line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
1
|
|
|
|
|
|
|
# Copyright 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020 Kevin Ryde |
2
|
|
|
|
|
|
|
|
3
|
|
|
|
|
|
|
# This file is part of Math-PlanePath. |
4
|
|
|
|
|
|
|
# |
5
|
|
|
|
|
|
|
# Math-PlanePath is free software; you can redistribute it and/or modify |
6
|
|
|
|
|
|
|
# it under the terms of the GNU General Public License as published by the |
7
|
|
|
|
|
|
|
# Free Software Foundation; either version 3, or (at your option) any later |
8
|
|
|
|
|
|
|
# version. |
9
|
|
|
|
|
|
|
# |
10
|
|
|
|
|
|
|
# Math-PlanePath is distributed in the hope that it will be useful, but |
11
|
|
|
|
|
|
|
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY |
12
|
|
|
|
|
|
|
# or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
13
|
|
|
|
|
|
|
# for more details. |
14
|
|
|
|
|
|
|
# |
15
|
|
|
|
|
|
|
# You should have received a copy of the GNU General Public License along |
16
|
|
|
|
|
|
|
# with Math-PlanePath. If not, see . |
17
|
|
|
|
|
|
|
|
18
|
|
|
|
|
|
|
|
19
|
|
|
|
|
|
|
# could loop by more or less, eg. 4*n^2 each time like a square spiral |
20
|
|
|
|
|
|
|
# (Kevin Vicklund at the_surprises_never_eend_the_u.php) |
21
|
|
|
|
|
|
|
|
22
|
|
|
|
|
|
|
|
23
|
|
|
|
|
|
|
package Math::PlanePath::SacksSpiral; |
24
|
15
|
|
|
15
|
|
1635
|
use 5.004; |
|
15
|
|
|
|
|
61
|
|
25
|
15
|
|
|
15
|
|
120
|
use strict; |
|
15
|
|
|
|
|
32
|
|
|
15
|
|
|
|
|
403
|
|
26
|
15
|
|
|
15
|
|
2861
|
use Math::Libm 'hypot'; |
|
15
|
|
|
|
|
28604
|
|
|
15
|
|
|
|
|
942
|
|
27
|
15
|
|
|
15
|
|
4144
|
use POSIX 'floor'; |
|
15
|
|
|
|
|
45962
|
|
|
15
|
|
|
|
|
147
|
|
28
|
|
|
|
|
|
|
#use List::Util 'max'; |
29
|
|
|
|
|
|
|
*max = \&Math::PlanePath::_max; |
30
|
|
|
|
|
|
|
|
31
|
15
|
|
|
15
|
|
12795
|
use Math::PlanePath; |
|
15
|
|
|
|
|
80
|
|
|
15
|
|
|
|
|
444
|
|
32
|
15
|
|
|
15
|
|
8164
|
use Math::PlanePath::MultipleRings; |
|
15
|
|
|
|
|
39
|
|
|
15
|
|
|
|
|
535
|
|
33
|
|
|
|
|
|
|
|
34
|
15
|
|
|
15
|
|
109
|
use vars '$VERSION', '@ISA'; |
|
15
|
|
|
|
|
32
|
|
|
15
|
|
|
|
|
1168
|
|
35
|
|
|
|
|
|
|
$VERSION = 129; |
36
|
|
|
|
|
|
|
@ISA = ('Math::PlanePath'); |
37
|
|
|
|
|
|
|
|
38
|
|
|
|
|
|
|
|
39
|
|
|
|
|
|
|
# uncomment this to run the ### lines |
40
|
|
|
|
|
|
|
#use Smart::Comments; |
41
|
|
|
|
|
|
|
|
42
|
|
|
|
|
|
|
|
43
|
15
|
|
|
15
|
|
100
|
use constant n_start => 0; |
|
15
|
|
|
|
|
32
|
|
|
15
|
|
|
|
|
796
|
|
44
|
15
|
|
|
15
|
|
88
|
use constant figure => 'circle'; |
|
15
|
|
|
|
|
39
|
|
|
15
|
|
|
|
|
707
|
|
45
|
15
|
|
|
15
|
|
88
|
use constant x_negative_at_n => 2; |
|
15
|
|
|
|
|
28
|
|
|
15
|
|
|
|
|
751
|
|
46
|
15
|
|
|
15
|
|
94
|
use constant y_negative_at_n => 3; |
|
15
|
|
|
|
|
30
|
|
|
15
|
|
|
|
|
687
|
|
47
|
|
|
|
|
|
|
|
48
|
15
|
|
|
15
|
|
86
|
use constant 1.02; # for leading underscore |
|
15
|
|
|
|
|
235
|
|
|
15
|
|
|
|
|
581
|
|
49
|
15
|
|
|
15
|
|
87
|
use constant _TWO_PI => 4*atan2(1,0); |
|
15
|
|
|
|
|
49
|
|
|
15
|
|
|
|
|
1383
|
|
50
|
|
|
|
|
|
|
|
51
|
|
|
|
|
|
|
# at N=k^2 polygon of 2k+1 sides R=k |
52
|
|
|
|
|
|
|
# dX -> sin(2pi/(2k+1))*k |
53
|
|
|
|
|
|
|
# -> 2pi/(2k+1) * k |
54
|
|
|
|
|
|
|
# -> pi |
55
|
15
|
|
|
15
|
|
106
|
use constant dx_minimum => - 2*atan2(1,0); # -pi |
|
15
|
|
|
|
|
30
|
|
|
15
|
|
|
|
|
922
|
|
56
|
15
|
|
|
15
|
|
99
|
use constant dx_maximum => 2*atan2(1,0); # +pi |
|
15
|
|
|
|
|
29
|
|
|
15
|
|
|
|
|
1009
|
|
57
|
15
|
|
|
15
|
|
95
|
use constant dy_minimum => - 2*atan2(1,0); |
|
15
|
|
|
|
|
35
|
|
|
15
|
|
|
|
|
854
|
|
58
|
15
|
|
|
15
|
|
95
|
use constant dy_maximum => 2*atan2(1,0); |
|
15
|
|
|
|
|
29
|
|
|
15
|
|
|
|
|
742
|
|
59
|
|
|
|
|
|
|
|
60
|
15
|
|
|
15
|
|
95
|
use constant turn_any_right => 0; # left always |
|
15
|
|
|
|
|
46
|
|
|
15
|
|
|
|
|
873
|
|
61
|
15
|
|
|
15
|
|
103
|
use constant turn_any_straight => 0; # left always |
|
15
|
|
|
|
|
29
|
|
|
15
|
|
|
|
|
1433
|
|
62
|
|
|
|
|
|
|
|
63
|
|
|
|
|
|
|
|
64
|
|
|
|
|
|
|
#------------------------------------------------------------------------------ |
65
|
|
|
|
|
|
|
# sub _as_float { |
66
|
|
|
|
|
|
|
# my ($x) = @_; |
67
|
|
|
|
|
|
|
# if (ref $x) { |
68
|
|
|
|
|
|
|
# if ($x->isa('Math::BigInt')) { |
69
|
|
|
|
|
|
|
# return Math::BigFloat->new($x); |
70
|
|
|
|
|
|
|
# } |
71
|
|
|
|
|
|
|
# if ($x->isa('Math::BigRat')) { |
72
|
|
|
|
|
|
|
# return $x->as_float; |
73
|
|
|
|
|
|
|
# } |
74
|
|
|
|
|
|
|
# } |
75
|
|
|
|
|
|
|
# return $x; |
76
|
|
|
|
|
|
|
# } |
77
|
|
|
|
|
|
|
|
78
|
|
|
|
|
|
|
# Note: this is "use Math::BigFloat" not "require Math::BigFloat" because |
79
|
|
|
|
|
|
|
# BigFloat 1.997 does some setups in its import() needed to tie-in to the |
80
|
|
|
|
|
|
|
# BigInt back-end, or something. |
81
|
|
|
|
|
|
|
use constant::defer _bigfloat => sub { |
82
|
1
|
50
|
|
1
|
|
84
|
eval "use Math::BigFloat; 1" or die $@; |
|
1
|
|
|
|
|
8
|
|
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
5
|
|
83
|
1
|
|
|
|
|
5
|
return "Math::BigFloat"; |
84
|
15
|
|
|
15
|
|
8244
|
}; |
|
15
|
|
|
|
|
12418
|
|
|
15
|
|
|
|
|
158
|
|
85
|
|
|
|
|
|
|
|
86
|
|
|
|
|
|
|
sub n_to_xy { |
87
|
55
|
|
|
55
|
1
|
4004
|
my ($self, $n) = @_; |
88
|
55
|
50
|
|
|
|
130
|
if ($n < 0) { |
89
|
0
|
|
|
|
|
0
|
return; |
90
|
|
|
|
|
|
|
} |
91
|
55
|
|
|
|
|
87
|
my $two_pi = _TWO_PI(); |
92
|
|
|
|
|
|
|
|
93
|
55
|
50
|
|
|
|
102
|
if (ref $n) { |
94
|
0
|
0
|
|
|
|
0
|
if ($n->isa('Math::BigInt')) { |
95
|
0
|
|
|
|
|
0
|
$n = _bigfloat()->new($n); |
96
|
|
|
|
|
|
|
} |
97
|
0
|
0
|
|
|
|
0
|
if ($n->isa('Math::BigRat')) { |
98
|
0
|
|
|
|
|
0
|
$n = $n->as_float; |
99
|
|
|
|
|
|
|
} |
100
|
0
|
0
|
|
|
|
0
|
if ($n->isa('Math::BigFloat')) { |
101
|
0
|
|
0
|
|
|
0
|
$two_pi = 2 * Math::BigFloat->bpi ($n->accuracy |
102
|
|
|
|
|
|
|
|| $n->precision |
103
|
|
|
|
|
|
|
|| $n->div_scale); |
104
|
|
|
|
|
|
|
} |
105
|
|
|
|
|
|
|
} |
106
|
|
|
|
|
|
|
|
107
|
55
|
|
|
|
|
122
|
my $r = sqrt($n); |
108
|
55
|
|
|
|
|
119
|
my $theta = $two_pi * ($r - int($r)); # 0 <= $theta < 2*pi |
109
|
55
|
|
|
|
|
201
|
return ($r * cos($theta), |
110
|
|
|
|
|
|
|
$r * sin($theta)); |
111
|
|
|
|
|
|
|
|
112
|
|
|
|
|
|
|
} |
113
|
|
|
|
|
|
|
|
114
|
|
|
|
|
|
|
sub n_to_rsquared { |
115
|
3
|
|
|
3
|
1
|
9
|
my ($self, $n) = @_; |
116
|
3
|
50
|
|
|
|
12
|
if ($n < 0) { return undef; } |
|
0
|
|
|
|
|
0
|
|
117
|
3
|
|
|
|
|
9
|
return $n; # exactly RSquared=$n |
118
|
|
|
|
|
|
|
} |
119
|
|
|
|
|
|
|
|
120
|
|
|
|
|
|
|
sub xy_to_n { |
121
|
5
|
|
|
5
|
1
|
311
|
my ($self, $x, $y) = @_; |
122
|
|
|
|
|
|
|
### SacksSpiral xy_to_n(): "$x, $y" |
123
|
|
|
|
|
|
|
|
124
|
5
|
|
|
|
|
15
|
my $theta_frac = Math::PlanePath::MultipleRings::_xy_to_angle_frac($x,$y); |
125
|
|
|
|
|
|
|
### assert: 0 <= $theta_frac && $theta_frac < 1 |
126
|
|
|
|
|
|
|
|
127
|
|
|
|
|
|
|
# the nearest arc, integer |
128
|
5
|
|
|
|
|
27
|
my $s = floor (hypot($x,$y) - $theta_frac + 0.5); |
129
|
|
|
|
|
|
|
|
130
|
|
|
|
|
|
|
# the nearest N on the arc |
131
|
5
|
|
|
|
|
16
|
my $n = floor ($s*$s + $theta_frac * (2*$s + 1) + 0.5); |
132
|
|
|
|
|
|
|
|
133
|
|
|
|
|
|
|
# check within 0.5 radius |
134
|
5
|
|
|
|
|
11
|
my ($nx, $ny) = $self->n_to_xy($n); |
135
|
|
|
|
|
|
|
|
136
|
|
|
|
|
|
|
### $theta_frac |
137
|
|
|
|
|
|
|
### raw hypot: hypot($x,$y) |
138
|
|
|
|
|
|
|
### $s |
139
|
|
|
|
|
|
|
### $n |
140
|
|
|
|
|
|
|
### hypot: hypot($nx-$x, $ny-$y) |
141
|
5
|
50
|
|
|
|
19
|
if (hypot($nx-$x,$ny-$y) <= 0.5) { |
142
|
5
|
|
|
|
|
16
|
return $n; |
143
|
|
|
|
|
|
|
} else { |
144
|
0
|
|
|
|
|
0
|
return undef; |
145
|
|
|
|
|
|
|
} |
146
|
|
|
|
|
|
|
} |
147
|
|
|
|
|
|
|
|
148
|
|
|
|
|
|
|
# r^2 = x^2 + y^2 |
149
|
|
|
|
|
|
|
# (r+1)^2 = r^2 + 2r + 1 |
150
|
|
|
|
|
|
|
# r < x+y |
151
|
|
|
|
|
|
|
# (r+1)^2 < x^2+y^2 + x + y + 1 |
152
|
|
|
|
|
|
|
# < (x+.5)^2 + (y+.5)^2 + 1 |
153
|
|
|
|
|
|
|
# (x+1)^2 + (y+1)^2 = x^2+y^2 + 2x+2y+2 |
154
|
|
|
|
|
|
|
# |
155
|
|
|
|
|
|
|
# (x+1)^2 + (y+1)^2 - (r+1)^2 |
156
|
|
|
|
|
|
|
# = x^2+y^2 + 2x+2y+2 - (r^2 + 2r + 1) |
157
|
|
|
|
|
|
|
# = x^2+y^2 + 2x+2y+2 - x^2-y^2 - 2*sqrt(x^2+y^2) - 1 |
158
|
|
|
|
|
|
|
# = 2x+2y+1 - 2*sqrt(x^2+y^2) |
159
|
|
|
|
|
|
|
# >= 2x+2y+1 - 2*(x+y) |
160
|
|
|
|
|
|
|
# = 1 |
161
|
|
|
|
|
|
|
# |
162
|
|
|
|
|
|
|
# (x+e)^2 + (y+e)^2 - (r+e)^2 |
163
|
|
|
|
|
|
|
# = x^2+y^2 + 2xe+2ye + 2e^2 - (r^2 + 2re + e^2) |
164
|
|
|
|
|
|
|
# = x^2+y^2 + 2xe+2ye + 2e^2 - x^2-y^2 - 2*e*sqrt(x^2+y^2) - e^2 |
165
|
|
|
|
|
|
|
# = 2xe+2ye + e^2 - 2*e*sqrt(x^2+y^2) |
166
|
|
|
|
|
|
|
# >= 2xe+2ye + e^2 - 2*e*(x+y) |
167
|
|
|
|
|
|
|
# = e^2 |
168
|
|
|
|
|
|
|
# |
169
|
|
|
|
|
|
|
# x+1,y+1 increases the radius by at least 1 thus pushing it to the outside |
170
|
|
|
|
|
|
|
# of a ring. Actually it's more, as much as sqrt(2)=1.4142 on the leading |
171
|
|
|
|
|
|
|
# diagonal X=Y. But the over-estimate is close enough for now. |
172
|
|
|
|
|
|
|
# |
173
|
|
|
|
|
|
|
|
174
|
|
|
|
|
|
|
# r = hypot(xmin,ymin) |
175
|
|
|
|
|
|
|
# Nlo = (r-1/2)^2 |
176
|
|
|
|
|
|
|
# = r^2 - r + 1/4 |
177
|
|
|
|
|
|
|
# >= x^2+y^2 - (x+y) because x+y >= r |
178
|
|
|
|
|
|
|
# = x(x-1) + y(y-1) |
179
|
|
|
|
|
|
|
# >= floorx(floorx-1) + floory(floory-1) |
180
|
|
|
|
|
|
|
# in integers if round down to x=0 then x*(x-1)=0 too, so not negative |
181
|
|
|
|
|
|
|
# |
182
|
|
|
|
|
|
|
# r = hypot(xmax,ymax) |
183
|
|
|
|
|
|
|
# Nhi = (r+1/2)^2 |
184
|
|
|
|
|
|
|
# = r^2 + r + 1/4 |
185
|
|
|
|
|
|
|
# <= x^2+y^2 + (x+y) + 1 |
186
|
|
|
|
|
|
|
# = x(x+1) + y(y+1) + 1 |
187
|
|
|
|
|
|
|
# <= ceilx(ceilx+1) + ceily(ceily+1) + 1 |
188
|
|
|
|
|
|
|
|
189
|
|
|
|
|
|
|
# Note: this code shared by TheodorusSpiral. If start using the polar angle |
190
|
|
|
|
|
|
|
# for more accuracy here then unshare it first. |
191
|
|
|
|
|
|
|
# |
192
|
|
|
|
|
|
|
# not exact |
193
|
|
|
|
|
|
|
sub rect_to_n_range { |
194
|
52
|
|
|
52
|
1
|
1106
|
my ($self, $x1,$y1, $x2,$y2) = @_; |
195
|
52
|
|
|
|
|
107
|
($x1,$y1, $x2,$y2) = _rect_to_radius_corners ($x1,$y1, $x2,$y2); |
196
|
|
|
|
|
|
|
|
197
|
|
|
|
|
|
|
### $x_min |
198
|
|
|
|
|
|
|
### $y_min |
199
|
|
|
|
|
|
|
### N min: $x_min*($x_min-1) + $y_min*($y_min-1) |
200
|
|
|
|
|
|
|
|
201
|
|
|
|
|
|
|
### $x_max |
202
|
|
|
|
|
|
|
### $y_max |
203
|
|
|
|
|
|
|
### N max: $x_max*($x_max+1) + $y_max*($y_max+1) + 1 |
204
|
|
|
|
|
|
|
|
205
|
52
|
|
|
|
|
162
|
return ($x1*($x1-1) + $y1*($y1-1), |
206
|
|
|
|
|
|
|
$x2*($x2+1) + $y2*($y2+1) + 1); |
207
|
|
|
|
|
|
|
} |
208
|
|
|
|
|
|
|
|
209
|
|
|
|
|
|
|
#------------------------------------------------------------------------------ |
210
|
|
|
|
|
|
|
# generic |
211
|
|
|
|
|
|
|
|
212
|
|
|
|
|
|
|
# $x1,$y1, $x2,$y2 is a rectangle. |
213
|
|
|
|
|
|
|
# Return ($xmin,$ymin, $xmax,$ymax). |
214
|
|
|
|
|
|
|
# |
215
|
|
|
|
|
|
|
# The two points are respectively minimum and maximum radius from the |
216
|
|
|
|
|
|
|
# origin, rounded down or up to integers. |
217
|
|
|
|
|
|
|
# |
218
|
|
|
|
|
|
|
# If the rectangle is entirely one quadrant then the points are two opposing |
219
|
|
|
|
|
|
|
# corners. But if an axis is crossed then the minimum is on that axis and |
220
|
|
|
|
|
|
|
# if the origin is covered then the minimum is 0,0. |
221
|
|
|
|
|
|
|
# |
222
|
|
|
|
|
|
|
# Currently the return is abs() absolute values of the places. Could change |
223
|
|
|
|
|
|
|
# that if there was any significance to the quadrant containing the min/max |
224
|
|
|
|
|
|
|
# corners. |
225
|
|
|
|
|
|
|
# |
226
|
|
|
|
|
|
|
sub _rect_to_radius_corners { |
227
|
919
|
|
|
919
|
|
1913
|
my ($x1,$y1, $x2,$y2) = @_; |
228
|
|
|
|
|
|
|
|
229
|
919
|
100
|
|
|
|
2368
|
($x1,$x2) = ($x2,$x1) if $x1 > $x2; |
230
|
919
|
100
|
|
|
|
2097
|
($y1,$y2) = ($y2,$y1) if $y1 > $y2; |
231
|
|
|
|
|
|
|
|
232
|
919
|
100
|
|
|
|
4247
|
return (int($x2 < 0 ? -$x2 |
|
|
100
|
|
|
|
|
|
|
|
100
|
|
|
|
|
|
|
|
100
|
|
|
|
|
|
233
|
|
|
|
|
|
|
: $x1 > 0 ? $x1 |
234
|
|
|
|
|
|
|
: 0), |
235
|
|
|
|
|
|
|
int($y2 < 0 ? -$y2 |
236
|
|
|
|
|
|
|
: $y1 > 0 ? $y1 |
237
|
|
|
|
|
|
|
: 0), |
238
|
|
|
|
|
|
|
|
239
|
|
|
|
|
|
|
max(_ceil(abs($x1)), _ceil(abs($x2))), |
240
|
|
|
|
|
|
|
max(_ceil(abs($y1)), _ceil(abs($y2)))); |
241
|
|
|
|
|
|
|
} |
242
|
|
|
|
|
|
|
|
243
|
|
|
|
|
|
|
sub _ceil { |
244
|
3676
|
|
|
3676
|
|
6031
|
my ($x) = @_; |
245
|
3676
|
|
|
|
|
5221
|
my $int = int($x); |
246
|
3676
|
100
|
|
|
|
9638
|
return ($x > $int ? $int+1 : $int); |
247
|
|
|
|
|
|
|
} |
248
|
|
|
|
|
|
|
|
249
|
|
|
|
|
|
|
# FIXME: prefer to stay in integers if possible |
250
|
|
|
|
|
|
|
# return ($rlo,$rhi) which is the radial distance range found in the rectangle |
251
|
|
|
|
|
|
|
sub _rect_to_radius_range { |
252
|
867
|
|
|
867
|
|
6248
|
my ($x1,$y1, $x2,$y2) = @_; |
253
|
|
|
|
|
|
|
|
254
|
867
|
|
|
|
|
2231
|
($x1,$y1, $x2,$y2) = _rect_to_radius_corners ($x1,$y1, $x2,$y2); |
255
|
867
|
|
|
|
|
4584
|
return (hypot($x1,$y1), |
256
|
|
|
|
|
|
|
hypot($x2,$y2)); |
257
|
|
|
|
|
|
|
} |
258
|
|
|
|
|
|
|
|
259
|
|
|
|
|
|
|
1; |
260
|
|
|
|
|
|
|
__END__ |