| line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
|
1
|
|
|
|
|
|
|
# Copyright 2012, 2013, 2014 Kevin Ryde |
|
2
|
|
|
|
|
|
|
|
|
3
|
|
|
|
|
|
|
# This file is part of Math-PlanePath-Toothpick. |
|
4
|
|
|
|
|
|
|
# |
|
5
|
|
|
|
|
|
|
# Math-PlanePath-Toothpick is free software; you can redistribute it and/or |
|
6
|
|
|
|
|
|
|
# modify it under the terms of the GNU General Public License as published |
|
7
|
|
|
|
|
|
|
# by the Free Software Foundation; either version 3, or (at your option) any |
|
8
|
|
|
|
|
|
|
# later version. |
|
9
|
|
|
|
|
|
|
# |
|
10
|
|
|
|
|
|
|
# Math-PlanePath-Toothpick is distributed in the hope that it will be |
|
11
|
|
|
|
|
|
|
# useful, but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
12
|
|
|
|
|
|
|
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General |
|
13
|
|
|
|
|
|
|
# Public License for more details. |
|
14
|
|
|
|
|
|
|
# |
|
15
|
|
|
|
|
|
|
# You should have received a copy of the GNU General Public License along |
|
16
|
|
|
|
|
|
|
# with Math-PlanePath-Toothpick. If not, see . |
|
17
|
|
|
|
|
|
|
|
|
18
|
|
|
|
|
|
|
|
|
19
|
|
|
|
|
|
|
# '1side' without log2 on lower side, is lower quad of 3mid |
|
20
|
|
|
|
|
|
|
# '1side_up' mirror image, is upper quad of 3mid |
|
21
|
|
|
|
|
|
|
# '1side with log2 from X=3*2^k,Y=2^k down, and middle of 3side |
|
22
|
|
|
|
|
|
|
|
|
23
|
|
|
|
|
|
|
|
|
24
|
|
|
|
|
|
|
package Math::PlanePath::OneOfEight; |
|
25
|
1
|
|
|
1
|
|
2870
|
use 5.004; |
|
|
1
|
|
|
|
|
4
|
|
|
|
1
|
|
|
|
|
57
|
|
|
26
|
1
|
|
|
1
|
|
6
|
use strict; |
|
|
1
|
|
|
|
|
1
|
|
|
|
1
|
|
|
|
|
50
|
|
|
27
|
1
|
|
|
1
|
|
5
|
use Carp 'croak'; |
|
|
1
|
|
|
|
|
2
|
|
|
|
1
|
|
|
|
|
102
|
|
|
28
|
|
|
|
|
|
|
#use List::Util 'max'; |
|
29
|
|
|
|
|
|
|
*max = \&Math::PlanePath::_max; |
|
30
|
|
|
|
|
|
|
|
|
31
|
1
|
|
|
1
|
|
5
|
use vars '$VERSION', '@ISA'; |
|
|
1
|
|
|
|
|
2
|
|
|
|
1
|
|
|
|
|
83
|
|
|
32
|
|
|
|
|
|
|
$VERSION = 16; |
|
33
|
1
|
|
|
1
|
|
933
|
use Math::PlanePath; |
|
|
1
|
|
|
|
|
7521
|
|
|
|
1
|
|
|
|
|
64
|
|
|
34
|
|
|
|
|
|
|
@ISA = ('Math::PlanePath'); |
|
35
|
|
|
|
|
|
|
|
|
36
|
|
|
|
|
|
|
use Math::PlanePath::Base::Generic |
|
37
|
1
|
|
|
|
|
57
|
'is_infinite', |
|
38
|
1
|
|
|
1
|
|
9
|
'round_nearest'; |
|
|
1
|
|
|
|
|
2
|
|
|
39
|
|
|
|
|
|
|
use Math::PlanePath::Base::Digits |
|
40
|
1
|
|
|
1
|
|
665
|
'round_down_pow'; |
|
|
1
|
|
|
|
|
1765
|
|
|
|
1
|
|
|
|
|
81
|
|
|
41
|
|
|
|
|
|
|
|
|
42
|
|
|
|
|
|
|
# uncomment this to run the ### lines |
|
43
|
|
|
|
|
|
|
# use Smart::Comments; |
|
44
|
|
|
|
|
|
|
|
|
45
|
|
|
|
|
|
|
|
|
46
|
1
|
|
|
1
|
|
8
|
use constant n_start => 0; |
|
|
1
|
|
|
|
|
2
|
|
|
|
1
|
|
|
|
|
760
|
|
|
47
|
1
|
|
|
|
|
66
|
use constant parameter_info_array => |
|
48
|
|
|
|
|
|
|
[{ name => 'parts', |
|
49
|
|
|
|
|
|
|
share_key => 'parts_oneofeight', |
|
50
|
|
|
|
|
|
|
display => 'Parts', |
|
51
|
|
|
|
|
|
|
type => 'enum', |
|
52
|
|
|
|
|
|
|
default => '4', |
|
53
|
|
|
|
|
|
|
choices => ['4','1','octant','octant_up','wedge','3mid', '3side', |
|
54
|
|
|
|
|
|
|
# 'side' |
|
55
|
|
|
|
|
|
|
], |
|
56
|
|
|
|
|
|
|
choices_display => ['4','1','Octant','Octant Up','Wedge','3 Mid','3 Side', |
|
57
|
|
|
|
|
|
|
# 'Side' |
|
58
|
|
|
|
|
|
|
], |
|
59
|
|
|
|
|
|
|
description => 'Which parts of the plane to fill.', |
|
60
|
|
|
|
|
|
|
}, |
|
61
|
1
|
|
|
1
|
|
7
|
]; |
|
|
1
|
|
|
|
|
2
|
|
|
62
|
1
|
|
|
1
|
|
5
|
use constant class_x_negative => 1; |
|
|
1
|
|
|
|
|
2
|
|
|
|
1
|
|
|
|
|
48
|
|
|
63
|
1
|
|
|
1
|
|
5
|
use constant class_y_negative => 1; |
|
|
1
|
|
|
|
|
1
|
|
|
|
1
|
|
|
|
|
6351
|
|
|
64
|
|
|
|
|
|
|
|
|
65
|
|
|
|
|
|
|
{ |
|
66
|
|
|
|
|
|
|
my %x_negative = (4 => 1, |
|
67
|
|
|
|
|
|
|
1 => 0, |
|
68
|
|
|
|
|
|
|
octant => 0, |
|
69
|
|
|
|
|
|
|
octant_up => 0, |
|
70
|
|
|
|
|
|
|
wedge => 1, |
|
71
|
|
|
|
|
|
|
'3mid' => 1, |
|
72
|
|
|
|
|
|
|
'3side' => 1, |
|
73
|
|
|
|
|
|
|
side => 0, |
|
74
|
|
|
|
|
|
|
); |
|
75
|
|
|
|
|
|
|
sub x_negative { |
|
76
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
|
77
|
0
|
|
|
|
|
0
|
return $x_negative{$self->{'parts'}}; |
|
78
|
|
|
|
|
|
|
} |
|
79
|
|
|
|
|
|
|
} |
|
80
|
|
|
|
|
|
|
{ |
|
81
|
|
|
|
|
|
|
my %y_negative = (4 => 1, |
|
82
|
|
|
|
|
|
|
1 => 0, |
|
83
|
|
|
|
|
|
|
octant => 0, |
|
84
|
|
|
|
|
|
|
octant_up => 0, |
|
85
|
|
|
|
|
|
|
wedge => 0, |
|
86
|
|
|
|
|
|
|
'3mid' => 1, |
|
87
|
|
|
|
|
|
|
'3side' => 1, |
|
88
|
|
|
|
|
|
|
side => 0, |
|
89
|
|
|
|
|
|
|
); |
|
90
|
|
|
|
|
|
|
sub y_negative { |
|
91
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
|
92
|
0
|
|
|
|
|
0
|
return $y_negative{$self->{'parts'}}; |
|
93
|
|
|
|
|
|
|
} |
|
94
|
|
|
|
|
|
|
} |
|
95
|
|
|
|
|
|
|
{ |
|
96
|
|
|
|
|
|
|
my %y_minimum = (# 4 => undef, |
|
97
|
|
|
|
|
|
|
1 => 0, |
|
98
|
|
|
|
|
|
|
octant => 0, |
|
99
|
|
|
|
|
|
|
octant_up => 0, |
|
100
|
|
|
|
|
|
|
wedge => 0, |
|
101
|
|
|
|
|
|
|
# '3mid' => undef, |
|
102
|
|
|
|
|
|
|
# '3side' => undef, |
|
103
|
|
|
|
|
|
|
side => 1, |
|
104
|
|
|
|
|
|
|
); |
|
105
|
|
|
|
|
|
|
sub y_minimum { |
|
106
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
|
107
|
0
|
|
|
|
|
0
|
return $y_minimum{$self->{'parts'}}; |
|
108
|
|
|
|
|
|
|
} |
|
109
|
|
|
|
|
|
|
} |
|
110
|
|
|
|
|
|
|
|
|
111
|
|
|
|
|
|
|
{ |
|
112
|
|
|
|
|
|
|
my %x_negative_at_n = (4 => 4, |
|
113
|
|
|
|
|
|
|
1 => undef, |
|
114
|
|
|
|
|
|
|
octant => undef, |
|
115
|
|
|
|
|
|
|
octant_up => undef, |
|
116
|
|
|
|
|
|
|
wedge => 3, |
|
117
|
|
|
|
|
|
|
'3mid' => 5, |
|
118
|
|
|
|
|
|
|
'3side' => 15, |
|
119
|
|
|
|
|
|
|
side => undef, |
|
120
|
|
|
|
|
|
|
); |
|
121
|
|
|
|
|
|
|
sub x_negative_at_n { |
|
122
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
|
123
|
0
|
|
|
|
|
0
|
return $x_negative_at_n{$self->{'parts'}}; |
|
124
|
|
|
|
|
|
|
} |
|
125
|
|
|
|
|
|
|
} |
|
126
|
|
|
|
|
|
|
{ |
|
127
|
|
|
|
|
|
|
my %y_negative_at_n = (4 => 6, |
|
128
|
|
|
|
|
|
|
1 => undef, |
|
129
|
|
|
|
|
|
|
octant => undef, |
|
130
|
|
|
|
|
|
|
octant_up => undef, |
|
131
|
|
|
|
|
|
|
wedge => undef, |
|
132
|
|
|
|
|
|
|
'3mid' => 1, |
|
133
|
|
|
|
|
|
|
'3side' => 1, |
|
134
|
|
|
|
|
|
|
side => undef, |
|
135
|
|
|
|
|
|
|
); |
|
136
|
|
|
|
|
|
|
sub y_negative_at_n { |
|
137
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
|
138
|
0
|
|
|
|
|
0
|
return $y_negative_at_n{$self->{'parts'}}; |
|
139
|
|
|
|
|
|
|
} |
|
140
|
|
|
|
|
|
|
} |
|
141
|
|
|
|
|
|
|
|
|
142
|
|
|
|
|
|
|
{ |
|
143
|
|
|
|
|
|
|
my %sumxy_minimum = (1 => 0, |
|
144
|
|
|
|
|
|
|
octant => 0, |
|
145
|
|
|
|
|
|
|
octant_up => 0, |
|
146
|
|
|
|
|
|
|
wedge => 0, # X>=-Y so X+Y>=0 |
|
147
|
|
|
|
|
|
|
); |
|
148
|
|
|
|
|
|
|
sub sumxy_minimum { |
|
149
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
|
150
|
0
|
|
|
|
|
0
|
return $sumxy_minimum{$self->{'parts'}}; |
|
151
|
|
|
|
|
|
|
} |
|
152
|
|
|
|
|
|
|
} |
|
153
|
|
|
|
|
|
|
{ |
|
154
|
|
|
|
|
|
|
my %diffxy_minimum = (octant => 0, # Y<=X so X-Y>=0 |
|
155
|
|
|
|
|
|
|
); |
|
156
|
|
|
|
|
|
|
sub diffxy_minimum { |
|
157
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
|
158
|
0
|
|
|
|
|
0
|
return $diffxy_minimum{$self->{'parts'}}; |
|
159
|
|
|
|
|
|
|
} |
|
160
|
|
|
|
|
|
|
} |
|
161
|
|
|
|
|
|
|
{ |
|
162
|
|
|
|
|
|
|
my %diffxy_maximum = (octant_up => 0, # X<=Y so X+Y<=0 |
|
163
|
|
|
|
|
|
|
wedge => 0, # X<=Y so X+Y<=0 |
|
164
|
|
|
|
|
|
|
); |
|
165
|
|
|
|
|
|
|
sub diffxy_maximum { |
|
166
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
|
167
|
0
|
|
|
|
|
0
|
return $diffxy_maximum{$self->{'parts'}}; |
|
168
|
|
|
|
|
|
|
} |
|
169
|
|
|
|
|
|
|
} |
|
170
|
|
|
|
|
|
|
|
|
171
|
|
|
|
|
|
|
{ |
|
172
|
|
|
|
|
|
|
my %tree_num_children_list = (4 => [ 0, 1, 2, 3, 5, 8 ], |
|
173
|
|
|
|
|
|
|
1 => [ 0, 1, 2, 3, 5 ], |
|
174
|
|
|
|
|
|
|
octant => [ 0, 1, 2, 3 ], |
|
175
|
|
|
|
|
|
|
octant_up => [ 0, 1, 2, 3 ], |
|
176
|
|
|
|
|
|
|
wedge => [ 0, 1, 2, 3 ], |
|
177
|
|
|
|
|
|
|
'3mid' => [ 0, 1, 2, 3, 5 ], |
|
178
|
|
|
|
|
|
|
'3side' => [ 0, 2, 3 ], |
|
179
|
|
|
|
|
|
|
side => [ 0, 2, 3 ], |
|
180
|
|
|
|
|
|
|
); |
|
181
|
|
|
|
|
|
|
sub tree_num_children_list { |
|
182
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
|
183
|
0
|
|
|
|
|
0
|
return @{$tree_num_children_list{$self->{'parts'}}}; |
|
|
0
|
|
|
|
|
0
|
|
|
184
|
|
|
|
|
|
|
} |
|
185
|
|
|
|
|
|
|
} |
|
186
|
|
|
|
|
|
|
|
|
187
|
|
|
|
|
|
|
# parts=1,3mid dx=2*2^k-3 dy=-2^k, it seems |
|
188
|
|
|
|
|
|
|
# parts=3side dx=2*2^k-5 dy=-2^k-2, it seems |
|
189
|
|
|
|
|
|
|
my %dir_maximum_dxdy |
|
190
|
|
|
|
|
|
|
= (4 => [0,-1], # South |
|
191
|
|
|
|
|
|
|
1 => [2,-1], # ESE, supremum |
|
192
|
|
|
|
|
|
|
octant => [1,-1], # South-East |
|
193
|
|
|
|
|
|
|
octant_up => [0,-1], # N=12 South |
|
194
|
|
|
|
|
|
|
wedge => [0,-1], # South |
|
195
|
|
|
|
|
|
|
'3mid' => [2,-1], # ESE, supremum |
|
196
|
|
|
|
|
|
|
'3side' => [2,-1], # ESE, supremum |
|
197
|
|
|
|
|
|
|
); |
|
198
|
|
|
|
|
|
|
sub dir_maximum_dxdy { |
|
199
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
|
200
|
0
|
|
|
|
|
0
|
return @{$dir_maximum_dxdy{$self->{'parts'}}}; |
|
|
0
|
|
|
|
|
0
|
|
|
201
|
|
|
|
|
|
|
} |
|
202
|
|
|
|
|
|
|
|
|
203
|
|
|
|
|
|
|
#------------------------------------------------------------------------------ |
|
204
|
|
|
|
|
|
|
|
|
205
|
|
|
|
|
|
|
sub new { |
|
206
|
11
|
|
|
11
|
1
|
1042
|
my $self = shift->SUPER::new(@_); |
|
207
|
11
|
|
100
|
|
|
99
|
my $parts = ($self->{'parts'} ||= '4'); |
|
208
|
11
|
50
|
|
|
|
29
|
if (! exists $dir_maximum_dxdy{$parts}) { |
|
209
|
0
|
|
|
|
|
0
|
croak "Unrecognised parts: ",$parts; |
|
210
|
|
|
|
|
|
|
} |
|
211
|
11
|
|
|
|
|
18
|
return $self; |
|
212
|
|
|
|
|
|
|
} |
|
213
|
|
|
|
|
|
|
|
|
214
|
|
|
|
|
|
|
|
|
215
|
|
|
|
|
|
|
#------------------------------------------------------------------------------ |
|
216
|
|
|
|
|
|
|
# n_to_xy() |
|
217
|
|
|
|
|
|
|
|
|
218
|
|
|
|
|
|
|
my %initial_n_to_xy |
|
219
|
|
|
|
|
|
|
= (4 => [ [0,0], [1,0], [1,1], [0,1], |
|
220
|
|
|
|
|
|
|
[-1,1], [-1,0], [-1,-1], [0,-1], [1,-1] ], |
|
221
|
|
|
|
|
|
|
1 => [ [0,0], [1,0], [1,1], [0,1] ], |
|
222
|
|
|
|
|
|
|
octant => [ [0,0], [1,0], [1,1] ], |
|
223
|
|
|
|
|
|
|
octant_up => [ [0,0], [1,1], [0,1] ], |
|
224
|
|
|
|
|
|
|
wedge => [ [0,0], [1,1], [0,1], [-1,1] ], |
|
225
|
|
|
|
|
|
|
'3mid' => [ [0,0], [1,-1], [1,0], [1,1], |
|
226
|
|
|
|
|
|
|
[0,1], [-1,1] ], |
|
227
|
|
|
|
|
|
|
|
|
228
|
|
|
|
|
|
|
# for 3side table up to N=8 because cell X=1,Y=2 at N=7 |
|
229
|
|
|
|
|
|
|
# is overlapped by two upper octants |
|
230
|
|
|
|
|
|
|
'3side' => [ [0,0], [1,-1], [1,0], [1,1], |
|
231
|
|
|
|
|
|
|
[1,-2], [2,-2], [2,2], [1,2], [0,2] ], |
|
232
|
|
|
|
|
|
|
|
|
233
|
|
|
|
|
|
|
side => [ [0,0], [1,0], [1,1], [2,2], [1,2] ], |
|
234
|
|
|
|
|
|
|
); |
|
235
|
|
|
|
|
|
|
|
|
236
|
|
|
|
|
|
|
# depth=0 1 2 3 |
|
237
|
|
|
|
|
|
|
my @octant_small_n_to_v = ([0], [0,1], [2], [1,2,3]); |
|
238
|
|
|
|
|
|
|
my @octant_mid_n_to_v = ([0], [-1,0,1]); |
|
239
|
|
|
|
|
|
|
|
|
240
|
|
|
|
|
|
|
sub n_to_xy { |
|
241
|
92
|
|
|
92
|
1
|
2505
|
my ($self, $n) = @_; |
|
242
|
|
|
|
|
|
|
### OneOfEight n_to_xy(): $n |
|
243
|
|
|
|
|
|
|
|
|
244
|
92
|
50
|
|
|
|
157
|
if ($n < 0) { return; } |
|
|
0
|
|
|
|
|
0
|
|
|
245
|
92
|
50
|
|
|
|
130
|
if (is_infinite($n)) { return ($n,$n); } |
|
|
0
|
|
|
|
|
0
|
|
|
246
|
|
|
|
|
|
|
|
|
247
|
|
|
|
|
|
|
{ |
|
248
|
92
|
|
|
|
|
345
|
my $int = int($n); |
|
|
92
|
|
|
|
|
94
|
|
|
249
|
|
|
|
|
|
|
### $int |
|
250
|
|
|
|
|
|
|
### $n |
|
251
|
92
|
50
|
|
|
|
115
|
if ($n != $int) { |
|
252
|
0
|
|
|
|
|
0
|
my ($x1,$y1) = $self->n_to_xy($int); |
|
253
|
0
|
|
|
|
|
0
|
my ($x2,$y2) = $self->n_to_xy($int+1); |
|
254
|
0
|
|
|
|
|
0
|
my $frac = $n - $int; # inherit possible BigFloat |
|
255
|
0
|
|
|
|
|
0
|
my $dx = $x2-$x1; |
|
256
|
0
|
|
|
|
|
0
|
my $dy = $y2-$y1; |
|
257
|
0
|
|
|
|
|
0
|
return ($frac*$dx + $x1, $frac*$dy + $y1); |
|
258
|
|
|
|
|
|
|
} |
|
259
|
92
|
|
|
|
|
75
|
$n = $int; # BigFloat int() gives BigInt, use that |
|
260
|
|
|
|
|
|
|
} |
|
261
|
92
|
|
|
|
|
66
|
my $zero = $n*0; |
|
262
|
|
|
|
|
|
|
|
|
263
|
92
|
|
|
|
|
83
|
my $parts = $self->{'parts'}; |
|
264
|
|
|
|
|
|
|
{ |
|
265
|
92
|
|
|
|
|
57
|
my $initial = $initial_n_to_xy{$parts}; |
|
|
92
|
|
|
|
|
91
|
|
|
266
|
92
|
100
|
|
|
|
147
|
if ($n <= $#$initial) { |
|
267
|
|
|
|
|
|
|
### initial_n_to_xy{}: $initial->[$n] |
|
268
|
22
|
|
|
|
|
14
|
return @{$initial->[$n]}; |
|
|
22
|
|
|
|
|
43
|
|
|
269
|
|
|
|
|
|
|
} |
|
270
|
|
|
|
|
|
|
} |
|
271
|
|
|
|
|
|
|
|
|
272
|
70
|
|
|
|
|
87
|
(my $depth, $n) = _n0_to_depth_and_rem($self, $n); |
|
273
|
|
|
|
|
|
|
### $depth |
|
274
|
|
|
|
|
|
|
### remainder n: $n |
|
275
|
|
|
|
|
|
|
### cf this depth n: $self->tree_depth_to_n($depth) |
|
276
|
|
|
|
|
|
|
### cf next depth n: $self->tree_depth_to_n($depth+1) |
|
277
|
|
|
|
|
|
|
|
|
278
|
|
|
|
|
|
|
# $hdx,$hdy is the dx,dy offsets which is "horizontal". Initially this is |
|
279
|
|
|
|
|
|
|
# hdx=1,hdy=0 so horizontal along the X axis, but subsequent blocks rotate |
|
280
|
|
|
|
|
|
|
# around or mirror to point other directions. |
|
281
|
|
|
|
|
|
|
# |
|
282
|
|
|
|
|
|
|
# $vdx,$vdy is similar dx,dy which is "vertical". Initially vdx=0,vdy=1 |
|
283
|
|
|
|
|
|
|
# so vertical along the Y axis. |
|
284
|
|
|
|
|
|
|
# |
|
285
|
|
|
|
|
|
|
# $mirror is true if in a "mirror image" such as upper octant 0<=X<=Y |
|
286
|
|
|
|
|
|
|
# portion of the pattern. The difference is that $mirror false has points |
|
287
|
|
|
|
|
|
|
# numbered anti-clockwise "upwards" from the ragged edge towards the |
|
288
|
|
|
|
|
|
|
# diagonal, but when $mirror is true instead clockwise "down" from the |
|
289
|
|
|
|
|
|
|
# diagonal towards the ragged edge. |
|
290
|
|
|
|
|
|
|
# |
|
291
|
|
|
|
|
|
|
# When $mirror is true the octant generated is still reckoned as 0<=Y<=X, |
|
292
|
|
|
|
|
|
|
# but the $hdx,$hdy and $vdx,$vdy are suitably mangled so that this |
|
293
|
|
|
|
|
|
|
# logical first octant ends up in whatever target is desired. For example |
|
294
|
|
|
|
|
|
|
# the 0<=X<=Y second octant of the pattern starts with hdx=0,hdy=1 and |
|
295
|
|
|
|
|
|
|
# vdx=1,vdy=0, so the "horizontal" is upwards and the "vertical" is to the |
|
296
|
|
|
|
|
|
|
# right. |
|
297
|
|
|
|
|
|
|
# |
|
298
|
|
|
|
|
|
|
# $log2_extras is true if the extra cell at the log2 positions |
|
299
|
|
|
|
|
|
|
# X=3,7,15,31,etc and Y=1 should be included in the pattern. Initially |
|
300
|
|
|
|
|
|
|
# true, but later in the "lower" block there are no such extra cells. |
|
301
|
|
|
|
|
|
|
# |
|
302
|
|
|
|
|
|
|
# $top_no_extra_pow is a 2^k power if the top of the diagonal at |
|
303
|
|
|
|
|
|
|
# X=pow-1,Y=pow-1 should not be included in the pattern. Or 0 if this |
|
304
|
|
|
|
|
|
|
# diagonal cell should be included. Initially true, but later going |
|
305
|
|
|
|
|
|
|
# "lower" followed by "upper" it's the end of the diagonal is not wanted. |
|
306
|
|
|
|
|
|
|
# The first such is at X=8,Y=2 which should not be in the "upper" |
|
307
|
|
|
|
|
|
|
# (mirrored) diagonal coming from X=11,Y=5. In general if $log2_extras is |
|
308
|
|
|
|
|
|
|
# false then $top_no_extra_pow excludes that log2 cell when going to the |
|
309
|
|
|
|
|
|
|
# "upper" block. |
|
310
|
|
|
|
|
|
|
# |
|
311
|
70
|
|
|
|
|
69
|
my $x = 0; |
|
312
|
70
|
|
|
|
|
46
|
my $y = 0; |
|
313
|
70
|
|
|
|
|
46
|
my $hdx = 1; |
|
314
|
70
|
|
|
|
|
49
|
my $hdy = 0; |
|
315
|
70
|
|
|
|
|
39
|
my $vdx = 0; |
|
316
|
70
|
|
|
|
|
85
|
my $vdy = 1; |
|
317
|
70
|
|
|
|
|
48
|
my $mirror = 0; # plain |
|
318
|
70
|
|
|
|
|
38
|
my $log2_extras = 1; # include cells X=3,7,15,31;Y=1 etc |
|
319
|
70
|
|
|
|
|
55
|
my $top_no_extra_pow = 0; |
|
320
|
|
|
|
|
|
|
|
|
321
|
70
|
50
|
66
|
|
|
332
|
if ($parts eq 'octant') { |
|
|
|
50
|
66
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
322
|
|
|
|
|
|
|
### parts=octant ... |
|
323
|
|
|
|
|
|
|
|
|
324
|
|
|
|
|
|
|
} elsif ($parts eq 'octant_up') { |
|
325
|
|
|
|
|
|
|
### parts=octant_up ... |
|
326
|
0
|
|
|
|
|
0
|
$hdx = 0; |
|
327
|
0
|
|
|
|
|
0
|
$hdy = 1; |
|
328
|
0
|
|
|
|
|
0
|
$vdx = 1; |
|
329
|
0
|
|
|
|
|
0
|
$vdy = 0; |
|
330
|
0
|
|
|
|
|
0
|
$mirror = 1; |
|
331
|
|
|
|
|
|
|
|
|
332
|
|
|
|
|
|
|
} elsif ($parts eq 'wedge') { |
|
333
|
|
|
|
|
|
|
### parts=wedge ... |
|
334
|
0
|
|
|
|
|
0
|
my $add = _depth_to_octant_added([$depth],[1],$zero); |
|
335
|
0
|
0
|
|
|
|
0
|
if ($n < $add) { |
|
336
|
0
|
|
|
|
|
0
|
$hdx = 0; # same as octant_up |
|
337
|
0
|
|
|
|
|
0
|
$hdy = 1; |
|
338
|
0
|
|
|
|
|
0
|
$vdx = 1; |
|
339
|
0
|
|
|
|
|
0
|
$vdy = 0; |
|
340
|
0
|
|
|
|
|
0
|
$mirror = 1; |
|
341
|
|
|
|
|
|
|
} else { |
|
342
|
0
|
|
|
|
|
0
|
$n -= $add; |
|
343
|
0
|
|
|
|
|
0
|
$hdx = 0; # rotate +90 |
|
344
|
0
|
|
|
|
|
0
|
$hdy = 1; |
|
345
|
0
|
|
|
|
|
0
|
$vdx = -1; |
|
346
|
0
|
|
|
|
|
0
|
$vdy = 0; |
|
347
|
|
|
|
|
|
|
} |
|
348
|
|
|
|
|
|
|
|
|
349
|
|
|
|
|
|
|
} elsif ($parts eq '1' || $parts eq '2' || $parts eq '4') { |
|
350
|
70
|
|
|
|
|
140
|
my $add = _depth_to_octant_added([$depth],[1],$zero); |
|
351
|
|
|
|
|
|
|
### octant add: $add |
|
352
|
|
|
|
|
|
|
|
|
353
|
70
|
100
|
|
|
|
126
|
if ($parts eq '4') { |
|
354
|
|
|
|
|
|
|
# Half-plane is 4 octants, less 2 for duplicate diagonal. |
|
355
|
42
|
|
|
|
|
40
|
my $hadd = 4*$add-2; |
|
356
|
42
|
100
|
|
|
|
65
|
if ($n >= $hadd) { |
|
357
|
|
|
|
|
|
|
### initial rotate 180 ... |
|
358
|
18
|
|
|
|
|
14
|
$n -= $hadd; |
|
359
|
18
|
|
|
|
|
14
|
$hdx = -1; |
|
360
|
18
|
|
|
|
|
24
|
$vdy = -1; |
|
361
|
|
|
|
|
|
|
} |
|
362
|
|
|
|
|
|
|
} |
|
363
|
70
|
100
|
66
|
|
|
204
|
if ($parts eq '2' || $parts eq '4') { |
|
364
|
|
|
|
|
|
|
# Each quadrant is 2 octants, less 1 for duplicate diagonal. |
|
365
|
42
|
|
|
|
|
39
|
my $qadd = 2*$add-1; |
|
366
|
42
|
100
|
|
|
|
60
|
if ($n >= $qadd) { |
|
367
|
|
|
|
|
|
|
### initial rotate +90 ... |
|
368
|
19
|
|
|
|
|
15
|
$n -= $qadd; |
|
369
|
19
|
|
|
|
|
20
|
($hdx,$hdy) = (-$hdy,$hdx); |
|
370
|
19
|
|
|
|
|
23
|
($vdx,$vdy) = (-$vdy,$vdx); |
|
371
|
|
|
|
|
|
|
} |
|
372
|
|
|
|
|
|
|
} |
|
373
|
70
|
100
|
|
|
|
101
|
if ($n >= $add) { |
|
374
|
|
|
|
|
|
|
### initial mirror ... |
|
375
|
24
|
|
|
|
|
20
|
$mirror = 1; |
|
376
|
24
|
|
|
|
|
27
|
($hdx,$hdy, $vdx,$vdy) # mirror by transpose |
|
377
|
|
|
|
|
|
|
= ($vdx,$vdy, $hdx,$hdy); |
|
378
|
24
|
|
|
|
|
26
|
$n -= $add; |
|
379
|
24
|
|
|
|
|
20
|
$n += 1; # excluding diagonal |
|
380
|
|
|
|
|
|
|
} |
|
381
|
|
|
|
|
|
|
|
|
382
|
|
|
|
|
|
|
} elsif ($parts eq '3mid') { |
|
383
|
0
|
0
|
|
|
|
0
|
my $add = _depth_to_octant_added([$depth+1],[1],$zero) |
|
384
|
|
|
|
|
|
|
- (_is_pow2($depth+2) ? 2 : 1); |
|
385
|
|
|
|
|
|
|
### lower of side 1, excluding diagonal: "depth=".($depth+1)." add=".$add |
|
386
|
0
|
0
|
|
|
|
0
|
if ($n < $add) { |
|
387
|
|
|
|
|
|
|
### lower of side 1 ... |
|
388
|
0
|
|
|
|
|
0
|
$hdx = 0; $hdy = -1; $vdx = 1; $vdy = 0; |
|
|
0
|
|
|
|
|
0
|
|
|
|
0
|
|
|
|
|
0
|
|
|
|
0
|
|
|
|
|
0
|
|
|
389
|
0
|
|
|
|
|
0
|
$log2_extras = 0; |
|
390
|
0
|
|
|
|
|
0
|
$depth += 1; |
|
391
|
0
|
|
|
|
|
0
|
$x = -1; $y = 1; |
|
|
0
|
|
|
|
|
0
|
|
|
392
|
|
|
|
|
|
|
} else { |
|
393
|
0
|
|
|
|
|
0
|
$n -= $add; |
|
394
|
|
|
|
|
|
|
### past side 1 lower, not past diagonal: "n=$n" |
|
395
|
|
|
|
|
|
|
|
|
396
|
0
|
|
|
|
|
0
|
$add = _depth_to_octant_added([$depth],[1],$zero); |
|
397
|
0
|
0
|
|
|
|
0
|
if ($n < $add) { |
|
398
|
|
|
|
|
|
|
### upper of side 1 ... |
|
399
|
0
|
|
|
|
|
0
|
$vdy = -1; |
|
400
|
0
|
|
|
|
|
0
|
$mirror = 1; |
|
401
|
|
|
|
|
|
|
} else { |
|
402
|
0
|
|
|
|
|
0
|
$n -= $add; |
|
403
|
|
|
|
|
|
|
|
|
404
|
0
|
0
|
|
|
|
0
|
if ($n < $add) { |
|
405
|
|
|
|
|
|
|
### lower of centre ... |
|
406
|
|
|
|
|
|
|
} else { |
|
407
|
0
|
|
|
|
|
0
|
$n -= $add; |
|
408
|
0
|
|
|
|
|
0
|
$n += 1; # past diagonal |
|
409
|
|
|
|
|
|
|
|
|
410
|
0
|
0
|
|
|
|
0
|
if ($n < $add) { |
|
411
|
|
|
|
|
|
|
### upper of centre ... |
|
412
|
0
|
|
|
|
|
0
|
$hdx = 0; |
|
413
|
0
|
|
|
|
|
0
|
$hdy = 1; |
|
414
|
0
|
|
|
|
|
0
|
$vdx = 1; |
|
415
|
0
|
|
|
|
|
0
|
$vdy = 0; |
|
416
|
0
|
|
|
|
|
0
|
$mirror = 1; |
|
417
|
|
|
|
|
|
|
} else { |
|
418
|
0
|
|
|
|
|
0
|
$n -= $add; |
|
419
|
|
|
|
|
|
|
|
|
420
|
0
|
0
|
|
|
|
0
|
if ($n < $add) { |
|
421
|
|
|
|
|
|
|
### upper of side 3 ... |
|
422
|
0
|
|
|
|
|
0
|
$hdx = 0; |
|
423
|
0
|
|
|
|
|
0
|
$hdy = 1; |
|
424
|
0
|
|
|
|
|
0
|
$vdx = -1; |
|
425
|
0
|
|
|
|
|
0
|
$vdy = 0; |
|
426
|
|
|
|
|
|
|
} else { |
|
427
|
0
|
|
|
|
|
0
|
$n -= $add; |
|
428
|
0
|
|
|
|
|
0
|
$n += 1; # past diagonal |
|
429
|
|
|
|
|
|
|
|
|
430
|
|
|
|
|
|
|
### lower of side 3 ... |
|
431
|
0
|
|
|
|
|
0
|
$hdx = -1; |
|
432
|
0
|
|
|
|
|
0
|
$depth += 1; |
|
433
|
0
|
|
|
|
|
0
|
$x = 1; $y = -1; |
|
|
0
|
|
|
|
|
0
|
|
|
434
|
0
|
|
|
|
|
0
|
$log2_extras = 0; |
|
435
|
0
|
|
|
|
|
0
|
$mirror =1; |
|
436
|
|
|
|
|
|
|
} |
|
437
|
|
|
|
|
|
|
} |
|
438
|
|
|
|
|
|
|
} |
|
439
|
|
|
|
|
|
|
} |
|
440
|
|
|
|
|
|
|
} |
|
441
|
|
|
|
|
|
|
|
|
442
|
|
|
|
|
|
|
} elsif ($parts eq '3side') { |
|
443
|
0
|
0
|
|
|
|
0
|
my $add = (_depth_to_octant_added([$depth+1],[1],$zero) |
|
444
|
|
|
|
|
|
|
- (_is_pow2($depth+2) ? 2 : 1)); |
|
445
|
|
|
|
|
|
|
### lower of side 1, excluding diagonal: "depth=".($depth+1)." add=".$add |
|
446
|
0
|
0
|
|
|
|
0
|
if ($n < $add) { |
|
447
|
|
|
|
|
|
|
### lower of side 1 ... |
|
448
|
0
|
|
|
|
|
0
|
$hdx = 0; |
|
449
|
0
|
|
|
|
|
0
|
$hdy = -1; |
|
450
|
0
|
|
|
|
|
0
|
$vdx = 1; |
|
451
|
0
|
|
|
|
|
0
|
$vdy = 0; |
|
452
|
0
|
|
|
|
|
0
|
$log2_extras = 0; |
|
453
|
0
|
|
|
|
|
0
|
$depth += 1; |
|
454
|
0
|
|
|
|
|
0
|
$x = -1; $y = 1; |
|
|
0
|
|
|
|
|
0
|
|
|
455
|
|
|
|
|
|
|
} else { |
|
456
|
0
|
|
|
|
|
0
|
$n -= $add; |
|
457
|
|
|
|
|
|
|
|
|
458
|
0
|
|
|
|
|
0
|
$add = _depth_to_octant_added([$depth],[1],$zero); |
|
459
|
|
|
|
|
|
|
### plain add, including diagonal: "add=$add cf n=$n" |
|
460
|
0
|
0
|
|
|
|
0
|
if ($n < $add) { |
|
461
|
|
|
|
|
|
|
### upper of side 1 ... |
|
462
|
0
|
|
|
|
|
0
|
$vdy = -1; |
|
463
|
0
|
|
|
|
|
0
|
$mirror = 1; |
|
464
|
|
|
|
|
|
|
} else { |
|
465
|
0
|
|
|
|
|
0
|
$n -= $add; |
|
466
|
|
|
|
|
|
|
### not upper of side 1, leaving n: $n |
|
467
|
|
|
|
|
|
|
|
|
468
|
0
|
0
|
|
|
|
0
|
if ($n < $add) { |
|
469
|
|
|
|
|
|
|
### lower of centre, including diagonal ... |
|
470
|
|
|
|
|
|
|
} else { |
|
471
|
0
|
|
|
|
|
0
|
$n -= $add; |
|
472
|
0
|
|
|
|
|
0
|
$n += 1; # past diagonal |
|
473
|
|
|
|
|
|
|
### not lower of centre, and past diagonal to n: $n |
|
474
|
|
|
|
|
|
|
|
|
475
|
0
|
|
|
|
|
0
|
$add = _depth_to_octant_added([$depth-1],[1],$zero); |
|
476
|
|
|
|
|
|
|
### upper of centre, excluding diagonal: "depth=".($depth-1)." add-1=".$add |
|
477
|
0
|
0
|
|
|
|
0
|
if ($n < $add) { |
|
478
|
|
|
|
|
|
|
### upper of centre ... |
|
479
|
0
|
|
|
|
|
0
|
$hdx = 0; $hdy = 1; $vdx = 1; $vdy = 0; |
|
|
0
|
|
|
|
|
0
|
|
|
|
0
|
|
|
|
|
0
|
|
|
|
0
|
|
|
|
|
0
|
|
|
480
|
0
|
|
|
|
|
0
|
$x = 1; $y = 1; |
|
|
0
|
|
|
|
|
0
|
|
|
481
|
0
|
|
|
|
|
0
|
$mirror = 1; |
|
482
|
0
|
|
|
|
|
0
|
$depth -= 1; |
|
483
|
|
|
|
|
|
|
} else { |
|
484
|
0
|
|
|
|
|
0
|
$n -= $add; |
|
485
|
|
|
|
|
|
|
### not upper of centre, to n: $n |
|
486
|
|
|
|
|
|
|
|
|
487
|
0
|
0
|
|
|
|
0
|
if ($n < $add) { |
|
488
|
|
|
|
|
|
|
### upper of side 3 ... |
|
489
|
0
|
|
|
|
|
0
|
$hdx = 0; $hdy = 1; $vdx = -1; $vdy = 0; # rotate -90 |
|
|
0
|
|
|
|
|
0
|
|
|
|
0
|
|
|
|
|
0
|
|
|
|
0
|
|
|
|
|
0
|
|
|
490
|
0
|
|
|
|
|
0
|
$x = 1; $y = 1; |
|
|
0
|
|
|
|
|
0
|
|
|
491
|
0
|
|
|
|
|
0
|
$depth -= 1; |
|
492
|
|
|
|
|
|
|
} else { |
|
493
|
0
|
|
|
|
|
0
|
$n -= $add; |
|
494
|
0
|
|
|
|
|
0
|
$n += 1; # past diagonal |
|
495
|
|
|
|
|
|
|
### not upper of side 3, and past diagonal to n: $n |
|
496
|
|
|
|
|
|
|
|
|
497
|
|
|
|
|
|
|
### lower of side 3 ... |
|
498
|
0
|
|
|
|
|
0
|
$hdx = -1; |
|
499
|
0
|
|
|
|
|
0
|
$x = 2; |
|
500
|
0
|
|
|
|
|
0
|
$log2_extras = 0; |
|
501
|
0
|
|
|
|
|
0
|
$mirror =1; |
|
502
|
|
|
|
|
|
|
} |
|
503
|
|
|
|
|
|
|
} |
|
504
|
|
|
|
|
|
|
} |
|
505
|
|
|
|
|
|
|
} |
|
506
|
|
|
|
|
|
|
} |
|
507
|
|
|
|
|
|
|
|
|
508
|
|
|
|
|
|
|
} elsif ($parts eq 'side') { |
|
509
|
0
|
|
|
|
|
0
|
my $add = _depth_to_octant_added([$depth],[1],$zero); |
|
510
|
|
|
|
|
|
|
### first octant add: $add |
|
511
|
0
|
0
|
|
|
|
0
|
if ($n < $add) { |
|
512
|
|
|
|
|
|
|
### first octant ... |
|
513
|
|
|
|
|
|
|
} else { |
|
514
|
|
|
|
|
|
|
### second octant ... |
|
515
|
0
|
|
|
|
|
0
|
$n -= $add; |
|
516
|
0
|
|
|
|
|
0
|
$n += 1; # past diagonal |
|
517
|
0
|
|
|
|
|
0
|
$hdx = 0; $hdy = 1; $vdx = 1; $vdy = 0; |
|
|
0
|
|
|
|
|
0
|
|
|
|
0
|
|
|
|
|
0
|
|
|
|
0
|
|
|
|
|
0
|
|
|
518
|
0
|
|
|
|
|
0
|
$depth += 1; |
|
519
|
0
|
|
|
|
|
0
|
$log2_extras = 0; |
|
520
|
0
|
|
|
|
|
0
|
$mirror = 1; |
|
521
|
0
|
|
|
|
|
0
|
$x = -1; $y = -1; |
|
|
0
|
|
|
|
|
0
|
|
|
522
|
|
|
|
|
|
|
} |
|
523
|
|
|
|
|
|
|
} |
|
524
|
|
|
|
|
|
|
|
|
525
|
|
|
|
|
|
|
### adjusted to octant style: "depth=$depth remainder n=$n" |
|
526
|
|
|
|
|
|
|
|
|
527
|
70
|
|
|
|
|
133
|
my ($pow,$exp) = round_down_pow ($depth+1, 2); |
|
528
|
|
|
|
|
|
|
### initial exp: $exp |
|
529
|
|
|
|
|
|
|
### initial pow: $pow |
|
530
|
|
|
|
|
|
|
|
|
531
|
70
|
|
|
|
|
514
|
for ( ; $exp >= 0; $pow/=2, $exp--) { |
|
532
|
|
|
|
|
|
|
### at: "pow=$pow exp=$exp depth=$depth n=$n mirror=$mirror log2extras=$log2_extras topnopow=$top_no_extra_pow xy=$x,$y h=$hdx,$hdy v=$vdx,$vdy" |
|
533
|
|
|
|
|
|
|
### assert: $depth >= 1 |
|
534
|
|
|
|
|
|
|
### assert: $mirror == 0 || $mirror == 1 |
|
535
|
|
|
|
|
|
|
|
|
536
|
122
|
100
|
|
|
|
167
|
if ($depth < $pow) { |
|
537
|
|
|
|
|
|
|
### block 0 ... |
|
538
|
36
|
|
|
|
|
31
|
$top_no_extra_pow = 0; |
|
539
|
36
|
|
|
|
|
63
|
next; |
|
540
|
|
|
|
|
|
|
} |
|
541
|
|
|
|
|
|
|
|
|
542
|
86
|
100
|
|
|
|
108
|
if ($depth <= 3) { |
|
543
|
46
|
100
|
|
|
|
53
|
if ($mirror) { |
|
544
|
|
|
|
|
|
|
### mirror small depth ... |
|
545
|
17
|
50
|
|
|
|
29
|
if ($depth == $top_no_extra_pow-1) { |
|
546
|
0
|
|
|
|
|
0
|
$n += 1; |
|
547
|
|
|
|
|
|
|
### inc n for top_no_extra_pow: "to n=$n" |
|
548
|
|
|
|
|
|
|
} |
|
549
|
|
|
|
|
|
|
### assert: $n <= $#{$octant_small_n_to_v[$depth]} |
|
550
|
17
|
|
|
|
|
15
|
$n = -1-$n; # perl negative index to read array in reverse |
|
551
|
|
|
|
|
|
|
} else { |
|
552
|
|
|
|
|
|
|
### small depth ... |
|
553
|
29
|
100
|
66
|
|
|
55
|
if (! $log2_extras && $depth == 3) { |
|
554
|
1
|
|
|
|
|
2
|
$n += 1; |
|
555
|
|
|
|
|
|
|
### inc n for no log2_extras: "to n=$n" |
|
556
|
|
|
|
|
|
|
} |
|
557
|
|
|
|
|
|
|
### assert: $n <= $#{$octant_small_n_to_v[$depth]} |
|
558
|
|
|
|
|
|
|
} |
|
559
|
46
|
|
|
|
|
47
|
my $v = $octant_small_n_to_v[$depth][$n]; |
|
560
|
|
|
|
|
|
|
### hv: "h=$depth, v=$v" |
|
561
|
46
|
|
|
|
|
49
|
$x += $depth*$hdx + $v*$vdx; # $depth is "$h" horizontal position |
|
562
|
46
|
|
|
|
|
38
|
$y += $depth*$hdy + $v*$vdy; |
|
563
|
46
|
|
|
|
|
36
|
last; |
|
564
|
|
|
|
|
|
|
} |
|
565
|
|
|
|
|
|
|
|
|
566
|
40
|
|
|
|
|
37
|
$x += $pow * ($hdx + $vdx); # $pow along diagonal |
|
567
|
40
|
|
|
|
|
33
|
$y += $pow * ($hdy + $vdy); |
|
568
|
40
|
|
|
|
|
28
|
$depth -= $pow; |
|
569
|
|
|
|
|
|
|
### diagonal to: "depth=$depth xy=$x,$y" |
|
570
|
|
|
|
|
|
|
|
|
571
|
40
|
100
|
|
|
|
51
|
if ($depth <= 1) { |
|
572
|
|
|
|
|
|
|
### mid two levels ... |
|
573
|
24
|
100
|
|
|
|
35
|
if ($mirror) { |
|
574
|
|
|
|
|
|
|
### negative perl array index to reverse for mirror state ... |
|
575
|
7
|
|
|
|
|
6
|
$n = -1-$n; |
|
576
|
|
|
|
|
|
|
} |
|
577
|
24
|
|
|
|
|
23
|
my $v = $octant_mid_n_to_v[$depth][$n]; |
|
578
|
|
|
|
|
|
|
### hv: "h=$depth v=$v" |
|
579
|
24
|
|
|
|
|
23
|
$x += $depth*$hdx + $v*$vdx; # $depth is "$h" horizontal position |
|
580
|
24
|
|
|
|
|
21
|
$y += $depth*$hdy + $v*$vdy; |
|
581
|
24
|
|
|
|
|
34
|
last; |
|
582
|
|
|
|
|
|
|
} |
|
583
|
|
|
|
|
|
|
|
|
584
|
16
|
100
|
|
|
|
17
|
if ($mirror == 0) { # plain |
|
585
|
|
|
|
|
|
|
|
|
586
|
|
|
|
|
|
|
# See if $n within lower. |
|
587
|
|
|
|
|
|
|
# Not at depth+1==pow since lower has already finished then. |
|
588
|
|
|
|
|
|
|
# |
|
589
|
9
|
100
|
|
|
|
16
|
if ($depth+1 < $pow) { |
|
590
|
3
|
|
|
|
|
17
|
my $add = _depth_to_octant_added([$depth+1],[1],$zero); |
|
591
|
3
|
50
|
|
|
|
6
|
if (_is_pow2($depth+2)) { |
|
592
|
|
|
|
|
|
|
### add lower decreased for remaining depth+2 a power-of-2 ... |
|
593
|
3
|
|
|
|
|
3
|
$add -= 1; |
|
594
|
|
|
|
|
|
|
} |
|
595
|
3
|
|
|
|
|
3
|
$add -= 1; |
|
596
|
|
|
|
|
|
|
### add in lower, excluding diagonal: $add |
|
597
|
3
|
100
|
|
|
|
5
|
if ($n < $add) { |
|
598
|
|
|
|
|
|
|
### lower, rotate +90 ... |
|
599
|
1
|
|
|
|
|
1
|
$top_no_extra_pow = 0; |
|
600
|
1
|
|
|
|
|
1
|
$log2_extras = 0; |
|
601
|
1
|
|
|
|
|
2
|
$depth += 1; |
|
602
|
|
|
|
|
|
|
### assert: $depth < $pow |
|
603
|
1
|
|
|
|
|
2
|
($hdx,$hdy, $vdx,$vdy) # rotate 90 in direction v toward h |
|
604
|
|
|
|
|
|
|
= (-$vdx,-$vdy, $hdx,$hdy); |
|
605
|
1
|
|
|
|
|
2
|
$x -= $hdx + $vdx; |
|
606
|
1
|
|
|
|
|
2
|
$y -= $hdy + $vdy; |
|
607
|
1
|
|
|
|
|
3
|
next; |
|
608
|
|
|
|
|
|
|
} |
|
609
|
2
|
|
|
|
|
2
|
$n -= $add; |
|
610
|
|
|
|
|
|
|
} else { |
|
611
|
|
|
|
|
|
|
### skip lower at depth==pow-1 ... |
|
612
|
|
|
|
|
|
|
} |
|
613
|
|
|
|
|
|
|
|
|
614
|
|
|
|
|
|
|
# See if $n within upper. |
|
615
|
|
|
|
|
|
|
# |
|
616
|
8
|
|
|
|
|
17
|
my $add = _depth_to_octant_added([$depth],[1],$zero); |
|
617
|
8
|
50
|
33
|
|
|
16
|
if (! $log2_extras && $depth+1 == $pow) { |
|
618
|
|
|
|
|
|
|
### add upper decreased for no log2_extras at depth=pow-1 ... |
|
619
|
0
|
|
|
|
|
0
|
$add -= 1; |
|
620
|
|
|
|
|
|
|
} |
|
621
|
|
|
|
|
|
|
### add in upper, including diagonal: $add |
|
622
|
8
|
100
|
|
|
|
13
|
if ($n < $add) { |
|
623
|
|
|
|
|
|
|
### upper, mirror ... |
|
624
|
4
|
|
|
|
|
3
|
$mirror = 1; |
|
625
|
4
|
|
|
|
|
3
|
$vdx = -$vdx; # flip vertically |
|
626
|
4
|
|
|
|
|
2
|
$vdy = -$vdy; |
|
627
|
4
|
50
|
|
|
|
5
|
$top_no_extra_pow = ($log2_extras ? 0 : $pow); |
|
628
|
4
|
|
|
|
|
4
|
$log2_extras = 1; |
|
629
|
4
|
|
|
|
|
6
|
next; |
|
630
|
|
|
|
|
|
|
} |
|
631
|
4
|
|
|
|
|
2
|
$n -= $add; |
|
632
|
|
|
|
|
|
|
### assert: $n < $add |
|
633
|
|
|
|
|
|
|
|
|
634
|
|
|
|
|
|
|
# Otherwise $n is within extend. |
|
635
|
|
|
|
|
|
|
# |
|
636
|
|
|
|
|
|
|
### extend ... |
|
637
|
4
|
|
|
|
|
4
|
$top_no_extra_pow /= 2; |
|
638
|
4
|
|
|
|
|
9
|
$log2_extras = 1; |
|
639
|
|
|
|
|
|
|
|
|
640
|
|
|
|
|
|
|
} else { |
|
641
|
|
|
|
|
|
|
# $mirror == 1, mirrored |
|
642
|
|
|
|
|
|
|
|
|
643
|
|
|
|
|
|
|
# See if $n within extend. |
|
644
|
|
|
|
|
|
|
# |
|
645
|
7
|
|
|
|
|
15
|
my $eadd = my $add = _depth_to_octant_added([$depth],[1],$zero); |
|
646
|
7
|
|
|
|
|
8
|
$top_no_extra_pow /= 2; # since after $depth+=$pow |
|
647
|
7
|
50
|
|
|
|
16
|
if ($depth == $top_no_extra_pow - 1) { |
|
648
|
|
|
|
|
|
|
### add extend decreased for no top extra ... |
|
649
|
0
|
|
|
|
|
0
|
$eadd -= 1; |
|
650
|
|
|
|
|
|
|
} |
|
651
|
|
|
|
|
|
|
### add in extend: $eadd |
|
652
|
7
|
100
|
|
|
|
9
|
if ($n < $eadd) { |
|
653
|
|
|
|
|
|
|
### extend ... |
|
654
|
2
|
|
|
|
|
8
|
$log2_extras = 1; |
|
655
|
2
|
|
|
|
|
3
|
next; |
|
656
|
|
|
|
|
|
|
} |
|
657
|
5
|
|
|
|
|
5
|
$n -= $eadd; |
|
658
|
|
|
|
|
|
|
|
|
659
|
|
|
|
|
|
|
# See if $n within upper. |
|
660
|
|
|
|
|
|
|
# |
|
661
|
|
|
|
|
|
|
### add in upper, including diagonal: "$add cf n=$n" |
|
662
|
5
|
100
|
|
|
|
7
|
if ($n < $add) { |
|
663
|
|
|
|
|
|
|
### upper, unmirror ... |
|
664
|
4
|
50
|
|
|
|
9
|
$top_no_extra_pow = ($log2_extras ? 0 : $pow); |
|
665
|
4
|
|
|
|
|
3
|
$log2_extras = 1; |
|
666
|
4
|
|
|
|
|
1
|
$mirror = 0; |
|
667
|
4
|
|
|
|
|
4
|
$vdx = -$vdx; # flip vertically |
|
668
|
4
|
|
|
|
|
3
|
$vdy = -$vdy; |
|
669
|
4
|
|
|
|
|
6
|
next; |
|
670
|
|
|
|
|
|
|
} |
|
671
|
1
|
|
|
|
|
1
|
$n -= $add; |
|
672
|
|
|
|
|
|
|
|
|
673
|
|
|
|
|
|
|
# Otherwise $n is within lower. |
|
674
|
|
|
|
|
|
|
# |
|
675
|
1
|
|
|
|
|
2
|
$n += 1; # past diagonal |
|
676
|
|
|
|
|
|
|
### lower, rotate: "n=$n" |
|
677
|
|
|
|
|
|
|
### assert: $n < _depth_to_octant_added([$depth+1],[1],$zero) |
|
678
|
1
|
|
|
|
|
1
|
$top_no_extra_pow = 0; |
|
679
|
1
|
|
|
|
|
1
|
$log2_extras = 0; |
|
680
|
1
|
|
|
|
|
1
|
$depth += 1; |
|
681
|
|
|
|
|
|
|
### assert: $depth < $pow |
|
682
|
1
|
|
|
|
|
3
|
($hdx,$hdy, $vdx,$vdy) # rotate 90 in direction v toward h |
|
683
|
|
|
|
|
|
|
= (-$vdx,-$vdy, $hdx,$hdy); |
|
684
|
1
|
|
|
|
|
1
|
$x -= $hdx + $vdx; |
|
685
|
1
|
|
|
|
|
3
|
$y -= $vdx + $vdy; |
|
686
|
|
|
|
|
|
|
} |
|
687
|
|
|
|
|
|
|
} |
|
688
|
|
|
|
|
|
|
|
|
689
|
|
|
|
|
|
|
### n_to_xy() return: "$x,$y (depth=$depth n=$n)" |
|
690
|
70
|
|
|
|
|
118
|
return ($x,$y); |
|
691
|
|
|
|
|
|
|
} |
|
692
|
|
|
|
|
|
|
|
|
693
|
|
|
|
|
|
|
# ($depth, $nrem) = _n0_to_depth_and_rem($self,$n) |
|
694
|
|
|
|
|
|
|
# |
|
695
|
|
|
|
|
|
|
# _n0_to_depth_and_rem() finds the tree $depth level containing $n and |
|
696
|
|
|
|
|
|
|
# returns that $depth and the offset of $n into that level, being |
|
697
|
|
|
|
|
|
|
# $n - $self->tree_depth_to_n($depth). |
|
698
|
|
|
|
|
|
|
# |
|
699
|
|
|
|
|
|
|
# The current approach is a binary search for the bits of depth which have |
|
700
|
|
|
|
|
|
|
# tree_depth_to_n($depth) <= $n. |
|
701
|
|
|
|
|
|
|
# |
|
702
|
|
|
|
|
|
|
# Ndepth grows as roughly depth*depth, so this is about log4(N) many bsearch |
|
703
|
|
|
|
|
|
|
# compares. Maybe for modest N a table of depth->N could be used for the |
|
704
|
|
|
|
|
|
|
# search (and for tree_depth_to_n()). It would cover up to about sqrt(N), |
|
705
|
|
|
|
|
|
|
# so for large N would still need some searching code. |
|
706
|
|
|
|
|
|
|
# |
|
707
|
|
|
|
|
|
|
# quadrant(2^k) = (4*4^k + 6*k + 14) / 9 |
|
708
|
|
|
|
|
|
|
# N*9/4 = 4^k + 6/4*k + 14/4 |
|
709
|
|
|
|
|
|
|
# parts=1 N*9 to round up to next power |
|
710
|
|
|
|
|
|
|
# parts=octant N*18 |
|
711
|
|
|
|
|
|
|
# parts=4 N*9/4 = N*3 as estimate |
|
712
|
|
|
|
|
|
|
# parts=3 N*9/4 = N*3 too |
|
713
|
|
|
|
|
|
|
# |
|
714
|
|
|
|
|
|
|
my %parts_to_depth_multiplier = (4 => 3, |
|
715
|
|
|
|
|
|
|
1 => 9, |
|
716
|
|
|
|
|
|
|
octant => 18, |
|
717
|
|
|
|
|
|
|
octant_up => 18, |
|
718
|
|
|
|
|
|
|
wedge => 9, |
|
719
|
|
|
|
|
|
|
'3mid' => 3, |
|
720
|
|
|
|
|
|
|
'3side' => 3, |
|
721
|
|
|
|
|
|
|
side => 9, |
|
722
|
|
|
|
|
|
|
); |
|
723
|
|
|
|
|
|
|
sub _n0_to_depth_and_rem { |
|
724
|
70
|
|
|
70
|
|
66
|
my ($self, $n) = @_; |
|
725
|
|
|
|
|
|
|
### _n0_to_depth_and_rem(): "n=$n parts=$self->{'parts'}" |
|
726
|
|
|
|
|
|
|
|
|
727
|
70
|
|
|
|
|
146
|
my ($pow,$exp) = round_down_pow |
|
728
|
|
|
|
|
|
|
($n * $parts_to_depth_multiplier{$self->{'parts'}}, |
|
729
|
|
|
|
|
|
|
4); |
|
730
|
70
|
50
|
|
|
|
529
|
if (is_infinite($exp)) { |
|
731
|
0
|
|
|
|
|
0
|
return ($exp,0); |
|
732
|
|
|
|
|
|
|
} |
|
733
|
|
|
|
|
|
|
### $pow |
|
734
|
|
|
|
|
|
|
### $exp |
|
735
|
|
|
|
|
|
|
|
|
736
|
70
|
|
|
|
|
272
|
my $depth = 0; |
|
737
|
70
|
|
|
|
|
45
|
my $n_depth = 0; |
|
738
|
70
|
|
|
|
|
54
|
$pow = 2 ** $exp; # pow=2^exp down to 1, inclusive |
|
739
|
|
|
|
|
|
|
|
|
740
|
70
|
|
|
|
|
102
|
while ($exp-- >= 0) { |
|
741
|
266
|
|
|
|
|
210
|
my $try_depth = $depth + $pow; |
|
742
|
266
|
|
|
|
|
379
|
my $try_n_depth = $self->tree_depth_to_n($try_depth); |
|
743
|
|
|
|
|
|
|
|
|
744
|
|
|
|
|
|
|
### $depth |
|
745
|
|
|
|
|
|
|
### $pow |
|
746
|
|
|
|
|
|
|
### $try_depth |
|
747
|
|
|
|
|
|
|
### $try_n_depth |
|
748
|
|
|
|
|
|
|
|
|
749
|
266
|
100
|
|
|
|
339
|
if ($try_n_depth <= $n) { |
|
750
|
|
|
|
|
|
|
### use this tried depth ... |
|
751
|
141
|
|
|
|
|
107
|
$depth = $try_depth; |
|
752
|
141
|
|
|
|
|
101
|
$n_depth = $try_n_depth; |
|
753
|
|
|
|
|
|
|
} |
|
754
|
266
|
|
|
|
|
383
|
$pow /= 2; |
|
755
|
|
|
|
|
|
|
} |
|
756
|
|
|
|
|
|
|
|
|
757
|
|
|
|
|
|
|
### _n0_to_depth_and_rem() final ... |
|
758
|
|
|
|
|
|
|
### $depth |
|
759
|
|
|
|
|
|
|
### remainder: $n - $n_depth |
|
760
|
|
|
|
|
|
|
|
|
761
|
70
|
|
|
|
|
102
|
return ($depth, $n - $n_depth); |
|
762
|
|
|
|
|
|
|
} |
|
763
|
|
|
|
|
|
|
|
|
764
|
|
|
|
|
|
|
#------------------------------------------------------------------------------ |
|
765
|
|
|
|
|
|
|
# xy_to_n() |
|
766
|
|
|
|
|
|
|
|
|
767
|
|
|
|
|
|
|
my @yxoct_to_n = ([ 0, 1 ], # Y=0 |
|
768
|
|
|
|
|
|
|
[ undef, 2 ]); # Y=1 |
|
769
|
|
|
|
|
|
|
my @yxoctup_to_n = ([ 0, undef ], # Y=0 |
|
770
|
|
|
|
|
|
|
[ 2, 1 ]); # Y=1 |
|
771
|
|
|
|
|
|
|
my @yxwedge_to_n = ([ 0, undef, undef ], # Y=0 X=0,1,-1 |
|
772
|
|
|
|
|
|
|
[ 2, 1, 3 ]); # Y=1 |
|
773
|
|
|
|
|
|
|
my @yx1_to_n = ([ 0, 1 ], # Y=0 |
|
774
|
|
|
|
|
|
|
[ 3, 2 ]); # Y=1 |
|
775
|
|
|
|
|
|
|
my @yx3_to_n = ([ 0, 2, undef ], # Y=0 X=0,1,-1 |
|
776
|
|
|
|
|
|
|
[ 4, 3, 5 ], # Y=1 |
|
777
|
|
|
|
|
|
|
[ undef, 1, undef ]); # Y=-1 |
|
778
|
|
|
|
|
|
|
my @yx4_to_n = ([ 0, 1, 5 ], # Y=0 X=0,1,-1 |
|
779
|
|
|
|
|
|
|
[ 3, 2, 4 ], # Y=1 |
|
780
|
|
|
|
|
|
|
[ 7, 8, 6 ]); # Y=-1 |
|
781
|
|
|
|
|
|
|
my @yx3mid_to_n = ([ 0, 2, undef ], # Y=0 X=0,1,-1 |
|
782
|
|
|
|
|
|
|
[ 4, 3, 5 ], # Y=1 |
|
783
|
|
|
|
|
|
|
[ undef, 1, undef ]); # Y=-1 |
|
784
|
|
|
|
|
|
|
my @yx3side_to_n = ([ 0, 2, undef ], # Y=0 X=0,1,-1 |
|
785
|
|
|
|
|
|
|
[ undef, 3, undef ], # Y=1 |
|
786
|
|
|
|
|
|
|
[ 8, 7, 16 ], # Y=2 |
|
787
|
|
|
|
|
|
|
[ undef, 4, undef ], # Y=-2 |
|
788
|
|
|
|
|
|
|
[ undef, 1, undef ]); # Y=-1 |
|
789
|
|
|
|
|
|
|
my @yxside_to_n = ([ 0, 1 ], # Y=0 X=0,1,-1 |
|
790
|
|
|
|
|
|
|
[ undef, 2 ]); # Y=1 |
|
791
|
|
|
|
|
|
|
|
|
792
|
|
|
|
|
|
|
# N values relative to tree_depth_to_n() start of the depth level |
|
793
|
|
|
|
|
|
|
my @yx_to_n = ([ [ 0, 0, ], # plain |
|
794
|
|
|
|
|
|
|
[ undef, 1, undef, 0 ], |
|
795
|
|
|
|
|
|
|
[ undef, undef, 0, 1 ], |
|
796
|
|
|
|
|
|
|
[ undef, undef, undef, 2 ] ], |
|
797
|
|
|
|
|
|
|
[ [ 0, 1, ], # mirror |
|
798
|
|
|
|
|
|
|
[ undef, 0, undef, 2 ], |
|
799
|
|
|
|
|
|
|
[ undef, undef, 0, 1 ], |
|
800
|
|
|
|
|
|
|
[ undef, undef, undef, 0 ] ]); |
|
801
|
|
|
|
|
|
|
|
|
802
|
|
|
|
|
|
|
#use Smart::Comments; |
|
803
|
|
|
|
|
|
|
|
|
804
|
|
|
|
|
|
|
sub xy_to_n { |
|
805
|
60
|
|
|
60
|
1
|
684
|
my ($self, $x, $y) = @_; |
|
806
|
|
|
|
|
|
|
### OneOfEight xy_to_n(): "$x, $y" |
|
807
|
|
|
|
|
|
|
|
|
808
|
|
|
|
|
|
|
# { |
|
809
|
|
|
|
|
|
|
# require Math::PlanePath::OneOfEightByCells; |
|
810
|
|
|
|
|
|
|
# my $cells = ($self->{'cells'} ||= Math::PlanePath::OneOfEightByCells->new (parts => $self->{'parts'})); |
|
811
|
|
|
|
|
|
|
# return $cells->xy_to_n($x,$y); |
|
812
|
|
|
|
|
|
|
# } |
|
813
|
|
|
|
|
|
|
|
|
814
|
60
|
|
|
|
|
98
|
$x = round_nearest ($x); |
|
815
|
60
|
|
|
|
|
286
|
$y = round_nearest ($y); |
|
816
|
60
|
50
|
|
|
|
213
|
if (is_infinite($x)) { |
|
817
|
0
|
|
|
|
|
0
|
return $x; |
|
818
|
|
|
|
|
|
|
} |
|
819
|
60
|
50
|
|
|
|
253
|
if (is_infinite($y)) { |
|
820
|
0
|
|
|
|
|
0
|
return $y; |
|
821
|
|
|
|
|
|
|
} |
|
822
|
|
|
|
|
|
|
|
|
823
|
60
|
|
|
|
|
271
|
my ($pow,$exp) = round_down_pow (max(abs($x),abs($y))+2, 2); |
|
824
|
|
|
|
|
|
|
### initial pow: "exp=$exp pow=$pow" |
|
825
|
|
|
|
|
|
|
### from abs(x): abs($x) |
|
826
|
|
|
|
|
|
|
### from abs(y): abs($y) |
|
827
|
|
|
|
|
|
|
### from max: max(abs($x),abs($y)) |
|
828
|
|
|
|
|
|
|
|
|
829
|
60
|
50
|
|
|
|
698
|
if (is_infinite($exp)) { |
|
830
|
0
|
|
|
|
|
0
|
return $exp; |
|
831
|
|
|
|
|
|
|
} |
|
832
|
|
|
|
|
|
|
|
|
833
|
60
|
|
|
|
|
231
|
my $zero = $x * 0 * $y; |
|
834
|
60
|
|
|
|
|
48
|
my @add_offset; |
|
835
|
|
|
|
|
|
|
my @add_mult; |
|
836
|
0
|
|
|
|
|
0
|
my @add_log2_extras; |
|
837
|
0
|
|
|
|
|
0
|
my @add_top_no_extra_pow; |
|
838
|
60
|
|
|
|
|
38
|
my $mirror = 0; |
|
839
|
60
|
|
|
|
|
47
|
my $log2_extras = 1; |
|
840
|
60
|
|
|
|
|
45
|
my $top_extra = 1; |
|
841
|
60
|
|
|
|
|
36
|
my $top_no_extra_pow = 0; |
|
842
|
60
|
|
|
|
|
42
|
my $depth = 0; |
|
843
|
60
|
|
|
|
|
48
|
my $n = $zero; |
|
844
|
|
|
|
|
|
|
|
|
845
|
60
|
|
|
|
|
55
|
my $parts = $self->{'parts'}; |
|
846
|
60
|
50
|
33
|
|
|
266
|
if ($parts eq 'octant') { |
|
|
|
50
|
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
847
|
|
|
|
|
|
|
### parts==octant ... |
|
848
|
0
|
0
|
0
|
|
|
0
|
if ($y < 0 || $y > $x) { |
|
849
|
0
|
|
|
|
|
0
|
return undef; |
|
850
|
|
|
|
|
|
|
} |
|
851
|
0
|
0
|
0
|
|
|
0
|
if ($x <= 1 && $y <= 1) { |
|
852
|
0
|
|
|
|
|
0
|
return $yxoct_to_n[$y][$x]; |
|
853
|
|
|
|
|
|
|
} |
|
854
|
|
|
|
|
|
|
|
|
855
|
|
|
|
|
|
|
} elsif ($parts eq 'octant_up') { |
|
856
|
|
|
|
|
|
|
### parts==octant_up ... |
|
857
|
0
|
0
|
0
|
|
|
0
|
if ($x < 0 || $x > $y) { |
|
858
|
|
|
|
|
|
|
### outside upper octant ... |
|
859
|
0
|
|
|
|
|
0
|
return undef; |
|
860
|
|
|
|
|
|
|
} |
|
861
|
0
|
0
|
0
|
|
|
0
|
if ($x <= 1 && $y <= 1) { |
|
862
|
|
|
|
|
|
|
### yxoctup_to_n[] table ... |
|
863
|
0
|
|
|
|
|
0
|
return $yxoctup_to_n[$y][$x]; |
|
864
|
|
|
|
|
|
|
} |
|
865
|
|
|
|
|
|
|
# transpose and mirror |
|
866
|
0
|
|
|
|
|
0
|
($x,$y) = ($y,$x); |
|
867
|
0
|
|
|
|
|
0
|
$mirror = 1; |
|
868
|
|
|
|
|
|
|
|
|
869
|
|
|
|
|
|
|
} elsif ($parts eq 'wedge') { |
|
870
|
|
|
|
|
|
|
### parts==wedge ... |
|
871
|
0
|
0
|
0
|
|
|
0
|
if ($x > $y || $x < -$y) { |
|
872
|
0
|
|
|
|
|
0
|
return undef; |
|
873
|
|
|
|
|
|
|
} |
|
874
|
0
|
0
|
0
|
|
|
0
|
if (abs($x) <= 1 && $y <= 1) { |
|
875
|
0
|
|
|
|
|
0
|
return $yxwedge_to_n[$y][$x]; |
|
876
|
|
|
|
|
|
|
} |
|
877
|
0
|
0
|
|
|
|
0
|
if ($x >= 0) { |
|
878
|
0
|
|
|
|
|
0
|
($x,$y) = ($y,$x); # transpose and mirror |
|
879
|
0
|
|
|
|
|
0
|
$mirror = 1; |
|
880
|
|
|
|
|
|
|
} else { |
|
881
|
0
|
|
|
|
|
0
|
($x,$y) = ($y,-$x); # rotate -90 |
|
882
|
0
|
|
|
|
|
0
|
push @add_offset, 0; |
|
883
|
0
|
|
|
|
|
0
|
push @add_mult, 1; |
|
884
|
0
|
|
|
|
|
0
|
push @add_top_no_extra_pow, 0; |
|
885
|
0
|
|
|
|
|
0
|
push @add_log2_extras, 1; |
|
886
|
|
|
|
|
|
|
} |
|
887
|
|
|
|
|
|
|
|
|
888
|
|
|
|
|
|
|
} elsif ($parts eq '1' || $parts eq '4') { |
|
889
|
60
|
|
|
|
|
57
|
my $mult = 0; |
|
890
|
60
|
50
|
|
|
|
66
|
if ($parts eq '1') { |
|
891
|
|
|
|
|
|
|
### parts==1 ... |
|
892
|
0
|
0
|
0
|
|
|
0
|
if ($x < 0 || $y < 0) { |
|
893
|
0
|
|
|
|
|
0
|
return undef; |
|
894
|
|
|
|
|
|
|
} |
|
895
|
0
|
0
|
0
|
|
|
0
|
if ($x <= 1 && $y <= 1) { |
|
896
|
0
|
|
|
|
|
0
|
return $yx1_to_n[$y][$x]; |
|
897
|
|
|
|
|
|
|
} |
|
898
|
|
|
|
|
|
|
} else { |
|
899
|
|
|
|
|
|
|
### parts==4 ... |
|
900
|
60
|
100
|
100
|
|
|
169
|
if (abs($x) <= 1 && abs($y) <= 1) { |
|
901
|
18
|
|
|
|
|
36
|
return $yx4_to_n[$y][$x]; |
|
902
|
|
|
|
|
|
|
} |
|
903
|
42
|
100
|
|
|
|
84
|
if ($y < 0) { |
|
904
|
|
|
|
|
|
|
### quad 3 or 4, rotate 180 ... |
|
905
|
18
|
|
|
|
|
15
|
$mult = 4; # past first,second quads |
|
906
|
18
|
|
|
|
|
18
|
$n -= 2; # unduplicate diagonals |
|
907
|
18
|
|
|
|
|
11
|
$x = -$x; # rotate 180 |
|
908
|
18
|
|
|
|
|
17
|
$y = -$y; |
|
909
|
|
|
|
|
|
|
} |
|
910
|
42
|
100
|
|
|
|
63
|
if ($x < 0) { |
|
911
|
|
|
|
|
|
|
### quad 2 (or 4), rotate 90 ... |
|
912
|
19
|
|
|
|
|
20
|
$mult += 2; |
|
913
|
19
|
|
|
|
|
19
|
$n -= 1; # unduplicate diagonal |
|
914
|
19
|
|
|
|
|
30
|
($x,$y) = ($y,-$x); # rotate -90 |
|
915
|
|
|
|
|
|
|
} |
|
916
|
|
|
|
|
|
|
} |
|
917
|
|
|
|
|
|
|
|
|
918
|
|
|
|
|
|
|
### now in first quadrant: "x=$x y=$y" |
|
919
|
42
|
100
|
|
|
|
57
|
if ($y > $x) { |
|
920
|
|
|
|
|
|
|
### second octant, transpose and mirror ... |
|
921
|
13
|
|
|
|
|
18
|
($x,$y) = ($y,$x); |
|
922
|
13
|
|
|
|
|
9
|
$mult++; |
|
923
|
13
|
|
|
|
|
10
|
$n -= 1; # unduplicate diagonal |
|
924
|
13
|
|
|
|
|
10
|
$mirror = 1; |
|
925
|
|
|
|
|
|
|
} |
|
926
|
42
|
100
|
|
|
|
59
|
if ($mult) { |
|
927
|
34
|
|
|
|
|
35
|
push @add_offset, 0; |
|
928
|
34
|
|
|
|
|
24
|
push @add_mult, $mult; |
|
929
|
34
|
|
|
|
|
21
|
push @add_top_no_extra_pow, 0; |
|
930
|
34
|
|
|
|
|
36
|
push @add_log2_extras, 1; |
|
931
|
|
|
|
|
|
|
} |
|
932
|
|
|
|
|
|
|
|
|
933
|
|
|
|
|
|
|
} elsif ($parts eq '3mid') { |
|
934
|
|
|
|
|
|
|
### parts==3mid ... |
|
935
|
0
|
0
|
0
|
|
|
0
|
if (abs($x) <= 1 && abs($y) <= 1) { |
|
936
|
|
|
|
|
|
|
### 3mid small: $yx3mid_to_n[$y][$x] |
|
937
|
0
|
|
|
|
|
0
|
return $yx3mid_to_n[$y][$x]; |
|
938
|
|
|
|
|
|
|
} |
|
939
|
0
|
0
|
|
|
|
0
|
if ($y < 0) { |
|
940
|
0
|
0
|
|
|
|
0
|
if ($x < 0) { |
|
941
|
|
|
|
|
|
|
### third quadrant, no such point ... |
|
942
|
0
|
|
|
|
|
0
|
return undef; |
|
943
|
|
|
|
|
|
|
} |
|
944
|
0
|
|
|
|
|
0
|
$y = -$y; |
|
945
|
0
|
0
|
|
|
|
0
|
if ($y >= $x) { |
|
946
|
|
|
|
|
|
|
### block 0 lower ... |
|
947
|
0
|
|
|
|
|
0
|
$log2_extras = 0; |
|
948
|
0
|
|
|
|
|
0
|
($x,$y) = ($y+1,$x+1); |
|
949
|
0
|
|
|
|
|
0
|
$depth = -1; |
|
950
|
|
|
|
|
|
|
} else { |
|
951
|
|
|
|
|
|
|
### block 1 upper ... |
|
952
|
0
|
|
|
|
|
0
|
$mirror = 1; |
|
953
|
|
|
|
|
|
|
|
|
954
|
|
|
|
|
|
|
### past block 0 lower, excluding diagonal ... |
|
955
|
0
|
|
|
|
|
0
|
push @add_offset, -1; |
|
956
|
0
|
|
|
|
|
0
|
push @add_mult, 1; |
|
957
|
0
|
|
|
|
|
0
|
push @add_top_no_extra_pow, 0; |
|
958
|
0
|
|
|
|
|
0
|
push @add_log2_extras, 0; |
|
959
|
0
|
|
|
|
|
0
|
$n -= 1; # excluding diagonal |
|
960
|
|
|
|
|
|
|
} |
|
961
|
|
|
|
|
|
|
} else { |
|
962
|
0
|
0
|
|
|
|
0
|
if ($x >= 0) { |
|
963
|
0
|
0
|
|
|
|
0
|
if ($y <= $x) { |
|
964
|
|
|
|
|
|
|
### block 2 first octant ... |
|
965
|
|
|
|
|
|
|
|
|
966
|
|
|
|
|
|
|
### past block 0 lower, excluding diagonal ... |
|
967
|
0
|
|
|
|
|
0
|
push @add_offset, -1; |
|
968
|
0
|
|
|
|
|
0
|
push @add_mult, 1; |
|
969
|
0
|
|
|
|
|
0
|
push @add_top_no_extra_pow, 0; |
|
970
|
0
|
|
|
|
|
0
|
push @add_log2_extras, 0; |
|
971
|
0
|
|
|
|
|
0
|
$n -= 1; # excluding diagonal |
|
972
|
|
|
|
|
|
|
|
|
973
|
|
|
|
|
|
|
### past block 1 ... |
|
974
|
0
|
|
|
|
|
0
|
push @add_offset, 0; |
|
975
|
0
|
|
|
|
|
0
|
push @add_mult, 1; |
|
976
|
0
|
|
|
|
|
0
|
push @add_top_no_extra_pow, 0; |
|
977
|
0
|
|
|
|
|
0
|
push @add_log2_extras, 1; |
|
978
|
|
|
|
|
|
|
|
|
979
|
|
|
|
|
|
|
} else { |
|
980
|
|
|
|
|
|
|
### block 3 second octant ... |
|
981
|
0
|
|
|
|
|
0
|
($x,$y) = ($y,$x); |
|
982
|
0
|
|
|
|
|
0
|
$mirror = 1; |
|
983
|
|
|
|
|
|
|
|
|
984
|
|
|
|
|
|
|
### past block 0 lower, excluding diagonal ... |
|
985
|
0
|
|
|
|
|
0
|
push @add_offset, -1; |
|
986
|
0
|
|
|
|
|
0
|
push @add_mult, 1; |
|
987
|
0
|
|
|
|
|
0
|
push @add_top_no_extra_pow, 0; |
|
988
|
0
|
|
|
|
|
0
|
push @add_log2_extras, 0; |
|
989
|
0
|
|
|
|
|
0
|
$n -= 1; # excluding diagonal |
|
990
|
|
|
|
|
|
|
|
|
991
|
|
|
|
|
|
|
### past blocks 1,2, excluding leading diagonal ... |
|
992
|
0
|
|
|
|
|
0
|
push @add_offset, 0; |
|
993
|
0
|
|
|
|
|
0
|
push @add_mult, 2; |
|
994
|
0
|
|
|
|
|
0
|
push @add_top_no_extra_pow, 0; |
|
995
|
0
|
|
|
|
|
0
|
push @add_log2_extras, 1; |
|
996
|
0
|
|
|
|
|
0
|
$n -= 1; # excluding leading diagonal |
|
997
|
|
|
|
|
|
|
} |
|
998
|
|
|
|
|
|
|
} else { |
|
999
|
|
|
|
|
|
|
### second quadrant ... |
|
1000
|
0
|
|
|
|
|
0
|
$x = -$x; |
|
1001
|
0
|
0
|
|
|
|
0
|
if ($y >= $x) { |
|
1002
|
|
|
|
|
|
|
### block 4 third octant ... |
|
1003
|
0
|
|
|
|
|
0
|
($x,$y) = ($y,$x); |
|
1004
|
|
|
|
|
|
|
|
|
1005
|
|
|
|
|
|
|
### past block 0 lower, excluding diagonal ... |
|
1006
|
0
|
|
|
|
|
0
|
push @add_offset, -1; |
|
1007
|
0
|
|
|
|
|
0
|
push @add_mult, 1; |
|
1008
|
0
|
|
|
|
|
0
|
push @add_top_no_extra_pow, 0; |
|
1009
|
0
|
|
|
|
|
0
|
push @add_log2_extras, 0; |
|
1010
|
0
|
|
|
|
|
0
|
$n -= 1; # excluding diagonal |
|
1011
|
|
|
|
|
|
|
|
|
1012
|
|
|
|
|
|
|
### past blocks 1,2,3 excluding leading diagonal ... |
|
1013
|
0
|
|
|
|
|
0
|
push @add_offset, 0; |
|
1014
|
0
|
|
|
|
|
0
|
push @add_mult, 3; |
|
1015
|
0
|
|
|
|
|
0
|
push @add_top_no_extra_pow, 0; |
|
1016
|
0
|
|
|
|
|
0
|
push @add_log2_extras, 1; |
|
1017
|
0
|
|
|
|
|
0
|
$n -= 1; # excluding leading diagonal |
|
1018
|
|
|
|
|
|
|
|
|
1019
|
|
|
|
|
|
|
} else { |
|
1020
|
|
|
|
|
|
|
### block 5 fourth octant ... |
|
1021
|
0
|
|
|
|
|
0
|
$x += 1; $y += 1; |
|
|
0
|
|
|
|
|
0
|
|
|
1022
|
0
|
|
|
|
|
0
|
$mirror = 1; |
|
1023
|
0
|
|
|
|
|
0
|
$depth = -1; |
|
1024
|
0
|
|
|
|
|
0
|
$log2_extras = 0; |
|
1025
|
|
|
|
|
|
|
|
|
1026
|
|
|
|
|
|
|
### past block 0 lower, excluding diagonal ... |
|
1027
|
0
|
|
|
|
|
0
|
push @add_offset, -1; |
|
1028
|
0
|
|
|
|
|
0
|
push @add_mult, 1; |
|
1029
|
0
|
|
|
|
|
0
|
push @add_top_no_extra_pow, 0; |
|
1030
|
0
|
|
|
|
|
0
|
push @add_log2_extras, 0; |
|
1031
|
0
|
|
|
|
|
0
|
$n -= 1; # excluding diagonal |
|
1032
|
|
|
|
|
|
|
|
|
1033
|
0
|
|
|
|
|
0
|
push @add_offset, 0; |
|
1034
|
0
|
|
|
|
|
0
|
push @add_mult, 4; |
|
1035
|
0
|
|
|
|
|
0
|
push @add_top_no_extra_pow, 0; |
|
1036
|
0
|
|
|
|
|
0
|
push @add_log2_extras, 1; |
|
1037
|
0
|
|
|
|
|
0
|
$n -= 2; # unduplicate two diagonals |
|
1038
|
|
|
|
|
|
|
} |
|
1039
|
|
|
|
|
|
|
} |
|
1040
|
|
|
|
|
|
|
} |
|
1041
|
|
|
|
|
|
|
|
|
1042
|
|
|
|
|
|
|
} elsif ($parts eq '3side') { |
|
1043
|
|
|
|
|
|
|
### parts==3side ... |
|
1044
|
0
|
0
|
0
|
|
|
0
|
if (abs($x) <= 1 && abs($y) <= 2) { |
|
1045
|
|
|
|
|
|
|
### 3side small: $yx3side_to_n[$y][$x] |
|
1046
|
0
|
|
|
|
|
0
|
return $yx3side_to_n[$y][$x]; |
|
1047
|
|
|
|
|
|
|
} |
|
1048
|
0
|
0
|
|
|
|
0
|
if ($y < 0) { |
|
1049
|
0
|
0
|
|
|
|
0
|
if ($x < 0) { |
|
1050
|
|
|
|
|
|
|
### third quadrant, no such point ... |
|
1051
|
0
|
|
|
|
|
0
|
return undef; |
|
1052
|
|
|
|
|
|
|
} |
|
1053
|
0
|
|
|
|
|
0
|
$y = -$y; |
|
1054
|
0
|
0
|
|
|
|
0
|
if ($y >= $x) { |
|
1055
|
|
|
|
|
|
|
### block 0 lower ... |
|
1056
|
0
|
|
|
|
|
0
|
$log2_extras = 0; |
|
1057
|
0
|
|
|
|
|
0
|
($x,$y) = ($y+1,$x+1); |
|
1058
|
0
|
|
|
|
|
0
|
$depth = -1; |
|
1059
|
|
|
|
|
|
|
} else { |
|
1060
|
|
|
|
|
|
|
### block 1 upper ... |
|
1061
|
0
|
|
|
|
|
0
|
$mirror = 1; |
|
1062
|
|
|
|
|
|
|
|
|
1063
|
|
|
|
|
|
|
### past block 0 lower, excluding diagonal ... |
|
1064
|
0
|
|
|
|
|
0
|
push @add_offset, -1; |
|
1065
|
0
|
|
|
|
|
0
|
push @add_mult, 1; |
|
1066
|
0
|
|
|
|
|
0
|
push @add_top_no_extra_pow, 0; |
|
1067
|
0
|
|
|
|
|
0
|
push @add_log2_extras, 0; |
|
1068
|
0
|
|
|
|
|
0
|
$n -= 1; # excluding diagonal |
|
1069
|
|
|
|
|
|
|
} |
|
1070
|
|
|
|
|
|
|
} else { |
|
1071
|
0
|
0
|
|
|
|
0
|
if ($x > 0) { |
|
1072
|
0
|
0
|
|
|
|
0
|
if ($y <= $x) { |
|
1073
|
|
|
|
|
|
|
### block 2 first octant ... |
|
1074
|
|
|
|
|
|
|
|
|
1075
|
|
|
|
|
|
|
### past block 0 lower, excluding diagonal ... |
|
1076
|
0
|
|
|
|
|
0
|
push @add_offset, -1; |
|
1077
|
0
|
|
|
|
|
0
|
push @add_mult, 1; |
|
1078
|
0
|
|
|
|
|
0
|
push @add_top_no_extra_pow, 0; |
|
1079
|
0
|
|
|
|
|
0
|
push @add_log2_extras, 0; |
|
1080
|
0
|
|
|
|
|
0
|
$n -= 1; # excluding diagonal |
|
1081
|
|
|
|
|
|
|
|
|
1082
|
|
|
|
|
|
|
### past block 1 ... |
|
1083
|
0
|
|
|
|
|
0
|
push @add_offset, 0; |
|
1084
|
0
|
|
|
|
|
0
|
push @add_mult, 1; |
|
1085
|
0
|
|
|
|
|
0
|
push @add_top_no_extra_pow, 0; |
|
1086
|
0
|
|
|
|
|
0
|
push @add_log2_extras, 1; |
|
1087
|
|
|
|
|
|
|
|
|
1088
|
|
|
|
|
|
|
} else { |
|
1089
|
|
|
|
|
|
|
### block 3 second octant ... |
|
1090
|
0
|
|
|
|
|
0
|
($x,$y) = ($y-1,$x-1); |
|
1091
|
0
|
|
|
|
|
0
|
$depth = 1; |
|
1092
|
0
|
|
|
|
|
0
|
$mirror = 1; |
|
1093
|
|
|
|
|
|
|
|
|
1094
|
|
|
|
|
|
|
### past block 0 lower, excluding diagonal ... |
|
1095
|
0
|
|
|
|
|
0
|
push @add_offset, -1; |
|
1096
|
0
|
|
|
|
|
0
|
push @add_mult, 1; |
|
1097
|
0
|
|
|
|
|
0
|
push @add_top_no_extra_pow, 0; |
|
1098
|
0
|
|
|
|
|
0
|
push @add_log2_extras, 0; |
|
1099
|
0
|
|
|
|
|
0
|
$n -= 1; # excluding diagonal |
|
1100
|
|
|
|
|
|
|
|
|
1101
|
|
|
|
|
|
|
### past block 1,2, excluding leading diagonal ... |
|
1102
|
0
|
|
|
|
|
0
|
push @add_offset, 0; |
|
1103
|
0
|
|
|
|
|
0
|
push @add_mult, 2; |
|
1104
|
0
|
|
|
|
|
0
|
push @add_top_no_extra_pow, 0; |
|
1105
|
0
|
|
|
|
|
0
|
push @add_log2_extras, 1; |
|
1106
|
0
|
|
|
|
|
0
|
$n -= 1; # excluding leading diagonal |
|
1107
|
|
|
|
|
|
|
} |
|
1108
|
|
|
|
|
|
|
} else { |
|
1109
|
|
|
|
|
|
|
### second quadrant ... |
|
1110
|
0
|
|
|
|
|
0
|
$x = 2-$x; |
|
1111
|
|
|
|
|
|
|
### X mirror to: "x=$x y=$y" |
|
1112
|
|
|
|
|
|
|
|
|
1113
|
0
|
0
|
|
|
|
0
|
if ($y >= $x) { |
|
1114
|
|
|
|
|
|
|
### block 4 third octant ... |
|
1115
|
0
|
|
|
|
|
0
|
($x,$y) = ($y-1,$x-1); |
|
1116
|
|
|
|
|
|
|
### transpose to: "x=$x y=$y" |
|
1117
|
0
|
|
|
|
|
0
|
$depth = 1; |
|
1118
|
|
|
|
|
|
|
|
|
1119
|
|
|
|
|
|
|
### past block 0 lower, excluding diagonal ... |
|
1120
|
0
|
|
|
|
|
0
|
push @add_offset, -1; |
|
1121
|
0
|
|
|
|
|
0
|
push @add_mult, 1; |
|
1122
|
0
|
|
|
|
|
0
|
push @add_top_no_extra_pow, 0; |
|
1123
|
0
|
|
|
|
|
0
|
push @add_log2_extras, 0; |
|
1124
|
0
|
|
|
|
|
0
|
$n -= 1; # excluding diagonal |
|
1125
|
|
|
|
|
|
|
|
|
1126
|
|
|
|
|
|
|
### past block 1,2, excluding leading diagonal ... |
|
1127
|
0
|
|
|
|
|
0
|
push @add_offset, 0; |
|
1128
|
0
|
|
|
|
|
0
|
push @add_mult, 2; |
|
1129
|
0
|
|
|
|
|
0
|
push @add_top_no_extra_pow, 0; |
|
1130
|
0
|
|
|
|
|
0
|
push @add_log2_extras, 1; |
|
1131
|
0
|
|
|
|
|
0
|
$n -= 1; # excluding leading diagonal |
|
1132
|
|
|
|
|
|
|
|
|
1133
|
|
|
|
|
|
|
### past block 3 ... |
|
1134
|
0
|
|
|
|
|
0
|
push @add_offset, 1; |
|
1135
|
0
|
|
|
|
|
0
|
push @add_mult, 1; |
|
1136
|
0
|
|
|
|
|
0
|
push @add_top_no_extra_pow, 0; |
|
1137
|
0
|
|
|
|
|
0
|
push @add_log2_extras, 1; |
|
1138
|
|
|
|
|
|
|
|
|
1139
|
|
|
|
|
|
|
} else { |
|
1140
|
|
|
|
|
|
|
### block 5 fourth octant ... |
|
1141
|
0
|
|
|
|
|
0
|
$mirror = 1; |
|
1142
|
0
|
|
|
|
|
0
|
$log2_extras = 0; |
|
1143
|
|
|
|
|
|
|
|
|
1144
|
|
|
|
|
|
|
### past block 0 lower, excluding diagonal ... |
|
1145
|
0
|
|
|
|
|
0
|
push @add_offset, -1; |
|
1146
|
0
|
|
|
|
|
0
|
push @add_mult, 1; |
|
1147
|
0
|
|
|
|
|
0
|
push @add_top_no_extra_pow, 0; |
|
1148
|
0
|
|
|
|
|
0
|
push @add_log2_extras, 0; |
|
1149
|
0
|
|
|
|
|
0
|
$n -= 1; # excluding diagonal |
|
1150
|
|
|
|
|
|
|
|
|
1151
|
|
|
|
|
|
|
### past block 1,2, excluding leading diagonal ... |
|
1152
|
0
|
|
|
|
|
0
|
push @add_offset, 0; |
|
1153
|
0
|
|
|
|
|
0
|
push @add_mult, 2; |
|
1154
|
0
|
|
|
|
|
0
|
push @add_top_no_extra_pow, 0; |
|
1155
|
0
|
|
|
|
|
0
|
push @add_log2_extras, 1; |
|
1156
|
0
|
|
|
|
|
0
|
$n -= 1; # unduplicate leading diagonal |
|
1157
|
|
|
|
|
|
|
|
|
1158
|
|
|
|
|
|
|
### past block 3,4 ... |
|
1159
|
0
|
|
|
|
|
0
|
push @add_offset, 1; |
|
1160
|
0
|
|
|
|
|
0
|
push @add_mult, 2; |
|
1161
|
0
|
|
|
|
|
0
|
push @add_top_no_extra_pow, 0; |
|
1162
|
0
|
|
|
|
|
0
|
push @add_log2_extras, 1; |
|
1163
|
0
|
|
|
|
|
0
|
$n -= 1; # excluding block4 diagonal |
|
1164
|
|
|
|
|
|
|
} |
|
1165
|
|
|
|
|
|
|
} |
|
1166
|
|
|
|
|
|
|
} |
|
1167
|
|
|
|
|
|
|
|
|
1168
|
|
|
|
|
|
|
} elsif ($parts eq 'side') { |
|
1169
|
|
|
|
|
|
|
### parts==side ... |
|
1170
|
0
|
0
|
0
|
|
|
0
|
if ($x < 0 || $y < 0) { |
|
1171
|
0
|
|
|
|
|
0
|
return undef; |
|
1172
|
|
|
|
|
|
|
} |
|
1173
|
0
|
0
|
0
|
|
|
0
|
if ($x <= 1 && $y <= 1) { |
|
1174
|
0
|
|
|
|
|
0
|
return $yxside_to_n[$y][$x]; |
|
1175
|
|
|
|
|
|
|
} |
|
1176
|
|
|
|
|
|
|
|
|
1177
|
0
|
0
|
|
|
|
0
|
if ($y > $x) { |
|
1178
|
|
|
|
|
|
|
### second octant ... |
|
1179
|
0
|
|
|
|
|
0
|
($x,$y) = ($y+1,$x+1); |
|
1180
|
0
|
|
|
|
|
0
|
$depth = -1; |
|
1181
|
0
|
|
|
|
|
0
|
$mirror = 1; |
|
1182
|
0
|
|
|
|
|
0
|
$log2_extras = 0; |
|
1183
|
0
|
|
|
|
|
0
|
$n -= 1; # excluding diagonal |
|
1184
|
|
|
|
|
|
|
|
|
1185
|
|
|
|
|
|
|
### past block 1 ... |
|
1186
|
0
|
|
|
|
|
0
|
push @add_offset, 0; |
|
1187
|
0
|
|
|
|
|
0
|
push @add_mult, 1; |
|
1188
|
0
|
|
|
|
|
0
|
push @add_top_no_extra_pow, 0; |
|
1189
|
0
|
|
|
|
|
0
|
push @add_log2_extras, 1; |
|
1190
|
|
|
|
|
|
|
} |
|
1191
|
|
|
|
|
|
|
|
|
1192
|
|
|
|
|
|
|
|
|
1193
|
|
|
|
|
|
|
} elsif ($parts eq '2') { |
|
1194
|
|
|
|
|
|
|
### parts==2 ... |
|
1195
|
|
|
|
|
|
|
# if ($x == 0) { |
|
1196
|
|
|
|
|
|
|
# if ($y == 1) { return 0; } |
|
1197
|
|
|
|
|
|
|
# } |
|
1198
|
|
|
|
|
|
|
# if ($y == 1) { |
|
1199
|
|
|
|
|
|
|
# if ($x == 1) { return 1; } |
|
1200
|
|
|
|
|
|
|
# if ($x == -1) { return 2; } |
|
1201
|
|
|
|
|
|
|
# } |
|
1202
|
|
|
|
|
|
|
# if ($x < 0) { |
|
1203
|
|
|
|
|
|
|
# ### initial mirror second quadrant ... |
|
1204
|
|
|
|
|
|
|
# $x = -$x; |
|
1205
|
|
|
|
|
|
|
# $mirror = 1; |
|
1206
|
|
|
|
|
|
|
# push @add_offset, -1; |
|
1207
|
|
|
|
|
|
|
# push @add_mult, 1; |
|
1208
|
|
|
|
|
|
|
# } |
|
1209
|
|
|
|
|
|
|
} |
|
1210
|
|
|
|
|
|
|
|
|
1211
|
42
|
50
|
33
|
|
|
119
|
if ($x == 0 || $y == 0) { |
|
1212
|
|
|
|
|
|
|
### nothing on axes after origin ... |
|
1213
|
0
|
|
|
|
|
0
|
return undef; |
|
1214
|
|
|
|
|
|
|
} |
|
1215
|
|
|
|
|
|
|
|
|
1216
|
42
|
|
|
|
|
33
|
for (;;) { |
|
1217
|
|
|
|
|
|
|
### at: "x=$x,y=$y n=$n pow=$pow depth=$depth mirror=$mirror log2_extras=$log2_extras top_extra=$top_extra top_no_extra_pow=$top_no_extra_pow" |
|
1218
|
|
|
|
|
|
|
### assert: $x >= 0 |
|
1219
|
|
|
|
|
|
|
### assert: $x < 2 * $pow |
|
1220
|
|
|
|
|
|
|
### assert: $y >= 0 |
|
1221
|
|
|
|
|
|
|
### assert: $y <= $x |
|
1222
|
|
|
|
|
|
|
|
|
1223
|
42
|
100
|
|
|
|
56
|
if ($x <= 3) { |
|
1224
|
|
|
|
|
|
|
### loop small XY ... |
|
1225
|
|
|
|
|
|
|
### $top_no_extra_pow |
|
1226
|
|
|
|
|
|
|
|
|
1227
|
24
|
100
|
|
|
|
31
|
if ($x == 3) { |
|
1228
|
20
|
50
|
|
|
|
28
|
if (! $log2_extras) { |
|
1229
|
0
|
0
|
|
|
|
0
|
if ($y == 1) { |
|
1230
|
|
|
|
|
|
|
### no log2_extras ... |
|
1231
|
0
|
|
|
|
|
0
|
return undef; |
|
1232
|
|
|
|
|
|
|
} |
|
1233
|
0
|
0
|
|
|
|
0
|
if (! $mirror) { |
|
1234
|
|
|
|
|
|
|
### no log2_extras, N decrement, (not mirrored) ... |
|
1235
|
0
|
|
|
|
|
0
|
$n -= 1; |
|
1236
|
|
|
|
|
|
|
} |
|
1237
|
|
|
|
|
|
|
} |
|
1238
|
20
|
50
|
|
|
|
29
|
if ($top_no_extra_pow == 4) { |
|
1239
|
0
|
0
|
|
|
|
0
|
if ($y == 3) { |
|
1240
|
|
|
|
|
|
|
### no top extra, so no such point ... |
|
1241
|
0
|
|
|
|
|
0
|
return undef; |
|
1242
|
|
|
|
|
|
|
} |
|
1243
|
|
|
|
|
|
|
### top_no_extra_pow, N decrement by mirror: $mirror |
|
1244
|
0
|
|
|
|
|
0
|
$n -= $mirror; |
|
1245
|
|
|
|
|
|
|
} |
|
1246
|
|
|
|
|
|
|
} |
|
1247
|
|
|
|
|
|
|
|
|
1248
|
24
|
|
|
|
|
27
|
my $nyx = $yx_to_n[$mirror][$y][$x]; |
|
1249
|
|
|
|
|
|
|
### $nyx |
|
1250
|
24
|
50
|
|
|
|
38
|
if (! defined $nyx) { |
|
1251
|
|
|
|
|
|
|
### no such point ... |
|
1252
|
0
|
|
|
|
|
0
|
return undef; |
|
1253
|
|
|
|
|
|
|
} |
|
1254
|
24
|
|
|
|
|
13
|
$n += $nyx; |
|
1255
|
24
|
|
|
|
|
24
|
$depth += $x; |
|
1256
|
24
|
|
|
|
|
22
|
last; |
|
1257
|
|
|
|
|
|
|
} |
|
1258
|
|
|
|
|
|
|
|
|
1259
|
18
|
100
|
|
|
|
48
|
if ($x == $pow) { |
|
|
|
50
|
|
|
|
|
|
|
1260
|
4
|
50
|
|
|
|
7
|
if ($y == $pow) { |
|
1261
|
|
|
|
|
|
|
### mid X=pow,Y=pow, stop ... |
|
1262
|
4
|
|
|
|
|
5
|
$depth += $pow; |
|
1263
|
4
|
|
|
|
|
3
|
last; |
|
1264
|
|
|
|
|
|
|
} |
|
1265
|
|
|
|
|
|
|
### X=pow no such point ... |
|
1266
|
0
|
|
|
|
|
0
|
return undef; |
|
1267
|
|
|
|
|
|
|
} elsif ($x == $pow+1) { |
|
1268
|
14
|
100
|
|
|
|
22
|
if ($y == $pow-1) { |
|
1269
|
|
|
|
|
|
|
### mid X=pow+1,Y=pow-1, stop ... |
|
1270
|
5
|
|
|
|
|
5
|
$depth += $pow+1; |
|
1271
|
5
|
100
|
|
|
|
7
|
$n += ($mirror ? 2 : 0); |
|
1272
|
5
|
|
|
|
|
15
|
last; |
|
1273
|
|
|
|
|
|
|
} |
|
1274
|
9
|
100
|
|
|
|
13
|
if ($y == $pow) { |
|
1275
|
|
|
|
|
|
|
### mid X=pow+1,Y=pow, stop ... |
|
1276
|
6
|
|
|
|
|
5
|
$depth += $pow+1; |
|
1277
|
6
|
|
|
|
|
4
|
$n += 1; |
|
1278
|
6
|
|
|
|
|
5
|
last; |
|
1279
|
|
|
|
|
|
|
} |
|
1280
|
3
|
50
|
|
|
|
7
|
if ($y == $pow+1) { |
|
1281
|
|
|
|
|
|
|
### mid X=pow+1,Y=pow+1, stop ... |
|
1282
|
3
|
|
|
|
|
4
|
$depth += $pow+1; |
|
1283
|
3
|
50
|
|
|
|
6
|
$n += ($mirror ? 0 : 2); |
|
1284
|
3
|
|
|
|
|
3
|
last; |
|
1285
|
|
|
|
|
|
|
} |
|
1286
|
|
|
|
|
|
|
} |
|
1287
|
|
|
|
|
|
|
|
|
1288
|
0
|
0
|
|
|
|
0
|
if ($x < $pow) { |
|
1289
|
|
|
|
|
|
|
### base block ... |
|
1290
|
0
|
|
|
|
|
0
|
$top_no_extra_pow = 0; |
|
1291
|
|
|
|
|
|
|
|
|
1292
|
|
|
|
|
|
|
} else { |
|
1293
|
0
|
|
|
|
|
0
|
$x -= $pow; |
|
1294
|
0
|
|
|
|
|
0
|
$depth += $pow; |
|
1295
|
0
|
0
|
|
|
|
0
|
if ($y < $pow) { |
|
1296
|
0
|
|
|
|
|
0
|
$y = $pow-$y; |
|
1297
|
|
|
|
|
|
|
### Y flip to: $y |
|
1298
|
|
|
|
|
|
|
|
|
1299
|
0
|
0
|
|
|
|
0
|
if ($y > $x) { |
|
1300
|
|
|
|
|
|
|
### block lower, excluding diagonal ... |
|
1301
|
0
|
|
|
|
|
0
|
($x,$y) = ($y+1,$x+1); |
|
1302
|
|
|
|
|
|
|
### rotate to: "x=$x y=$y" |
|
1303
|
|
|
|
|
|
|
### assert: $y >= 0 |
|
1304
|
0
|
0
|
0
|
|
|
0
|
unless ($y && $x < $pow) { |
|
1305
|
|
|
|
|
|
|
### Y=0 or X>=pow, no such point ... |
|
1306
|
0
|
|
|
|
|
0
|
return undef; |
|
1307
|
|
|
|
|
|
|
} |
|
1308
|
0
|
|
|
|
|
0
|
$top_no_extra_pow = 0; |
|
1309
|
0
|
|
|
|
|
0
|
$log2_extras = 0; |
|
1310
|
0
|
|
|
|
|
0
|
$depth -= 1; |
|
1311
|
0
|
0
|
|
|
|
0
|
if ($mirror) { |
|
1312
|
|
|
|
|
|
|
### offset past extend,upper, undup diagonal, (mirrored) ... |
|
1313
|
0
|
|
|
|
|
0
|
push @add_offset, $depth+1; |
|
1314
|
0
|
|
|
|
|
0
|
push @add_mult, 2; |
|
1315
|
0
|
|
|
|
|
0
|
push @add_top_no_extra_pow, $top_no_extra_pow/2; |
|
1316
|
0
|
|
|
|
|
0
|
push @add_log2_extras, 1; |
|
1317
|
0
|
|
|
|
|
0
|
$n -= 1; # duplicated diagonal upper,lower |
|
1318
|
|
|
|
|
|
|
} |
|
1319
|
|
|
|
|
|
|
|
|
1320
|
|
|
|
|
|
|
} else { |
|
1321
|
|
|
|
|
|
|
### block upper ... |
|
1322
|
0
|
0
|
|
|
|
0
|
if ($mirror) { |
|
1323
|
|
|
|
|
|
|
### offset past extend (mirrored) ... |
|
1324
|
0
|
|
|
|
|
0
|
push @add_offset, $depth; |
|
1325
|
0
|
|
|
|
|
0
|
push @add_mult, 1; |
|
1326
|
0
|
|
|
|
|
0
|
push @add_top_no_extra_pow, $top_no_extra_pow/2; |
|
1327
|
0
|
|
|
|
|
0
|
push @add_log2_extras, 1; |
|
1328
|
|
|
|
|
|
|
} else { |
|
1329
|
0
|
0
|
|
|
|
0
|
if ($x < $pow-1) { |
|
1330
|
|
|
|
|
|
|
### offset past lower, unduplicate diagonal, (not mirrored) ... |
|
1331
|
0
|
|
|
|
|
0
|
push @add_offset, $depth-1; |
|
1332
|
0
|
|
|
|
|
0
|
push @add_mult, 1; |
|
1333
|
0
|
|
|
|
|
0
|
push @add_top_no_extra_pow, 0; |
|
1334
|
0
|
|
|
|
|
0
|
push @add_log2_extras, 0; |
|
1335
|
0
|
|
|
|
|
0
|
$n -= 1; # duplicated diagonal upper,lower |
|
1336
|
|
|
|
|
|
|
} |
|
1337
|
|
|
|
|
|
|
} |
|
1338
|
0
|
0
|
|
|
|
0
|
$top_no_extra_pow = ($log2_extras ? 0 : $pow); |
|
1339
|
0
|
|
|
|
|
0
|
$log2_extras = 1; |
|
1340
|
0
|
|
|
|
|
0
|
$mirror ^= 1; |
|
1341
|
|
|
|
|
|
|
} |
|
1342
|
|
|
|
|
|
|
} else { |
|
1343
|
|
|
|
|
|
|
### extend, same ... |
|
1344
|
0
|
0
|
|
|
|
0
|
unless ($x) { |
|
1345
|
|
|
|
|
|
|
### on X=0, past block3, no such point ... |
|
1346
|
0
|
|
|
|
|
0
|
return undef; |
|
1347
|
|
|
|
|
|
|
} |
|
1348
|
0
|
0
|
|
|
|
0
|
if ($mirror) { |
|
1349
|
|
|
|
|
|
|
### no offset past lower at X=pow-1 ... |
|
1350
|
|
|
|
|
|
|
} else { |
|
1351
|
0
|
0
|
|
|
|
0
|
if ($x < $pow-1) { |
|
1352
|
|
|
|
|
|
|
### offset past lower (not mirrored) ... |
|
1353
|
0
|
|
|
|
|
0
|
push @add_offset, $depth-1; |
|
1354
|
0
|
|
|
|
|
0
|
push @add_mult, 1; |
|
1355
|
0
|
|
|
|
|
0
|
push @add_top_no_extra_pow, 0; |
|
1356
|
0
|
|
|
|
|
0
|
push @add_log2_extras, 0; |
|
1357
|
0
|
|
|
|
|
0
|
$n -= 1; # duplicated diagonal |
|
1358
|
|
|
|
|
|
|
} |
|
1359
|
|
|
|
|
|
|
### offset past upper (not mirrored) ... |
|
1360
|
0
|
|
|
|
|
0
|
push @add_offset, $depth; |
|
1361
|
0
|
|
|
|
|
0
|
push @add_mult, 1; |
|
1362
|
0
|
0
|
|
|
|
0
|
push @add_top_no_extra_pow, ($log2_extras ? 0 : $pow); |
|
1363
|
0
|
|
|
|
|
0
|
push @add_log2_extras, 1; |
|
1364
|
|
|
|
|
|
|
# if (! $log2_extras) { |
|
1365
|
|
|
|
|
|
|
# ### no log2_extras so N decrement ... |
|
1366
|
|
|
|
|
|
|
# $n -= 1; |
|
1367
|
|
|
|
|
|
|
# } |
|
1368
|
|
|
|
|
|
|
} |
|
1369
|
0
|
|
|
|
|
0
|
$y -= $pow; |
|
1370
|
0
|
|
|
|
|
0
|
$log2_extras = 1; |
|
1371
|
0
|
|
|
|
|
0
|
$top_extra = 1; |
|
1372
|
0
|
|
|
|
|
0
|
$top_no_extra_pow /= 2; |
|
1373
|
|
|
|
|
|
|
} |
|
1374
|
|
|
|
|
|
|
} |
|
1375
|
|
|
|
|
|
|
|
|
1376
|
0
|
0
|
|
|
|
0
|
if (--$exp < 0) { |
|
1377
|
|
|
|
|
|
|
### final xy: "$x,$y" |
|
1378
|
0
|
0
|
0
|
|
|
0
|
if ($x == 1 && $y == 1) { |
|
|
|
0
|
0
|
|
|
|
|
|
1379
|
|
|
|
|
|
|
} elsif ($x == 1 && $y == 2) { |
|
1380
|
0
|
|
|
|
|
0
|
$depth += 1; |
|
1381
|
|
|
|
|
|
|
} else { |
|
1382
|
|
|
|
|
|
|
### not in final position ... |
|
1383
|
0
|
|
|
|
|
0
|
return undef; |
|
1384
|
|
|
|
|
|
|
} |
|
1385
|
0
|
|
|
|
|
0
|
last; |
|
1386
|
|
|
|
|
|
|
} |
|
1387
|
0
|
|
|
|
|
0
|
$pow /= 2; |
|
1388
|
|
|
|
|
|
|
} |
|
1389
|
|
|
|
|
|
|
|
|
1390
|
|
|
|
|
|
|
|
|
1391
|
|
|
|
|
|
|
### final depth: $depth |
|
1392
|
|
|
|
|
|
|
### $n |
|
1393
|
|
|
|
|
|
|
### depth_to_n: $self->tree_depth_to_n($depth) |
|
1394
|
|
|
|
|
|
|
### add_offset: join(',',@add_offset) |
|
1395
|
|
|
|
|
|
|
### add_mult: join(',',@add_mult) |
|
1396
|
|
|
|
|
|
|
### assert: scalar(@add_offset) == scalar(@add_mult) |
|
1397
|
|
|
|
|
|
|
### assert: scalar(@add_offset) == scalar(@add_log2_extras) |
|
1398
|
|
|
|
|
|
|
### assert: scalar(@add_offset) == scalar(@add_top_no_extra_pow) |
|
1399
|
|
|
|
|
|
|
|
|
1400
|
42
|
|
|
|
|
66
|
$n += $self->tree_depth_to_n($depth); |
|
1401
|
|
|
|
|
|
|
|
|
1402
|
42
|
100
|
|
|
|
64
|
if (@add_offset) { |
|
1403
|
34
|
|
|
|
|
56
|
foreach my $i (0 .. $#add_offset) { |
|
1404
|
34
|
|
|
|
|
36
|
my $d = $add_offset[$i] = $depth - $add_offset[$i]; |
|
1405
|
|
|
|
|
|
|
|
|
1406
|
34
|
50
|
|
|
|
42
|
if ($d+1 == $add_top_no_extra_pow[$i]) { |
|
1407
|
|
|
|
|
|
|
### no top_extra, decrement applied: "d=$d" |
|
1408
|
0
|
|
|
|
|
0
|
$n -= 1; |
|
1409
|
|
|
|
|
|
|
} |
|
1410
|
34
|
0
|
33
|
|
|
74
|
if (! $add_log2_extras[$i] && $d >= 3 && _is_pow2($d+1)) { |
|
|
|
|
33
|
|
|
|
|
|
1411
|
|
|
|
|
|
|
### no log2_extras, decrement applied: "depth d=$d" |
|
1412
|
0
|
|
|
|
|
0
|
$n -= 1; |
|
1413
|
|
|
|
|
|
|
} |
|
1414
|
|
|
|
|
|
|
|
|
1415
|
|
|
|
|
|
|
### add: "depth=$add_offset[$i] is "._depth_to_octant_added([$add_offset[$i]],[1],$zero)." x $add_mult[$i] log2_extras=$add_log2_extras[$i] top_no_extra_pow=$add_top_no_extra_pow[$i]" |
|
1416
|
|
|
|
|
|
|
} |
|
1417
|
|
|
|
|
|
|
|
|
1418
|
|
|
|
|
|
|
### total add: _depth_to_octant_added ([@add_offset], [@add_mult], $zero) |
|
1419
|
34
|
|
|
|
|
65
|
$n += _depth_to_octant_added (\@add_offset, \@add_mult, $zero); |
|
1420
|
|
|
|
|
|
|
} |
|
1421
|
|
|
|
|
|
|
|
|
1422
|
|
|
|
|
|
|
### xy_to_n() return n: $n |
|
1423
|
42
|
|
|
|
|
75
|
return $n; |
|
1424
|
|
|
|
|
|
|
} |
|
1425
|
|
|
|
|
|
|
|
|
1426
|
|
|
|
|
|
|
|
|
1427
|
|
|
|
|
|
|
#------------------------------------------------------------------------------ |
|
1428
|
|
|
|
|
|
|
# rect_to_n_range() |
|
1429
|
|
|
|
|
|
|
|
|
1430
|
|
|
|
|
|
|
# not exact |
|
1431
|
|
|
|
|
|
|
sub rect_to_n_range { |
|
1432
|
0
|
|
|
0
|
1
|
0
|
my ($self, $x1,$y1, $x2,$y2) = @_; |
|
1433
|
|
|
|
|
|
|
### OneOfEight rect_to_n_range(): "$x1,$y1 $x2,$y2" |
|
1434
|
|
|
|
|
|
|
|
|
1435
|
0
|
|
|
|
|
0
|
$x1 = round_nearest ($x1); |
|
1436
|
0
|
|
|
|
|
0
|
$y1 = round_nearest ($y1); |
|
1437
|
0
|
|
|
|
|
0
|
$x2 = round_nearest ($x2); |
|
1438
|
0
|
|
|
|
|
0
|
$y2 = round_nearest ($y2); |
|
1439
|
0
|
0
|
|
|
|
0
|
($x1,$x2) = ($x2,$x1) if $x1 > $x2; |
|
1440
|
0
|
0
|
|
|
|
0
|
($y1,$y2) = ($y2,$y1) if $y1 > $y2; |
|
1441
|
0
|
|
|
|
|
0
|
my $parts = $self->{'parts'}; |
|
1442
|
|
|
|
|
|
|
|
|
1443
|
0
|
0
|
|
|
|
0
|
my $extra = ($parts eq '3side' ? 2 : 0); |
|
1444
|
0
|
|
|
|
|
0
|
my ($pow,$exp) = round_down_pow (max(1, |
|
1445
|
|
|
|
|
|
|
abs($x1), |
|
1446
|
|
|
|
|
|
|
abs($x2)+$extra, |
|
1447
|
|
|
|
|
|
|
abs($y1), |
|
1448
|
|
|
|
|
|
|
abs($y2)+$extra), |
|
1449
|
|
|
|
|
|
|
2); |
|
1450
|
|
|
|
|
|
|
|
|
1451
|
0
|
0
|
|
|
|
0
|
if ($parts eq '1') { |
|
1452
|
|
|
|
|
|
|
# (total(2^k)+3)/4 = ((16*4^k + 24*k - 7)/9 + 3)/4 |
|
1453
|
|
|
|
|
|
|
# = (16*4^k + 24*k - 7 + 27)/9/4 |
|
1454
|
|
|
|
|
|
|
# = (16*4^k + 24*k + 20)/9/4 |
|
1455
|
|
|
|
|
|
|
# = (4*4^k + 6*k + 5)/9 |
|
1456
|
|
|
|
|
|
|
# applied to k=exp+1 2*pow=2^k |
|
1457
|
|
|
|
|
|
|
# = (4* 2*pow * 2*pow + 6*(exp+1) + 5)/9 |
|
1458
|
|
|
|
|
|
|
# = (16*pow*pow + 6*exp + 11)/9 |
|
1459
|
0
|
|
|
|
|
0
|
return (0, (16*$pow*$pow + 6*$exp + 11) / 9); |
|
1460
|
|
|
|
|
|
|
} |
|
1461
|
|
|
|
|
|
|
|
|
1462
|
|
|
|
|
|
|
# $parts eq '4' |
|
1463
|
|
|
|
|
|
|
# total(2^k) = (16*4^k + 24*k - 7)/9 |
|
1464
|
|
|
|
|
|
|
# applied to k=exp+1 2*pow=2^k |
|
1465
|
|
|
|
|
|
|
# = (16 * 2*pow * 2*pow + 24*(exp+1) - 7) / 9 |
|
1466
|
|
|
|
|
|
|
# = (64*pow*pow + 24*exp + 24-7) / 9 |
|
1467
|
|
|
|
|
|
|
# = (64*pow*pow + 24*exp + 17) / 9 |
|
1468
|
0
|
|
|
|
|
0
|
return (0, (64*$pow*$pow + 24*$exp + 17) / 9); |
|
1469
|
|
|
|
|
|
|
} |
|
1470
|
|
|
|
|
|
|
|
|
1471
|
|
|
|
|
|
|
#------------------------------------------------------------------------------ |
|
1472
|
|
|
|
|
|
|
# tree |
|
1473
|
|
|
|
|
|
|
|
|
1474
|
1
|
|
|
1
|
|
14
|
use constant tree_num_roots => 1; |
|
|
1
|
|
|
|
|
3
|
|
|
|
1
|
|
|
|
|
3138
|
|
|
1475
|
|
|
|
|
|
|
|
|
1476
|
|
|
|
|
|
|
sub tree_n_to_depth { |
|
1477
|
0
|
|
|
0
|
1
|
0
|
my ($self, $n) = @_; |
|
1478
|
|
|
|
|
|
|
### tree_n_to_depth(): "$n" |
|
1479
|
|
|
|
|
|
|
|
|
1480
|
0
|
0
|
|
|
|
0
|
if ($n < 0) { |
|
1481
|
0
|
|
|
|
|
0
|
return undef; |
|
1482
|
|
|
|
|
|
|
} |
|
1483
|
0
|
|
|
|
|
0
|
my ($depth) = _n0_to_depth_and_rem($self, int($n)); |
|
1484
|
|
|
|
|
|
|
### n0 depth: $depth |
|
1485
|
0
|
|
|
|
|
0
|
return $depth; |
|
1486
|
|
|
|
|
|
|
} |
|
1487
|
|
|
|
|
|
|
|
|
1488
|
|
|
|
|
|
|
my @surround8_dx = (1, 1, 0, -1, -1, -1, 0, 1); |
|
1489
|
|
|
|
|
|
|
my @surround8_dy = (0, 1, 1, 1, 0, -1, -1, -1); |
|
1490
|
|
|
|
|
|
|
|
|
1491
|
|
|
|
|
|
|
sub tree_n_children { |
|
1492
|
0
|
|
|
0
|
1
|
0
|
my ($self, $n) = @_; |
|
1493
|
|
|
|
|
|
|
### tree_n_children(): $n |
|
1494
|
|
|
|
|
|
|
|
|
1495
|
0
|
0
|
|
|
|
0
|
my ($x,$y) = $self->n_to_xy($n) |
|
1496
|
|
|
|
|
|
|
or return; |
|
1497
|
|
|
|
|
|
|
### $x |
|
1498
|
|
|
|
|
|
|
### $y |
|
1499
|
|
|
|
|
|
|
|
|
1500
|
0
|
|
|
|
|
0
|
my $depth = $self->tree_n_to_depth($n) + 1; |
|
1501
|
|
|
|
|
|
|
return |
|
1502
|
0
|
|
|
|
|
0
|
sort {$a<=>$b} |
|
|
0
|
|
|
|
|
0
|
|
|
1503
|
0
|
|
|
|
|
0
|
grep { $self->tree_n_to_depth($_) == $depth } |
|
1504
|
0
|
|
|
|
|
0
|
map { $self->xy_to_n_list($x + $surround8_dx[$_], |
|
1505
|
|
|
|
|
|
|
$y + $surround8_dy[$_]) } |
|
1506
|
|
|
|
|
|
|
0 .. $#surround8_dx; |
|
1507
|
|
|
|
|
|
|
} |
|
1508
|
|
|
|
|
|
|
sub tree_n_parent { |
|
1509
|
0
|
|
|
0
|
1
|
0
|
my ($self, $n) = @_; |
|
1510
|
|
|
|
|
|
|
|
|
1511
|
0
|
0
|
|
|
|
0
|
if ($n < 0) { |
|
1512
|
0
|
|
|
|
|
0
|
return undef; |
|
1513
|
|
|
|
|
|
|
} |
|
1514
|
0
|
0
|
|
|
|
0
|
my ($x,$y) = $self->n_to_xy($n) |
|
1515
|
|
|
|
|
|
|
or return undef; |
|
1516
|
0
|
|
|
|
|
0
|
my $parent_depth = $self->tree_n_to_depth($n) - 1; |
|
1517
|
|
|
|
|
|
|
|
|
1518
|
0
|
|
|
|
|
0
|
foreach my $i (0 .. $#surround8_dx) { |
|
1519
|
0
|
|
|
|
|
0
|
my $pn = $self->xy_to_n($x + $surround8_dx[$i], |
|
1520
|
|
|
|
|
|
|
$y + $surround8_dy[$i]); |
|
1521
|
0
|
0
|
0
|
|
|
0
|
if (defined $pn && $self->tree_n_to_depth($pn) == $parent_depth) { |
|
1522
|
0
|
|
|
|
|
0
|
return $pn; |
|
1523
|
|
|
|
|
|
|
} |
|
1524
|
|
|
|
|
|
|
} |
|
1525
|
0
|
|
|
|
|
0
|
return undef; |
|
1526
|
|
|
|
|
|
|
} |
|
1527
|
|
|
|
|
|
|
|
|
1528
|
|
|
|
|
|
|
|
|
1529
|
|
|
|
|
|
|
#------------------------------------------------------------------------------ |
|
1530
|
|
|
|
|
|
|
# tree_depth_to_n() |
|
1531
|
|
|
|
|
|
|
|
|
1532
|
|
|
|
|
|
|
# 1 1 1 |
|
1533
|
|
|
|
|
|
|
# 2 9 1001 |
|
1534
|
|
|
|
|
|
|
# 4 33 100001 |
|
1535
|
|
|
|
|
|
|
# 8 121 1111001 |
|
1536
|
|
|
|
|
|
|
# 16 465 111010001 |
|
1537
|
|
|
|
|
|
|
# 32 1833 11100101001 |
|
1538
|
|
|
|
|
|
|
# 64 7297 1110010000001 |
|
1539
|
|
|
|
|
|
|
# 128 29145 111000111011001 |
|
1540
|
|
|
|
|
|
|
# 256 116529 11100011100110001 |
|
1541
|
|
|
|
|
|
|
# 512 466057 1110001110010001001 |
|
1542
|
|
|
|
|
|
|
# 1024 1864161 111000111000111100001 |
|
1543
|
|
|
|
|
|
|
# |
|
1544
|
|
|
|
|
|
|
# before 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 |
|
1545
|
|
|
|
|
|
|
# side = 0, 1,3, 6,9,14,21, 27,30,35,43,52,63,80,100, 112 |
|
1546
|
|
|
|
|
|
|
# 3,5,8,9,11,17,20,12 |
|
1547
|
|
|
|
|
|
|
# |
|
1548
|
|
|
|
|
|
|
# side(5) = side(4) + side(2) + 2*side(1) + 2 |
|
1549
|
|
|
|
|
|
|
# = 6 + 1 + 2*0 + 2 = 9 |
|
1550
|
|
|
|
|
|
|
# side(9) = side(8) + side(1) + 2 |
|
1551
|
|
|
|
|
|
|
# side(10) = side(8) + side(3) + 2*side(2) + 3 = 27 + 3 + 2*1 + 3 = 35 |
|
1552
|
|
|
|
|
|
|
# side(11) = side(8) + side(4) + 2*side(3) + log2(4/4) + 3 = 27+6+2*3+1+3 = 42 |
|
1553
|
|
|
|
|
|
|
# |
|
1554
|
|
|
|
|
|
|
# side(2^k) = 4*side(2^(k-1)) -1 block 1 missing one in corner |
|
1555
|
|
|
|
|
|
|
# + k-2 block 2 extra lower |
|
1556
|
|
|
|
|
|
|
# + 3 centre A,B,C |
|
1557
|
|
|
|
|
|
|
# = 4*side(2^(k-1)) + k |
|
1558
|
|
|
|
|
|
|
# = k + (k-1)*4^1 + (k-2)*4^2 + ... + 2*4^(k-1) + 4^k |
|
1559
|
|
|
|
|
|
|
# eg. k=3 3+2*4+1*16 = 27 |
|
1560
|
|
|
|
|
|
|
# = 1 + 1+4 + 1+4+16 = 1 + 5 + 21 |
|
1561
|
|
|
|
|
|
|
# sum 1+4+...+4^(k-1) = (4^k-1)/3 |
|
1562
|
|
|
|
|
|
|
# side(2^k) = (4^k-1)/3 + (4^(k-1)-1)/3 + ... + (4^1-1)/3 |
|
1563
|
|
|
|
|
|
|
# = (4^k - 1 + 4^(k-1) - 1 + ... + 4^1 - 1)/3 # k terms 4^k to 4^1 |
|
1564
|
|
|
|
|
|
|
# = (4^k + 4^(k-1) + ... + 4^1 - k)/3 |
|
1565
|
|
|
|
|
|
|
# = (4^k + 4^(k-1) + ... + 4^1 + 4^0 - 1 - k)/3 |
|
1566
|
|
|
|
|
|
|
# = ((4^(k+1)-1)/3 - 1 - k)/3 |
|
1567
|
|
|
|
|
|
|
# = (4^(k+1)-1 - 3*k - 3)/9 |
|
1568
|
|
|
|
|
|
|
# = (4*4^k - 3*k - 4)/9 |
|
1569
|
|
|
|
|
|
|
# |
|
1570
|
|
|
|
|
|
|
# side(2^1=2) = 1 |
|
1571
|
|
|
|
|
|
|
# side(2^2=4) = 1 + 1-1 + 1+0 + 1 + 3 = 6 = 4*1 + 2 = 4^1 + 2 |
|
1572
|
|
|
|
|
|
|
# side(2^3=8) = 6 + 6-1 + 6+1 + 6 + 3 = 27 = 4*6 + 3 = 4^2 + 4*2+3 |
|
1573
|
|
|
|
|
|
|
# side(2^4=16) = 27+27-1 +27+2 +27 + 3 = 112 = 4*27 + 4 = 4^3 + 16*2+4*3+4 |
|
1574
|
|
|
|
|
|
|
# |
|
1575
|
|
|
|
|
|
|
# |
|
1576
|
|
|
|
|
|
|
# |
|
1577
|
|
|
|
|
|
|
# centre(2^k) = 2*side(2^(k-1)) + 2*centre(2^(k-1)) |
|
1578
|
|
|
|
|
|
|
# centre(1) = 1 |
|
1579
|
|
|
|
|
|
|
# centre(2) = 4 |
|
1580
|
|
|
|
|
|
|
# centre(4) = 2*side(2) + 2*centre(2) |
|
1581
|
|
|
|
|
|
|
# = 2*side(2) + 2*4 |
|
1582
|
|
|
|
|
|
|
# = 2*1 + 2*4 = 10 |
|
1583
|
|
|
|
|
|
|
# centre(8) = 2*side(4) + 2*centre(4) = 2*6+2*10 = 32 |
|
1584
|
|
|
|
|
|
|
# = 2*side(4) + 2*(2*side(2) + 2*4) |
|
1585
|
|
|
|
|
|
|
# = 2*side(4) + 4*side(2) + 4*4 |
|
1586
|
|
|
|
|
|
|
# = 2*6 + 4*1 + 4*4 = 32 |
|
1587
|
|
|
|
|
|
|
# centre(16) = 2*side(4) + 2*centre(4) = 2*6+2*10 = 32 |
|
1588
|
|
|
|
|
|
|
# = 2*side(8) + 4**side(4) + 8*side(2) + 8 |
|
1589
|
|
|
|
|
|
|
# = 2*27 + 4*6 + 8*1 + 8 = 94 |
|
1590
|
|
|
|
|
|
|
# |
|
1591
|
|
|
|
|
|
|
# 4parts = 4*centre - 7 |
|
1592
|
|
|
|
|
|
|
# 4parts(4) = 4*10-7 = 33 |
|
1593
|
|
|
|
|
|
|
# 4parts(8) = 4*32-7 = 121 |
|
1594
|
|
|
|
|
|
|
# |
|
1595
|
|
|
|
|
|
|
# 3side total 0,1, 4, 9,17 |
|
1596
|
|
|
|
|
|
|
# +1 +3 +5 +8 |
|
1597
|
|
|
|
|
|
|
# |
|
1598
|
|
|
|
|
|
|
# centre(2^k) |
|
1599
|
|
|
|
|
|
|
# = 2*side(2^(k-1)) + 2*centre(2^(k-1)) |
|
1600
|
|
|
|
|
|
|
# = 2*side(2^(k-1) + 2^2*side(2^(k-1) + ... + 2^(k-1)*side(2^1) + 2^(k-1)*4 |
|
1601
|
|
|
|
|
|
|
# k-1 many terms, and constant at end |
|
1602
|
|
|
|
|
|
|
# side(2^k) = (4*4^k - 3*k - 4)/9 |
|
1603
|
|
|
|
|
|
|
# |
|
1604
|
|
|
|
|
|
|
# constant part |
|
1605
|
|
|
|
|
|
|
# 2 + 4 + ... + 2^(k-1) |
|
1606
|
|
|
|
|
|
|
# = 2^k - 2 |
|
1607
|
|
|
|
|
|
|
# eg. k=2 2 |
|
1608
|
|
|
|
|
|
|
# eg. k=3 2 + 4 = 6 |
|
1609
|
|
|
|
|
|
|
# eg. k=4 2 + 4 + 8 = 14 |
|
1610
|
|
|
|
|
|
|
# |
|
1611
|
|
|
|
|
|
|
# linear part |
|
1612
|
|
|
|
|
|
|
# 2*(k-1) + 4*(k-2) + ... + 2^(k-1)*(1) + 2^k*(0) |
|
1613
|
|
|
|
|
|
|
# = 2^(k-1)-1 + 2^(k-2)-1 + ... + 2-1 |
|
1614
|
|
|
|
|
|
|
# = 2*2^k - 2*k - 2 |
|
1615
|
|
|
|
|
|
|
# eg. k=2 2*1 = 2 |
|
1616
|
|
|
|
|
|
|
# eg. k=3 2*2 + 4*1 = 8 |
|
1617
|
|
|
|
|
|
|
# eg. k=4 2*3 + 4*2 + 8*1 = 22 |
|
1618
|
|
|
|
|
|
|
# eg. k=5 2*4 + 4*3 + 8*2 + 16*1 = 52 |
|
1619
|
|
|
|
|
|
|
# |
|
1620
|
|
|
|
|
|
|
# exponential part |
|
1621
|
|
|
|
|
|
|
# 2*4^(k-1) + 4*4^(k-2) + 8*4^(k-3) + ... + 2^(k-1)*4^1 |
|
1622
|
|
|
|
|
|
|
# = 2^(2k-2+1) + 2^(2k-4+2) + 2^(2k-6+3) + ... + 2^(k+1) |
|
1623
|
|
|
|
|
|
|
# = 2^(2k-1) + 2^(2k-2) + 2^(2k-3) + ... + 2^(k+1) |
|
1624
|
|
|
|
|
|
|
# = 2^(k+1) * [ 2^(k-2) + 2^(k-3) + 2^(k-4) + ... + 2^(0) ] |
|
1625
|
|
|
|
|
|
|
# = 2^(k+1) * (2^(k-1) - 1) |
|
1626
|
|
|
|
|
|
|
# = 2^k * (2^k - 2) |
|
1627
|
|
|
|
|
|
|
# eg. k=2 2*4^1 = 8 |
|
1628
|
|
|
|
|
|
|
# eg. k=3 2*4^2 + 4*4^1 = 48 |
|
1629
|
|
|
|
|
|
|
# eg. k=4 2*4^3 + 4*4^2 + 8*4^1 = 224 |
|
1630
|
|
|
|
|
|
|
# eg. k=5 2*4^4 + 4*4^3 + 8*4^2 + 16*4^1 = 960 |
|
1631
|
|
|
|
|
|
|
# |
|
1632
|
|
|
|
|
|
|
# centre(2^k) = (4*(2^k * (2^k - 2)) - 3*(2*2^k-2*k-2) - 4*(2^k-2)) / 9 + 2*2^k |
|
1633
|
|
|
|
|
|
|
# eg. k=2 sidepart = 2*1 = 1 plus |
|
1634
|
|
|
|
|
|
|
# eg. k=3 sidepart = 2*6 + 4*1 = 16 |
|
1635
|
|
|
|
|
|
|
# eg. k=4 sidepart = 2*27 + 4*6 + 8*1 = 86 |
|
1636
|
|
|
|
|
|
|
# = (4*(2^k * (2^k - 2)) - 3*(2*2^k-2*k-2) - 4*(2^k-2)) / 9 + 2*2^k |
|
1637
|
|
|
|
|
|
|
# = (4*2^k*(2^k - 2) - 6*2^k + 3*2*k + 6 - 4*2^k + 8 + 18*2^k) / 9 |
|
1638
|
|
|
|
|
|
|
# = (4*2^k*2^k - 8*2^k - 6*2^k + 3*2*k - 4*2^k + 18*2^k + 14) / 9 |
|
1639
|
|
|
|
|
|
|
# = (4*2^k*2^k + 6*k + 14) / 9 |
|
1640
|
|
|
|
|
|
|
# = (4*depth^2 + 6*k + 14) / 9 |
|
1641
|
|
|
|
|
|
|
# |
|
1642
|
|
|
|
|
|
|
# centre(2^k) = (4*4^k + 6*k + 14) / 9 |
|
1643
|
|
|
|
|
|
|
# side(2^k) = (4*4^k - 3*k - 4) / 9 |
|
1644
|
|
|
|
|
|
|
# diff = (9k+18)/9 = k+2 |
|
1645
|
|
|
|
|
|
|
# double centre(2^(k+1)) - 4*centre(2^k) |
|
1646
|
|
|
|
|
|
|
# = (4*4^(k+1) + 6*(k+1) + 14 - 4*(4*4^k + 6*k + 14)) / 9 |
|
1647
|
|
|
|
|
|
|
# = (4*4*4^k + 6*k + 6 + 14 - 4*4*4^k - 4*6*k - 4*14) / 9 |
|
1648
|
|
|
|
|
|
|
# = (6*k - 4*6*k + 6 + 14 - 4*14) / 9 |
|
1649
|
|
|
|
|
|
|
# = (-18*k - 36) / 9 |
|
1650
|
|
|
|
|
|
|
# = -2*k - 4 |
|
1651
|
|
|
|
|
|
|
# smaller than 4* on each doubling |
|
1652
|
|
|
|
|
|
|
# 6k+14 term only adds extra 6, doesn't go 4*(6k+14) |
|
1653
|
|
|
|
|
|
|
# |
|
1654
|
|
|
|
|
|
|
# side(pow+rem) = side(pow) + side(rem+1) -1 if rem+1=pow |
|
1655
|
|
|
|
|
|
|
# + side(rem) |
|
1656
|
|
|
|
|
|
|
# + side(rem) + log2(rem+1) + 2 |
|
1657
|
|
|
|
|
|
|
# except rem==1 is side(pow)+3 |
|
1658
|
|
|
|
|
|
|
# eg side(5) = side(4) + 3 |
|
1659
|
|
|
|
|
|
|
# = 6 + 3 = 9 |
|
1660
|
|
|
|
|
|
|
# eg side(6) = side(4) + side(3) + 2*side(2) + log2(3)+2 |
|
1661
|
|
|
|
|
|
|
# = 6 + 3 + 2*1 +1 + 2 = 14 |
|
1662
|
|
|
|
|
|
|
# |
|
1663
|
|
|
|
|
|
|
# centre(pow+rem) = centre(pow) + centre(rem) + 2*side(rem) |
|
1664
|
|
|
|
|
|
|
# = 2*side(pow/2) + 4*side(pow/4) + ... |
|
1665
|
|
|
|
|
|
|
# + centre(rem) + 2*side(rem) |
|
1666
|
|
|
|
|
|
|
|
|
1667
|
|
|
|
|
|
|
# d = p1+p2+p3+p4 |
|
1668
|
|
|
|
|
|
|
# C(d) = C(p1) + 2*S(p2+p3+p4) + C(p2+p3+p4) |
|
1669
|
|
|
|
|
|
|
# = C(p1) + 2*S(p2+p3+p4) + C(p2) + 2*S(p3+p4) + C(p3+p4) |
|
1670
|
|
|
|
|
|
|
# = C(p1) + C(p2) + 2*S(p2+p3+p4) + 2*S(p3+p4) + C(p3) + C(p4) + 2*S(p4) |
|
1671
|
|
|
|
|
|
|
# = C(p1) + C(p2) + C(p3) + C(p4) + 2*S(p2+p3+p4) + 2*S(p3+p4) + 2*S(p4) |
|
1672
|
|
|
|
|
|
|
# eg. C(4+1) = C(4) + C(1) + 2*S(1) |
|
1673
|
|
|
|
|
|
|
# = 10 + 1 + 2*0 = 11 |
|
1674
|
|
|
|
|
|
|
# eg. C(4+1) = C(4) + C(2) + 2*S(2) |
|
1675
|
|
|
|
|
|
|
# = 10 + 4 + 2*1 = 18 |
|
1676
|
|
|
|
|
|
|
# eg. C(8+1) = C(8) + C(1) + 2*S(1) |
|
1677
|
|
|
|
|
|
|
# = 32 + 1 + 2*0 = 35 |
|
1678
|
|
|
|
|
|
|
# eg. C(8+2) = C(8) + C(2) + 2*S(2) |
|
1679
|
|
|
|
|
|
|
# = 32 + 4 + 2*1 = 38 |
|
1680
|
|
|
|
|
|
|
# eg. C(8+4) = C(8) + C(4) + 2*S(4) |
|
1681
|
|
|
|
|
|
|
# = 32 + 10 + 2*6 = 54 |
|
1682
|
|
|
|
|
|
|
# eg. C(8+4+1) = C(8) + C(4) + C(1) + 2*S(4+1) + 2*S(1) |
|
1683
|
|
|
|
|
|
|
# = 32 + 10 + 1 + 2*9 + 2*0 = 61 |
|
1684
|
|
|
|
|
|
|
# eg. C(8+4+2) = C(8) + C(4) + C(2) + 2*S(4+2) + 2*S(2) |
|
1685
|
|
|
|
|
|
|
# = 32 + 10 + 4 + 2*14 + 2*1 = 76 |
|
1686
|
|
|
|
|
|
|
# |
|
1687
|
|
|
|
|
|
|
# A151735 |
|
1688
|
|
|
|
|
|
|
# before 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 |
|
1689
|
|
|
|
|
|
|
# centre = 0,1,4,5, 10,11,16,21, 32,33,38,43,54,61 76 95 118 |
|
1690
|
|
|
|
|
|
|
# |
|
1691
|
|
|
|
|
|
|
# before 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 |
|
1692
|
|
|
|
|
|
|
# side = 0, 1,3, 6,9,14,21, 27,30,35,43,52,63,80,100, 112 |
|
1693
|
|
|
|
|
|
|
# |
|
1694
|
|
|
|
|
|
|
# A151725 total cells 0,1,9,13, 33,37,57,77, 121,125,145,165,209,237,297,373, |
|
1695
|
|
|
|
|
|
|
# |
|
1696
|
|
|
|
|
|
|
# |
|
1697
|
|
|
|
|
|
|
# 15 | 15 15 15 15 15 15 15 15 15 15 15 15 |
|
1698
|
|
|
|
|
|
|
# 14 | 14 14 14 14 15 |
|
1699
|
|
|
|
|
|
|
# 13 | 14 13 13 13 14 14 13 13 13 15 |
|
1700
|
|
|
|
|
|
|
# 12 | 14 12 12 13 |
|
1701
|
|
|
|
|
|
|
# 11 | 12 11 11 11 11 11 11 13 15 |
|
1702
|
|
|
|
|
|
|
# 10 | 14 12 10 10 11 14 14 15 |
|
1703
|
|
|
|
|
|
|
# 9 | 14 13 13 10 9 9 9 11 15 |
|
1704
|
|
|
|
|
|
|
# 8 | 8 9 |
|
1705
|
|
|
|
|
|
|
# 7 | 7 7 7 7 7 7 9 11 15 |
|
1706
|
|
|
|
|
|
|
# 6 | 6 6 7 10 10 11 14 14 15 19 18 |
|
1707
|
|
|
|
|
|
|
# 5 | 6 5 5 5 7 11 13 15 20 15 14 13 |
|
1708
|
|
|
|
|
|
|
# 4 | 4 5 13 12 12 12 13 10 12 |
|
1709
|
|
|
|
|
|
|
# 3 | 3 3 3 5 7 13 13 15 9 8 7 11 |
|
1710
|
|
|
|
|
|
|
# 2 | 2 3 6 6 7 14 14 14 14 14 15 4 6 16 17 |
|
1711
|
|
|
|
|
|
|
# 1 | 1 1 3 7 15 3 2 5 |
|
1712
|
|
|
|
|
|
|
# 0 | 0 1 0 1 |
|
1713
|
|
|
|
|
|
|
# +---------------------------------------------- |
|
1714
|
|
|
|
|
|
|
# 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 |
|
1715
|
|
|
|
|
|
|
# |
|
1716
|
|
|
|
|
|
|
# same mirror 1->9 same 1->9 |
|
1717
|
|
|
|
|
|
|
# extra log(d) in Y=8 row |
|
1718
|
|
|
|
|
|
|
# |
|
1719
|
|
|
|
|
|
|
# 16 | 16 |
|
1720
|
|
|
|
|
|
|
# 15 | 15 15 15 15 15 15 15 15 15 15 15 15 16 k=4 depth=16 |
|
1721
|
|
|
|
|
|
|
# 14 | 14 14 14 14 16 |
|
1722
|
|
|
|
|
|
|
# 13 | 14 13 13 13 14 14 13 13 13 14 |
|
1723
|
|
|
|
|
|
|
# 12 | 14 12 12 14 |
|
1724
|
|
|
|
|
|
|
# 11 | 12 11 11 11 11 11 11 12 |
|
1725
|
|
|
|
|
|
|
# 10 | 14 12 10 10 12 14 |
|
1726
|
|
|
|
|
|
|
# 9 | 14 13 13 10 9 9e 9d10 13 13 14 |
|
1727
|
|
|
|
|
|
|
# 8 | 8c 10 14 |
|
1728
|
|
|
|
|
|
|
# 7 | 7 7 7 7 7 7 8b |
|
1729
|
|
|
|
|
|
|
# 6 | 6 6 8a 10 14 rotate -90 1->8 |
|
1730
|
|
|
|
|
|
|
# 5 | 6 5 5 5 6 9 9 10 13 13 14 miss one in corner |
|
1731
|
|
|
|
|
|
|
# 4 | 4 6 10 12 14 |
|
1732
|
|
|
|
|
|
|
# 3 | 3 3 3 4 12 11 11 11 12 |
|
1733
|
|
|
|
|
|
|
# 2 | 2 4 6 12 12 14 |
|
1734
|
|
|
|
|
|
|
# 1 | 1 1 2 5 5 6 13 13 13 13 13 14 |
|
1735
|
|
|
|
|
|
|
# 0 | 0 . **** **** |
|
1736
|
|
|
|
|
|
|
# +--------------------------------------------------- |
|
1737
|
|
|
|
|
|
|
# 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 |
|
1738
|
|
|
|
|
|
|
# |
|
1739
|
|
|
|
|
|
|
# Octant |
|
1740
|
|
|
|
|
|
|
# |
|
1741
|
|
|
|
|
|
|
# 16 | |
|
1742
|
|
|
|
|
|
|
# 15 | 15 |
|
1743
|
|
|
|
|
|
|
# 14 | 14 15 |
|
1744
|
|
|
|
|
|
|
# 13 | 13 15 |
|
1745
|
|
|
|
|
|
|
# 12 | 12 13 |
|
1746
|
|
|
|
|
|
|
# 11 | 11 13 15 |
|
1747
|
|
|
|
|
|
|
# 10 | 10 11 14 14 15 |
|
1748
|
|
|
|
|
|
|
# 9 | 9 11 15 |
|
1749
|
|
|
|
|
|
|
# 8 | 8 9 |
|
1750
|
|
|
|
|
|
|
# 7 | 7 9 11 15 |
|
1751
|
|
|
|
|
|
|
# 6 | 6 7 10 10 11 14 14 15 |
|
1752
|
|
|
|
|
|
|
# 5 | 5 7 11 13 15 |
|
1753
|
|
|
|
|
|
|
# 4 | 4 5 13 12 12 12 13 |
|
1754
|
|
|
|
|
|
|
# 3 | 3 5 7 13 13 15 |
|
1755
|
|
|
|
|
|
|
# 2 | 2 3 6 6 7 14 14 14 14 14 15 |
|
1756
|
|
|
|
|
|
|
# 1 | 1 3 7 15 |
|
1757
|
|
|
|
|
|
|
# 0 | 0 1 |
|
1758
|
|
|
|
|
|
|
# +--------------------------------------------------- |
|
1759
|
|
|
|
|
|
|
# 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 |
|
1760
|
|
|
|
|
|
|
# |
|
1761
|
|
|
|
|
|
|
# oct(pow+rem) = oct(pow) |
|
1762
|
|
|
|
|
|
|
# + oct(rem) # extend |
|
1763
|
|
|
|
|
|
|
# + oct(rem) # upper |
|
1764
|
|
|
|
|
|
|
# + oct(rem+1) # lower |
|
1765
|
|
|
|
|
|
|
# - rem # undouble spine |
|
1766
|
|
|
|
|
|
|
# + 2*floor(log2(rem+1)) # upper+extend log2_extras |
|
1767
|
|
|
|
|
|
|
# |
|
1768
|
|
|
|
|
|
|
# side(rem) = oct(rem) + oct(rem+1) |
|
1769
|
|
|
|
|
|
|
# - rem # no double spine |
|
1770
|
|
|
|
|
|
|
# + floor(log2(rem+1)) # upper log2_extras |
|
1771
|
|
|
|
|
|
|
# |
|
1772
|
|
|
|
|
|
|
# pow=2^k |
|
1773
|
|
|
|
|
|
|
# oct(2*pow) = 4*oct(pow) + 2*(k-2) - (pow-2) |
|
1774
|
|
|
|
|
|
|
# oct(2^0=1) = 0 |
|
1775
|
|
|
|
|
|
|
# oct(2^1=2) = 1 |
|
1776
|
|
|
|
|
|
|
# oct(2^2=4) = 4 = 4*1 - 0 |
|
1777
|
|
|
|
|
|
|
# oct(2^3=8) = 16 = 4*4 - 0 |
|
1778
|
|
|
|
|
|
|
# oct(2^4=16) = 16+7+4+7+3+4+5+4+3+3+3+2+1 = 62 = 4*16 - 2 |
|
1779
|
|
|
|
|
|
|
|
|
1780
|
|
|
|
|
|
|
# 3side |
|
1781
|
|
|
|
|
|
|
# |
|
1782
|
|
|
|
|
|
|
# **** *** *** *** *** *** *** *** |
|
1783
|
|
|
|
|
|
|
# * * * * * * * * * |
|
1784
|
|
|
|
|
|
|
# ** ***** ***** ***** ***** |
|
1785
|
|
|
|
|
|
|
# * * * * * * * * |
|
1786
|
|
|
|
|
|
|
# ** **** **** **** **** |
|
1787
|
|
|
|
|
|
|
# * * * * * * * * * * * * * |
|
1788
|
|
|
|
|
|
|
# ** *** ***** *** *** ***** *** |
|
1789
|
|
|
|
|
|
|
# * * * * * * side side |
|
1790
|
|
|
|
|
|
|
# ** *888 888 888 888* depth+1 |
|
1791
|
|
|
|
|
|
|
# * * * * 7 7 7 7 * * * upper | upper |
|
1792
|
|
|
|
|
|
|
# *** *** 76667 76667 *** *** depth-1 | depth-1 |
|
1793
|
|
|
|
|
|
|
# * * * * 7 5 5 7 * * * \ | |
|
1794
|
|
|
|
|
|
|
# ** ***** 5444 4445 ***** \ | / |
|
1795
|
|
|
|
|
|
|
# * * * * 7 5 3 3 5 7 * * * lower \ | / lower |
|
1796
|
|
|
|
|
|
|
# ** **** ** 766 32223 667 ** **** depth \ | / depth |
|
1797
|
|
|
|
|
|
|
# 1 3 7 * --------------------------- |
|
1798
|
|
|
|
|
|
|
# 01 | \ upper |
|
1799
|
|
|
|
|
|
|
# 1 3 7 * | \ depth |
|
1800
|
|
|
|
|
|
|
# 223 667 ** **** | \ |
|
1801
|
|
|
|
|
|
|
# 3 5 7 * * * | lower \ |
|
1802
|
|
|
|
|
|
|
# 54445 ***** | depth+1 side |
|
1803
|
|
|
|
|
|
|
# 5 5 7 * * * |
|
1804
|
|
|
|
|
|
|
# 66 6667 *** *** |
|
1805
|
|
|
|
|
|
|
# 7 * * * |
|
1806
|
|
|
|
|
|
|
# dcc 9888* |
|
1807
|
|
|
|
|
|
|
# d b 9 * * * |
|
1808
|
|
|
|
|
|
|
# baaa **** *** |
|
1809
|
|
|
|
|
|
|
# e b * * * |
|
1810
|
|
|
|
|
|
|
# dcccd ***** |
|
1811
|
|
|
|
|
|
|
# d d * * * |
|
1812
|
|
|
|
|
|
|
# ee eee *** **** |
|
1813
|
|
|
|
|
|
|
# * |
|
1814
|
|
|
|
|
|
|
|
|
1815
|
|
|
|
|
|
|
my @oct_to_n = (0, 1); |
|
1816
|
|
|
|
|
|
|
|
|
1817
|
|
|
|
|
|
|
my %tree_depth_to_n = (4 => [ 0, 1 ], |
|
1818
|
|
|
|
|
|
|
1 => [ 0, 1 ], |
|
1819
|
|
|
|
|
|
|
octant => [ 0, 1 ], |
|
1820
|
|
|
|
|
|
|
wedge => [ 0, 1, 4 ], |
|
1821
|
|
|
|
|
|
|
'3mid' => [ 0, 1 ], |
|
1822
|
|
|
|
|
|
|
'3side' => [ 0, 1, 4 ], |
|
1823
|
|
|
|
|
|
|
side => [ 0, 1 ]); |
|
1824
|
|
|
|
|
|
|
my %tree_depth_to_n_extra_depth_pow = (4 => 0, |
|
1825
|
|
|
|
|
|
|
1 => 0, |
|
1826
|
|
|
|
|
|
|
octant => 0, |
|
1827
|
|
|
|
|
|
|
octant_up => 0, |
|
1828
|
|
|
|
|
|
|
wedge => 0, |
|
1829
|
|
|
|
|
|
|
'3mid' => 1, |
|
1830
|
|
|
|
|
|
|
'3side' => 1, |
|
1831
|
|
|
|
|
|
|
side => 1); |
|
1832
|
|
|
|
|
|
|
|
|
1833
|
|
|
|
|
|
|
sub tree_depth_to_n { |
|
1834
|
413
|
|
|
413
|
1
|
2079
|
my ($self, $depth) = @_; |
|
1835
|
|
|
|
|
|
|
### tree_depth_to_n(): "$depth parts=$self->{'parts'}" |
|
1836
|
|
|
|
|
|
|
|
|
1837
|
413
|
|
|
|
|
285
|
$depth = int($depth); |
|
1838
|
413
|
50
|
|
|
|
529
|
if ($depth < 0) { |
|
1839
|
0
|
|
|
|
|
0
|
return undef; |
|
1840
|
|
|
|
|
|
|
} |
|
1841
|
|
|
|
|
|
|
|
|
1842
|
413
|
|
|
|
|
381
|
my $parts = $self->{'parts'}; |
|
1843
|
|
|
|
|
|
|
{ |
|
1844
|
413
|
|
|
|
|
309
|
my $initial = $tree_depth_to_n{$parts}; |
|
|
413
|
|
|
|
|
380
|
|
|
1845
|
413
|
100
|
|
|
|
698
|
if ($depth <= $#$initial) { |
|
1846
|
|
|
|
|
|
|
### table %tree_depth_to_n{}: $initial->[$depth] |
|
1847
|
21
|
|
|
|
|
39
|
return $initial->[$depth]; |
|
1848
|
|
|
|
|
|
|
} |
|
1849
|
|
|
|
|
|
|
} |
|
1850
|
|
|
|
|
|
|
|
|
1851
|
392
|
|
|
|
|
747
|
my ($pow,$exp) = round_down_pow |
|
1852
|
|
|
|
|
|
|
($depth + $tree_depth_to_n_extra_depth_pow{$parts}, |
|
1853
|
|
|
|
|
|
|
2); |
|
1854
|
392
|
50
|
|
|
|
2807
|
if (is_infinite($exp)) { |
|
1855
|
0
|
|
|
|
|
0
|
return $exp; |
|
1856
|
|
|
|
|
|
|
} |
|
1857
|
|
|
|
|
|
|
### $pow |
|
1858
|
|
|
|
|
|
|
### $exp |
|
1859
|
|
|
|
|
|
|
|
|
1860
|
392
|
|
|
|
|
1499
|
my $zero = $depth * 0; # inherit bignum |
|
1861
|
392
|
|
|
|
|
273
|
my $n = $zero; |
|
1862
|
|
|
|
|
|
|
|
|
1863
|
|
|
|
|
|
|
# @side is a list of depth values. |
|
1864
|
|
|
|
|
|
|
# @mult is the multiple of T[depth] desired for that @side entry. |
|
1865
|
|
|
|
|
|
|
# |
|
1866
|
|
|
|
|
|
|
# @side is mostly high to low and growing by one more value at each |
|
1867
|
|
|
|
|
|
|
# $exp level, but sometimes it's a bit more and some values not high to |
|
1868
|
|
|
|
|
|
|
# low and possibly duplicated. |
|
1869
|
|
|
|
|
|
|
# |
|
1870
|
392
|
|
|
|
|
397
|
my @pending = ($depth); |
|
1871
|
392
|
|
|
|
|
285
|
my @mult; |
|
1872
|
|
|
|
|
|
|
|
|
1873
|
392
|
100
|
100
|
|
|
914
|
if ($parts eq '4') { |
|
|
|
100
|
|
|
|
|
|
|
|
|
100
|
|
|
|
|
|
|
|
|
100
|
|
|
|
|
|
|
|
|
100
|
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
1874
|
209
|
|
|
|
|
164
|
@mult = (8); |
|
1875
|
209
|
|
|
|
|
203
|
$n -= 4*$depth + 7; |
|
1876
|
|
|
|
|
|
|
|
|
1877
|
|
|
|
|
|
|
} elsif ($parts eq '1') { |
|
1878
|
123
|
|
|
|
|
111
|
@mult = (2); |
|
1879
|
123
|
|
|
|
|
106
|
$n -= $depth; |
|
1880
|
|
|
|
|
|
|
|
|
1881
|
|
|
|
|
|
|
} elsif ($parts eq 'octant' || $parts eq 'octant_up') { |
|
1882
|
27
|
|
|
|
|
24
|
@mult = (1); |
|
1883
|
|
|
|
|
|
|
|
|
1884
|
|
|
|
|
|
|
} elsif ($parts eq 'wedge') { |
|
1885
|
9
|
|
|
|
|
7
|
push @mult, 2; |
|
1886
|
9
|
|
|
|
|
9
|
$n -= 2; # unduplicate centre two |
|
1887
|
|
|
|
|
|
|
|
|
1888
|
|
|
|
|
|
|
} elsif ($parts eq '3mid') { |
|
1889
|
12
|
|
|
|
|
13
|
unshift @pending, $depth+1; |
|
1890
|
12
|
|
|
|
|
13
|
@mult = (2, 4); |
|
1891
|
|
|
|
|
|
|
# Duplicated diagonals, and no log2_extras on two outermost octants. |
|
1892
|
|
|
|
|
|
|
# Each log2 at depth=2^k-2, so another log2 decrease when depth=2^k-1. |
|
1893
|
|
|
|
|
|
|
# $exp == _log2_floor($depth+1) so at $depth==2*$pow-1 one less. |
|
1894
|
12
|
|
|
|
|
16
|
$n -= 3*$depth + 2*$exp + 6; |
|
1895
|
|
|
|
|
|
|
|
|
1896
|
|
|
|
|
|
|
} elsif ($parts eq '3side') { |
|
1897
|
12
|
|
|
|
|
20
|
@pending = ($depth+1, $depth, $depth-1); |
|
1898
|
12
|
|
|
|
|
15
|
@mult = (1, 3, 2); |
|
1899
|
|
|
|
|
|
|
# Duplicated diagonals, and no log2_extras on two outermost octants. |
|
1900
|
|
|
|
|
|
|
# For plain depth each log2 at depth=2^k-2, so another log2 decrease |
|
1901
|
|
|
|
|
|
|
# when depth=2^k-1. |
|
1902
|
|
|
|
|
|
|
# For depth+1 block each log2 at depth=2^k-2, so another log2 decrease |
|
1903
|
|
|
|
|
|
|
# when depth=2^k-2. |
|
1904
|
|
|
|
|
|
|
# $exp == _log2_floor($depth+1) so at $depth==2*$pow-1 one less. |
|
1905
|
12
|
100
|
|
|
|
50
|
$n -= 3*$depth + 2*$exp + ($depth == $pow-1 ? 3 : 4); |
|
1906
|
|
|
|
|
|
|
|
|
1907
|
|
|
|
|
|
|
} elsif ($parts eq 'side') { |
|
1908
|
0
|
|
|
|
|
0
|
unshift @pending, $depth+1; |
|
1909
|
0
|
|
|
|
|
0
|
@mult = (1, 1); |
|
1910
|
|
|
|
|
|
|
# $exp == _log2_floor($depth+1) |
|
1911
|
0
|
|
|
|
|
0
|
$n -= $depth + 1 + $exp; |
|
1912
|
|
|
|
|
|
|
} |
|
1913
|
|
|
|
|
|
|
|
|
1914
|
392
|
|
100
|
|
|
1202
|
while ($exp >= 0 && @pending) { |
|
1915
|
|
|
|
|
|
|
### at: "pow=$pow exp=$exp n=$n" |
|
1916
|
|
|
|
|
|
|
### assert: $pow == 2 ** $exp |
|
1917
|
|
|
|
|
|
|
### pending: join(',',@pending) |
|
1918
|
|
|
|
|
|
|
### mult: join(',',@mult) |
|
1919
|
|
|
|
|
|
|
|
|
1920
|
469
|
|
|
|
|
334
|
my @new_pending; |
|
1921
|
|
|
|
|
|
|
my @new_mult; |
|
1922
|
0
|
|
|
|
|
0
|
my $oct_pow; |
|
1923
|
469
|
|
|
|
|
411
|
foreach my $depth (@pending) { |
|
1924
|
566
|
|
|
|
|
408
|
my $mult = shift @mult; |
|
1925
|
|
|
|
|
|
|
### assert: $depth >= 0 |
|
1926
|
|
|
|
|
|
|
|
|
1927
|
566
|
100
|
|
|
|
728
|
if ($depth <= 1) { |
|
1928
|
|
|
|
|
|
|
### small depth: "depth=$depth mult=$mult * $oct_to_n[$depth]" |
|
1929
|
3
|
|
|
|
|
2
|
$n += $mult * $depth; # oct=0 at depth=0, oct=1 at depth=1 |
|
1930
|
3
|
|
|
|
|
5
|
next; |
|
1931
|
|
|
|
|
|
|
} |
|
1932
|
563
|
|
|
|
|
421
|
my $rem = $depth - $pow; |
|
1933
|
563
|
100
|
|
|
|
744
|
if ($rem < 0) { |
|
1934
|
24
|
|
|
|
|
14
|
push @new_pending, $depth; |
|
1935
|
24
|
|
|
|
|
43
|
push @new_mult, $mult; |
|
1936
|
24
|
|
|
|
|
35
|
next; |
|
1937
|
|
|
|
|
|
|
} |
|
1938
|
|
|
|
|
|
|
|
|
1939
|
|
|
|
|
|
|
### $depth |
|
1940
|
|
|
|
|
|
|
### $mult |
|
1941
|
|
|
|
|
|
|
### $rem |
|
1942
|
|
|
|
|
|
|
### assert: $rem >= 0 && $rem < $pow |
|
1943
|
|
|
|
|
|
|
|
|
1944
|
539
|
|
|
|
|
365
|
my $powmult = $mult; |
|
1945
|
539
|
100
|
|
|
|
580
|
if ($rem <= 1) { |
|
1946
|
474
|
100
|
|
|
|
552
|
if ($rem == 0) { |
|
1947
|
|
|
|
|
|
|
### rem=0, oct(pow) only ... |
|
1948
|
|
|
|
|
|
|
} else { # $rem == 1 |
|
1949
|
|
|
|
|
|
|
### rem=1, oct(pow)+1 ... |
|
1950
|
177
|
|
|
|
|
137
|
$n += $mult; |
|
1951
|
|
|
|
|
|
|
} |
|
1952
|
|
|
|
|
|
|
} else { |
|
1953
|
|
|
|
|
|
|
### formula ... |
|
1954
|
|
|
|
|
|
|
# oct(pow+rem) = oct(pow) |
|
1955
|
|
|
|
|
|
|
# + oct(rem+1) |
|
1956
|
|
|
|
|
|
|
# + 2*oct(rem) |
|
1957
|
|
|
|
|
|
|
# - floor(log2(rem+1)) |
|
1958
|
|
|
|
|
|
|
# - rem - 3 |
|
1959
|
|
|
|
|
|
|
|
|
1960
|
65
|
|
|
|
|
48
|
my $rem1 = $rem + 1; |
|
1961
|
|
|
|
|
|
|
{ |
|
1962
|
65
|
|
|
|
|
56
|
my ($lpow,$lexp) = round_down_pow ($rem1, 2); |
|
|
65
|
|
|
|
|
101
|
|
|
1963
|
65
|
|
|
|
|
402
|
$n -= ($lexp + $rem + 3)*$mult; |
|
1964
|
|
|
|
|
|
|
### sub also: ($lexp + $rem + 3). " *mult=$mult" |
|
1965
|
|
|
|
|
|
|
} |
|
1966
|
65
|
100
|
33
|
|
|
153
|
if ($rem1 == $pow) { |
|
|
|
50
|
|
|
|
|
|
|
1967
|
|
|
|
|
|
|
### rem+1 == pow, increase powmult ... |
|
1968
|
16
|
|
|
|
|
12
|
$powmult *= 2; # oct(pow)+oct(rem+1) is 2*oct(pow) |
|
1969
|
|
|
|
|
|
|
} elsif (@new_pending && $new_pending[-1] == $rem1) { |
|
1970
|
|
|
|
|
|
|
### merge into previously pushed new_pending[] ... |
|
1971
|
|
|
|
|
|
|
# print "rem+1=$rem1 ",join(',',@new_pending),"\n"; |
|
1972
|
0
|
|
|
|
|
0
|
$new_mult[-1] += $mult; |
|
1973
|
|
|
|
|
|
|
} else { |
|
1974
|
|
|
|
|
|
|
### push: "depth=$rem1 mult=$mult" |
|
1975
|
49
|
|
|
|
|
43
|
push @new_pending, $rem1; |
|
1976
|
49
|
|
|
|
|
39
|
push @new_mult, $mult; |
|
1977
|
|
|
|
|
|
|
} |
|
1978
|
|
|
|
|
|
|
|
|
1979
|
|
|
|
|
|
|
### push: "depth=$rem mult=".2*$mult |
|
1980
|
65
|
|
|
|
|
50
|
push @new_pending, $rem; |
|
1981
|
65
|
|
|
|
|
64
|
push @new_mult, 2*$mult; |
|
1982
|
|
|
|
|
|
|
} |
|
1983
|
|
|
|
|
|
|
|
|
1984
|
|
|
|
|
|
|
# oct(pow) = (2*pow*pow + 3*exp + 7)/9 + pow/2 |
|
1985
|
|
|
|
|
|
|
# = ((4*pow+9)*pow + 6*exp + 14)/18 |
|
1986
|
|
|
|
|
|
|
# |
|
1987
|
539
|
|
66
|
|
|
1276
|
$oct_pow ||= ((4*$pow+9)*$pow + 6*$exp + 14)/18; |
|
1988
|
539
|
|
|
|
|
701
|
$n += $oct_pow * $powmult; |
|
1989
|
|
|
|
|
|
|
### oct(pow): "pow=$pow is $oct_pow * powmult=$powmult" |
|
1990
|
|
|
|
|
|
|
} |
|
1991
|
469
|
|
|
|
|
495
|
@pending = @new_pending; |
|
1992
|
469
|
|
|
|
|
412
|
@mult = @new_mult; |
|
1993
|
|
|
|
|
|
|
|
|
1994
|
469
|
|
|
|
|
330
|
$exp--; |
|
1995
|
469
|
|
|
|
|
1486
|
$pow /= 2; |
|
1996
|
|
|
|
|
|
|
} |
|
1997
|
|
|
|
|
|
|
|
|
1998
|
|
|
|
|
|
|
### return: $n |
|
1999
|
392
|
|
|
|
|
543
|
return $n; |
|
2000
|
|
|
|
|
|
|
} |
|
2001
|
|
|
|
|
|
|
|
|
2002
|
|
|
|
|
|
|
|
|
2003
|
|
|
|
|
|
|
# _depth_to_octant_added() returns the number of cells added at a given |
|
2004
|
|
|
|
|
|
|
# $depth level in parts=octant. This is the same as |
|
2005
|
|
|
|
|
|
|
# $added = tree_depth_to_n(depth+1) - tree_depth_to_n(depth) |
|
2006
|
|
|
|
|
|
|
# |
|
2007
|
|
|
|
|
|
|
# @$depth_aref is a list of depth values. |
|
2008
|
|
|
|
|
|
|
# @$mult_aref is the multiple of oct(depth) desired for each @depth_aref. |
|
2009
|
|
|
|
|
|
|
# |
|
2010
|
|
|
|
|
|
|
# On input @$depth_aref must have $depth_aref->[0] as the highest value. |
|
2011
|
|
|
|
|
|
|
# |
|
2012
|
|
|
|
|
|
|
# Within the code the depth list is mostly high to low and growing by one |
|
2013
|
|
|
|
|
|
|
# extra depth value at each $exp level. But sometimes it grows a bit more |
|
2014
|
|
|
|
|
|
|
# than that and sometimes the values are not high to low, and sometimes |
|
2015
|
|
|
|
|
|
|
# there's duplication. |
|
2016
|
|
|
|
|
|
|
# |
|
2017
|
|
|
|
|
|
|
my @_depth_to_octant_added = (1, 2, 1); # depth=0to2 small values |
|
2018
|
|
|
|
|
|
|
|
|
2019
|
|
|
|
|
|
|
sub _depth_to_octant_added { |
|
2020
|
122
|
|
|
122
|
|
98
|
my ($depth_aref, $mult_aref, $zero) = @_; |
|
2021
|
|
|
|
|
|
|
### _depth_to_octant_added(): join(',',@$depth_aref) |
|
2022
|
|
|
|
|
|
|
### mult_aref: join(',',@$mult_aref) |
|
2023
|
|
|
|
|
|
|
### assert: scalar(@$depth_aref) == scalar(@$mult_aref) |
|
2024
|
|
|
|
|
|
|
|
|
2025
|
|
|
|
|
|
|
# $depth_aref->[0] must be the biggest depth, to make the $pow finding easy |
|
2026
|
|
|
|
|
|
|
### assert: scalar(@$depth_aref) >= 1 |
|
2027
|
|
|
|
|
|
|
### assert: max(@$depth_aref) == $depth_aref->[0] |
|
2028
|
|
|
|
|
|
|
|
|
2029
|
122
|
|
|
|
|
212
|
my ($pow,$exp) = round_down_pow ($depth_aref->[0], 2); |
|
2030
|
122
|
50
|
|
|
|
839
|
if (is_infinite($exp)) { |
|
2031
|
0
|
|
|
|
|
0
|
return $exp; |
|
2032
|
|
|
|
|
|
|
} |
|
2033
|
|
|
|
|
|
|
### $pow |
|
2034
|
|
|
|
|
|
|
### $exp |
|
2035
|
|
|
|
|
|
|
|
|
2036
|
122
|
|
|
|
|
467
|
my $added = $zero; |
|
2037
|
|
|
|
|
|
|
|
|
2038
|
|
|
|
|
|
|
# running $pow down to 2 (inclusive) |
|
2039
|
122
|
|
66
|
|
|
486
|
while ($exp >= 0 && @$depth_aref) { |
|
2040
|
|
|
|
|
|
|
### at: "pow=$pow exp=$exp" |
|
2041
|
|
|
|
|
|
|
### assert: $pow == 2 ** $exp |
|
2042
|
|
|
|
|
|
|
|
|
2043
|
|
|
|
|
|
|
### depth: join(',',@$depth_aref) |
|
2044
|
|
|
|
|
|
|
### mult: join(',',@$mult_aref) |
|
2045
|
127
|
|
|
|
|
95
|
my @new_depth; |
|
2046
|
|
|
|
|
|
|
my @new_mult; |
|
2047
|
127
|
|
|
|
|
130
|
foreach my $depth (@$depth_aref) { |
|
2048
|
132
|
|
|
|
|
108
|
my $mult = shift @$mult_aref; |
|
2049
|
|
|
|
|
|
|
### assert: $depth >= 0 |
|
2050
|
|
|
|
|
|
|
|
|
2051
|
132
|
100
|
|
|
|
185
|
if ($depth <= $#_depth_to_octant_added) { |
|
2052
|
|
|
|
|
|
|
### small depth: "depth=$depth mult=$mult * $_depth_to_octant_added[$depth]" |
|
2053
|
17
|
|
|
|
|
18
|
$added += $mult * $_depth_to_octant_added[$depth]; |
|
2054
|
17
|
|
|
|
|
21
|
next; |
|
2055
|
|
|
|
|
|
|
} |
|
2056
|
115
|
50
|
|
|
|
156
|
if ($depth < $pow) { |
|
2057
|
0
|
|
|
|
|
0
|
push @new_depth, $depth; |
|
2058
|
0
|
|
|
|
|
0
|
push @new_mult, $mult; |
|
2059
|
0
|
|
|
|
|
0
|
next; |
|
2060
|
|
|
|
|
|
|
} |
|
2061
|
|
|
|
|
|
|
|
|
2062
|
115
|
|
|
|
|
97
|
my $rem = $depth - $pow; |
|
2063
|
|
|
|
|
|
|
|
|
2064
|
|
|
|
|
|
|
### $depth |
|
2065
|
|
|
|
|
|
|
### $mult |
|
2066
|
|
|
|
|
|
|
### $rem |
|
2067
|
|
|
|
|
|
|
### assert: $rem >= 0 && $rem < $pow |
|
2068
|
|
|
|
|
|
|
|
|
2069
|
115
|
100
|
|
|
|
129
|
if ($rem <= 1) { |
|
2070
|
99
|
100
|
|
|
|
110
|
if ($rem == 0) { |
|
2071
|
|
|
|
|
|
|
### rem=0, grow 1 ... |
|
2072
|
8
|
|
|
|
|
19
|
$added += $mult; |
|
2073
|
|
|
|
|
|
|
} else { |
|
2074
|
|
|
|
|
|
|
### rem=1, grow 3 ... |
|
2075
|
91
|
|
|
|
|
128
|
$added += 3 * $mult; |
|
2076
|
|
|
|
|
|
|
} |
|
2077
|
|
|
|
|
|
|
} else { |
|
2078
|
16
|
|
|
|
|
19
|
my $rem1 = $rem + 1; |
|
2079
|
16
|
100
|
|
|
|
18
|
if ($rem1 == $pow) { |
|
2080
|
|
|
|
|
|
|
### rem+1=pow, no lower part, 3/2 of pow ... |
|
2081
|
11
|
|
|
|
|
20
|
$added += ($pow/2) * (3*$mult); |
|
2082
|
|
|
|
|
|
|
} else { |
|
2083
|
|
|
|
|
|
|
### formula ... |
|
2084
|
|
|
|
|
|
|
# oadd(pow+rem) = oadd(rem+1) + 2*oadd(rem) |
|
2085
|
|
|
|
|
|
|
# + (is_pow2($rem+2) ? -2 : -1) |
|
2086
|
|
|
|
|
|
|
|
|
2087
|
|
|
|
|
|
|
# upper/lower diagonal overlap, and no log2_extras in lower |
|
2088
|
5
|
50
|
|
|
|
9
|
$added -= (_is_pow2($rem+2) ? 2*$mult : $mult); |
|
2089
|
|
|
|
|
|
|
|
|
2090
|
5
|
50
|
33
|
|
|
10
|
if (@new_depth && $new_depth[-1] == $rem1) { |
|
2091
|
|
|
|
|
|
|
### merge into previously pushed new_depth ... |
|
2092
|
|
|
|
|
|
|
# print "rem=$rem ",join(',',@new_depth),"\n"; |
|
2093
|
0
|
|
|
|
|
0
|
$new_mult[-1] += $mult; |
|
2094
|
|
|
|
|
|
|
} else { |
|
2095
|
|
|
|
|
|
|
### push: "rem+1 depth=$rem1 mult=$mult" |
|
2096
|
5
|
|
|
|
|
4
|
push @new_depth, $rem1; |
|
2097
|
5
|
|
|
|
|
5
|
push @new_mult, $mult; |
|
2098
|
|
|
|
|
|
|
} |
|
2099
|
|
|
|
|
|
|
|
|
2100
|
|
|
|
|
|
|
### push: "rem depth=$rem mult=".2*$mult |
|
2101
|
5
|
|
|
|
|
4
|
push @new_depth, $rem; |
|
2102
|
5
|
|
|
|
|
17
|
push @new_mult, 2*$mult; |
|
2103
|
|
|
|
|
|
|
} |
|
2104
|
|
|
|
|
|
|
} |
|
2105
|
|
|
|
|
|
|
} |
|
2106
|
127
|
|
|
|
|
144
|
$depth_aref = \@new_depth; |
|
2107
|
127
|
|
|
|
|
120
|
$mult_aref = \@new_mult; |
|
2108
|
|
|
|
|
|
|
|
|
2109
|
127
|
|
|
|
|
94
|
$exp--; |
|
2110
|
127
|
|
|
|
|
444
|
$pow /= 2; |
|
2111
|
|
|
|
|
|
|
} |
|
2112
|
|
|
|
|
|
|
|
|
2113
|
|
|
|
|
|
|
### return: $added |
|
2114
|
122
|
|
|
|
|
150
|
return $added; |
|
2115
|
|
|
|
|
|
|
} |
|
2116
|
|
|
|
|
|
|
|
|
2117
|
|
|
|
|
|
|
|
|
2118
|
|
|
|
|
|
|
#------------------------------------------------------------------------------ |
|
2119
|
|
|
|
|
|
|
# tree_n_to_subheight() |
|
2120
|
|
|
|
|
|
|
|
|
2121
|
|
|
|
|
|
|
#use Smart::Comments; |
|
2122
|
|
|
|
|
|
|
|
|
2123
|
|
|
|
|
|
|
{ |
|
2124
|
|
|
|
|
|
|
my %tree_n_to_subheight |
|
2125
|
|
|
|
|
|
|
= do { |
|
2126
|
|
|
|
|
|
|
my $depth0 = [ ]; # depth=0 |
|
2127
|
|
|
|
|
|
|
(wedge => [ $depth0, |
|
2128
|
|
|
|
|
|
|
[ undef, 0 ], # depth=1 |
|
2129
|
|
|
|
|
|
|
], |
|
2130
|
|
|
|
|
|
|
'3mid' => [ $depth0, |
|
2131
|
|
|
|
|
|
|
[ undef, 0, undef, 0 ], # depth=1 |
|
2132
|
|
|
|
|
|
|
], |
|
2133
|
|
|
|
|
|
|
'3side' => [ $depth0, |
|
2134
|
|
|
|
|
|
|
[ undef, 0, undef ], # depth=1 |
|
2135
|
|
|
|
|
|
|
[ 0, undef, undef, 0 ], # depth=2 N=4to8 |
|
2136
|
|
|
|
|
|
|
], |
|
2137
|
|
|
|
|
|
|
) |
|
2138
|
|
|
|
|
|
|
}; |
|
2139
|
|
|
|
|
|
|
|
|
2140
|
|
|
|
|
|
|
sub tree_n_to_subheight { |
|
2141
|
0
|
|
|
0
|
1
|
0
|
my ($self, $n) = @_; |
|
2142
|
|
|
|
|
|
|
### tree_n_to_subheight(): $n |
|
2143
|
|
|
|
|
|
|
|
|
2144
|
0
|
0
|
|
|
|
0
|
if ($n < 0) { return undef; } |
|
|
0
|
|
|
|
|
0
|
|
|
2145
|
0
|
0
|
|
|
|
0
|
if (is_infinite($n)) { return $n; } |
|
|
0
|
|
|
|
|
0
|
|
|
2146
|
|
|
|
|
|
|
|
|
2147
|
0
|
|
|
|
|
0
|
my $zero = $n * 0; |
|
2148
|
0
|
|
|
|
|
0
|
(my $depth, $n) = _n0_to_depth_and_rem($self, int($n)); |
|
2149
|
|
|
|
|
|
|
### $depth |
|
2150
|
|
|
|
|
|
|
### $n |
|
2151
|
|
|
|
|
|
|
|
|
2152
|
0
|
|
|
|
|
0
|
my $parts = $self->{'parts'}; |
|
2153
|
0
|
0
|
|
|
|
0
|
if (my $initial = $tree_n_to_subheight{$parts}->[$depth]) { |
|
2154
|
|
|
|
|
|
|
### $initial |
|
2155
|
0
|
|
|
|
|
0
|
return $initial->[$n]; |
|
2156
|
|
|
|
|
|
|
} |
|
2157
|
|
|
|
|
|
|
|
|
2158
|
0
|
0
|
|
|
|
0
|
if ($parts eq 'octant') { |
|
|
|
0
|
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
2159
|
0
|
|
|
|
|
0
|
my $add = _depth_to_octant_added ([$depth],[1], $zero); |
|
2160
|
0
|
|
|
|
|
0
|
$n = $add-1 - $n; |
|
2161
|
|
|
|
|
|
|
### octant mirror numbering to n: $n |
|
2162
|
|
|
|
|
|
|
|
|
2163
|
|
|
|
|
|
|
} elsif ($parts eq 'octant_up') { |
|
2164
|
|
|
|
|
|
|
|
|
2165
|
|
|
|
|
|
|
} elsif ($parts eq 'wedge') { |
|
2166
|
0
|
|
|
|
|
0
|
my $add = _depth_to_octant_added ([$depth],[1], $zero); |
|
2167
|
|
|
|
|
|
|
### assert: $n < 2*$add |
|
2168
|
0
|
0
|
|
|
|
0
|
if ($n >= $add) { |
|
2169
|
|
|
|
|
|
|
### wedge second half ... |
|
2170
|
0
|
|
|
|
|
0
|
$n = 2*$add-1 - $n; # mirror |
|
2171
|
|
|
|
|
|
|
} |
|
2172
|
|
|
|
|
|
|
|
|
2173
|
|
|
|
|
|
|
} elsif ($parts eq '3mid') { |
|
2174
|
0
|
|
|
|
|
0
|
my $add = _depth_to_octant_added ([$depth+1],[1], $zero); |
|
2175
|
0
|
0
|
|
|
|
0
|
if (_is_pow2($depth+2)) { $add -= 1; } |
|
|
0
|
|
|
|
|
0
|
|
|
2176
|
|
|
|
|
|
|
### $add |
|
2177
|
|
|
|
|
|
|
|
|
2178
|
0
|
|
|
|
|
0
|
$n -= $add-1; |
|
2179
|
|
|
|
|
|
|
### n decrease to: $n |
|
2180
|
0
|
0
|
|
|
|
0
|
if ($n < 0) { |
|
2181
|
|
|
|
|
|
|
### 3mid first octant, mirror ... |
|
2182
|
0
|
|
|
|
|
0
|
$n = - $n; |
|
2183
|
0
|
|
|
|
|
0
|
$depth += 1; |
|
2184
|
|
|
|
|
|
|
} |
|
2185
|
|
|
|
|
|
|
|
|
2186
|
0
|
|
|
|
|
0
|
$add = _depth_to_octant_added ([$depth],[1], $zero); |
|
2187
|
0
|
|
|
|
|
0
|
my $end = 4*$add - 2; |
|
2188
|
|
|
|
|
|
|
### $add |
|
2189
|
|
|
|
|
|
|
### $end |
|
2190
|
0
|
0
|
|
|
|
0
|
if ($n >= $end) { |
|
2191
|
|
|
|
|
|
|
### 3mid last octant ... |
|
2192
|
0
|
|
|
|
|
0
|
$n -= $end; |
|
2193
|
0
|
|
|
|
|
0
|
$depth += 1; |
|
2194
|
|
|
|
|
|
|
} else { |
|
2195
|
0
|
|
|
|
|
0
|
$n %= 2*$add-1; |
|
2196
|
0
|
0
|
|
|
|
0
|
if ($n >= $add) { |
|
2197
|
|
|
|
|
|
|
### 3mid second half, mirror ... |
|
2198
|
0
|
|
|
|
|
0
|
$n = 2*$add-1 - $n; |
|
2199
|
|
|
|
|
|
|
} |
|
2200
|
|
|
|
|
|
|
} |
|
2201
|
|
|
|
|
|
|
|
|
2202
|
|
|
|
|
|
|
} elsif ($parts eq '3side') { |
|
2203
|
0
|
|
|
|
|
0
|
my $add = _depth_to_octant_added ([$depth+1],[1], $zero); |
|
2204
|
0
|
0
|
|
|
|
0
|
if (_is_pow2($depth+2)) { $add -= 1; } |
|
|
0
|
|
|
|
|
0
|
|
|
2205
|
|
|
|
|
|
|
### $add |
|
2206
|
|
|
|
|
|
|
|
|
2207
|
0
|
|
|
|
|
0
|
$n -= $add-1; |
|
2208
|
|
|
|
|
|
|
### n decrease to: $n |
|
2209
|
0
|
0
|
|
|
|
0
|
if ($n < 0) { |
|
2210
|
|
|
|
|
|
|
### 3side first octant, mirror ... |
|
2211
|
0
|
|
|
|
|
0
|
$n = - $n; |
|
2212
|
0
|
|
|
|
|
0
|
$depth += 1; |
|
2213
|
|
|
|
|
|
|
} |
|
2214
|
|
|
|
|
|
|
|
|
2215
|
0
|
|
|
|
|
0
|
$add = _depth_to_octant_added ([$depth],[1], $zero); |
|
2216
|
0
|
0
|
|
|
|
0
|
if ($n < 2*$add) { |
|
2217
|
0
|
0
|
|
|
|
0
|
if ($n >= $add) { |
|
2218
|
0
|
|
|
|
|
0
|
$n = 2*$add-1 - $n; |
|
2219
|
|
|
|
|
|
|
} |
|
2220
|
|
|
|
|
|
|
} else { |
|
2221
|
0
|
|
|
|
|
0
|
$n -= 2*$add-1; |
|
2222
|
|
|
|
|
|
|
|
|
2223
|
0
|
|
|
|
|
0
|
$add = _depth_to_octant_added ([$depth-1],[1], $zero); |
|
2224
|
0
|
0
|
|
|
|
0
|
if ($n < 2*$add) { |
|
2225
|
0
|
|
|
|
|
0
|
$depth -= 1; |
|
2226
|
0
|
0
|
|
|
|
0
|
if ($n >= $add) { |
|
2227
|
0
|
|
|
|
|
0
|
$n = 2*$add-1 - $n; |
|
2228
|
|
|
|
|
|
|
} |
|
2229
|
|
|
|
|
|
|
} else { |
|
2230
|
0
|
|
|
|
|
0
|
$n -= 2*$add-1; |
|
2231
|
|
|
|
|
|
|
} |
|
2232
|
|
|
|
|
|
|
} |
|
2233
|
|
|
|
|
|
|
|
|
2234
|
|
|
|
|
|
|
} else { |
|
2235
|
|
|
|
|
|
|
### assert: $parts eq '1' || $parts eq '4' |
|
2236
|
0
|
0
|
|
|
|
0
|
if ($depth == 1) { |
|
2237
|
0
|
0
|
|
|
|
0
|
return ($n % 2 ? undef : 0); |
|
2238
|
|
|
|
|
|
|
} |
|
2239
|
0
|
|
|
|
|
0
|
my $add = _depth_to_octant_added([$depth],[1], $zero); |
|
2240
|
|
|
|
|
|
|
|
|
2241
|
|
|
|
|
|
|
# quadrant rotate ... |
|
2242
|
0
|
|
|
|
|
0
|
$n %= 2*$add-1; |
|
2243
|
|
|
|
|
|
|
|
|
2244
|
0
|
|
|
|
|
0
|
$n -= $add; |
|
2245
|
0
|
0
|
|
|
|
0
|
if ($n < 0) { |
|
2246
|
|
|
|
|
|
|
### lower octant ... |
|
2247
|
0
|
|
|
|
|
0
|
$n = -1-$n; # mirror |
|
2248
|
|
|
|
|
|
|
} else { |
|
2249
|
|
|
|
|
|
|
### upper octant ... |
|
2250
|
0
|
|
|
|
|
0
|
$n += 1; # undouble spine |
|
2251
|
|
|
|
|
|
|
} |
|
2252
|
|
|
|
|
|
|
} |
|
2253
|
|
|
|
|
|
|
|
|
2254
|
0
|
|
|
|
|
0
|
my $dbase; |
|
2255
|
0
|
|
|
|
|
0
|
my ($pow,$exp) = round_down_pow ($depth, 2); |
|
2256
|
|
|
|
|
|
|
|
|
2257
|
0
|
|
|
|
|
0
|
for ( ; $exp-- >= 0; $pow /= 2) { |
|
2258
|
|
|
|
|
|
|
### at: "depth=$depth pow=$pow n=$n dbase=".($dbase||'inf') |
|
2259
|
|
|
|
|
|
|
### assert: $n >= 0 |
|
2260
|
|
|
|
|
|
|
|
|
2261
|
0
|
0
|
|
|
|
0
|
if ($n == 0) { |
|
2262
|
|
|
|
|
|
|
### n=0 on spine ... |
|
2263
|
0
|
|
|
|
|
0
|
last; |
|
2264
|
|
|
|
|
|
|
} |
|
2265
|
0
|
0
|
|
|
|
0
|
next if $depth < $pow; |
|
2266
|
|
|
|
|
|
|
|
|
2267
|
0
|
0
|
|
|
|
0
|
if (defined $dbase) { $dbase = $pow; } |
|
|
0
|
|
|
|
|
0
|
|
|
2268
|
0
|
|
|
|
|
0
|
$depth -= $pow; |
|
2269
|
|
|
|
|
|
|
### depth remaining: $depth |
|
2270
|
|
|
|
|
|
|
|
|
2271
|
0
|
0
|
|
|
|
0
|
if ($depth == 1) { |
|
2272
|
|
|
|
|
|
|
### assert: 1 <= $n && $n <= 2 |
|
2273
|
0
|
0
|
|
|
|
0
|
if ($n == 1) { |
|
2274
|
|
|
|
|
|
|
### depth=1 and n=1 remaining ... |
|
2275
|
0
|
|
|
|
|
0
|
return 0; |
|
2276
|
|
|
|
|
|
|
} |
|
2277
|
0
|
|
|
|
|
0
|
$n += 1; |
|
2278
|
|
|
|
|
|
|
} |
|
2279
|
|
|
|
|
|
|
|
|
2280
|
0
|
|
|
|
|
0
|
my $add = _depth_to_octant_added ([$depth],[1], $zero); |
|
2281
|
|
|
|
|
|
|
### $add |
|
2282
|
|
|
|
|
|
|
|
|
2283
|
0
|
0
|
|
|
|
0
|
if ($n < $add) { |
|
2284
|
|
|
|
|
|
|
### extend part, unchanged ... |
|
2285
|
|
|
|
|
|
|
} else { |
|
2286
|
0
|
|
|
|
|
0
|
$dbase = $pow; |
|
2287
|
0
|
|
|
|
|
0
|
$n -= 2*$add; |
|
2288
|
|
|
|
|
|
|
### sub 2*add to: $n |
|
2289
|
|
|
|
|
|
|
|
|
2290
|
0
|
0
|
|
|
|
0
|
if ($n < 0) { |
|
2291
|
|
|
|
|
|
|
### upper part, mirror to n: -1 - $n |
|
2292
|
0
|
|
|
|
|
0
|
$n = -1 - $n; # mirror, $n = $add-1 - $n = -($n-$add) - 1 |
|
2293
|
|
|
|
|
|
|
} else { |
|
2294
|
|
|
|
|
|
|
### lower part ... |
|
2295
|
0
|
|
|
|
|
0
|
$depth += 1; |
|
2296
|
0
|
|
|
|
|
0
|
$n += 1; # undouble upper,lower spine |
|
2297
|
|
|
|
|
|
|
} |
|
2298
|
|
|
|
|
|
|
} |
|
2299
|
|
|
|
|
|
|
|
|
2300
|
|
|
|
|
|
|
} |
|
2301
|
|
|
|
|
|
|
|
|
2302
|
|
|
|
|
|
|
### final ... |
|
2303
|
|
|
|
|
|
|
### $dbase |
|
2304
|
|
|
|
|
|
|
### $depth |
|
2305
|
0
|
0
|
|
|
|
0
|
return (defined $dbase ? $dbase - $depth - 1 : undef); |
|
2306
|
|
|
|
|
|
|
} |
|
2307
|
|
|
|
|
|
|
} |
|
2308
|
|
|
|
|
|
|
|
|
2309
|
|
|
|
|
|
|
#------------------------------------------------------------------------------ |
|
2310
|
|
|
|
|
|
|
# levels |
|
2311
|
|
|
|
|
|
|
|
|
2312
|
|
|
|
|
|
|
sub level_to_n_range { |
|
2313
|
70
|
|
|
70
|
1
|
2086
|
my ($self, $level) = @_; |
|
2314
|
70
|
|
|
|
|
70
|
my $depth = 2**$level; |
|
2315
|
70
|
100
|
|
|
|
143
|
unless ($self->{'parts'} eq '3side') { $depth -= 1; } |
|
|
60
|
|
|
|
|
70
|
|
|
2316
|
70
|
|
|
|
|
130
|
return (0, $self->tree_depth_to_n_end($depth)); |
|
2317
|
|
|
|
|
|
|
} |
|
2318
|
|
|
|
|
|
|
sub n_to_level { |
|
2319
|
0
|
|
|
0
|
1
|
0
|
my ($self, $n) = @_; |
|
2320
|
0
|
|
|
|
|
0
|
my $depth = $self->tree_n_to_depth($n); |
|
2321
|
0
|
0
|
|
|
|
0
|
if (! defined $depth) { return undef; } |
|
|
0
|
|
|
|
|
0
|
|
|
2322
|
0
|
|
|
|
|
0
|
my ($pow, $exp) = round_down_pow ($depth, 2); |
|
2323
|
0
|
|
|
|
|
0
|
return $exp + 1; |
|
2324
|
|
|
|
|
|
|
} |
|
2325
|
|
|
|
|
|
|
|
|
2326
|
|
|
|
|
|
|
#------------------------------------------------------------------------------ |
|
2327
|
|
|
|
|
|
|
|
|
2328
|
|
|
|
|
|
|
# return true if $n is a power 2^k for k>=0 |
|
2329
|
|
|
|
|
|
|
sub _is_pow2 { |
|
2330
|
8
|
|
|
8
|
|
6
|
my ($n) = @_; |
|
2331
|
8
|
|
|
|
|
15
|
my ($pow,$exp) = round_down_pow ($n, 2); |
|
2332
|
8
|
|
|
|
|
59
|
return ($n == $pow); |
|
2333
|
|
|
|
|
|
|
} |
|
2334
|
|
|
|
|
|
|
sub _log2_floor { |
|
2335
|
0
|
|
|
0
|
|
|
my ($n) = @_; |
|
2336
|
0
|
0
|
|
|
|
|
if ($n < 2) { return 0; } |
|
|
0
|
|
|
|
|
|
|
|
2337
|
0
|
|
|
|
|
|
my ($pow,$exp) = round_down_pow ($n, 2); |
|
2338
|
0
|
|
|
|
|
|
return $exp; |
|
2339
|
|
|
|
|
|
|
} |
|
2340
|
|
|
|
|
|
|
|
|
2341
|
|
|
|
|
|
|
1; |
|
2342
|
|
|
|
|
|
|
__END__ |