| line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
|
1
|
|
|
|
|
|
|
# Copyright 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020 Kevin Ryde |
|
2
|
|
|
|
|
|
|
|
|
3
|
|
|
|
|
|
|
# This file is part of Math-PlanePath. |
|
4
|
|
|
|
|
|
|
# |
|
5
|
|
|
|
|
|
|
# Math-PlanePath is free software; you can redistribute it and/or modify |
|
6
|
|
|
|
|
|
|
# it under the terms of the GNU General Public License as published by the |
|
7
|
|
|
|
|
|
|
# Free Software Foundation; either version 3, or (at your option) any later |
|
8
|
|
|
|
|
|
|
# version. |
|
9
|
|
|
|
|
|
|
# |
|
10
|
|
|
|
|
|
|
# Math-PlanePath is distributed in the hope that it will be useful, but |
|
11
|
|
|
|
|
|
|
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY |
|
12
|
|
|
|
|
|
|
# or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
|
13
|
|
|
|
|
|
|
# for more details. |
|
14
|
|
|
|
|
|
|
# |
|
15
|
|
|
|
|
|
|
# You should have received a copy of the GNU General Public License along |
|
16
|
|
|
|
|
|
|
# with Math-PlanePath. If not, see . |
|
17
|
|
|
|
|
|
|
|
|
18
|
|
|
|
|
|
|
|
|
19
|
|
|
|
|
|
|
|
|
20
|
|
|
|
|
|
|
|
|
21
|
|
|
|
|
|
|
# math-image --path=TerdragonMidpoint --lines --scale=40 |
|
22
|
|
|
|
|
|
|
# |
|
23
|
|
|
|
|
|
|
# math-image --path=TerdragonMidpoint --all --output=numbers_dash --size=78x60 |
|
24
|
|
|
|
|
|
|
# math-image --path=TerdragonMidpoint,arms=6 --all --output=numbers_dash --size=78x60 |
|
25
|
|
|
|
|
|
|
|
|
26
|
|
|
|
|
|
|
|
|
27
|
|
|
|
|
|
|
package Math::PlanePath::TerdragonMidpoint; |
|
28
|
3
|
|
|
3
|
|
9748
|
use 5.004; |
|
|
3
|
|
|
|
|
15
|
|
|
29
|
3
|
|
|
3
|
|
23
|
use strict; |
|
|
3
|
|
|
|
|
6
|
|
|
|
3
|
|
|
|
|
97
|
|
|
30
|
3
|
|
|
3
|
|
20
|
use List::Util 'min'; # 'max' |
|
|
3
|
|
|
|
|
5
|
|
|
|
3
|
|
|
|
|
299
|
|
|
31
|
|
|
|
|
|
|
*max = \&Math::PlanePath::_max; |
|
32
|
|
|
|
|
|
|
|
|
33
|
3
|
|
|
3
|
|
20
|
use vars '$VERSION', '@ISA'; |
|
|
3
|
|
|
|
|
6
|
|
|
|
3
|
|
|
|
|
201
|
|
|
34
|
|
|
|
|
|
|
$VERSION = 129; |
|
35
|
3
|
|
|
3
|
|
740
|
use Math::PlanePath; |
|
|
3
|
|
|
|
|
14
|
|
|
|
3
|
|
|
|
|
128
|
|
|
36
|
|
|
|
|
|
|
@ISA = ('Math::PlanePath'); |
|
37
|
|
|
|
|
|
|
|
|
38
|
|
|
|
|
|
|
use Math::PlanePath::Base::Generic |
|
39
|
3
|
|
|
|
|
136
|
'is_infinite', |
|
40
|
3
|
|
|
3
|
|
20
|
'round_nearest'; |
|
|
3
|
|
|
|
|
5
|
|
|
41
|
|
|
|
|
|
|
use Math::PlanePath::Base::Digits |
|
42
|
3
|
|
|
|
|
210
|
'digit_join_lowtohigh', |
|
43
|
3
|
|
|
3
|
|
476
|
'round_up_pow'; |
|
|
3
|
|
|
|
|
7
|
|
|
44
|
|
|
|
|
|
|
*_divrem_mutate = \&Math::PlanePath::_divrem_mutate; |
|
45
|
|
|
|
|
|
|
|
|
46
|
|
|
|
|
|
|
# uncomment this to run the ### lines |
|
47
|
|
|
|
|
|
|
# use Smart::Comments; |
|
48
|
|
|
|
|
|
|
|
|
49
|
|
|
|
|
|
|
|
|
50
|
3
|
|
|
3
|
|
20
|
use constant n_start => 0; |
|
|
3
|
|
|
|
|
6
|
|
|
|
3
|
|
|
|
|
228
|
|
|
51
|
3
|
|
|
|
|
491
|
use constant parameter_info_array => [ { name => 'arms', |
|
52
|
|
|
|
|
|
|
share_key => 'arms_6', |
|
53
|
|
|
|
|
|
|
display => 'Arms', |
|
54
|
|
|
|
|
|
|
type => 'integer', |
|
55
|
|
|
|
|
|
|
minimum => 1, |
|
56
|
|
|
|
|
|
|
maximum => 6, |
|
57
|
|
|
|
|
|
|
default => 1, |
|
58
|
|
|
|
|
|
|
width => 1, |
|
59
|
|
|
|
|
|
|
description => 'Arms', |
|
60
|
3
|
|
|
3
|
|
29
|
} ]; |
|
|
3
|
|
|
|
|
7
|
|
|
61
|
|
|
|
|
|
|
|
|
62
|
|
|
|
|
|
|
{ |
|
63
|
|
|
|
|
|
|
my @x_negative_at_n = (undef, 12, 5, 2, 2, 2, 2); |
|
64
|
|
|
|
|
|
|
sub x_negative_at_n { |
|
65
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
|
66
|
0
|
|
|
|
|
0
|
return $x_negative_at_n[$self->{'arms'}]; |
|
67
|
|
|
|
|
|
|
} |
|
68
|
|
|
|
|
|
|
} |
|
69
|
|
|
|
|
|
|
{ |
|
70
|
|
|
|
|
|
|
my @y_negative_at_n = (undef, 158, 73, 17, 7, 4, 4); |
|
71
|
|
|
|
|
|
|
sub y_negative_at_n { |
|
72
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
|
73
|
0
|
|
|
|
|
0
|
return $y_negative_at_n[$self->{'arms'}]; |
|
74
|
|
|
|
|
|
|
} |
|
75
|
|
|
|
|
|
|
} |
|
76
|
3
|
|
|
3
|
|
30
|
use constant sumabsxy_minimum => 2; # X=2,Y=0 or X=1,Y=1 |
|
|
3
|
|
|
|
|
6
|
|
|
|
3
|
|
|
|
|
310
|
|
|
77
|
|
|
|
|
|
|
sub rsquared_minimum { |
|
78
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
|
79
|
0
|
0
|
|
|
|
0
|
return ($self->arms_count < 2 |
|
80
|
|
|
|
|
|
|
? 4 # 1 arm, minimum X=2,Y=0 |
|
81
|
|
|
|
|
|
|
: 2); # 2 or more arms, minimum X=1,Y=1 |
|
82
|
|
|
|
|
|
|
} |
|
83
|
|
|
|
|
|
|
|
|
84
|
3
|
|
|
3
|
|
22
|
use constant dx_minimum => -2; |
|
|
3
|
|
|
|
|
4
|
|
|
|
3
|
|
|
|
|
308
|
|
|
85
|
|
|
|
|
|
|
sub dx_maximum { |
|
86
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
|
87
|
0
|
0
|
|
|
|
0
|
return ($self->{'arms'} == 1 ? 1 : 2); |
|
88
|
|
|
|
|
|
|
} |
|
89
|
3
|
|
|
3
|
|
19
|
use constant dy_minimum => -1; |
|
|
3
|
|
|
|
|
5
|
|
|
|
3
|
|
|
|
|
162
|
|
|
90
|
3
|
|
|
3
|
|
19
|
use constant dy_maximum => 1; |
|
|
3
|
|
|
|
|
6
|
|
|
|
3
|
|
|
|
|
513
|
|
|
91
|
|
|
|
|
|
|
|
|
92
|
|
|
|
|
|
|
sub _UNDOCUMENTED__dxdy_list { |
|
93
|
0
|
|
|
0
|
|
0
|
my ($self) = @_; |
|
94
|
0
|
0
|
|
|
|
0
|
return ($self->{'arms'} == 1 |
|
95
|
|
|
|
|
|
|
? (1,1, # NE |
|
96
|
|
|
|
|
|
|
-2,0, # W |
|
97
|
|
|
|
|
|
|
1,-1) # SE |
|
98
|
|
|
|
|
|
|
: Math::PlanePath::_UNDOCUMENTED__dxdy_list_six()); |
|
99
|
|
|
|
|
|
|
} |
|
100
|
|
|
|
|
|
|
{ |
|
101
|
|
|
|
|
|
|
my @_UNDOCUMENTED__dxdy_list_at_n = (undef, |
|
102
|
|
|
|
|
|
|
12, 25, 37, |
|
103
|
|
|
|
|
|
|
15, 18, 5); |
|
104
|
|
|
|
|
|
|
sub _UNDOCUMENTED__dxdy_list_at_n { |
|
105
|
0
|
|
|
0
|
|
0
|
my ($self) = @_; |
|
106
|
0
|
|
|
|
|
0
|
return $_UNDOCUMENTED__dxdy_list_at_n[$self->{'arms'}]; |
|
107
|
|
|
|
|
|
|
} |
|
108
|
|
|
|
|
|
|
} |
|
109
|
|
|
|
|
|
|
|
|
110
|
3
|
|
|
3
|
|
31
|
use constant absdx_minimum => 1; |
|
|
3
|
|
|
|
|
5
|
|
|
|
3
|
|
|
|
|
167
|
|
|
111
|
3
|
|
|
3
|
|
18
|
use constant dsumxy_minimum => -2; # diagonals |
|
|
3
|
|
|
|
|
7
|
|
|
|
3
|
|
|
|
|
143
|
|
|
112
|
3
|
|
|
3
|
|
18
|
use constant dsumxy_maximum => 2; |
|
|
3
|
|
|
|
|
6
|
|
|
|
3
|
|
|
|
|
147
|
|
|
113
|
3
|
|
|
3
|
|
19
|
use constant ddiffxy_minimum => -2; |
|
|
3
|
|
|
|
|
6
|
|
|
|
3
|
|
|
|
|
150
|
|
|
114
|
3
|
|
|
3
|
|
18
|
use constant ddiffxy_maximum => 2; |
|
|
3
|
|
|
|
|
5
|
|
|
|
3
|
|
|
|
|
366
|
|
|
115
|
|
|
|
|
|
|
|
|
116
|
|
|
|
|
|
|
# arms=1 curve goes at 60,180,300 degrees |
|
117
|
|
|
|
|
|
|
# arms=2 second +60 to 120,240,0 degrees |
|
118
|
|
|
|
|
|
|
# so when arms==1 dir minimum is 60 degrees North-East |
|
119
|
|
|
|
|
|
|
# |
|
120
|
|
|
|
|
|
|
sub dir_minimum_dxdy { |
|
121
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
|
122
|
0
|
0
|
|
|
|
0
|
return ($self->{'arms'} == 1 |
|
123
|
|
|
|
|
|
|
? (1,1) # North-East |
|
124
|
|
|
|
|
|
|
: (1,0)); # East |
|
125
|
|
|
|
|
|
|
} |
|
126
|
3
|
|
|
3
|
|
20
|
use constant dir_maximum_dxdy => (1,-1); # South-East |
|
|
3
|
|
|
|
|
5
|
|
|
|
3
|
|
|
|
|
3482
|
|
|
127
|
|
|
|
|
|
|
|
|
128
|
|
|
|
|
|
|
sub _UNDOCUMENTED__turn_any_right_at_n { |
|
129
|
0
|
|
|
0
|
|
0
|
my ($self) = @_; |
|
130
|
|
|
|
|
|
|
# N=5 first right, and on multi-arms 10,15,20,25,30 |
|
131
|
0
|
|
|
|
|
0
|
return 5*$self->arms_count; |
|
132
|
|
|
|
|
|
|
} |
|
133
|
|
|
|
|
|
|
|
|
134
|
|
|
|
|
|
|
|
|
135
|
|
|
|
|
|
|
#------------------------------------------------------------------------------ |
|
136
|
|
|
|
|
|
|
|
|
137
|
|
|
|
|
|
|
# Not quite. |
|
138
|
|
|
|
|
|
|
# # all even points when arms==3 |
|
139
|
|
|
|
|
|
|
# use Math::PlanePath::TerdragonCurve; |
|
140
|
|
|
|
|
|
|
# *xy_is_visited = \&Math::PlanePath::TerdragonCurve::xy_is_visited; |
|
141
|
|
|
|
|
|
|
|
|
142
|
|
|
|
|
|
|
sub new { |
|
143
|
4
|
|
|
4
|
1
|
1243
|
my $self = shift->SUPER::new(@_); |
|
144
|
4
|
|
100
|
|
|
31
|
$self->{'arms'} = max(1, min(6, $self->{'arms'} || 1)); |
|
145
|
4
|
|
|
|
|
9
|
return $self; |
|
146
|
|
|
|
|
|
|
} |
|
147
|
|
|
|
|
|
|
|
|
148
|
|
|
|
|
|
|
sub n_to_xy { |
|
149
|
0
|
|
|
0
|
1
|
0
|
my ($self, $n) = @_; |
|
150
|
|
|
|
|
|
|
### TerdragonMidpoint n_to_xy(): $n |
|
151
|
|
|
|
|
|
|
|
|
152
|
0
|
0
|
|
|
|
0
|
if ($n < 0) { return; } |
|
|
0
|
|
|
|
|
0
|
|
|
153
|
0
|
0
|
|
|
|
0
|
if (is_infinite($n)) { return ($n, $n); } |
|
|
0
|
|
|
|
|
0
|
|
|
154
|
|
|
|
|
|
|
|
|
155
|
|
|
|
|
|
|
{ |
|
156
|
0
|
|
|
|
|
0
|
my $int = int($n); |
|
|
0
|
|
|
|
|
0
|
|
|
157
|
0
|
0
|
|
|
|
0
|
if ($n != $int) { |
|
158
|
0
|
|
|
|
|
0
|
my ($x1,$y1) = $self->n_to_xy($int); |
|
159
|
0
|
|
|
|
|
0
|
my ($x2,$y2) = $self->n_to_xy($int+$self->{'arms'}); |
|
160
|
0
|
|
|
|
|
0
|
my $frac = $n - $int; # inherit possible BigFloat |
|
161
|
0
|
|
|
|
|
0
|
my $dx = $x2-$x1; |
|
162
|
0
|
|
|
|
|
0
|
my $dy = $y2-$y1; |
|
163
|
0
|
|
|
|
|
0
|
return ($frac*$dx + $x1, $frac*$dy + $y1); |
|
164
|
|
|
|
|
|
|
} |
|
165
|
0
|
|
|
|
|
0
|
$n = $int; # BigFloat int() gives BigInt, use that |
|
166
|
|
|
|
|
|
|
} |
|
167
|
|
|
|
|
|
|
|
|
168
|
|
|
|
|
|
|
# ENHANCE-ME: own code ... |
|
169
|
|
|
|
|
|
|
# |
|
170
|
0
|
|
|
|
|
0
|
require Math::PlanePath::TerdragonCurve; |
|
171
|
0
|
|
|
|
|
0
|
my ($x1,$y1) = $self->Math::PlanePath::TerdragonCurve::n_to_xy($n); |
|
172
|
0
|
|
|
|
|
0
|
my ($x2,$y2) = $self->Math::PlanePath::TerdragonCurve::n_to_xy($n+$self->{'arms'}); |
|
173
|
|
|
|
|
|
|
|
|
174
|
|
|
|
|
|
|
# dx = x2-x1 |
|
175
|
|
|
|
|
|
|
# X = 2 * (x1 + dx/2) |
|
176
|
|
|
|
|
|
|
# = 2 * (x1 + x2/2 - x1/2) |
|
177
|
|
|
|
|
|
|
# = 2 * (x1/2 + x2/2) |
|
178
|
|
|
|
|
|
|
# = x1+x2 |
|
179
|
0
|
|
|
|
|
0
|
return ($x1+$x2, |
|
180
|
|
|
|
|
|
|
$y1+$y2); |
|
181
|
|
|
|
|
|
|
} |
|
182
|
|
|
|
|
|
|
|
|
183
|
|
|
|
|
|
|
# sub n_to_xy { |
|
184
|
|
|
|
|
|
|
# my ($self, $n) = @_; |
|
185
|
|
|
|
|
|
|
# ### TerdragonMidpoint n_to_xy(): $n |
|
186
|
|
|
|
|
|
|
# |
|
187
|
|
|
|
|
|
|
# if ($n < 0) { return; } |
|
188
|
|
|
|
|
|
|
# if (is_infinite($n)) { return ($n, $n); } |
|
189
|
|
|
|
|
|
|
# |
|
190
|
|
|
|
|
|
|
# my $frac; |
|
191
|
|
|
|
|
|
|
# { |
|
192
|
|
|
|
|
|
|
# my $int = int($n); |
|
193
|
|
|
|
|
|
|
# $frac = $n - $int; # inherit possible BigFloat |
|
194
|
|
|
|
|
|
|
# $n = $int; # BigFloat int() gives BigInt, use that |
|
195
|
|
|
|
|
|
|
# } |
|
196
|
|
|
|
|
|
|
# |
|
197
|
|
|
|
|
|
|
# my $zero = ($n * 0); # inherit bignum 0 |
|
198
|
|
|
|
|
|
|
# |
|
199
|
|
|
|
|
|
|
# ($n, my $rot) = _divrem ($n, $self->{'arms'}); |
|
200
|
|
|
|
|
|
|
# |
|
201
|
|
|
|
|
|
|
# # ENHANCE-ME: sx,sy just from len,len |
|
202
|
|
|
|
|
|
|
# my @digits; |
|
203
|
|
|
|
|
|
|
# my @sx; |
|
204
|
|
|
|
|
|
|
# my @sy; |
|
205
|
|
|
|
|
|
|
# { |
|
206
|
|
|
|
|
|
|
# my $sx = $zero + 1; |
|
207
|
|
|
|
|
|
|
# my $sy = -$sx; |
|
208
|
|
|
|
|
|
|
# while ($n) { |
|
209
|
|
|
|
|
|
|
# push @digits, ($n % 2); |
|
210
|
|
|
|
|
|
|
# push @sx, $sx; |
|
211
|
|
|
|
|
|
|
# push @sy, $sy; |
|
212
|
|
|
|
|
|
|
# $n = int($n/2); |
|
213
|
|
|
|
|
|
|
# |
|
214
|
|
|
|
|
|
|
# # (sx,sy) + rot+90(sx,sy) |
|
215
|
|
|
|
|
|
|
# ($sx,$sy) = ($sx - $sy, |
|
216
|
|
|
|
|
|
|
# $sy + $sx); |
|
217
|
|
|
|
|
|
|
# } |
|
218
|
|
|
|
|
|
|
# } |
|
219
|
|
|
|
|
|
|
# |
|
220
|
|
|
|
|
|
|
# ### @digits |
|
221
|
|
|
|
|
|
|
# my $rev = 0; |
|
222
|
|
|
|
|
|
|
# my $x = $zero; |
|
223
|
|
|
|
|
|
|
# my $y = $zero; |
|
224
|
|
|
|
|
|
|
# my $above_low_zero = 0; |
|
225
|
|
|
|
|
|
|
# |
|
226
|
|
|
|
|
|
|
# for (my $i = $#digits; $i >= 0; $i--) { # high to low |
|
227
|
|
|
|
|
|
|
# my $digit = $digits[$i]; |
|
228
|
|
|
|
|
|
|
# my $sx = $sx[$i]; |
|
229
|
|
|
|
|
|
|
# my $sy = $sy[$i]; |
|
230
|
|
|
|
|
|
|
# ### at: "$x,$y $digit side $sx,$sy" |
|
231
|
|
|
|
|
|
|
# ### $rot |
|
232
|
|
|
|
|
|
|
# |
|
233
|
|
|
|
|
|
|
# if ($rot & 2) { |
|
234
|
|
|
|
|
|
|
# $sx = -$sx; |
|
235
|
|
|
|
|
|
|
# $sy = -$sy; |
|
236
|
|
|
|
|
|
|
# } |
|
237
|
|
|
|
|
|
|
# if ($rot & 1) { |
|
238
|
|
|
|
|
|
|
# ($sx,$sy) = (-$sy,$sx); |
|
239
|
|
|
|
|
|
|
# } |
|
240
|
|
|
|
|
|
|
# ### rotated side: "$sx,$sy" |
|
241
|
|
|
|
|
|
|
# |
|
242
|
|
|
|
|
|
|
# if ($rev) { |
|
243
|
|
|
|
|
|
|
# if ($digit) { |
|
244
|
|
|
|
|
|
|
# $x += -$sy; |
|
245
|
|
|
|
|
|
|
# $y += $sx; |
|
246
|
|
|
|
|
|
|
# ### rev add to: "$x,$y next is still rev" |
|
247
|
|
|
|
|
|
|
# } else { |
|
248
|
|
|
|
|
|
|
# $above_low_zero = $digits[$i+1]; |
|
249
|
|
|
|
|
|
|
# $rot ++; |
|
250
|
|
|
|
|
|
|
# $rev = 0; |
|
251
|
|
|
|
|
|
|
# ### rev rot, next is no rev ... |
|
252
|
|
|
|
|
|
|
# } |
|
253
|
|
|
|
|
|
|
# } else { |
|
254
|
|
|
|
|
|
|
# if ($digit) { |
|
255
|
|
|
|
|
|
|
# $rot ++; |
|
256
|
|
|
|
|
|
|
# $x += $sx; |
|
257
|
|
|
|
|
|
|
# $y += $sy; |
|
258
|
|
|
|
|
|
|
# $rev = 1; |
|
259
|
|
|
|
|
|
|
# ### plain add to: "$x,$y next is rev" |
|
260
|
|
|
|
|
|
|
# } else { |
|
261
|
|
|
|
|
|
|
# $above_low_zero = $digits[$i+1]; |
|
262
|
|
|
|
|
|
|
# } |
|
263
|
|
|
|
|
|
|
# } |
|
264
|
|
|
|
|
|
|
# } |
|
265
|
|
|
|
|
|
|
# |
|
266
|
|
|
|
|
|
|
# # Digit above the low zero is the direction of the next turn, 0 for left, |
|
267
|
|
|
|
|
|
|
# # 1 for right. |
|
268
|
|
|
|
|
|
|
# # |
|
269
|
|
|
|
|
|
|
# ### final: "$x,$y rot=$rot above_low_zero=".($above_low_zero||0) |
|
270
|
|
|
|
|
|
|
# |
|
271
|
|
|
|
|
|
|
# if ($rot & 2) { |
|
272
|
|
|
|
|
|
|
# $frac = -$frac; # rotate 180 |
|
273
|
|
|
|
|
|
|
# $x -= 1; |
|
274
|
|
|
|
|
|
|
# } |
|
275
|
|
|
|
|
|
|
# if (($rot+1) & 2) { |
|
276
|
|
|
|
|
|
|
# # rot 1 or 2 |
|
277
|
|
|
|
|
|
|
# $y += 1; |
|
278
|
|
|
|
|
|
|
# } |
|
279
|
|
|
|
|
|
|
# if (!($rot & 1) && $above_low_zero) { |
|
280
|
|
|
|
|
|
|
# $frac = -$frac; |
|
281
|
|
|
|
|
|
|
# } |
|
282
|
|
|
|
|
|
|
# $above_low_zero ^= ($rot & 1); |
|
283
|
|
|
|
|
|
|
# if ($above_low_zero) { |
|
284
|
|
|
|
|
|
|
# $y = $frac + $y; |
|
285
|
|
|
|
|
|
|
# } else { |
|
286
|
|
|
|
|
|
|
# $x = $frac + $x; |
|
287
|
|
|
|
|
|
|
# } |
|
288
|
|
|
|
|
|
|
# |
|
289
|
|
|
|
|
|
|
# ### rotated offset: "$x_offset,$y_offset return $x,$y" |
|
290
|
|
|
|
|
|
|
# return ($x,$y); |
|
291
|
|
|
|
|
|
|
# } |
|
292
|
|
|
|
|
|
|
|
|
293
|
|
|
|
|
|
|
|
|
294
|
|
|
|
|
|
|
# w^2 = -1+w |
|
295
|
|
|
|
|
|
|
# c = (X-Y)/2 x=2c+d |
|
296
|
|
|
|
|
|
|
# d = Y y=d |
|
297
|
|
|
|
|
|
|
# (c+dw)/(w+1) |
|
298
|
|
|
|
|
|
|
# = (c+dw)*(2-w)/3 |
|
299
|
|
|
|
|
|
|
# = (2c-cw + 2dw-dw^2) / 3 |
|
300
|
|
|
|
|
|
|
# = (2c-cw + 2dw-d(w-1)) / 3 |
|
301
|
|
|
|
|
|
|
# = (2c-cw + 2dw-dw+d)) / 3 |
|
302
|
|
|
|
|
|
|
# = (2c+d + w(-c + 2d-d)) / 3 |
|
303
|
|
|
|
|
|
|
# = (2c+d + w(d-c)) / 3 |
|
304
|
|
|
|
|
|
|
# |
|
305
|
|
|
|
|
|
|
# = (x-y+y + w(y - (x-y)/2)) / 3 |
|
306
|
|
|
|
|
|
|
# = (x + w((2y-x+y)/2)) / 3 |
|
307
|
|
|
|
|
|
|
# = (x + w((3y-x)/2)) / 3 |
|
308
|
|
|
|
|
|
|
# then |
|
309
|
|
|
|
|
|
|
# xq = 2c+d |
|
310
|
|
|
|
|
|
|
# = (2x + (3y-x)/2 ) / 3 |
|
311
|
|
|
|
|
|
|
# = (4x + 3y-x)/6 |
|
312
|
|
|
|
|
|
|
# = (3x+3y)/6 |
|
313
|
|
|
|
|
|
|
# = (x+y)/2 |
|
314
|
|
|
|
|
|
|
# yq = d = (3y-x)/6 |
|
315
|
|
|
|
|
|
|
# |
|
316
|
|
|
|
|
|
|
# (-1+5w)(2-w) x=2*-1+5=3,y=5 |
|
317
|
|
|
|
|
|
|
# = -2+w+10w-5w^2 |
|
318
|
|
|
|
|
|
|
# = -2+11w-5(w-1) |
|
319
|
|
|
|
|
|
|
# = -2+11w-5w+5 |
|
320
|
|
|
|
|
|
|
# = 3+6w -> 1+2w |
|
321
|
|
|
|
|
|
|
# c=2*-1+5=3 d=-1+5=4 |
|
322
|
|
|
|
|
|
|
# x=2*1+2=4 y=3 |
|
323
|
|
|
|
|
|
|
# |
|
324
|
|
|
|
|
|
|
# (w+1)*(2-w) |
|
325
|
|
|
|
|
|
|
# = 2w-w^2+2-w |
|
326
|
|
|
|
|
|
|
# = 2w-(w-1)+2-w |
|
327
|
|
|
|
|
|
|
# = 2w-w+1+2-w |
|
328
|
|
|
|
|
|
|
# = 3 -> 1 x=2 |
|
329
|
|
|
|
|
|
|
# |
|
330
|
|
|
|
|
|
|
# 3w*(2-w) x=3,y=3 div x=3,y(3+3)/2=3 |
|
331
|
|
|
|
|
|
|
# = 6w-3w^2 |
|
332
|
|
|
|
|
|
|
# = 6w-3(w-1) |
|
333
|
|
|
|
|
|
|
# = 6w-3w+3 |
|
334
|
|
|
|
|
|
|
# = 3w+3 -> w+1 x=3,y=1 |
|
335
|
|
|
|
|
|
|
# |
|
336
|
|
|
|
|
|
|
# (w+1)(w+1) |
|
337
|
|
|
|
|
|
|
# = w^2+2w+1 |
|
338
|
|
|
|
|
|
|
# = w-1+2w+1 |
|
339
|
|
|
|
|
|
|
# = 3w |
|
340
|
|
|
|
|
|
|
# |
|
341
|
|
|
|
|
|
|
|
|
342
|
|
|
|
|
|
|
# |
|
343
|
|
|
|
|
|
|
# x=3,y=3 (x+y)/2=3 |
|
344
|
|
|
|
|
|
|
|
|
345
|
|
|
|
|
|
|
# X=-3 -2 -1 0 1 2 3 |
|
346
|
|
|
|
|
|
|
my @yx_to_arm = ([9, 9, 9, 4, 9, 9, 9], # Y=-2 |
|
347
|
|
|
|
|
|
|
[3, 9, 9, 9, 9, 9, 5], # Y=-1 |
|
348
|
|
|
|
|
|
|
[9, 9, 9, 9, 9, 9, 9], # Y=0 |
|
349
|
|
|
|
|
|
|
[2, 9, 9, 9, 9, 9, 0], # Y=1 |
|
350
|
|
|
|
|
|
|
[9, 9, 9, 1, 9, 9, 9], # Y= 2 |
|
351
|
|
|
|
|
|
|
); |
|
352
|
|
|
|
|
|
|
|
|
353
|
|
|
|
|
|
|
# my @yx_to_dxdy = (undef,undef, -1,1, undef,undef, 0,0, undef,undef, 1,-1, |
|
354
|
|
|
|
|
|
|
# 1,1, 0,0, -1,-1, -2,0, 0,0, 2,0, |
|
355
|
|
|
|
|
|
|
# undef,undef, 1,-1, undef,undef, -1,1, undef,undef, 0,0, |
|
356
|
|
|
|
|
|
|
# 0,0, 2,0, 1,1, 0,0, -1,-1, -2,0, |
|
357
|
|
|
|
|
|
|
# undef,undef, 0,0, undef,undef, 1,-1, undef,undef, -1,1, |
|
358
|
|
|
|
|
|
|
# -1,-1, -2,0, 0,0, 2,0, 1,1, 0,0, |
|
359
|
|
|
|
|
|
|
# ); |
|
360
|
|
|
|
|
|
|
|
|
361
|
|
|
|
|
|
|
my @yx_to_dxdy # 12 each row |
|
362
|
|
|
|
|
|
|
= (undef,undef, undef,undef, 1,1, undef,undef, undef,undef, undef,undef, |
|
363
|
|
|
|
|
|
|
0,0, undef,undef, undef,undef, undef,undef, -1,-1, undef,undef, |
|
364
|
|
|
|
|
|
|
undef,undef, -1,1, undef,undef, 0,0, undef,undef, 1,-1, |
|
365
|
|
|
|
|
|
|
undef,undef, 2,0, undef,undef, 0,0, undef,undef, -2,0, |
|
366
|
|
|
|
|
|
|
0,0, undef,undef, undef,undef, undef,undef, -1,-1, undef,undef, |
|
367
|
|
|
|
|
|
|
undef,undef, undef,undef, 1,1, undef,undef, undef,undef, undef,undef, |
|
368
|
|
|
|
|
|
|
undef,undef, 2,0, undef,undef, 0,0, undef,undef, -2,0, |
|
369
|
|
|
|
|
|
|
undef,undef, -1,1, undef,undef, 0,0, undef,undef, 1,-1, |
|
370
|
|
|
|
|
|
|
undef,undef, undef,undef, 1,1, undef,undef, undef,undef, undef,undef, |
|
371
|
|
|
|
|
|
|
0,0, undef,undef, undef,undef, undef,undef, -1,-1, undef,undef, |
|
372
|
|
|
|
|
|
|
undef,undef, -1,1, undef,undef, 0,0, undef,undef, 1,-1, |
|
373
|
|
|
|
|
|
|
undef,undef, 2,0, undef,undef, 0,0, undef,undef, -2,0, |
|
374
|
|
|
|
|
|
|
0,0, undef,undef, undef,undef, undef,undef, -1,-1, undef,undef, |
|
375
|
|
|
|
|
|
|
undef,undef, undef,undef, 1,1, undef,undef, undef,undef, undef,undef, |
|
376
|
|
|
|
|
|
|
undef,undef, 2,0, undef,undef, 0,0, undef,undef, -2,0, |
|
377
|
|
|
|
|
|
|
undef,undef, -1,1, undef,undef, 0,0, undef,undef, 1,-1, |
|
378
|
|
|
|
|
|
|
undef,undef, undef,undef, 1,1, undef,undef, undef,undef, undef,undef, |
|
379
|
|
|
|
|
|
|
0,0, undef,undef, undef,undef, undef,undef, -1,-1, undef,undef, |
|
380
|
|
|
|
|
|
|
undef,undef, -1,1, undef,undef, 0,0, undef,undef, 1,-1, |
|
381
|
|
|
|
|
|
|
undef,undef, 2,0, undef,undef, 0,0, undef,undef, -2,0, |
|
382
|
|
|
|
|
|
|
0,0, undef,undef, undef,undef, undef,undef, -1,-1, undef,undef, |
|
383
|
|
|
|
|
|
|
undef,undef, undef,undef, 1,1, undef,undef, undef,undef, undef,undef, |
|
384
|
|
|
|
|
|
|
undef,undef, 2,0, undef,undef, 0,0, undef,undef, -2,0, |
|
385
|
|
|
|
|
|
|
undef,undef, -1,1, undef,undef, 0,0, undef,undef, 1,-1, |
|
386
|
|
|
|
|
|
|
); |
|
387
|
|
|
|
|
|
|
|
|
388
|
|
|
|
|
|
|
my @x_to_digit = (1, 2, 0); # digit = X+1 mod 3 |
|
389
|
|
|
|
|
|
|
|
|
390
|
|
|
|
|
|
|
sub xy_to_n { |
|
391
|
18
|
|
|
18
|
1
|
954
|
my ($self, $x, $y) = @_; |
|
392
|
|
|
|
|
|
|
### TerdragonMidpoint xy_to_n(): "$x, $y" |
|
393
|
|
|
|
|
|
|
|
|
394
|
18
|
|
|
|
|
46
|
$x = round_nearest($x); |
|
395
|
18
|
|
|
|
|
37
|
$y = round_nearest($y); |
|
396
|
|
|
|
|
|
|
|
|
397
|
18
|
50
|
|
|
|
40
|
if (is_infinite($x)) { |
|
398
|
0
|
|
|
|
|
0
|
return $x; # infinity |
|
399
|
|
|
|
|
|
|
} |
|
400
|
18
|
50
|
|
|
|
45
|
if (is_infinite($y)) { |
|
401
|
0
|
|
|
|
|
0
|
return $y; # infinity |
|
402
|
|
|
|
|
|
|
} |
|
403
|
18
|
|
|
|
|
34
|
my $zero = ($x * 0 * $y); # inherit bignum 0 |
|
404
|
18
|
|
|
|
|
28
|
my @ndigits; # low to high; |
|
405
|
|
|
|
|
|
|
|
|
406
|
18
|
|
|
|
|
34
|
for (;;) { |
|
407
|
18
|
|
|
|
|
32
|
my $digit = $x_to_digit[$x%3]; |
|
408
|
|
|
|
|
|
|
|
|
409
|
18
|
|
|
|
|
32
|
my $k = 2*(12*($y%12) + ($x%12)); |
|
410
|
18
|
|
|
|
|
31
|
my $dx = $yx_to_dxdy[$k++]; |
|
411
|
18
|
100
|
|
|
|
37
|
if (! defined $dx) { |
|
412
|
|
|
|
|
|
|
### not a visited point: "k=$k" |
|
413
|
|
|
|
|
|
|
### x mod 12: $x%12 |
|
414
|
|
|
|
|
|
|
### y mod 12: $y%12 |
|
415
|
12
|
|
|
|
|
26
|
return undef; |
|
416
|
|
|
|
|
|
|
} |
|
417
|
|
|
|
|
|
|
|
|
418
|
|
|
|
|
|
|
### at: "$x,$y (k=$k) digit=$digit k=$k offset=$yx_to_dxdy[$k-1],$yx_to_dxdy[$k] to ".($x+$yx_to_dxdy[$k-1]).",".($y+$yx_to_dxdy[$k]) |
|
419
|
|
|
|
|
|
|
|
|
420
|
6
|
|
|
|
|
13
|
push @ndigits, $digit; |
|
421
|
6
|
|
|
|
|
8
|
$x += $dx; |
|
422
|
6
|
|
|
|
|
12
|
$y += $yx_to_dxdy[$k]; |
|
423
|
|
|
|
|
|
|
|
|
424
|
6
|
50
|
33
|
|
|
34
|
last if ($x <= 3 && $x >= -3 && $y <= 2 && $y >= -2); |
|
|
|
|
33
|
|
|
|
|
|
|
|
|
33
|
|
|
|
|
|
425
|
|
|
|
|
|
|
|
|
426
|
|
|
|
|
|
|
### assert: ($x+$y) % 2 == 0 |
|
427
|
|
|
|
|
|
|
### assert: $x % 3 == 0 |
|
428
|
|
|
|
|
|
|
### assert: (3 * $y - $x) % 6 == 0 |
|
429
|
0
|
|
|
|
|
0
|
($x,$y) = (($x+$y)/2, # divide w+1 |
|
430
|
|
|
|
|
|
|
($y-$x/3)/2); |
|
431
|
|
|
|
|
|
|
### divide down to: "$x,$y" |
|
432
|
|
|
|
|
|
|
} |
|
433
|
|
|
|
|
|
|
|
|
434
|
|
|
|
|
|
|
### final: "xy=$x,$y" |
|
435
|
|
|
|
|
|
|
|
|
436
|
6
|
|
100
|
|
|
21
|
my $arm = $yx_to_arm[$y+2][$x+3] || 0; # 0 to 5 |
|
437
|
|
|
|
|
|
|
### $arm |
|
438
|
|
|
|
|
|
|
|
|
439
|
6
|
|
|
|
|
19
|
my $arms_count = $self->arms_count; |
|
440
|
6
|
100
|
|
|
|
14
|
if ($arm >= $arms_count) { |
|
441
|
3
|
|
|
|
|
8
|
return undef; |
|
442
|
|
|
|
|
|
|
} |
|
443
|
3
|
50
|
|
|
|
7
|
if ($arm & 1) { |
|
444
|
|
|
|
|
|
|
### flip ... |
|
445
|
0
|
|
|
|
|
0
|
@ndigits = map {2-$_} @ndigits; |
|
|
0
|
|
|
|
|
0
|
|
|
446
|
|
|
|
|
|
|
} |
|
447
|
|
|
|
|
|
|
|
|
448
|
3
|
|
|
|
|
11
|
return digit_join_lowtohigh(\@ndigits, 3, $zero) * $arms_count + $arm; |
|
449
|
|
|
|
|
|
|
} |
|
450
|
|
|
|
|
|
|
|
|
451
|
|
|
|
|
|
|
# quarter size of TerdragonCurve |
|
452
|
|
|
|
|
|
|
# |
|
453
|
|
|
|
|
|
|
# not exact |
|
454
|
|
|
|
|
|
|
sub rect_to_n_range { |
|
455
|
0
|
|
|
0
|
1
|
0
|
my ($self, $x1,$y1, $x2,$y2) = @_; |
|
456
|
|
|
|
|
|
|
### TerdragonCurve rect_to_n_range(): "$x1,$y1 $x2,$y2" |
|
457
|
0
|
|
|
|
|
0
|
my $xmax = int(max(abs($x1),abs($x2))); |
|
458
|
0
|
|
|
|
|
0
|
my $ymax = int(max(abs($y1),abs($y2))); |
|
459
|
|
|
|
|
|
|
return (0, |
|
460
|
|
|
|
|
|
|
int (($xmax*$xmax + 3*$ymax*$ymax + 1) |
|
461
|
|
|
|
|
|
|
/ 2) |
|
462
|
0
|
|
|
|
|
0
|
* $self->{'arms'}); |
|
463
|
|
|
|
|
|
|
} |
|
464
|
|
|
|
|
|
|
|
|
465
|
|
|
|
|
|
|
#----------------------------------------------------------------------------- |
|
466
|
|
|
|
|
|
|
# level_to_n_range() |
|
467
|
|
|
|
|
|
|
|
|
468
|
|
|
|
|
|
|
# 3^level segments, one midpoint each |
|
469
|
|
|
|
|
|
|
# arms*3^level when multi-arm |
|
470
|
|
|
|
|
|
|
# numbered starting 0 |
|
471
|
|
|
|
|
|
|
# |
|
472
|
|
|
|
|
|
|
sub level_to_n_range { |
|
473
|
7
|
|
|
7
|
1
|
504
|
my ($self, $level) = @_; |
|
474
|
7
|
|
|
|
|
23
|
return (0, 3**$level * $self->{'arms'} - 1); |
|
475
|
|
|
|
|
|
|
} |
|
476
|
|
|
|
|
|
|
sub n_to_level { |
|
477
|
0
|
|
|
0
|
1
|
|
my ($self, $n) = @_; |
|
478
|
0
|
0
|
|
|
|
|
if ($n < 0) { return undef; } |
|
|
0
|
|
|
|
|
|
|
|
479
|
0
|
0
|
|
|
|
|
if (is_infinite($n)) { return $n; } |
|
|
0
|
|
|
|
|
|
|
|
480
|
0
|
|
|
|
|
|
$n = round_nearest($n); |
|
481
|
0
|
|
|
|
|
|
_divrem_mutate ($n, $self->{'arms'}); |
|
482
|
0
|
|
|
|
|
|
my ($pow, $exp) = round_up_pow ($n+1, 3); |
|
483
|
0
|
|
|
|
|
|
return $exp; |
|
484
|
|
|
|
|
|
|
} |
|
485
|
|
|
|
|
|
|
|
|
486
|
|
|
|
|
|
|
#----------------------------------------------------------------------------- |
|
487
|
|
|
|
|
|
|
1; |
|
488
|
|
|
|
|
|
|
__END__ |