line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
1
|
|
|
|
|
|
|
# Copyright 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020 Kevin Ryde |
2
|
|
|
|
|
|
|
|
3
|
|
|
|
|
|
|
# This file is part of Math-PlanePath. |
4
|
|
|
|
|
|
|
# |
5
|
|
|
|
|
|
|
# Math-PlanePath is free software; you can redistribute it and/or modify |
6
|
|
|
|
|
|
|
# it under the terms of the GNU General Public License as published by the |
7
|
|
|
|
|
|
|
# Free Software Foundation; either version 3, or (at your option) any later |
8
|
|
|
|
|
|
|
# version. |
9
|
|
|
|
|
|
|
# |
10
|
|
|
|
|
|
|
# Math-PlanePath is distributed in the hope that it will be useful, but |
11
|
|
|
|
|
|
|
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY |
12
|
|
|
|
|
|
|
# or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
13
|
|
|
|
|
|
|
# for more details. |
14
|
|
|
|
|
|
|
# |
15
|
|
|
|
|
|
|
# You should have received a copy of the GNU General Public License along |
16
|
|
|
|
|
|
|
# with Math-PlanePath. If not, see . |
17
|
|
|
|
|
|
|
|
18
|
|
|
|
|
|
|
|
19
|
|
|
|
|
|
|
package Math::PlanePath::TriangleSpiral; |
20
|
1
|
|
|
1
|
|
1026
|
use 5.004; |
|
1
|
|
|
|
|
4
|
|
21
|
1
|
|
|
1
|
|
5
|
use strict; |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
40
|
|
22
|
|
|
|
|
|
|
#use List::Util 'max'; |
23
|
|
|
|
|
|
|
*max = \&Math::PlanePath::_max; |
24
|
|
|
|
|
|
|
|
25
|
1
|
|
|
1
|
|
5
|
use vars '$VERSION', '@ISA'; |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
68
|
|
26
|
|
|
|
|
|
|
$VERSION = 129; |
27
|
1
|
|
|
1
|
|
797
|
use Math::PlanePath; |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
42
|
|
28
|
|
|
|
|
|
|
@ISA = ('Math::PlanePath'); |
29
|
|
|
|
|
|
|
|
30
|
|
|
|
|
|
|
use Math::PlanePath::Base::Generic |
31
|
1
|
|
|
1
|
|
8
|
'round_nearest'; |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
63
|
|
32
|
|
|
|
|
|
|
*_sqrtint = \&Math::PlanePath::_sqrtint; |
33
|
|
|
|
|
|
|
|
34
|
|
|
|
|
|
|
# uncomment this to run the ### lines |
35
|
|
|
|
|
|
|
#use Smart::Comments; |
36
|
|
|
|
|
|
|
|
37
|
|
|
|
|
|
|
|
38
|
|
|
|
|
|
|
*xy_is_visited = \&Math::PlanePath::Base::Generic::xy_is_even; |
39
|
1
|
|
|
|
|
133
|
use constant parameter_info_array => |
40
|
1
|
|
|
1
|
|
6
|
[ Math::PlanePath::Base::Generic::parameter_info_nstart1() ]; |
|
1
|
|
|
|
|
2
|
|
41
|
|
|
|
|
|
|
|
42
|
|
|
|
|
|
|
sub x_negative_at_n { |
43
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
44
|
0
|
|
|
|
|
0
|
return $self->n_start + 4; |
45
|
|
|
|
|
|
|
} |
46
|
|
|
|
|
|
|
sub y_negative_at_n { |
47
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
48
|
0
|
|
|
|
|
0
|
return $self->n_start + 6; |
49
|
|
|
|
|
|
|
} |
50
|
|
|
|
|
|
|
sub _UNDOCUMENTED__dxdy_list_at_n { |
51
|
0
|
|
|
0
|
|
0
|
my ($self) = @_; |
52
|
0
|
|
|
|
|
0
|
return $self->n_start + 3; |
53
|
|
|
|
|
|
|
} |
54
|
1
|
|
|
1
|
|
7
|
use constant dx_minimum => -1; |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
48
|
|
55
|
1
|
|
|
1
|
|
5
|
use constant dx_maximum => 2; |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
40
|
|
56
|
1
|
|
|
1
|
|
4
|
use constant dy_minimum => -1; |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
76
|
|
57
|
1
|
|
|
1
|
|
6
|
use constant dy_maximum => 1; |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
62
|
|
58
|
1
|
|
|
|
|
65
|
use constant 1.02 _UNDOCUMENTED__dxdy_list => (2,0, # E |
59
|
|
|
|
|
|
|
-1,1, # NW |
60
|
1
|
|
|
1
|
|
13
|
-1,-1); # SW |
|
1
|
|
|
|
|
14
|
|
61
|
1
|
|
|
1
|
|
7
|
use constant absdx_minimum => 1; |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
60
|
|
62
|
1
|
|
|
1
|
|
6
|
use constant dsumxy_minimum => -2; # SW diagonal |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
60
|
|
63
|
1
|
|
|
1
|
|
7
|
use constant dsumxy_maximum => 2; # dX=+2 horiz |
|
1
|
|
|
|
|
1
|
|
|
1
|
|
|
|
|
51
|
|
64
|
1
|
|
|
1
|
|
6
|
use constant ddiffxy_minimum => -2; # NW diagonal |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
41
|
|
65
|
1
|
|
|
1
|
|
5
|
use constant ddiffxy_maximum => 2; # dX=+2 horiz |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
58
|
|
66
|
1
|
|
|
1
|
|
6
|
use constant dir_maximum_dxdy => (-1,-1); # at most South-West diagonal |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
44
|
|
67
|
|
|
|
|
|
|
|
68
|
1
|
|
|
1
|
|
5
|
use constant turn_any_right => 0; # only left or straight |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
562
|
|
69
|
|
|
|
|
|
|
|
70
|
|
|
|
|
|
|
|
71
|
|
|
|
|
|
|
#------------------------------------------------------------------------------ |
72
|
|
|
|
|
|
|
|
73
|
|
|
|
|
|
|
sub new { |
74
|
1
|
|
|
1
|
1
|
13
|
my $self = shift->SUPER::new (@_); |
75
|
1
|
50
|
|
|
|
7
|
if (! defined $self->{'n_start'}) { |
76
|
1
|
|
|
|
|
14
|
$self->{'n_start'} = $self->default_n_start; |
77
|
|
|
|
|
|
|
} |
78
|
1
|
|
|
|
|
3
|
return $self; |
79
|
|
|
|
|
|
|
} |
80
|
|
|
|
|
|
|
|
81
|
|
|
|
|
|
|
# base at bottom right corner |
82
|
|
|
|
|
|
|
# d = [ 1, 2, 3 ] |
83
|
|
|
|
|
|
|
# n = [ 2, 11, 29 ] |
84
|
|
|
|
|
|
|
# $d = 1/2 + sqrt(2/9 * $n + -7/36) |
85
|
|
|
|
|
|
|
# = 1/2 + sqrt(8/36 * $n + -7/36) |
86
|
|
|
|
|
|
|
# = 0.5 + sqrt(8*$n + -7)/6 |
87
|
|
|
|
|
|
|
# = (1 + 2*sqrt(8*$n + -7)/6) / 2 |
88
|
|
|
|
|
|
|
# = (1 + sqrt(8*$n + -7)/3) / 2 |
89
|
|
|
|
|
|
|
# = (3 + sqrt(8*$n - 7)) / 6 |
90
|
|
|
|
|
|
|
# |
91
|
|
|
|
|
|
|
# $n = (9/2*$d**2 + -9/2*$d + 2) |
92
|
|
|
|
|
|
|
# = (4.5*$d - 4.5)*$d + 2 |
93
|
|
|
|
|
|
|
# |
94
|
|
|
|
|
|
|
# top of pyramid |
95
|
|
|
|
|
|
|
# d = [ 1, 2, 3 ] |
96
|
|
|
|
|
|
|
# n = [ 4, 16, 37 ] |
97
|
|
|
|
|
|
|
# $n = (9/2*$d**2 + -3/2*$d + 1) |
98
|
|
|
|
|
|
|
# so remainder from there |
99
|
|
|
|
|
|
|
# rem = $n - (9/2*$d**2 + -3/2*$d + 1) |
100
|
|
|
|
|
|
|
# = $n - (4.5*$d*$d - 1.5*$d + 1) |
101
|
|
|
|
|
|
|
# = $n - ((4.5*$d - 1.5)*$d + 1) |
102
|
|
|
|
|
|
|
# |
103
|
|
|
|
|
|
|
# |
104
|
|
|
|
|
|
|
sub n_to_xy { |
105
|
0
|
|
|
0
|
1
|
|
my ($self, $n) = @_; |
106
|
|
|
|
|
|
|
#### TriangleSpiral n_to_xy: $n |
107
|
|
|
|
|
|
|
|
108
|
0
|
|
|
|
|
|
$n = $n - $self->{'n_start'}; # starting $n==0, warn if $n==undef |
109
|
0
|
0
|
|
|
|
|
if ($n < 0) { return; } |
|
0
|
|
|
|
|
|
|
110
|
|
|
|
|
|
|
|
111
|
0
|
|
|
|
|
|
my $d = int ((3 + _sqrtint(8*$n+1)) / 6); |
112
|
|
|
|
|
|
|
#### $d |
113
|
|
|
|
|
|
|
|
114
|
0
|
|
|
|
|
|
$n -= (9*$d - 3)*$d/2; |
115
|
|
|
|
|
|
|
#### remainder: $n |
116
|
|
|
|
|
|
|
|
117
|
0
|
0
|
|
|
|
|
if ($n <= 3*$d) { |
118
|
|
|
|
|
|
|
### sides, remainder pos/neg from top |
119
|
0
|
|
|
|
|
|
return (-$n, |
120
|
|
|
|
|
|
|
2*$d - abs($n)); |
121
|
|
|
|
|
|
|
} else { |
122
|
|
|
|
|
|
|
### rightwards from bottom left |
123
|
|
|
|
|
|
|
### remainder: $n - 3*$d |
124
|
|
|
|
|
|
|
# corner is x=-3*$d |
125
|
|
|
|
|
|
|
# so -3*$d + 2*($n - 3*$d) |
126
|
|
|
|
|
|
|
# = -3*$d + 2*$n - 6*$d |
127
|
|
|
|
|
|
|
# = -9*$d + 2*$n |
128
|
|
|
|
|
|
|
# = 2*$n - 9*$d |
129
|
0
|
|
|
|
|
|
return (2*$n - 9*$d, |
130
|
|
|
|
|
|
|
-$d); |
131
|
|
|
|
|
|
|
} |
132
|
|
|
|
|
|
|
} |
133
|
|
|
|
|
|
|
|
134
|
|
|
|
|
|
|
sub xy_to_n { |
135
|
0
|
|
|
0
|
1
|
|
my ($self, $x, $y) = @_; |
136
|
0
|
|
|
|
|
|
$x = round_nearest ($x); |
137
|
0
|
|
|
|
|
|
$y = round_nearest ($y); |
138
|
|
|
|
|
|
|
### xy_to_n(): "$x,$y" |
139
|
|
|
|
|
|
|
|
140
|
0
|
0
|
|
|
|
|
if (($x ^ $y) & 1) { |
141
|
0
|
|
|
|
|
|
return undef; # nothing on odd points |
142
|
|
|
|
|
|
|
} |
143
|
|
|
|
|
|
|
|
144
|
0
|
0
|
0
|
|
|
|
if ($y < 0 && 3*$y <= $x && $x <= -3*$y) { |
|
|
|
0
|
|
|
|
|
145
|
|
|
|
|
|
|
### bottom horizontal |
146
|
|
|
|
|
|
|
# negative y, at vertical x=0 |
147
|
|
|
|
|
|
|
# [ -1, -2, -3, -4, -5, -6 ] |
148
|
|
|
|
|
|
|
# [ 8.5, 25, 50.5, 85, 128.5, 181 ] |
149
|
|
|
|
|
|
|
# $n = (9/2*$y**2 + -3*$y + 1) |
150
|
|
|
|
|
|
|
# = (4.5*$y*$y + -3*$y + 1) |
151
|
|
|
|
|
|
|
# = ((4.5*$y -3)*$y + 1) |
152
|
|
|
|
|
|
|
# from which $x/2 |
153
|
|
|
|
|
|
|
# |
154
|
0
|
|
|
|
|
|
return ((9*$y - 6)*$y/2) + $x/2 + $self->{'n_start'}; |
155
|
|
|
|
|
|
|
|
156
|
|
|
|
|
|
|
} else { |
157
|
|
|
|
|
|
|
### sides diagonal |
158
|
|
|
|
|
|
|
# |
159
|
|
|
|
|
|
|
# positive y, x=0 centres |
160
|
|
|
|
|
|
|
# [ 2, 4, 6, 8 ] |
161
|
|
|
|
|
|
|
# [ 4, 16, 37, 67 ] |
162
|
|
|
|
|
|
|
# n = (9/8*$d**2 + -3/4*$d + 1) |
163
|
|
|
|
|
|
|
# = (9/8*$d + -3/4)*$d + 1 |
164
|
|
|
|
|
|
|
# = (9*$d + - 6)*$d/8 + 1 |
165
|
|
|
|
|
|
|
# from which -$x offset |
166
|
|
|
|
|
|
|
# |
167
|
0
|
|
|
|
|
|
my $d = abs($x) + $y; |
168
|
0
|
|
|
|
|
|
return ((9*$d - 6)*$d/8) - $x + $self->{'n_start'}; |
169
|
|
|
|
|
|
|
} |
170
|
|
|
|
|
|
|
} |
171
|
|
|
|
|
|
|
|
172
|
|
|
|
|
|
|
# not exact |
173
|
|
|
|
|
|
|
sub rect_to_n_range { |
174
|
0
|
|
|
0
|
1
|
|
my ($self, $x1,$y1, $x2,$y2) = @_; |
175
|
|
|
|
|
|
|
|
176
|
0
|
|
|
|
|
|
$x1 = round_nearest ($x1); |
177
|
0
|
|
|
|
|
|
$y1 = round_nearest ($y1); |
178
|
0
|
|
|
|
|
|
$x2 = round_nearest ($x2); |
179
|
0
|
|
|
|
|
|
$y2 = round_nearest ($y2); |
180
|
|
|
|
|
|
|
|
181
|
0
|
|
|
|
|
|
my $d = 0; |
182
|
0
|
|
|
|
|
|
foreach my $x ($x1, $x2) { |
183
|
0
|
|
|
|
|
|
foreach my $y ($y1, $y2) { |
184
|
0
|
0
|
0
|
|
|
|
$d = max ($d, |
185
|
|
|
|
|
|
|
1 + ($y < 0 && 3*$y <= $x && $x <= -3*$y |
186
|
|
|
|
|
|
|
? -$y # bottom horizontal |
187
|
|
|
|
|
|
|
: int ((abs($x) + $y) / 2))); # sides |
188
|
|
|
|
|
|
|
} |
189
|
|
|
|
|
|
|
} |
190
|
|
|
|
|
|
|
return ($self->{'n_start'}, |
191
|
0
|
|
|
|
|
|
(9*$d - 9)*$d/2 + $self->{'n_start'}); |
192
|
|
|
|
|
|
|
} |
193
|
|
|
|
|
|
|
|
194
|
|
|
|
|
|
|
1; |
195
|
|
|
|
|
|
|
__END__ |