line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
1
|
|
|
|
|
|
|
# Copyright 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020 Kevin Ryde |
2
|
|
|
|
|
|
|
|
3
|
|
|
|
|
|
|
# This file is part of Math-PlanePath. |
4
|
|
|
|
|
|
|
# |
5
|
|
|
|
|
|
|
# Math-PlanePath is free software; you can redistribute it and/or modify |
6
|
|
|
|
|
|
|
# it under the terms of the GNU General Public License as published by the |
7
|
|
|
|
|
|
|
# Free Software Foundation; either version 3, or (at your option) any later |
8
|
|
|
|
|
|
|
# version. |
9
|
|
|
|
|
|
|
# |
10
|
|
|
|
|
|
|
# Math-PlanePath is distributed in the hope that it will be useful, but |
11
|
|
|
|
|
|
|
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY |
12
|
|
|
|
|
|
|
# or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
13
|
|
|
|
|
|
|
# for more details. |
14
|
|
|
|
|
|
|
# |
15
|
|
|
|
|
|
|
# You should have received a copy of the GNU General Public License along |
16
|
|
|
|
|
|
|
# with Math-PlanePath. If not, see . |
17
|
|
|
|
|
|
|
|
18
|
|
|
|
|
|
|
|
19
|
|
|
|
|
|
|
|
20
|
|
|
|
|
|
|
|
21
|
|
|
|
|
|
|
# math-image --path=SierpinskiCurveStair --lines --scale=10 |
22
|
|
|
|
|
|
|
# |
23
|
|
|
|
|
|
|
# math-image --path=SierpinskiCurveStair,diagonal_length=1 --all --output=numbers_dash --offset=-10,-7 --size=78x30 |
24
|
|
|
|
|
|
|
|
25
|
|
|
|
|
|
|
|
26
|
|
|
|
|
|
|
|
27
|
|
|
|
|
|
|
package Math::PlanePath::SierpinskiCurveStair; |
28
|
1
|
|
|
1
|
|
9850
|
use 5.004; |
|
1
|
|
|
|
|
21
|
|
29
|
1
|
|
|
1
|
|
6
|
use strict; |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
39
|
|
30
|
1
|
|
|
1
|
|
7
|
use List::Util 'min','max'; |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
146
|
|
31
|
|
|
|
|
|
|
|
32
|
1
|
|
|
1
|
|
8
|
use vars '$VERSION', '@ISA'; |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
66
|
|
33
|
|
|
|
|
|
|
$VERSION = 129; |
34
|
1
|
|
|
1
|
|
725
|
use Math::PlanePath; |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
31
|
|
35
|
1
|
|
|
1
|
|
481
|
use Math::PlanePath::Base::NSEW; |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
41
|
|
36
|
|
|
|
|
|
|
@ISA = ('Math::PlanePath::Base::NSEW', |
37
|
|
|
|
|
|
|
'Math::PlanePath'); |
38
|
|
|
|
|
|
|
|
39
|
|
|
|
|
|
|
use Math::PlanePath::Base::Generic |
40
|
1
|
|
|
|
|
47
|
'is_infinite', |
41
|
1
|
|
|
1
|
|
6
|
'round_nearest'; |
|
1
|
|
|
|
|
2
|
|
42
|
|
|
|
|
|
|
use Math::PlanePath::Base::Digits |
43
|
1
|
|
|
|
|
72
|
'round_up_pow', |
44
|
1
|
|
|
1
|
|
476
|
'round_down_pow'; |
|
1
|
|
|
|
|
3
|
|
45
|
|
|
|
|
|
|
*_divrem_mutate = \&Math::PlanePath::_divrem_mutate; |
46
|
|
|
|
|
|
|
|
47
|
|
|
|
|
|
|
# uncomment this to run the ### lines |
48
|
|
|
|
|
|
|
#use Smart::Comments; |
49
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
|
|
51
|
1
|
|
|
1
|
|
6
|
use constant n_start => 0; |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
168
|
|
52
|
|
|
|
|
|
|
sub x_negative { |
53
|
6
|
|
|
6
|
1
|
79
|
my ($self) = @_; |
54
|
6
|
|
|
|
|
17
|
return ($self->{'arms'} >= 3); |
55
|
|
|
|
|
|
|
} |
56
|
|
|
|
|
|
|
sub y_negative { |
57
|
6
|
|
|
6
|
1
|
308
|
my ($self) = @_; |
58
|
6
|
|
|
|
|
19
|
return ($self->{'arms'} >= 5); |
59
|
|
|
|
|
|
|
} |
60
|
|
|
|
|
|
|
|
61
|
1
|
|
|
|
|
77
|
use constant parameter_info_array => |
62
|
|
|
|
|
|
|
[ |
63
|
|
|
|
|
|
|
{ name => 'diagonal_length', |
64
|
|
|
|
|
|
|
display => 'Diagonal Length', |
65
|
|
|
|
|
|
|
type => 'integer', |
66
|
|
|
|
|
|
|
minimum => 1, |
67
|
|
|
|
|
|
|
default => 1, |
68
|
|
|
|
|
|
|
width => 1, |
69
|
|
|
|
|
|
|
description => 'Length of the diagonal in the base pattern.', |
70
|
|
|
|
|
|
|
}, |
71
|
|
|
|
|
|
|
{ name => 'arms', |
72
|
|
|
|
|
|
|
share_key => 'arms_8', |
73
|
|
|
|
|
|
|
display => 'Arms', |
74
|
|
|
|
|
|
|
type => 'integer', |
75
|
|
|
|
|
|
|
minimum => 1, |
76
|
|
|
|
|
|
|
maximum => 8, |
77
|
|
|
|
|
|
|
default => 1, |
78
|
|
|
|
|
|
|
width => 1, |
79
|
|
|
|
|
|
|
}, |
80
|
1
|
|
|
1
|
|
8
|
]; |
|
1
|
|
|
|
|
2
|
|
81
|
|
|
|
|
|
|
|
82
|
1
|
|
|
1
|
|
619
|
use Math::PlanePath::SierpinskiCurve; |
|
1
|
|
|
|
|
3
|
|
|
1
|
|
|
|
|
65
|
|
83
|
|
|
|
|
|
|
*x_negative_at_n = \&Math::PlanePath::SierpinskiCurve::x_negative_at_n; |
84
|
|
|
|
|
|
|
*y_negative_at_n = \&Math::PlanePath::SierpinskiCurve::y_negative_at_n; |
85
|
|
|
|
|
|
|
*x_minimum = \&Math::PlanePath::SierpinskiCurve::x_minimum; |
86
|
|
|
|
|
|
|
*sumxy_minimum = \&Math::PlanePath::SierpinskiCurve::sumxy_minimum; |
87
|
1
|
|
|
1
|
|
7
|
use constant sumabsxy_minimum => 1; |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
64
|
|
88
|
|
|
|
|
|
|
*diffxy_minimum = \&Math::PlanePath::SierpinskiCurve::diffxy_minimum; |
89
|
1
|
|
|
1
|
|
6
|
use constant absdiffxy_minimum => 1; # X=Y never occurs |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
87
|
|
90
|
1
|
|
|
1
|
|
8
|
use constant rsquared_minimum => 1; # minimum X=1,Y=0 |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
46
|
|
91
|
1
|
|
|
1
|
|
6
|
use constant turn_any_straight => 0; # never straight |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
1432
|
|
92
|
|
|
|
|
|
|
|
93
|
|
|
|
|
|
|
|
94
|
|
|
|
|
|
|
#------------------------------------------------------------------------------ |
95
|
|
|
|
|
|
|
|
96
|
|
|
|
|
|
|
sub new { |
97
|
41
|
|
|
41
|
1
|
4977
|
my $self = shift->SUPER::new(@_); |
98
|
41
|
|
100
|
|
|
371
|
$self->{'arms'} = max(1, min(8, $self->{'arms'} || 1)); |
99
|
41
|
|
100
|
|
|
139
|
$self->{'diagonal_length'} ||= 1; |
100
|
41
|
|
|
|
|
99
|
return $self; |
101
|
|
|
|
|
|
|
} |
102
|
|
|
|
|
|
|
|
103
|
|
|
|
|
|
|
# 20--21 |
104
|
|
|
|
|
|
|
# | | |
105
|
|
|
|
|
|
|
# 18--19 22--23 |
106
|
|
|
|
|
|
|
# | | |
107
|
|
|
|
|
|
|
# 16--17 24--25 |
108
|
|
|
|
|
|
|
# | | |
109
|
|
|
|
|
|
|
# 15--14 27--26 |
110
|
|
|
|
|
|
|
# | | |
111
|
|
|
|
|
|
|
# 4---5 13--12 29--28 36--37 |
112
|
|
|
|
|
|
|
# | | | | | | |
113
|
|
|
|
|
|
|
# 2---3 6---7 10--11 30--31 34--35 38--39 42--43 |
114
|
|
|
|
|
|
|
# | | | | | | | |
115
|
|
|
|
|
|
|
# 0---1 8---9 32--33 40--41 |
116
|
|
|
|
|
|
|
|
117
|
|
|
|
|
|
|
# len=5 |
118
|
|
|
|
|
|
|
# N=0 to 9 is 10 |
119
|
|
|
|
|
|
|
# next N=0 to 41 is 42=4*10+2 |
120
|
|
|
|
|
|
|
# next is 4*42+2=166 |
121
|
|
|
|
|
|
|
# points(level) = 4*points(level-1)+2 |
122
|
|
|
|
|
|
|
# |
123
|
|
|
|
|
|
|
# or side 5 points |
124
|
|
|
|
|
|
|
# points(level) = 4*points(level-1)+1 |
125
|
|
|
|
|
|
|
# = 4*(4*points(level-2)+1)+1 |
126
|
|
|
|
|
|
|
# = 16*points(level-2) + 4 + 1 |
127
|
|
|
|
|
|
|
# = 64*points(level-3) + 16 + 4 + 1 |
128
|
|
|
|
|
|
|
# = 5 * 4^level + 1+...+4^(level-1) |
129
|
|
|
|
|
|
|
# = 5 * 4^level + (4^level - 1) / 3 |
130
|
|
|
|
|
|
|
# = (15 * 4^level + 4^level - 1) / 3 |
131
|
|
|
|
|
|
|
# = (16 * 4^level - 1) / 3 |
132
|
|
|
|
|
|
|
# = (4^(level+2) - 1) / 3 |
133
|
|
|
|
|
|
|
# level=0 (16*1-1)/3=5 |
134
|
|
|
|
|
|
|
# level=1 (16*4-1)/3=21 |
135
|
|
|
|
|
|
|
# level=2 (16*16-1)/3=85 |
136
|
|
|
|
|
|
|
# |
137
|
|
|
|
|
|
|
# n = (16 * 4^level - 1) / 3 |
138
|
|
|
|
|
|
|
# 3n+1 = 16 * 4^level |
139
|
|
|
|
|
|
|
# 4^level = (3n+1)/16 |
140
|
|
|
|
|
|
|
# level = log4 ( (3n+1)/16) |
141
|
|
|
|
|
|
|
# = log4(3n+1) - 2 |
142
|
|
|
|
|
|
|
# N=21 log4(64)-2=3-2=1 |
143
|
|
|
|
|
|
|
# |
144
|
|
|
|
|
|
|
# nlen=4^(level+2) |
145
|
|
|
|
|
|
|
# n = (nlen-1)/3 |
146
|
|
|
|
|
|
|
# next_n = (nlen/4-1)/3 |
147
|
|
|
|
|
|
|
# = (nlen-4)/3 /4 |
148
|
|
|
|
|
|
|
# = ((nlen-1)/3 -1) /4 |
149
|
|
|
|
|
|
|
# |
150
|
|
|
|
|
|
|
# len=2,6,14 |
151
|
|
|
|
|
|
|
# len(k)=2*len(k-1) + 2 |
152
|
|
|
|
|
|
|
# = 2^k + 2*(2^(k-1)-1) |
153
|
|
|
|
|
|
|
# = 2^k + 2^k - 2 |
154
|
|
|
|
|
|
|
# = 2*(2^k - 1) |
155
|
|
|
|
|
|
|
# k=1 len=2*(2-1) = 2 |
156
|
|
|
|
|
|
|
# k=2 len=2*(4-1) = 6 |
157
|
|
|
|
|
|
|
# k=3 len=2*(8-1) = 14 |
158
|
|
|
|
|
|
|
|
159
|
|
|
|
|
|
|
# len(k)-2=2*len(k-1) |
160
|
|
|
|
|
|
|
# (len(k)-2)/2=len(k-1) |
161
|
|
|
|
|
|
|
# len(k-1) = (len(k)-2)/2 |
162
|
|
|
|
|
|
|
# = len(k)/2-1 |
163
|
|
|
|
|
|
|
# |
164
|
|
|
|
|
|
|
# --------- |
165
|
|
|
|
|
|
|
# with P=2*L+1 points per side |
166
|
|
|
|
|
|
|
# points(level) = 64*points(level-3) + 16 + 4 + 1 |
167
|
|
|
|
|
|
|
# = P*4^level + 1+...+4^(level-1) |
168
|
|
|
|
|
|
|
# = P*4^level + (4^level - 1) / 3 |
169
|
|
|
|
|
|
|
# = (3P*4^level + 4^level - 1) / 3 |
170
|
|
|
|
|
|
|
# = ((3P+1)*4^level - 1) / 3 |
171
|
|
|
|
|
|
|
# = ((3*(2L+1)+1)*4^level - 1) / 3 |
172
|
|
|
|
|
|
|
# = ((6L+3+1)*4^level - 1) / 3 |
173
|
|
|
|
|
|
|
# = ((6L+4)*4^level - 1) / 3 |
174
|
|
|
|
|
|
|
# n = ((6L+4)*4^level - 1) / 3 |
175
|
|
|
|
|
|
|
# 3n+1 = (6L+4)*4^level |
176
|
|
|
|
|
|
|
# |
177
|
|
|
|
|
|
|
# len(k) = 2*len(k-1) + 2 |
178
|
|
|
|
|
|
|
# = 2*len(k-2) + 2 + 4 |
179
|
|
|
|
|
|
|
# = 2*len(k-3) + 2 + 4 + 8 |
180
|
|
|
|
|
|
|
# = 2^(k-1)*L + 2^k - 2 |
181
|
|
|
|
|
|
|
# = (L+2)*2^(k-1) - 2 |
182
|
|
|
|
|
|
|
# L=2 k=3 len=(2+2)*2^2-2=14 |
183
|
|
|
|
|
|
|
# |
184
|
|
|
|
|
|
|
# ---------- |
185
|
|
|
|
|
|
|
# Nlevel = ((6L+4)*4^level - 1) / 3 - 1 |
186
|
|
|
|
|
|
|
# = ((6L+4)*4^level - 4) / 3 |
187
|
|
|
|
|
|
|
# Xlevel = (L+2)*2^level - 2 + 1 |
188
|
|
|
|
|
|
|
# = (L+2)*2^level - 1 |
189
|
|
|
|
|
|
|
# |
190
|
|
|
|
|
|
|
# fill = Nlevel / (Xlevel*(Xlevel-1)/2) |
191
|
|
|
|
|
|
|
# = (((6L+4)*4^level - 1) / 3 - 1) / (((L+2)*2^level - 1)*((L+2)*2^level - 2)) |
192
|
|
|
|
|
|
|
# -> (((6L+4)*4^level) / 3) / ((L+2)*2^level)^2 |
193
|
|
|
|
|
|
|
# = ((6L+4)*4^level) / ((L+2)^2*4^level) *2/3 |
194
|
|
|
|
|
|
|
# = ((6L+4)) / ((L+2)^2) * 2/3 |
195
|
|
|
|
|
|
|
# = 2*(3L+2) / ((L+2)^2) * 2/3 |
196
|
|
|
|
|
|
|
# = 4/3 * (3L+2)/(L+2)^2 |
197
|
|
|
|
|
|
|
# = (12L+8) / (3*L^2+12L+12) |
198
|
|
|
|
|
|
|
# L=1 (12+8)/(3+12+12) = 20/27 |
199
|
|
|
|
|
|
|
|
200
|
|
|
|
|
|
|
|
201
|
|
|
|
|
|
|
sub n_to_xy { |
202
|
19
|
|
|
19
|
1
|
1075
|
my ($self, $n) = @_; |
203
|
|
|
|
|
|
|
### SierpinskiCurveStair n_to_xy(): $n |
204
|
|
|
|
|
|
|
|
205
|
19
|
50
|
|
|
|
48
|
if ($n < 0) { |
206
|
0
|
|
|
|
|
0
|
return; |
207
|
|
|
|
|
|
|
} |
208
|
19
|
50
|
|
|
|
60
|
if (is_infinite($n)) { |
209
|
0
|
|
|
|
|
0
|
return ($n,$n); |
210
|
|
|
|
|
|
|
} |
211
|
|
|
|
|
|
|
|
212
|
19
|
|
|
|
|
34
|
my $frac; |
213
|
|
|
|
|
|
|
{ |
214
|
19
|
|
|
|
|
26
|
my $int = int($n); |
|
19
|
|
|
|
|
33
|
|
215
|
19
|
|
|
|
|
32
|
$frac = $n - $int; # inherit possible BigFloat |
216
|
19
|
50
|
|
|
|
39
|
if ($frac) { |
217
|
0
|
|
|
|
|
0
|
my ($x1,$y1) = $self->n_to_xy($int); |
218
|
0
|
|
|
|
|
0
|
my ($x2,$y2) = $self->n_to_xy($int+$self->{'arms'}); |
219
|
|
|
|
|
|
|
|
220
|
0
|
|
|
|
|
0
|
my $dx = $x2-$x1; |
221
|
0
|
|
|
|
|
0
|
my $dy = $y2-$y1; |
222
|
0
|
|
|
|
|
0
|
return ($frac*$dx + $x1, $frac*$dy + $y1); |
223
|
|
|
|
|
|
|
} |
224
|
19
|
|
|
|
|
29
|
$n = $int; # BigFloat int() gives BigInt, use that |
225
|
|
|
|
|
|
|
} |
226
|
|
|
|
|
|
|
### $frac |
227
|
19
|
|
|
|
|
30
|
my $zero = ($n * 0); # inherit bignum 0 |
228
|
|
|
|
|
|
|
|
229
|
19
|
|
|
|
|
51
|
my $arm = _divrem_mutate ($n, $self->{'arms'}); |
230
|
|
|
|
|
|
|
|
231
|
19
|
|
|
|
|
36
|
my $diagonal_length = $self->{'diagonal_length'}; |
232
|
19
|
|
|
|
|
26
|
my $diagonal_div = 6*$diagonal_length + 4; |
233
|
|
|
|
|
|
|
|
234
|
19
|
|
|
|
|
59
|
my ($nlen,$level) = round_down_pow ((3*$n+1)/$diagonal_div, 4); |
235
|
|
|
|
|
|
|
### $nlen |
236
|
|
|
|
|
|
|
### $level |
237
|
19
|
50
|
|
|
|
45
|
if (is_infinite($level)) { |
238
|
0
|
|
|
|
|
0
|
return $level; |
239
|
|
|
|
|
|
|
} |
240
|
|
|
|
|
|
|
|
241
|
19
|
|
|
|
|
37
|
my $x = $zero; |
242
|
19
|
|
|
|
|
28
|
my $y = $zero; |
243
|
19
|
|
|
|
|
27
|
my $dx = 1; |
244
|
19
|
|
|
|
|
25
|
my $dy = 0; |
245
|
|
|
|
|
|
|
|
246
|
|
|
|
|
|
|
# (L+2)*2^(level-1) - 2 |
247
|
19
|
|
|
|
|
39
|
my $len = ($diagonal_length+2)*2**$level - 2; |
248
|
19
|
|
|
|
|
32
|
$nlen = ($diagonal_div*$nlen-1)/3; |
249
|
|
|
|
|
|
|
|
250
|
19
|
|
|
|
|
40
|
while ($level-- >= 0) { |
251
|
|
|
|
|
|
|
### at: "n=$n xy=$x,$y nlen=$nlen len=$len" |
252
|
|
|
|
|
|
|
|
253
|
52
|
100
|
|
|
|
103
|
if ($n < 2*$nlen+1) { |
254
|
19
|
100
|
|
|
|
32
|
if ($n < $nlen) { |
255
|
|
|
|
|
|
|
### part 0 ... |
256
|
|
|
|
|
|
|
} else { |
257
|
|
|
|
|
|
|
### part 1 ... |
258
|
18
|
|
|
|
|
33
|
$x += ($len+1)*$dx - $len*$dy; |
259
|
18
|
|
|
|
|
41
|
$y += ($len+1)*$dy + $len*$dx; |
260
|
18
|
|
|
|
|
42
|
($dx,$dy) = ($dy,-$dx); # rotate -90 |
261
|
18
|
|
|
|
|
30
|
$n -= $nlen; |
262
|
|
|
|
|
|
|
} |
263
|
|
|
|
|
|
|
} else { |
264
|
33
|
|
|
|
|
47
|
$n -= 2*$nlen+1; |
265
|
33
|
50
|
|
|
|
59
|
if ($n < $nlen) { |
266
|
|
|
|
|
|
|
### part 2 ... |
267
|
0
|
|
|
|
|
0
|
$x += (2*$len+2)*$dx - $dy; |
268
|
0
|
|
|
|
|
0
|
$y += (2*$len+2)*$dy + $dx; |
269
|
0
|
|
|
|
|
0
|
($dx,$dy) = (-$dy,$dx); # rotate +90 |
270
|
|
|
|
|
|
|
} else { |
271
|
|
|
|
|
|
|
### part 3 ... |
272
|
33
|
|
|
|
|
45
|
$x += ($len+2)*$dx - ($len+2)*$dy; |
273
|
33
|
|
|
|
|
54
|
$y += ($len+2)*$dy + ($len+2)*$dx; |
274
|
33
|
|
|
|
|
42
|
$n -= $nlen; |
275
|
|
|
|
|
|
|
} |
276
|
|
|
|
|
|
|
} |
277
|
|
|
|
|
|
|
|
278
|
52
|
|
|
|
|
79
|
$nlen = ($nlen-1)/4; |
279
|
52
|
|
|
|
|
97
|
$len = $len/2-1; |
280
|
|
|
|
|
|
|
} |
281
|
|
|
|
|
|
|
|
282
|
19
|
|
|
|
|
34
|
my $lowdigit_x = int(($n+1)/2); |
283
|
19
|
100
|
|
|
|
39
|
if ($n == 2*$diagonal_length+1) { $lowdigit_x -= 2; } |
|
5
|
|
|
|
|
7
|
|
284
|
19
|
|
|
|
|
34
|
my $lowdigit_y = int($n/2); |
285
|
|
|
|
|
|
|
|
286
|
|
|
|
|
|
|
### final: "n=$n xy=$x,$y dxdy=$dx,$dy" |
287
|
|
|
|
|
|
|
### $lowdigit_x |
288
|
|
|
|
|
|
|
### $lowdigit_y |
289
|
|
|
|
|
|
|
|
290
|
19
|
|
|
|
|
38
|
$x += $lowdigit_x*$dx - $lowdigit_y*$dy + 1; # +1 start at x=1,y=0 |
291
|
19
|
|
|
|
|
35
|
$y += $lowdigit_x*$dy + $lowdigit_y*$dx; |
292
|
|
|
|
|
|
|
|
293
|
19
|
50
|
|
|
|
33
|
if ($arm & 1) { |
294
|
0
|
|
|
|
|
0
|
($x,$y) = ($y,$x); # mirror 45 |
295
|
|
|
|
|
|
|
} |
296
|
19
|
50
|
|
|
|
34
|
if ($arm & 2) { |
297
|
0
|
|
|
|
|
0
|
($x,$y) = (-1-$y,$x); # rotate +90 |
298
|
|
|
|
|
|
|
} |
299
|
19
|
50
|
|
|
|
33
|
if ($arm & 4) { |
300
|
0
|
|
|
|
|
0
|
$x = -1-$x; # rotate 180 |
301
|
0
|
|
|
|
|
0
|
$y = -1-$y; |
302
|
|
|
|
|
|
|
} |
303
|
|
|
|
|
|
|
|
304
|
19
|
|
|
|
|
49
|
return ($x,$y); |
305
|
|
|
|
|
|
|
} |
306
|
|
|
|
|
|
|
|
307
|
|
|
|
|
|
|
sub xy_to_n { |
308
|
19776
|
|
|
19776
|
1
|
200193
|
my ($self, $x, $y) = @_; |
309
|
|
|
|
|
|
|
### SierpinskiCurveStair xy_to_n(): "$x, $y" |
310
|
|
|
|
|
|
|
|
311
|
19776
|
|
|
|
|
37365
|
$x = round_nearest($x); |
312
|
19776
|
|
|
|
|
38280
|
$y = round_nearest($y); |
313
|
|
|
|
|
|
|
|
314
|
19776
|
|
|
|
|
29635
|
my $arm = 0; |
315
|
19776
|
100
|
|
|
|
35788
|
if ($y < 0) { |
316
|
2720
|
|
|
|
|
3823
|
$arm = 4; |
317
|
2720
|
|
|
|
|
3719
|
$x = -1-$x; # rotate -180 |
318
|
2720
|
|
|
|
|
3665
|
$y = -1-$y; |
319
|
|
|
|
|
|
|
} |
320
|
19776
|
100
|
|
|
|
32984
|
if ($x < 0) { |
321
|
4608
|
|
|
|
|
6573
|
$arm += 2; |
322
|
4608
|
|
|
|
|
8157
|
($x,$y) = ($y, -1-$x); # rotate -90 |
323
|
|
|
|
|
|
|
} |
324
|
19776
|
100
|
|
|
|
32974
|
if ($y > $x) { # second octant |
325
|
9344
|
|
|
|
|
12424
|
$arm++; |
326
|
9344
|
|
|
|
|
17972
|
($x,$y) = ($y,$x); # mirror 45 |
327
|
|
|
|
|
|
|
} |
328
|
|
|
|
|
|
|
|
329
|
19776
|
|
|
|
|
30676
|
my $arms = $self->{'arms'}; |
330
|
19776
|
100
|
|
|
|
33762
|
if ($arm >= $arms) { |
331
|
3680
|
|
|
|
|
7017
|
return undef; |
332
|
|
|
|
|
|
|
} |
333
|
|
|
|
|
|
|
|
334
|
16096
|
|
|
|
|
21999
|
$x -= 1; |
335
|
16096
|
100
|
100
|
|
|
45305
|
if ($x < 0 || $x < $y) { |
336
|
1008
|
|
|
|
|
2453
|
return undef; |
337
|
|
|
|
|
|
|
} |
338
|
|
|
|
|
|
|
### x adjust to zero: "$x,$y" |
339
|
|
|
|
|
|
|
### assert: $x >= 0 |
340
|
|
|
|
|
|
|
### assert: $y >= 0 |
341
|
|
|
|
|
|
|
|
342
|
|
|
|
|
|
|
# len=2*(2^level - 1) |
343
|
|
|
|
|
|
|
# len/2+1 = 2^level |
344
|
|
|
|
|
|
|
# 2^level = len/2+1 |
345
|
|
|
|
|
|
|
# 2^(level+1) = len+2 |
346
|
|
|
|
|
|
|
|
347
|
|
|
|
|
|
|
# len=(L+2)*2^(level-1) - 2 |
348
|
|
|
|
|
|
|
# (len+2)/(L+2) = 2^(level-1) |
349
|
|
|
|
|
|
|
|
350
|
15088
|
|
|
|
|
23285
|
my $diagonal_length = $self->{'diagonal_length'}; |
351
|
15088
|
|
|
|
|
37426
|
my ($len,$level) = round_down_pow (($x+1)/($diagonal_length+2), 2); |
352
|
|
|
|
|
|
|
### $level |
353
|
|
|
|
|
|
|
### $len |
354
|
15088
|
50
|
|
|
|
32263
|
if (is_infinite($level)) { |
355
|
0
|
|
|
|
|
0
|
return $level; |
356
|
|
|
|
|
|
|
} |
357
|
|
|
|
|
|
|
|
358
|
15088
|
|
|
|
|
26256
|
my $n = 0; |
359
|
15088
|
|
|
|
|
27045
|
my $nlen = ((6*$diagonal_length+4)*$len*$len-1)/3; |
360
|
15088
|
|
|
|
|
24385
|
$len *= ($self->{'diagonal_length'}+2); |
361
|
|
|
|
|
|
|
### $len |
362
|
|
|
|
|
|
|
### $nlen |
363
|
|
|
|
|
|
|
|
364
|
15088
|
|
|
|
|
19471
|
my $n_last_1; |
365
|
15088
|
|
|
|
|
25891
|
foreach (0 .. $level) { |
366
|
|
|
|
|
|
|
### at: "loop=$_ x=$x,y=$y n=$n nlen=$nlen len=$len diag cmp ".(2*$len-2) |
367
|
|
|
|
|
|
|
### assert: $x >= 0 |
368
|
|
|
|
|
|
|
### assert: $y >= 0 |
369
|
|
|
|
|
|
|
|
370
|
37510
|
100
|
|
|
|
66601
|
if ($x+$y <= 2*$len-2) { |
371
|
|
|
|
|
|
|
### part 0 or 1... |
372
|
20665
|
100
|
|
|
|
33657
|
if ($x < $len-1) { |
373
|
|
|
|
|
|
|
### part 0 ... |
374
|
6256
|
|
|
|
|
8694
|
$n_last_1 = 0; |
375
|
|
|
|
|
|
|
} else { |
376
|
|
|
|
|
|
|
### part 1 ... |
377
|
14409
|
|
|
|
|
25572
|
($x,$y) = ($len-2-$y, $x-($len-1)); # shift then rotate +90 |
378
|
14409
|
|
|
|
|
20359
|
$n += $nlen; |
379
|
14409
|
|
|
|
|
20736
|
$n_last_1 = 1; |
380
|
|
|
|
|
|
|
} |
381
|
|
|
|
|
|
|
} else { |
382
|
16845
|
|
|
|
|
25404
|
$n += 2*$nlen + 1; # +1 for middle point |
383
|
|
|
|
|
|
|
### part 2 or 3 ... |
384
|
16845
|
100
|
|
|
|
27005
|
if ($y < $len) { |
385
|
|
|
|
|
|
|
### part 2... |
386
|
8671
|
|
|
|
|
15170
|
($x,$y) = ($y-1, 2*$len-2-$x); # shift y-1 then rotate -90 |
387
|
8671
|
|
|
|
|
11617
|
$n_last_1 = 0; |
388
|
|
|
|
|
|
|
} else { |
389
|
|
|
|
|
|
|
#### digit 3... |
390
|
8174
|
|
|
|
|
10855
|
$x -= $len; |
391
|
8174
|
|
|
|
|
10702
|
$y -= $len; |
392
|
8174
|
|
|
|
|
10767
|
$n += $nlen; |
393
|
|
|
|
|
|
|
} |
394
|
16845
|
100
|
|
|
|
29385
|
if ($x < 0) { |
395
|
81
|
|
|
|
|
217
|
return undef; |
396
|
|
|
|
|
|
|
} |
397
|
|
|
|
|
|
|
} |
398
|
37429
|
|
|
|
|
50782
|
$len /= 2; |
399
|
37429
|
|
|
|
|
59258
|
$nlen = ($nlen-1)/4; |
400
|
|
|
|
|
|
|
} |
401
|
|
|
|
|
|
|
|
402
|
|
|
|
|
|
|
### end at: "x=$x,y=$y n=$n last2=$n_last_1" |
403
|
|
|
|
|
|
|
### assert: $x >= 0 |
404
|
|
|
|
|
|
|
### assert: $y >= 0 |
405
|
|
|
|
|
|
|
|
406
|
15007
|
100
|
100
|
|
|
46200
|
if ($x == $y || $x == $y+1) { |
|
|
100
|
100
|
|
|
|
|
|
|
|
100
|
|
|
|
|
407
|
8932
|
|
|
|
|
13064
|
$n += $x+$y; |
408
|
|
|
|
|
|
|
} elsif ($n_last_1 && $x == $diagonal_length-1 && $y == $diagonal_length) { |
409
|
|
|
|
|
|
|
# in between diagonals |
410
|
458
|
|
|
|
|
701
|
$n += 2*$diagonal_length+1; |
411
|
|
|
|
|
|
|
} else { |
412
|
5617
|
|
|
|
|
13399
|
return undef; |
413
|
|
|
|
|
|
|
} |
414
|
|
|
|
|
|
|
|
415
|
9390
|
|
|
|
|
20297
|
return $n*$arms + $arm; |
416
|
|
|
|
|
|
|
} |
417
|
|
|
|
|
|
|
|
418
|
|
|
|
|
|
|
# not exact |
419
|
|
|
|
|
|
|
sub rect_to_n_range { |
420
|
32
|
|
|
32
|
1
|
180
|
my ($self, $x1,$y1, $x2,$y2) = @_; |
421
|
|
|
|
|
|
|
### SierpinskiCurveStair rect_to_n_range(): "$x1,$y1 $x2,$y2" |
422
|
|
|
|
|
|
|
|
423
|
32
|
|
|
|
|
96
|
$x1 = round_nearest ($x1); |
424
|
32
|
|
|
|
|
87
|
$x2 = round_nearest ($x2); |
425
|
32
|
|
|
|
|
85
|
$y1 = round_nearest ($y1); |
426
|
32
|
|
|
|
|
70
|
$y2 = round_nearest ($y2); |
427
|
32
|
50
|
|
|
|
101
|
($x1,$x2) = ($x2,$x1) if $x1 > $x2; |
428
|
32
|
50
|
|
|
|
86
|
($y1,$y2) = ($y2,$y1) if $y1 > $y2; |
429
|
|
|
|
|
|
|
|
430
|
|
|
|
|
|
|
# x2 |
431
|
|
|
|
|
|
|
# y2 +-------+ * |
432
|
|
|
|
|
|
|
# | | * |
433
|
|
|
|
|
|
|
# y1 +-------+ * |
434
|
|
|
|
|
|
|
# * |
435
|
|
|
|
|
|
|
# * |
436
|
|
|
|
|
|
|
# * |
437
|
|
|
|
|
|
|
# ------------------ |
438
|
|
|
|
|
|
|
# |
439
|
|
|
|
|
|
|
# |
440
|
|
|
|
|
|
|
# * |
441
|
|
|
|
|
|
|
# x1 * x2 * |
442
|
|
|
|
|
|
|
# +-----*-+y2* |
443
|
|
|
|
|
|
|
# | *| * |
444
|
|
|
|
|
|
|
# | * * |
445
|
|
|
|
|
|
|
# | |* * |
446
|
|
|
|
|
|
|
# | | ** |
447
|
|
|
|
|
|
|
# +-------+y1* |
448
|
|
|
|
|
|
|
# ---------------- |
449
|
|
|
|
|
|
|
# |
450
|
32
|
|
|
|
|
65
|
my $arms = $self->{'arms'}; |
451
|
32
|
100
|
33
|
|
|
277
|
if (($arms <= 4 |
|
|
50
|
33
|
|
|
|
|
452
|
|
|
|
|
|
|
? ($y2 < 0 # y2 negative, nothing ... |
453
|
|
|
|
|
|
|
|| ($arms == 1 && $x2 <= $y1) |
454
|
|
|
|
|
|
|
|| ($arms == 2 && $x2 < 0) |
455
|
|
|
|
|
|
|
|| ($arms == 3 && $x2 < -$y2)) |
456
|
|
|
|
|
|
|
|
457
|
|
|
|
|
|
|
# arms >= 5 |
458
|
|
|
|
|
|
|
: ($y2 < 0 |
459
|
|
|
|
|
|
|
&& (($arms == 5 && $x1 >= $y2) |
460
|
|
|
|
|
|
|
|| ($arms == 6 && $x1 >= 0) |
461
|
|
|
|
|
|
|
|| ($arms == 7 && $x1 > 3-$y2))))) { |
462
|
|
|
|
|
|
|
### rect outside octants, for arms: $arms |
463
|
|
|
|
|
|
|
### $x1 |
464
|
|
|
|
|
|
|
### $y2 |
465
|
0
|
|
|
|
|
0
|
return (1,0); |
466
|
|
|
|
|
|
|
} |
467
|
|
|
|
|
|
|
|
468
|
32
|
|
|
|
|
65
|
my $max = $x2; # arms 1,8 using X, starting at X=1 |
469
|
32
|
100
|
|
|
|
104
|
if ($arms >= 2) { |
470
|
|
|
|
|
|
|
# arms 2,3 upper using Y, starting at Y=1 |
471
|
28
|
|
|
|
|
104
|
_apply_max ($max, $y2); |
472
|
|
|
|
|
|
|
|
473
|
28
|
100
|
|
|
|
89
|
if ($arms >= 4) { |
474
|
|
|
|
|
|
|
# arms 4,5 right using X, starting at X=-2 |
475
|
20
|
|
|
|
|
72
|
_apply_max ($max, -1-$x1); |
476
|
|
|
|
|
|
|
|
477
|
20
|
100
|
|
|
|
102
|
if ($arms >= 6) { |
478
|
|
|
|
|
|
|
# arms 6,7 down using Y, starting at Y=-2 |
479
|
12
|
|
|
|
|
33
|
_apply_max ($max, -1-$y1); |
480
|
|
|
|
|
|
|
} |
481
|
|
|
|
|
|
|
} |
482
|
|
|
|
|
|
|
} |
483
|
|
|
|
|
|
|
### $max |
484
|
|
|
|
|
|
|
|
485
|
|
|
|
|
|
|
|
486
|
|
|
|
|
|
|
# points(level) = (4^(level+2) - 1) / 3 |
487
|
|
|
|
|
|
|
# Nlast(level) = (4^(level+2) - 1) / 3 - 1 |
488
|
|
|
|
|
|
|
# = (4^(level+2) - 4) / 3 |
489
|
|
|
|
|
|
|
# then + arms-1 for last of arms |
490
|
|
|
|
|
|
|
# Nhi = Nlast(level) * arms + arms-1 |
491
|
|
|
|
|
|
|
# = (Nlast(level + 1)) * arms - 1 |
492
|
|
|
|
|
|
|
# = ((4^(level+2) - 4) / 3 + 1) * arms - 1 |
493
|
|
|
|
|
|
|
# = ((4^(level+2) - 1) / 3) * arms - 1 |
494
|
|
|
|
|
|
|
# |
495
|
|
|
|
|
|
|
# len(level) = = (L+2)*2^(level-1) - 2 |
496
|
|
|
|
|
|
|
# points(level) = ((3*P+1)*4^level - 1) / 3 |
497
|
|
|
|
|
|
|
# |
498
|
32
|
|
|
|
|
128
|
my ($pow,$level) = round_down_pow ($max/($self->{'diagonal_length'}+2), |
499
|
|
|
|
|
|
|
2); |
500
|
|
|
|
|
|
|
return (0, |
501
|
32
|
|
|
|
|
161
|
((6*$self->{'diagonal_length'}+4)*4*$pow*$pow - 1) / 3 |
502
|
|
|
|
|
|
|
* $arms - 1); |
503
|
|
|
|
|
|
|
} |
504
|
|
|
|
|
|
|
|
505
|
|
|
|
|
|
|
# set $_[0] to the max of $_[0] and $_[1] |
506
|
|
|
|
|
|
|
sub _apply_max { |
507
|
|
|
|
|
|
|
### _apply_max(): "$_[0] cf $_[1]" |
508
|
60
|
100
|
|
60
|
|
167
|
unless ($_[0] > $_[1]) { |
509
|
28
|
|
|
|
|
57
|
$_[0] = $_[1]; |
510
|
|
|
|
|
|
|
} |
511
|
|
|
|
|
|
|
} |
512
|
|
|
|
|
|
|
|
513
|
|
|
|
|
|
|
|
514
|
|
|
|
|
|
|
#------------------------------------------------------------------------------ |
515
|
|
|
|
|
|
|
|
516
|
|
|
|
|
|
|
# Nlevel = ((3L+2)*4^level - 5) / 3 |
517
|
|
|
|
|
|
|
# LevelPoints = Nlevel+1 |
518
|
|
|
|
|
|
|
# Nlevel(arms) = (Nlevel+1)*arms - 1 |
519
|
|
|
|
|
|
|
# |
520
|
|
|
|
|
|
|
# Eg. L=1 level=1 (5*4-5)/3 = 5 |
521
|
|
|
|
|
|
|
# arms=8 ((5*4-5)/3+1)*8 - 1 = 47 |
522
|
|
|
|
|
|
|
# |
523
|
|
|
|
|
|
|
|
524
|
|
|
|
|
|
|
sub level_to_n_range { |
525
|
12
|
|
|
12
|
1
|
744
|
my ($self, $level) = @_; |
526
|
|
|
|
|
|
|
return (0, |
527
|
|
|
|
|
|
|
(4**$level * (3*$self->{'diagonal_length'}+2) - 2) / 3 |
528
|
12
|
|
|
|
|
54
|
* $self->{'arms'} - 1); |
529
|
|
|
|
|
|
|
} |
530
|
|
|
|
|
|
|
sub n_to_level { |
531
|
0
|
|
|
0
|
1
|
|
my ($self, $n) = @_; |
532
|
0
|
0
|
|
|
|
|
if ($n < 0) { return undef; } |
|
0
|
|
|
|
|
|
|
533
|
0
|
0
|
|
|
|
|
if (is_infinite($n)) { return $n; } |
|
0
|
|
|
|
|
|
|
534
|
0
|
|
|
|
|
|
$n = round_nearest($n); |
535
|
0
|
|
|
|
|
|
_divrem_mutate ($n, $self->{'arms'}); |
536
|
0
|
|
|
|
|
|
my $diagonal_div = 3*$self->{'diagonal_length'} + 2; |
537
|
0
|
|
|
|
|
|
my ($pow,$exp) = round_up_pow ((3*$n+3) / (3*$self->{'diagonal_length'}+2), |
538
|
|
|
|
|
|
|
4); |
539
|
0
|
|
|
|
|
|
return $exp; |
540
|
|
|
|
|
|
|
} |
541
|
|
|
|
|
|
|
|
542
|
|
|
|
|
|
|
#------------------------------------------------------------------------------ |
543
|
|
|
|
|
|
|
1; |
544
|
|
|
|
|
|
|
__END__ |