line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
1
|
|
|
|
|
|
|
# Copyright 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020 Kevin Ryde |
2
|
|
|
|
|
|
|
|
3
|
|
|
|
|
|
|
# This file is part of Math-PlanePath. |
4
|
|
|
|
|
|
|
# |
5
|
|
|
|
|
|
|
# Math-PlanePath is free software; you can redistribute it and/or modify |
6
|
|
|
|
|
|
|
# it under the terms of the GNU General Public License as published by the |
7
|
|
|
|
|
|
|
# Free Software Foundation; either version 3, or (at your option) any later |
8
|
|
|
|
|
|
|
# version. |
9
|
|
|
|
|
|
|
# |
10
|
|
|
|
|
|
|
# Math-PlanePath is distributed in the hope that it will be useful, but |
11
|
|
|
|
|
|
|
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY |
12
|
|
|
|
|
|
|
# or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
13
|
|
|
|
|
|
|
# for more details. |
14
|
|
|
|
|
|
|
# |
15
|
|
|
|
|
|
|
# You should have received a copy of the GNU General Public License along |
16
|
|
|
|
|
|
|
# with Math-PlanePath. If not, see . |
17
|
|
|
|
|
|
|
|
18
|
|
|
|
|
|
|
|
19
|
|
|
|
|
|
|
# SB,CW N with same X,Y is those N which are palindromes below high 1-bit |
20
|
|
|
|
|
|
|
# as noted Claudio Bonanno and Stefano Isola, ``Orderings of the Rationals |
21
|
|
|
|
|
|
|
# and Dynamical Systems'', May 16, 2008. |
22
|
|
|
|
|
|
|
# cf A006995 binary palindromes, so always odd |
23
|
|
|
|
|
|
|
# A178225 characteristic of binary palindromes |
24
|
|
|
|
|
|
|
# A048700 binary palindromes odd length |
25
|
|
|
|
|
|
|
# A048701 binary palindromes even length |
26
|
|
|
|
|
|
|
# A044051 binary palindromes (B+1)/2, B odd so B+1 even |
27
|
|
|
|
|
|
|
# A044051-1 = (B-1)/2 strips low 1-bit to be palindromes below high 1-bit |
28
|
|
|
|
|
|
|
|
29
|
|
|
|
|
|
|
# Boyko B. Bantchev, "Fraction Space Revisited" |
30
|
|
|
|
|
|
|
# http://www.math.bas.bg/bantchev/articles/fractions.pdf |
31
|
|
|
|
|
|
|
|
32
|
|
|
|
|
|
|
# cf Ronald L. Graham, Donald E. Knuth, and Oren Patashnik, Concrete |
33
|
|
|
|
|
|
|
# Mathematics: A Foundation for Computer Science, Second |
34
|
|
|
|
|
|
|
# Edition. Addison-Wesley. 1994. |
35
|
|
|
|
|
|
|
# On Stern-Brocot tree. |
36
|
|
|
|
|
|
|
|
37
|
|
|
|
|
|
|
# cf A054429 permutation reverse within binary row |
38
|
|
|
|
|
|
|
# A057114 - permutation SB X -> X+1 |
39
|
|
|
|
|
|
|
# A057115 - permutation SB X -> X-1 |
40
|
|
|
|
|
|
|
# |
41
|
|
|
|
|
|
|
|
42
|
|
|
|
|
|
|
# high-to-low low-to-high |
43
|
|
|
|
|
|
|
# (X+Y)/Y Y/(X+Y) HCS AYT |
44
|
|
|
|
|
|
|
# X/(X+Y) (X+Y)/Y CW SB \ alt bit flips |
45
|
|
|
|
|
|
|
# Y/(X+Y) (X+Y)/X Drib Bird / |
46
|
|
|
|
|
|
|
# |
47
|
|
|
|
|
|
|
# 9 10 12 10 |
48
|
|
|
|
|
|
|
# 8 11 8 14 |
49
|
|
|
|
|
|
|
# 12 13 9 13 |
50
|
|
|
|
|
|
|
# 14 11 |
51
|
|
|
|
|
|
|
# 15 15 |
52
|
|
|
|
|
|
|
# |
53
|
|
|
|
|
|
|
# Stern-Brocot Calkin-Wilf |
54
|
|
|
|
|
|
|
|
55
|
|
|
|
|
|
|
|
56
|
|
|
|
|
|
|
#------------------------------------------------------------------------------ |
57
|
|
|
|
|
|
|
# HCS turn left when even number of 1-bits in N+1 |
58
|
|
|
|
|
|
|
# turn right when odd number of 1-bits in N+1 |
59
|
|
|
|
|
|
|
# |
60
|
|
|
|
|
|
|
# A010059 start=0: 1,0,0,1,0,1,1,0,0,1,1,0,1,0,0,1,0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0,0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0,1,0,0,1,0,1,1,0,0,1,1,0,1,0,0,1,0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0,1,0,0,1,0,1,1,0,0,1,1,0,1,0,0,1,1,0,0,1,0 |
61
|
|
|
|
|
|
|
# match 1,0,1,1,0,0,1,1,0,1,0,0,1,0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0,0,1,1,0,1,0,0,1,1,0,0,1,0 |
62
|
|
|
|
|
|
|
# PlanePathTurn planepath=RationalsTree,tree_type=HCS, turn_type=Left |
63
|
|
|
|
|
|
|
# |
64
|
|
|
|
|
|
|
# A010060 start=0: 0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0,1,0,0,1,0,1,1,0,0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0,0,1,1,0,1,0,0,1,0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0,1,0,0,1,0,1,1,0,0,1,1,0,1,0,0,1,0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0,0,1,1,0,1 |
65
|
|
|
|
|
|
|
# match 0,1,0,0,1,1,0,0,1,0,1,1,0,1,0,0,1,0,1,1,0,0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0,0,1,1,0,1 |
66
|
|
|
|
|
|
|
# PlanePathTurn planepath=RationalsTree,tree_type=HCS, turn_type=Right |
67
|
|
|
|
|
|
|
# |
68
|
|
|
|
|
|
|
# 10 | 768 50 58 896 |
69
|
|
|
|
|
|
|
# 9 | 384 49 52 60 57 448 640 |
70
|
|
|
|
|
|
|
# 8 | 192 27 31 224 320 |
71
|
|
|
|
|
|
|
# 7 | 96 25 26 30 29 112 160 41 42 |
72
|
|
|
|
|
|
|
# 6 | 48 56 80 |
73
|
|
|
|
|
|
|
# 5 | 24 13 15 28 40 21 23 44 |
74
|
|
|
|
|
|
|
# 4 | 12 14 20 22 36 |
75
|
|
|
|
|
|
|
# 3 | 6 7 10 11 18 19 34 |
76
|
|
|
|
|
|
|
# 2 | 3 5 9 17 33 |
77
|
|
|
|
|
|
|
# 1 | 1 2 4 8 16 32 64 128 256 512 |
78
|
|
|
|
|
|
|
# Y=0 | |
79
|
|
|
|
|
|
|
# +----------------------------------------------------- |
80
|
|
|
|
|
|
|
# X=0 1 2 3 4 5 6 7 8 9 10 |
81
|
|
|
|
|
|
|
# |
82
|
|
|
|
|
|
|
# 1/1 |
83
|
|
|
|
|
|
|
# /------------- -------------\ |
84
|
|
|
|
|
|
|
# 2/1 1/2 2,3 L,R |
85
|
|
|
|
|
|
|
# /---- ----\ /---- ----\ |
86
|
|
|
|
|
|
|
# 3/1 3/2 1/3 2/3 4,5,6,7 L,L,R,R |
87
|
|
|
|
|
|
|
# / \ / \ / \ / \ 8 12 |
88
|
|
|
|
|
|
|
# 4/1 5/2 4/3 5/3 1/4 2/5 3/4 3/5 L,L,R,L, R,R,L,R |
89
|
|
|
|
|
|
|
# / \ / \ / \ / \ / \ / \ / \ / \ |
90
|
|
|
|
|
|
|
# 5/1 7/2 7/3 8/3 5/4 7/5 7/4 8/5 1/5 2/7 3/7 3/8 4/5 5/7 4/7 5/8 |
91
|
|
|
|
|
|
|
# |
92
|
|
|
|
|
|
|
# * |
93
|
|
|
|
|
|
|
# / \ U=0 = X+Y, Y shear |
94
|
|
|
|
|
|
|
# / * D=1 = Y, X+Y shear+transpose |
95
|
|
|
|
|
|
|
# / \a = 0.1^k.1 |
96
|
|
|
|
|
|
|
# N |
97
|
|
|
|
|
|
|
# \ /b = 1.0^k.0 |
98
|
|
|
|
|
|
|
# \ * |
99
|
|
|
|
|
|
|
# \ / \c = 1.0^k.1 c=even bits, left |
100
|
|
|
|
|
|
|
# * |
101
|
|
|
|
|
|
|
# |
102
|
|
|
|
|
|
|
# F[-1]=1 F[0]=0 F[1]=1 F[2]=1 F[3]=2 F[4]=3 F[5]=5 ... |
103
|
|
|
|
|
|
|
# 1^k is F[k-1]*X+F[k]*Y, F[k]*X+F[k+1]*Y |
104
|
|
|
|
|
|
|
# X , Y 0 |
105
|
|
|
|
|
|
|
# Y, X+ Y 1 |
106
|
|
|
|
|
|
|
# X+ Y, X+2Y 2 |
107
|
|
|
|
|
|
|
# X+2Y, 2X+3Y 3 |
108
|
|
|
|
|
|
|
# 2X+3Y, 3X+5Y 4 |
109
|
|
|
|
|
|
|
# |
110
|
|
|
|
|
|
|
# then aX = F[k]*X+F[k+1]*Y + F[k+1]*X+F[k+2]*Y |
111
|
|
|
|
|
|
|
# = (F[k]+F[k+1])*X + (F[k+1]+F[k+2])*Y |
112
|
|
|
|
|
|
|
# = F[k+2]*X + F[k+3]*Y |
113
|
|
|
|
|
|
|
# aY = F[k+1]*X + F[k+2]*Y near X=phi*Y big |
114
|
|
|
|
|
|
|
# |
115
|
|
|
|
|
|
|
# 0^k is X+k*Y, Y |
116
|
|
|
|
|
|
|
# so bX = Y |
117
|
|
|
|
|
|
|
# bY = X+k*Y + Y = X+(k+1)*Y near Y axis |
118
|
|
|
|
|
|
|
# |
119
|
|
|
|
|
|
|
# c1X = Y |
120
|
|
|
|
|
|
|
# c1Y = X+Y |
121
|
|
|
|
|
|
|
# c2X = Y + k*(X+Y) = k*X + (k+1)*Y |
122
|
|
|
|
|
|
|
# c2Y = X+Y |
123
|
|
|
|
|
|
|
# cX = X+Y |
124
|
|
|
|
|
|
|
# cY = k*X + (k+1)*Y + X+Y = (k+1)X + (k+2)Y near X=Y |
125
|
|
|
|
|
|
|
|
126
|
|
|
|
|
|
|
# |
127
|
|
|
|
|
|
|
# * |
128
|
|
|
|
|
|
|
# / \ /a = 0.1^k.0 |
129
|
|
|
|
|
|
|
# / * |
130
|
|
|
|
|
|
|
# / \b = 0.1^k.1 |
131
|
|
|
|
|
|
|
# N |
132
|
|
|
|
|
|
|
# \ /c = 1.0^k.1 c=even bits, left |
133
|
|
|
|
|
|
|
# \ * |
134
|
|
|
|
|
|
|
# \ / |
135
|
|
|
|
|
|
|
# * |
136
|
|
|
|
|
|
|
#------------------------------------------------------------------------------ |
137
|
|
|
|
|
|
|
|
138
|
|
|
|
|
|
|
package Math::PlanePath::RationalsTree; |
139
|
3
|
|
|
3
|
|
3739
|
use 5.004; |
|
3
|
|
|
|
|
12
|
|
140
|
3
|
|
|
3
|
|
16
|
use strict; |
|
3
|
|
|
|
|
7
|
|
|
3
|
|
|
|
|
95
|
|
141
|
3
|
|
|
3
|
|
21
|
use Carp 'croak'; |
|
3
|
|
|
|
|
7
|
|
|
3
|
|
|
|
|
238
|
|
142
|
|
|
|
|
|
|
#use List::Util 'max'; |
143
|
|
|
|
|
|
|
*max = \&Math::PlanePath::_max; |
144
|
|
|
|
|
|
|
|
145
|
3
|
|
|
3
|
|
18
|
use vars '$VERSION', '@ISA'; |
|
3
|
|
|
|
|
12
|
|
|
3
|
|
|
|
|
205
|
|
146
|
|
|
|
|
|
|
$VERSION = 129; |
147
|
3
|
|
|
3
|
|
867
|
use Math::PlanePath; |
|
3
|
|
|
|
|
7
|
|
|
3
|
|
|
|
|
128
|
|
148
|
|
|
|
|
|
|
@ISA = ('Math::PlanePath'); |
149
|
|
|
|
|
|
|
|
150
|
|
|
|
|
|
|
use Math::PlanePath::Base::Generic |
151
|
3
|
|
|
|
|
163
|
'is_infinite', |
152
|
3
|
|
|
3
|
|
20
|
'round_nearest'; |
|
3
|
|
|
|
|
7
|
|
153
|
|
|
|
|
|
|
use Math::PlanePath::Base::Digits |
154
|
3
|
|
|
|
|
214
|
'round_down_pow', |
155
|
|
|
|
|
|
|
'bit_split_lowtohigh', |
156
|
3
|
|
|
3
|
|
651
|
'digit_join_lowtohigh'; |
|
3
|
|
|
|
|
8
|
|
157
|
|
|
|
|
|
|
*_divrem = \&Math::PlanePath::_divrem; |
158
|
|
|
|
|
|
|
|
159
|
3
|
|
|
3
|
|
1368
|
use Math::PlanePath::CoprimeColumns; |
|
3
|
|
|
|
|
8
|
|
|
3
|
|
|
|
|
261
|
|
160
|
|
|
|
|
|
|
*_coprime = \&Math::PlanePath::CoprimeColumns::_coprime; |
161
|
|
|
|
|
|
|
|
162
|
|
|
|
|
|
|
# uncomment this to run the ### lines |
163
|
|
|
|
|
|
|
#use Smart::Comments; |
164
|
|
|
|
|
|
|
|
165
|
|
|
|
|
|
|
|
166
|
3
|
|
|
|
|
218
|
use constant parameter_info_array => |
167
|
|
|
|
|
|
|
[ { name => 'tree_type', |
168
|
|
|
|
|
|
|
share_key => 'tree_type_rationalstree', |
169
|
|
|
|
|
|
|
display => 'Tree Type', |
170
|
|
|
|
|
|
|
type => 'enum', |
171
|
|
|
|
|
|
|
default => 'SB', |
172
|
|
|
|
|
|
|
choices => ['SB','CW','AYT','HCS','Bird','Drib','L'], |
173
|
|
|
|
|
|
|
choices_display => ['SB','CW','AYT','HCS','Bird','Drib','L'], |
174
|
|
|
|
|
|
|
}, |
175
|
3
|
|
|
3
|
|
25
|
]; |
|
3
|
|
|
|
|
7
|
|
176
|
|
|
|
|
|
|
|
177
|
3
|
|
|
3
|
|
18
|
use constant class_x_negative => 0; |
|
3
|
|
|
|
|
7
|
|
|
3
|
|
|
|
|
188
|
|
178
|
3
|
|
|
3
|
|
17
|
use constant class_y_negative => 0; |
|
3
|
|
|
|
|
19
|
|
|
3
|
|
|
|
|
311
|
|
179
|
|
|
|
|
|
|
sub x_minimum { |
180
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
181
|
0
|
0
|
|
|
|
0
|
return ($self->{'tree_type'} eq 'L' ? 0 : 1); |
182
|
|
|
|
|
|
|
} |
183
|
3
|
|
|
3
|
|
27
|
use constant y_minimum => 1; |
|
3
|
|
|
|
|
17
|
|
|
3
|
|
|
|
|
192
|
|
184
|
3
|
|
|
3
|
|
20
|
use constant gcdxy_maximum => 1; # no common factor |
|
3
|
|
|
|
|
6
|
|
|
3
|
|
|
|
|
162
|
|
185
|
3
|
|
|
3
|
|
20
|
use constant tree_num_children_list => (2); # complete binary tree |
|
3
|
|
|
|
|
6
|
|
|
3
|
|
|
|
|
174
|
|
186
|
3
|
|
|
3
|
|
18
|
use constant tree_n_to_subheight => undef; # complete tree, all infinity |
|
3
|
|
|
|
|
6
|
|
|
3
|
|
|
|
|
4972
|
|
187
|
|
|
|
|
|
|
|
188
|
|
|
|
|
|
|
{ |
189
|
|
|
|
|
|
|
my %absdy_minimum = (# SB => 0, |
190
|
|
|
|
|
|
|
CW => 1, |
191
|
|
|
|
|
|
|
# AYT => 0, |
192
|
|
|
|
|
|
|
# Bird => 0, |
193
|
|
|
|
|
|
|
# Drib => 0, |
194
|
|
|
|
|
|
|
L => 1); |
195
|
|
|
|
|
|
|
sub absdy_minimum { |
196
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
197
|
0
|
|
0
|
|
|
0
|
return $absdy_minimum{$self->{'tree_type'}} || 0; |
198
|
|
|
|
|
|
|
} |
199
|
|
|
|
|
|
|
} |
200
|
|
|
|
|
|
|
|
201
|
|
|
|
|
|
|
{ |
202
|
|
|
|
|
|
|
# Drib apparent minimum dX=k dY=2*k+1 approaches dX=1,dY=2 |
203
|
|
|
|
|
|
|
my %dir_minimum_dxdy = (CW => [0,1], |
204
|
|
|
|
|
|
|
Drib => [1,2], |
205
|
|
|
|
|
|
|
L => [1,1], # at N=0 dX=1,dY=1 |
206
|
|
|
|
|
|
|
); |
207
|
|
|
|
|
|
|
sub dir_minimum_dxdy { |
208
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
209
|
0
|
0
|
|
|
|
0
|
return @{$dir_minimum_dxdy{$self->{'tree_type'}} || [1,0]}; |
|
0
|
|
|
|
|
0
|
|
210
|
|
|
|
|
|
|
} |
211
|
|
|
|
|
|
|
} |
212
|
|
|
|
|
|
|
{ |
213
|
|
|
|
|
|
|
my %dir_maximum_dxdy |
214
|
|
|
|
|
|
|
= (SB => [1,-1], |
215
|
|
|
|
|
|
|
# CW => [0,0], |
216
|
|
|
|
|
|
|
|
217
|
|
|
|
|
|
|
Bird => [1,-1], |
218
|
|
|
|
|
|
|
# Drib => [0,0], |
219
|
|
|
|
|
|
|
|
220
|
|
|
|
|
|
|
HCS => [2,-1], |
221
|
|
|
|
|
|
|
# AYT => [0,0], |
222
|
|
|
|
|
|
|
# L => [0,0], # at 2^k-1 dX=k+1,dY=-1 so approach Dir=4 |
223
|
|
|
|
|
|
|
); |
224
|
|
|
|
|
|
|
sub dir_maximum_dxdy { |
225
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
226
|
0
|
0
|
|
|
|
0
|
return @{$dir_maximum_dxdy{$self->{'tree_type'}} || [0,0]}; |
|
0
|
|
|
|
|
0
|
|
227
|
|
|
|
|
|
|
} |
228
|
|
|
|
|
|
|
} |
229
|
|
|
|
|
|
|
|
230
|
|
|
|
|
|
|
{ |
231
|
|
|
|
|
|
|
my %turn_any_straight = (# SB => 0, |
232
|
|
|
|
|
|
|
# CW => 0, |
233
|
|
|
|
|
|
|
Bird => 1, # straight at N=7 and N=8 |
234
|
|
|
|
|
|
|
# Drib => 0, |
235
|
|
|
|
|
|
|
AYT => 1, # straight at N=7 |
236
|
|
|
|
|
|
|
# HCS => 0, |
237
|
|
|
|
|
|
|
# L => 0, |
238
|
|
|
|
|
|
|
); |
239
|
|
|
|
|
|
|
sub turn_any_straight { |
240
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
241
|
0
|
|
|
|
|
0
|
return $turn_any_straight{$self->{'tree_type'}}; |
242
|
|
|
|
|
|
|
} |
243
|
|
|
|
|
|
|
} |
244
|
|
|
|
|
|
|
|
245
|
|
|
|
|
|
|
|
246
|
|
|
|
|
|
|
#------------------------------------------------------------------------------ |
247
|
|
|
|
|
|
|
|
248
|
|
|
|
|
|
|
my %attributes = (CW => [ n_start => 1, ], |
249
|
|
|
|
|
|
|
SB => [ n_start => 1, reverse_bits => 1 ], |
250
|
|
|
|
|
|
|
Drib => [ n_start => 1, alternating => 1 ], |
251
|
|
|
|
|
|
|
Bird => [ n_start => 1, alternating => 1, reverse_bits => 1 ], |
252
|
|
|
|
|
|
|
AYT => [ n_start => 1, sep1s => 1 ], |
253
|
|
|
|
|
|
|
HCS => [ n_start => 1, sep1s => 1, reverse_bits => 1 ], |
254
|
|
|
|
|
|
|
L => [ n_start => 0 ], |
255
|
|
|
|
|
|
|
); |
256
|
|
|
|
|
|
|
|
257
|
|
|
|
|
|
|
sub new { |
258
|
33
|
|
|
33
|
1
|
8650
|
my $self = shift->SUPER::new(@_); |
259
|
|
|
|
|
|
|
|
260
|
33
|
|
100
|
|
|
158
|
my $tree_type = ($self->{'tree_type'} ||= 'SB'); |
261
|
33
|
|
33
|
|
|
125
|
my $attributes = $attributes{$tree_type} |
262
|
|
|
|
|
|
|
|| croak "Unrecognised tree type: ",$tree_type; |
263
|
33
|
|
|
|
|
1476
|
%$self = (%$self, @$attributes); |
264
|
|
|
|
|
|
|
|
265
|
33
|
|
|
|
|
108
|
return $self; |
266
|
|
|
|
|
|
|
} |
267
|
|
|
|
|
|
|
|
268
|
|
|
|
|
|
|
sub n_to_xy { |
269
|
2877
|
|
|
2877
|
1
|
45049
|
my ($self, $n) = @_; |
270
|
|
|
|
|
|
|
### RationalsTree n_to_xy(): "$n" |
271
|
|
|
|
|
|
|
|
272
|
2877
|
50
|
|
|
|
5576
|
if ($n < $self->{'n_start'}) { return; } |
|
0
|
|
|
|
|
0
|
|
273
|
2877
|
50
|
|
|
|
5734
|
if (is_infinite($n)) { return ($n,$n); } |
|
0
|
|
|
|
|
0
|
|
274
|
|
|
|
|
|
|
|
275
|
|
|
|
|
|
|
# what to do for fractional $n? |
276
|
|
|
|
|
|
|
{ |
277
|
2877
|
|
|
|
|
6612
|
my $int = int($n); |
|
2877
|
|
|
|
|
3985
|
|
278
|
2877
|
50
|
|
|
|
5357
|
if ($n != $int) { |
279
|
|
|
|
|
|
|
### frac ... |
280
|
0
|
|
|
|
|
0
|
my $frac = $n - $int; # inherit possible BigFloat/BigRat |
281
|
0
|
|
|
|
|
0
|
my ($x1,$y1) = $self->n_to_xy($int); |
282
|
0
|
|
|
|
|
0
|
my ($x2,$y2) = $self->n_to_xy($int+1); |
283
|
0
|
|
|
|
|
0
|
my $dx = $x2-$x1; |
284
|
0
|
|
|
|
|
0
|
my $dy = $y2-$y1; |
285
|
|
|
|
|
|
|
### x1,y1: "$x1, $y1" |
286
|
|
|
|
|
|
|
### x2,y2: "$x2, $y2" |
287
|
|
|
|
|
|
|
### dx,dy: "$dx, $dy" |
288
|
|
|
|
|
|
|
### result: ($frac*$dx + $x1).', '.($frac*$dy + $y1) |
289
|
0
|
|
|
|
|
0
|
return ($frac*$dx + $x1, $frac*$dy + $y1); |
290
|
|
|
|
|
|
|
} |
291
|
2877
|
|
|
|
|
4265
|
$n = $int; |
292
|
|
|
|
|
|
|
} |
293
|
|
|
|
|
|
|
|
294
|
2877
|
|
|
|
|
3934
|
my $zero = ($n * 0); # inherit bignum 0 |
295
|
2877
|
|
|
|
|
4640
|
my $one = $zero + 1; # inherit bignum 1 |
296
|
|
|
|
|
|
|
|
297
|
2877
|
100
|
|
|
|
5608
|
if ($self->{'n_start'} == 0) { |
298
|
|
|
|
|
|
|
# L tree adjust; |
299
|
15
|
|
|
|
|
25
|
$n += 2; |
300
|
|
|
|
|
|
|
} |
301
|
|
|
|
|
|
|
|
302
|
2877
|
|
|
|
|
5523
|
my @nbits = bit_split_lowtohigh($n); |
303
|
2877
|
|
|
|
|
4536
|
pop @nbits; |
304
|
|
|
|
|
|
|
### lowtohigh sans high: @nbits |
305
|
|
|
|
|
|
|
|
306
|
2877
|
100
|
|
|
|
6016
|
if (! $self->{'reverse_bits'}) { |
307
|
451
|
|
|
|
|
679
|
@nbits = reverse @nbits; |
308
|
|
|
|
|
|
|
### reverse to: @nbits |
309
|
|
|
|
|
|
|
} |
310
|
|
|
|
|
|
|
|
311
|
2877
|
|
|
|
|
3949
|
my $x = $one; |
312
|
2877
|
|
|
|
|
4131
|
my $y = $one; |
313
|
|
|
|
|
|
|
|
314
|
2877
|
100
|
|
|
|
6820
|
if ($self->{'sep1s'}) { |
|
|
100
|
|
|
|
|
|
|
|
100
|
|
|
|
|
|
315
|
174
|
|
|
|
|
272
|
foreach my $nbit (@nbits) { |
316
|
930
|
|
|
|
|
1344
|
$x += $y; |
317
|
930
|
100
|
|
|
|
14585
|
if ($nbit) { |
318
|
336
|
|
|
|
|
600
|
($x,$y) = ($y,$x); |
319
|
|
|
|
|
|
|
} |
320
|
|
|
|
|
|
|
} |
321
|
|
|
|
|
|
|
|
322
|
|
|
|
|
|
|
} elsif ($self->{'alternating'}) { |
323
|
294
|
|
|
|
|
484
|
foreach my $nbit (@nbits) { |
324
|
1164
|
|
|
|
|
1818
|
($x,$y) = ($y,$x); |
325
|
1164
|
100
|
|
|
|
1735
|
if ($nbit) { |
326
|
582
|
|
|
|
|
866
|
$x += $y; # (x,y) -> (x+y,x), including swap |
327
|
|
|
|
|
|
|
} else { |
328
|
582
|
|
|
|
|
832
|
$y += $x; # (x,y) -> (y,x+y), including swap |
329
|
|
|
|
|
|
|
} |
330
|
|
|
|
|
|
|
} |
331
|
|
|
|
|
|
|
|
332
|
|
|
|
|
|
|
} elsif ($self->{'tree_type'} eq 'L') { |
333
|
15
|
|
|
|
|
25
|
my $sub = 2; |
334
|
15
|
|
|
|
|
25
|
foreach my $nbit (@nbits) { |
335
|
38
|
100
|
|
|
|
63
|
if ($nbit) { |
336
|
17
|
|
|
|
|
19
|
$y += $x; # (x,y) -> (x,x+y) |
337
|
17
|
|
|
|
|
30
|
$sub = 0; |
338
|
|
|
|
|
|
|
} else { |
339
|
21
|
|
|
|
|
30
|
$x += $y; # (x,y) -> (x+y,y) |
340
|
|
|
|
|
|
|
} |
341
|
|
|
|
|
|
|
} |
342
|
15
|
|
|
|
|
22
|
$x -= $sub; # -2 at N=00...000 all zero bits |
343
|
|
|
|
|
|
|
|
344
|
|
|
|
|
|
|
} else { |
345
|
|
|
|
|
|
|
### nbits apply CW: @nbits |
346
|
2394
|
|
|
|
|
3698
|
foreach my $nbit (@nbits) { # high to low |
347
|
20307
|
100
|
|
|
|
54781
|
if ($nbit) { |
348
|
10400
|
|
|
|
|
14573
|
$x += $y; # (x,y) -> (x+y,y) |
349
|
|
|
|
|
|
|
} else { |
350
|
9907
|
|
|
|
|
13793
|
$y += $x; # (x,y) -> (x,x+y) |
351
|
|
|
|
|
|
|
} |
352
|
|
|
|
|
|
|
} |
353
|
|
|
|
|
|
|
} |
354
|
|
|
|
|
|
|
### result: "$x, $y" |
355
|
2877
|
|
|
|
|
8074
|
return ($x,$y); |
356
|
|
|
|
|
|
|
} |
357
|
|
|
|
|
|
|
|
358
|
|
|
|
|
|
|
sub xy_is_visited { |
359
|
0
|
|
|
0
|
1
|
0
|
my ($self, $x, $y) = @_; |
360
|
0
|
|
|
|
|
0
|
$x = round_nearest ($x); |
361
|
0
|
|
|
|
|
0
|
$y = round_nearest ($y); |
362
|
0
|
0
|
0
|
|
|
0
|
if ($self->{'tree_type'} eq 'L' && $x == 0 && $y == 1) { |
|
|
|
0
|
|
|
|
|
363
|
0
|
|
|
|
|
0
|
return 1; |
364
|
|
|
|
|
|
|
} |
365
|
0
|
0
|
0
|
|
|
0
|
if ($x < 1 |
|
|
|
0
|
|
|
|
|
366
|
|
|
|
|
|
|
|| $y < 1 |
367
|
|
|
|
|
|
|
|| ! _coprime($x,$y)) { |
368
|
0
|
|
|
|
|
0
|
return 0; |
369
|
|
|
|
|
|
|
} |
370
|
0
|
|
|
|
|
0
|
return 1; |
371
|
|
|
|
|
|
|
} |
372
|
|
|
|
|
|
|
|
373
|
|
|
|
|
|
|
sub xy_to_n { |
374
|
3905
|
|
|
3905
|
1
|
514069
|
my ($self, $x, $y) = @_; |
375
|
3905
|
|
|
|
|
8456
|
$x = round_nearest ($x); |
376
|
3905
|
|
|
|
|
8011
|
$y = round_nearest ($y); |
377
|
|
|
|
|
|
|
### RationalsTree xy_to_n(): "$x,$y $self->{'tree_type'}" |
378
|
|
|
|
|
|
|
|
379
|
3905
|
100
|
100
|
|
|
12072
|
if ($x < $self->{'n_start'} || $y < 1) { |
380
|
720
|
|
|
|
|
1287
|
return undef; |
381
|
|
|
|
|
|
|
} |
382
|
3185
|
50
|
|
|
|
107766
|
if (is_infinite($x)) { |
383
|
0
|
|
|
|
|
0
|
return $x; |
384
|
|
|
|
|
|
|
} |
385
|
3185
|
50
|
|
|
|
186713
|
if (is_infinite($y)) { |
386
|
0
|
|
|
|
|
0
|
return $y; |
387
|
|
|
|
|
|
|
} |
388
|
|
|
|
|
|
|
|
389
|
3185
|
100
|
|
|
|
186772
|
my @quotients = _xy_to_quotients($x,$y) |
390
|
|
|
|
|
|
|
or return undef; # $x,$y have a common factor |
391
|
|
|
|
|
|
|
### @quotients |
392
|
|
|
|
|
|
|
|
393
|
2270
|
|
|
|
|
3273
|
my @nbits; |
394
|
2270
|
100
|
|
|
|
4847
|
if ($self->{'sep1s'}) { |
395
|
467
|
|
|
|
|
766
|
$quotients[0]++; # the integer part, making it 1 or more |
396
|
467
|
|
|
|
|
4422
|
foreach my $q (@quotients) { |
397
|
1317
|
|
|
|
|
24322
|
push @nbits, (0) x ($q-1), 1; # runs of "000..0001" |
398
|
|
|
|
|
|
|
} |
399
|
467
|
|
|
|
|
21709
|
pop @nbits; # no high 1-bit separator |
400
|
|
|
|
|
|
|
|
401
|
|
|
|
|
|
|
} else { |
402
|
1803
|
100
|
|
|
|
3468
|
if ($quotients[0] < 0) { # X=0,Y=1 in tree_type="L" |
403
|
1
|
|
|
|
|
90
|
return $self->{'n_start'}; |
404
|
|
|
|
|
|
|
} |
405
|
|
|
|
|
|
|
|
406
|
1802
|
|
|
|
|
65225
|
my $bit = 1; |
407
|
1802
|
|
|
|
|
3260
|
foreach my $q (@quotients) { |
408
|
5060
|
|
|
|
|
8724
|
push @nbits, ($bit) x $q; |
409
|
5060
|
|
|
|
|
25143
|
$bit ^= 1; # alternate runs of "00000" or "11111" |
410
|
|
|
|
|
|
|
} |
411
|
|
|
|
|
|
|
### nbits in quotient order: @nbits |
412
|
|
|
|
|
|
|
|
413
|
1802
|
100
|
|
|
|
3854
|
if ($self->{'alternating'}) { |
414
|
|
|
|
|
|
|
# Flip every second bit, starting from the second lowest. |
415
|
882
|
|
|
|
|
1986
|
for (my $i = 1; $i <= $#nbits; $i += 2) { |
416
|
7342
|
|
|
|
|
13022
|
$nbits[$i] ^= 1; |
417
|
|
|
|
|
|
|
} |
418
|
|
|
|
|
|
|
} |
419
|
|
|
|
|
|
|
|
420
|
1802
|
100
|
|
|
|
4027
|
if ($self->{'tree_type'} eq 'L') { |
421
|
|
|
|
|
|
|
# Flip all bits. |
422
|
14
|
|
|
|
|
18
|
my $anyones = 0; |
423
|
14
|
|
|
|
|
24
|
foreach my $nbit (@nbits) { |
424
|
31
|
|
|
|
|
41
|
$nbit ^= 1; # mutate array |
425
|
31
|
|
100
|
|
|
71
|
$anyones ||= $nbit; |
426
|
|
|
|
|
|
|
} |
427
|
14
|
100
|
|
|
|
29
|
unless ($anyones) { |
428
|
3
|
|
|
|
|
6
|
push @nbits, 0,0; |
429
|
|
|
|
|
|
|
} |
430
|
|
|
|
|
|
|
} |
431
|
|
|
|
|
|
|
} |
432
|
|
|
|
|
|
|
|
433
|
2269
|
100
|
|
|
|
4669
|
if ($self->{'reverse_bits'}) { |
434
|
939
|
|
|
|
|
1413
|
@nbits = reverse @nbits; |
435
|
|
|
|
|
|
|
} |
436
|
2269
|
|
|
|
|
3407
|
push @nbits, 1; # high 1-bit |
437
|
|
|
|
|
|
|
|
438
|
|
|
|
|
|
|
### @nbits |
439
|
2269
|
|
|
|
|
5928
|
my $n = digit_join_lowtohigh (\@nbits, 2, |
440
|
|
|
|
|
|
|
$x*0*$y); # inherit bignum 0 |
441
|
2269
|
100
|
|
|
|
6025
|
if ($self->{'tree_type'} eq 'L') { |
442
|
14
|
|
|
|
|
32
|
return $n-2; |
443
|
|
|
|
|
|
|
} else { |
444
|
2255
|
|
|
|
|
6926
|
return $n; |
445
|
|
|
|
|
|
|
} |
446
|
|
|
|
|
|
|
} |
447
|
|
|
|
|
|
|
|
448
|
|
|
|
|
|
|
# Return a list of the quotients from Euclid's greatest common divisor |
449
|
|
|
|
|
|
|
# algorithm on X,Y. This is also the terms of the continued fraction |
450
|
|
|
|
|
|
|
# expansion of rational X/Y. |
451
|
|
|
|
|
|
|
# |
452
|
|
|
|
|
|
|
# The last term, the last in the list, is decremented since this is what the |
453
|
|
|
|
|
|
|
# code above requires. This term is the top-most quotient in for example |
454
|
|
|
|
|
|
|
# gcd(7,1) is 7=7*1+0 with q=7 returned as 6. |
455
|
|
|
|
|
|
|
# |
456
|
|
|
|
|
|
|
# If $x,$y have a common factor then the return is an empty list. |
457
|
|
|
|
|
|
|
# If $x,$y have no common factor then the returned list is always one or |
458
|
|
|
|
|
|
|
# more quotients. |
459
|
|
|
|
|
|
|
# |
460
|
|
|
|
|
|
|
sub _xy_to_quotients { |
461
|
3186
|
|
|
3186
|
|
5829
|
my ($x,$y) = @_; |
462
|
3186
|
|
|
|
|
4515
|
my @ret; |
463
|
3186
|
|
|
|
|
4549
|
for (;;) { |
464
|
8293
|
|
|
|
|
15879
|
my ($q, $r) = _divrem($x,$y); |
465
|
8293
|
|
|
|
|
13499
|
push @ret, $q; |
466
|
8293
|
100
|
|
|
|
14963
|
last unless $r; |
467
|
5107
|
|
|
|
|
6855
|
$x = $y; |
468
|
5107
|
|
|
|
|
7056
|
$y = $r; |
469
|
|
|
|
|
|
|
} |
470
|
|
|
|
|
|
|
|
471
|
3186
|
100
|
|
|
|
6004
|
if ($y > 1) { |
472
|
|
|
|
|
|
|
### found Y>1 common factor, no N at this X,Y ... |
473
|
915
|
|
|
|
|
2573
|
return; |
474
|
|
|
|
|
|
|
} |
475
|
2271
|
|
|
|
|
5047
|
$ret[-1]--; |
476
|
2271
|
|
|
|
|
29857
|
return @ret; |
477
|
|
|
|
|
|
|
} |
478
|
|
|
|
|
|
|
|
479
|
|
|
|
|
|
|
|
480
|
|
|
|
|
|
|
# not exact |
481
|
|
|
|
|
|
|
sub rect_to_n_range { |
482
|
691
|
|
|
691
|
1
|
28507
|
my ($self, $x1,$y1, $x2,$y2) = @_; |
483
|
|
|
|
|
|
|
### rect_to_n_range() |
484
|
|
|
|
|
|
|
|
485
|
691
|
|
|
|
|
2236
|
$x1 = round_nearest ($x1); |
486
|
691
|
|
|
|
|
1706
|
$y1 = round_nearest ($y1); |
487
|
691
|
|
|
|
|
1719
|
$x2 = round_nearest ($x2); |
488
|
691
|
|
|
|
|
1730
|
$y2 = round_nearest ($y2); |
489
|
|
|
|
|
|
|
|
490
|
691
|
100
|
|
|
|
1870
|
($x1,$x2) = ($x2,$x1) if $x1 > $x2; |
491
|
691
|
100
|
|
|
|
15943
|
($y1,$y2) = ($y2,$y1) if $y1 > $y2; |
492
|
|
|
|
|
|
|
### $x2 |
493
|
|
|
|
|
|
|
### $y2 |
494
|
|
|
|
|
|
|
|
495
|
691
|
100
|
66
|
|
|
14682
|
if ($x2 < 1 || $y2 < 1) { |
496
|
|
|
|
|
|
|
### no values, rect below first quadrant |
497
|
1
|
50
|
|
|
|
5
|
if ($self->{'n_start'}) { |
498
|
0
|
|
|
|
|
0
|
return (1,0); |
499
|
|
|
|
|
|
|
} else { |
500
|
1
|
|
|
|
|
5
|
return (0,0); |
501
|
|
|
|
|
|
|
} |
502
|
|
|
|
|
|
|
} |
503
|
|
|
|
|
|
|
|
504
|
690
|
|
|
|
|
102870
|
my $zero = ($x1 * 0 * $y1 * $x2 * $y2); # inherit bignum |
505
|
|
|
|
|
|
|
### $zero |
506
|
|
|
|
|
|
|
|
507
|
690
|
100
|
|
|
|
198002
|
if ($x1 < 1) { $x1 = 1; } |
|
194
|
|
|
|
|
268
|
|
508
|
690
|
100
|
|
|
|
52904
|
if ($y1 < 1) { $y1 = 1; } |
|
194
|
|
|
|
|
277
|
|
509
|
|
|
|
|
|
|
|
510
|
|
|
|
|
|
|
# # big x2, small y1 |
511
|
|
|
|
|
|
|
# # big y2, small x1 |
512
|
|
|
|
|
|
|
# my $level = _bingcd_max ($y2,$x1); |
513
|
|
|
|
|
|
|
# ### $level |
514
|
|
|
|
|
|
|
# { |
515
|
|
|
|
|
|
|
# my $l2 = _bingcd_max ($x2,$y1); |
516
|
|
|
|
|
|
|
# ### $l2 |
517
|
|
|
|
|
|
|
# if ($l2 > $level) { $level = $l2; } |
518
|
|
|
|
|
|
|
# } |
519
|
|
|
|
|
|
|
|
520
|
690
|
|
|
|
|
50633
|
my $level = max($x1,$x2,$y1,$y2); |
521
|
|
|
|
|
|
|
|
522
|
|
|
|
|
|
|
return ($self->{'n_start'}, |
523
|
690
|
|
|
|
|
2411
|
$self->{'n_start'} + (2+$zero) ** ($level + 3)); |
524
|
|
|
|
|
|
|
} |
525
|
|
|
|
|
|
|
|
526
|
|
|
|
|
|
|
sub _bingcd_max { |
527
|
0
|
|
|
0
|
|
0
|
my ($x,$y) = @_; |
528
|
|
|
|
|
|
|
### _bingcd_max(): "$x,$y" |
529
|
|
|
|
|
|
|
|
530
|
0
|
0
|
|
|
|
0
|
if ($x < $y) { ($x,$y) = ($y,$x) } |
|
0
|
|
|
|
|
0
|
|
531
|
|
|
|
|
|
|
|
532
|
|
|
|
|
|
|
### div: int($x/$y) |
533
|
|
|
|
|
|
|
### bingcd: int($x/$y) + $y |
534
|
|
|
|
|
|
|
|
535
|
0
|
|
|
|
|
0
|
return int($x/$y) + $y + 1; |
536
|
|
|
|
|
|
|
} |
537
|
|
|
|
|
|
|
|
538
|
|
|
|
|
|
|
# ### fib: _fib_log($y) |
539
|
|
|
|
|
|
|
# # ENHANCE-ME: log base PHI, or something close for BigInt |
540
|
|
|
|
|
|
|
# # 2*log2() means log base sqrt(2)=1.4 instead of PHI=1.6 |
541
|
|
|
|
|
|
|
# # |
542
|
|
|
|
|
|
|
# # use constant 1.02; # for leading underscore |
543
|
|
|
|
|
|
|
# # use constant _PHI => (1 + sqrt(5)) / 2; |
544
|
|
|
|
|
|
|
# # |
545
|
|
|
|
|
|
|
# sub _fib_log { |
546
|
|
|
|
|
|
|
# my ($x) = @_; |
547
|
|
|
|
|
|
|
# ### _fib_log(): $x |
548
|
|
|
|
|
|
|
# my $f0 = ($x * 0); |
549
|
|
|
|
|
|
|
# my $f1 = $f0 + 1; |
550
|
|
|
|
|
|
|
# my $count = 0; |
551
|
|
|
|
|
|
|
# while ($x > $f0) { |
552
|
|
|
|
|
|
|
# $count++; |
553
|
|
|
|
|
|
|
# ($f0,$f1) = ($f1,$f0+$f1); |
554
|
|
|
|
|
|
|
# } |
555
|
|
|
|
|
|
|
# return $count; |
556
|
|
|
|
|
|
|
# } |
557
|
|
|
|
|
|
|
|
558
|
|
|
|
|
|
|
#------------------------------------------------------------------------------ |
559
|
3
|
|
|
3
|
|
27
|
use constant tree_num_roots => 1; |
|
3
|
|
|
|
|
7
|
|
|
3
|
|
|
|
|
1708
|
|
560
|
|
|
|
|
|
|
|
561
|
|
|
|
|
|
|
# N=1 basis children 2N,2N+1 |
562
|
|
|
|
|
|
|
# N=S basis 2(N-(S-1))+(S-1) |
563
|
|
|
|
|
|
|
# = 2N - 2(S-1) + (S-1) |
564
|
|
|
|
|
|
|
# = 2N - (S-1) |
565
|
|
|
|
|
|
|
sub tree_n_children { |
566
|
14
|
|
|
14
|
1
|
669
|
my ($self, $n) = @_; |
567
|
14
|
|
|
|
|
25
|
my $n_start = $self->{'n_start'}; |
568
|
14
|
50
|
|
|
|
31
|
if ($n >= $n_start) { |
569
|
14
|
|
|
|
|
21
|
$n = 2*$n - $n_start; |
570
|
14
|
|
|
|
|
49
|
return ($n+1, $n+2); |
571
|
|
|
|
|
|
|
} else { |
572
|
0
|
|
|
|
|
0
|
return; |
573
|
|
|
|
|
|
|
} |
574
|
|
|
|
|
|
|
} |
575
|
|
|
|
|
|
|
sub tree_n_num_children { |
576
|
0
|
|
|
0
|
1
|
0
|
my ($self, $n) = @_; |
577
|
0
|
0
|
|
|
|
0
|
return ($n >= $self->{'n_start'} ? 2 : undef); |
578
|
|
|
|
|
|
|
} |
579
|
|
|
|
|
|
|
sub tree_n_parent { |
580
|
13
|
|
|
13
|
1
|
636
|
my ($self, $n) = @_; |
581
|
13
|
|
|
|
|
23
|
$n = $n - $self->{'n_start'}; # N=0 basis, and warn if $n==undef |
582
|
13
|
100
|
|
|
|
26
|
if ($n > 0) { |
583
|
12
|
|
|
|
|
40
|
return int(($n-1)/2) + $self->{'n_start'}; |
584
|
|
|
|
|
|
|
} else { |
585
|
1
|
|
|
|
|
4
|
return undef; |
586
|
|
|
|
|
|
|
} |
587
|
|
|
|
|
|
|
} |
588
|
|
|
|
|
|
|
sub tree_n_to_depth { |
589
|
33
|
|
|
33
|
1
|
2547
|
my ($self, $n) = @_; |
590
|
|
|
|
|
|
|
### RationalsTree tree_n_to_depth(): $n |
591
|
33
|
|
|
|
|
64
|
$n = $n - $self->{'n_start'}; # N=0 basis, and warn if $n==undef |
592
|
33
|
50
|
|
|
|
79
|
unless ($n >= 0) { |
593
|
0
|
|
|
|
|
0
|
return undef; |
594
|
|
|
|
|
|
|
} |
595
|
33
|
|
|
|
|
91
|
my ($pow, $exp) = round_down_pow ($n+1, 2); |
596
|
33
|
|
|
|
|
64
|
return $exp; |
597
|
|
|
|
|
|
|
} |
598
|
|
|
|
|
|
|
|
599
|
|
|
|
|
|
|
sub tree_depth_to_n { |
600
|
11
|
|
|
11
|
1
|
1005
|
my ($self, $depth) = @_; |
601
|
|
|
|
|
|
|
return ($depth >= 0 |
602
|
11
|
50
|
|
|
|
53
|
? 2**$depth + $self->{'n_start'}-1 |
603
|
|
|
|
|
|
|
: undef); |
604
|
|
|
|
|
|
|
} |
605
|
|
|
|
|
|
|
# (2^(d+1)+s-1)-1 = 2^(d+1)+s-2 |
606
|
|
|
|
|
|
|
sub tree_depth_to_n_end { |
607
|
11
|
|
|
11
|
1
|
22
|
my ($self, $depth) = @_; |
608
|
|
|
|
|
|
|
return ($depth >= 0 |
609
|
11
|
50
|
|
|
|
90
|
? 2**($depth+1) + $self->{'n_start'}-2 |
610
|
|
|
|
|
|
|
: undef); |
611
|
|
|
|
|
|
|
} |
612
|
|
|
|
|
|
|
sub tree_depth_to_n_range { |
613
|
0
|
|
|
0
|
1
|
|
my ($self, $depth) = @_; |
614
|
0
|
0
|
|
|
|
|
if ($depth >= 0) { |
615
|
0
|
|
|
|
|
|
my $pow = 2**$depth; |
616
|
0
|
|
|
|
|
|
return ($pow + $self->{'n_start'}-1, 2*$pow + $self->{'n_start'}-2); |
617
|
|
|
|
|
|
|
} |
618
|
0
|
|
|
|
|
|
return; # no such $depth |
619
|
|
|
|
|
|
|
} |
620
|
|
|
|
|
|
|
sub tree_depth_to_width { |
621
|
0
|
|
|
0
|
1
|
|
my ($self, $depth) = @_; |
622
|
0
|
0
|
|
|
|
|
return ($depth >= 0 |
623
|
|
|
|
|
|
|
? 2**$depth |
624
|
|
|
|
|
|
|
: undef); |
625
|
|
|
|
|
|
|
} |
626
|
|
|
|
|
|
|
|
627
|
|
|
|
|
|
|
1; |
628
|
|
|
|
|
|
|
__END__ |