k] = 4*LevelPoints[k] + 2 starting LevelPoints[0] = 2 |
573
|
|
|
|
|
|
|
# LevelPoints[k] = 2 + 2*4 + 2*4^2 + ... + 2*4^(k-1) + 4^k*LevelPoints[0] |
574
|
|
|
|
|
|
|
# LevelPoints[k] = 2 + 2*4 + 2*4^2 + ... + 2*4^(k-1) + 2*4^k |
575
|
|
|
|
|
|
|
# LevelPoints[k] = 2*(4^(k+1) - 1)/3 |
576
|
|
|
|
|
|
|
|
577
|
|
|
|
|
|
|
{ |
578
|
|
|
|
|
|
|
my %level_to_n_range = (4 => -2, |
579
|
|
|
|
|
|
|
3 => -3, |
580
|
|
|
|
|
|
|
2 => -4, |
581
|
|
|
|
|
|
|
1 => -5, |
582
|
|
|
|
|
|
|
); |
583
|
|
|
|
|
|
|
sub level_to_n_range { |
584
|
9
|
|
|
9
|
1
|
402
|
my ($self, $level) = @_; |
585
|
|
|
|
|
|
|
return (0, |
586
|
|
|
|
|
|
|
(4**($level+1) * (2*$self->{'parts'}) |
587
|
9
|
|
|
|
|
37
|
+ $level_to_n_range{$self->{'parts'}}) / 3); |
588
|
|
|
|
|
|
|
} |
589
|
|
|
|
|
|
|
} |
590
|
|
|
|
|
|
|
{ |
591
|
|
|
|
|
|
|
# $level_to_n_range{} and _divrem_mutate() rounded up |
592
|
|
|
|
|
|
|
my %n_to_level = (4 => 2 + 2*4-1, |
593
|
|
|
|
|
|
|
3 => 3 + 2*3-1, |
594
|
|
|
|
|
|
|
2 => 4 + 2*2-1, |
595
|
|
|
|
|
|
|
1 => 5 + 2-1, |
596
|
|
|
|
|
|
|
); |
597
|
|
|
|
|
|
|
sub n_to_level { |
598
|
0
|
|
|
0
|
1
|
|
my ($self, $n) = @_; |
599
|
0
|
0
|
|
|
|
|
if ($n < 0) { return undef; } |
|
0
|
|
|
|
|
|
|
600
|
0
|
0
|
|
|
|
|
if (is_infinite($n)) { return $n; } |
|
0
|
|
|
|
|
|
|
601
|
0
|
|
|
|
|
|
$n = round_nearest($n); |
602
|
0
|
|
|
|
|
|
$n *= 3; |
603
|
0
|
|
|
|
|
|
$n += $n_to_level{$self->{'parts'}}; |
604
|
0
|
|
|
|
|
|
_divrem_mutate ($n, 2*$self->{'parts'}); |
605
|
0
|
|
|
|
|
|
my ($pow, $exp) = round_down_pow ($n-1, 4); |
606
|
0
|
|
|
|
|
|
return $exp; |
607
|
|
|
|
|
|
|
} |
608
|
|
|
|
|
|
|
} |
609
|
|
|
|
|
|
|
|
610
|
|
|
|
|
|
|
# return $remainder, modify $n |
611
|
|
|
|
|
|
|
# the scalar $_[0] is modified, but if it's a BigInt then a new BigInt is made |
612
|
|
|
|
|
|
|
# and stored there, the bigint value is not changed |
613
|
|
|
|
|
|
|
sub _divrem_mutate { |
614
|
0
|
|
|
0
|
|
|
my $d = $_[1]; |
615
|
0
|
|
|
|
|
|
my $rem; |
616
|
0
|
0
|
0
|
|
|
|
if (ref $_[0] && $_[0]->isa('Math::BigInt')) { |
617
|
0
|
|
|
|
|
|
($_[0], $rem) = $_[0]->copy->bdiv($d); # quot,rem in array context |
618
|
0
|
0
|
0
|
|
|
|
if (! ref $d || $d < 1_000_000) { |
619
|
0
|
|
|
|
|
|
return $rem->numify; # plain remainder if fits |
620
|
|
|
|
|
|
|
} |
621
|
|
|
|
|
|
|
} else { |
622
|
0
|
|
|
|
|
|
$rem = $_[0] % $d; |
623
|
0
|
|
|
|
|
|
$_[0] = int(($_[0]-$rem)/$d); # exact division stays in UV |
624
|
|
|
|
|
|
|
} |
625
|
0
|
|
|
|
|
|
return $rem; |
626
|
|
|
|
|
|
|
} |
627
|
|
|
|
|
|
|
|
628
|
|
|
|
|
|
|
#------------------------------------------------------------------------------ |
629
|
|
|
|
|
|
|
1; |
630
|
|
|
|
|
|
|
__END__ |