| line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
|
1
|
|
|
|
|
|
|
# Copyright 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020 Kevin Ryde |
|
2
|
|
|
|
|
|
|
|
|
3
|
|
|
|
|
|
|
# This file is part of Math-PlanePath. |
|
4
|
|
|
|
|
|
|
# |
|
5
|
|
|
|
|
|
|
# Math-PlanePath is free software; you can redistribute it and/or modify |
|
6
|
|
|
|
|
|
|
# it under the terms of the GNU General Public License as published by the |
|
7
|
|
|
|
|
|
|
# Free Software Foundation; either version 3, or (at your option) any later |
|
8
|
|
|
|
|
|
|
# version. |
|
9
|
|
|
|
|
|
|
# |
|
10
|
|
|
|
|
|
|
# Math-PlanePath is distributed in the hope that it will be useful, but |
|
11
|
|
|
|
|
|
|
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY |
|
12
|
|
|
|
|
|
|
# or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
|
13
|
|
|
|
|
|
|
# for more details. |
|
14
|
|
|
|
|
|
|
# |
|
15
|
|
|
|
|
|
|
# You should have received a copy of the GNU General Public License along |
|
16
|
|
|
|
|
|
|
# with Math-PlanePath. If not, see . |
|
17
|
|
|
|
|
|
|
|
|
18
|
|
|
|
|
|
|
|
|
19
|
|
|
|
|
|
|
# math-image --path=PythagoreanTree --all --scale=3 |
|
20
|
|
|
|
|
|
|
|
|
21
|
|
|
|
|
|
|
# http://sunilchebolu.wordpress.com/pythagorean-triples-and-the-integer-points-on-a-hyperboloid/ |
|
22
|
|
|
|
|
|
|
|
|
23
|
|
|
|
|
|
|
# http://www.math.uconn.edu/~kconrad/blurbs/ugradnumthy/pythagtriple.pdf |
|
24
|
|
|
|
|
|
|
# |
|
25
|
|
|
|
|
|
|
# http://www.math.ou.edu/~dmccullough/teaching/pythagoras1.pdf |
|
26
|
|
|
|
|
|
|
# http://www.math.ou.edu/~dmccullough/teaching/pythagoras2.pdf |
|
27
|
|
|
|
|
|
|
# |
|
28
|
|
|
|
|
|
|
# http://www.microscitech.com/pythag_eigenvectors_invariants.pdf |
|
29
|
|
|
|
|
|
|
# |
|
30
|
|
|
|
|
|
|
|
|
31
|
|
|
|
|
|
|
|
|
32
|
|
|
|
|
|
|
package Math::PlanePath::PythagoreanTree; |
|
33
|
2
|
|
|
2
|
|
4007
|
use 5.004; |
|
|
2
|
|
|
|
|
8
|
|
|
34
|
2
|
|
|
2
|
|
12
|
use strict; |
|
|
2
|
|
|
|
|
4
|
|
|
|
2
|
|
|
|
|
47
|
|
|
35
|
2
|
|
|
2
|
|
10
|
use Carp 'croak'; |
|
|
2
|
|
|
|
|
4
|
|
|
|
2
|
|
|
|
|
96
|
|
|
36
|
|
|
|
|
|
|
|
|
37
|
2
|
|
|
2
|
|
12
|
use vars '$VERSION', '@ISA'; |
|
|
2
|
|
|
|
|
3
|
|
|
|
2
|
|
|
|
|
127
|
|
|
38
|
|
|
|
|
|
|
$VERSION = 129; |
|
39
|
2
|
|
|
2
|
|
1820
|
use Math::PlanePath; |
|
|
2
|
|
|
|
|
5
|
|
|
|
2
|
|
|
|
|
153
|
|
|
40
|
|
|
|
|
|
|
*_divrem = \&Math::PlanePath::_divrem; |
|
41
|
|
|
|
|
|
|
*_sqrtint = \&Math::PlanePath::_sqrtint; |
|
42
|
|
|
|
|
|
|
@ISA = ('Math::PlanePath'); |
|
43
|
|
|
|
|
|
|
|
|
44
|
|
|
|
|
|
|
#use List::Util 'min','max'; |
|
45
|
|
|
|
|
|
|
*min = \&Math::PlanePath::_min; |
|
46
|
|
|
|
|
|
|
*max = \&Math::PlanePath::_max; |
|
47
|
|
|
|
|
|
|
|
|
48
|
|
|
|
|
|
|
use Math::PlanePath::Base::Generic |
|
49
|
2
|
|
|
|
|
98
|
'is_infinite', |
|
50
|
2
|
|
|
2
|
|
14
|
'round_nearest'; |
|
|
2
|
|
|
|
|
11
|
|
|
51
|
|
|
|
|
|
|
use Math::PlanePath::Base::Digits |
|
52
|
2
|
|
|
|
|
112
|
'round_down_pow', |
|
53
|
|
|
|
|
|
|
'digit_split_lowtohigh', |
|
54
|
2
|
|
|
2
|
|
740
|
'digit_join_lowtohigh'; |
|
|
2
|
|
|
|
|
5
|
|
|
55
|
2
|
|
|
2
|
|
1363
|
use Math::PlanePath::GrayCode; |
|
|
2
|
|
|
|
|
5
|
|
|
|
2
|
|
|
|
|
68
|
|
|
56
|
|
|
|
|
|
|
|
|
57
|
|
|
|
|
|
|
# uncomment this to run the ### lines |
|
58
|
|
|
|
|
|
|
# use Smart::Comments; |
|
59
|
|
|
|
|
|
|
|
|
60
|
2
|
|
|
2
|
|
14
|
use constant class_x_negative => 0; |
|
|
2
|
|
|
|
|
4
|
|
|
|
2
|
|
|
|
|
100
|
|
|
61
|
2
|
|
|
2
|
|
12
|
use constant class_y_negative => 0; |
|
|
2
|
|
|
|
|
4
|
|
|
|
2
|
|
|
|
|
84
|
|
|
62
|
2
|
|
|
2
|
|
11
|
use constant tree_num_children_list => (3); # complete ternary tree |
|
|
2
|
|
|
|
|
4
|
|
|
|
2
|
|
|
|
|
89
|
|
|
63
|
2
|
|
|
2
|
|
11
|
use constant tree_n_to_subheight => undef; # complete tree, all infinity |
|
|
2
|
|
|
|
|
4
|
|
|
|
2
|
|
|
|
|
181
|
|
|
64
|
|
|
|
|
|
|
|
|
65
|
2
|
|
|
|
|
936
|
use constant parameter_info_array => |
|
66
|
|
|
|
|
|
|
[ { name => 'tree_type', |
|
67
|
|
|
|
|
|
|
share_key => 'tree_type_uadfb', |
|
68
|
|
|
|
|
|
|
display => 'Tree Type', |
|
69
|
|
|
|
|
|
|
type => 'enum', |
|
70
|
|
|
|
|
|
|
default => 'UAD', |
|
71
|
|
|
|
|
|
|
choices => ['UAD','UArD','FB','UMT'], |
|
72
|
|
|
|
|
|
|
}, |
|
73
|
|
|
|
|
|
|
{ name => 'coordinates', |
|
74
|
|
|
|
|
|
|
share_key => 'coordinates_abcpqsm', |
|
75
|
|
|
|
|
|
|
display => 'Coordinates', |
|
76
|
|
|
|
|
|
|
type => 'enum', |
|
77
|
|
|
|
|
|
|
default => 'AB', |
|
78
|
|
|
|
|
|
|
choices => ['AB','AC','BC','PQ', 'SM','SC','MC', |
|
79
|
|
|
|
|
|
|
# 'BA' |
|
80
|
|
|
|
|
|
|
# 'UV', # q from x=y diagonal down at 45-deg |
|
81
|
|
|
|
|
|
|
# 'RS','ST', # experimental |
|
82
|
|
|
|
|
|
|
], |
|
83
|
|
|
|
|
|
|
}, |
|
84
|
|
|
|
|
|
|
{ name => 'digit_order', |
|
85
|
|
|
|
|
|
|
display => 'Digit Order', |
|
86
|
|
|
|
|
|
|
type => 'enum', |
|
87
|
|
|
|
|
|
|
default => 'HtoL', |
|
88
|
|
|
|
|
|
|
choices => ['HtoL','LtoH'], |
|
89
|
|
|
|
|
|
|
}, |
|
90
|
2
|
|
|
2
|
|
15
|
]; |
|
|
2
|
|
|
|
|
4
|
|
|
91
|
|
|
|
|
|
|
|
|
92
|
|
|
|
|
|
|
{ |
|
93
|
|
|
|
|
|
|
my %UAD_coordinates_always_right = (PQ => 1, |
|
94
|
|
|
|
|
|
|
AB => 1, |
|
95
|
|
|
|
|
|
|
AC => 1); |
|
96
|
|
|
|
|
|
|
sub turn_any_left { |
|
97
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
|
98
|
|
|
|
|
|
|
return ! ($self->{'tree_type'} eq 'UAD' |
|
99
|
0
|
|
0
|
|
|
0
|
&& $UAD_coordinates_always_right{$self->{'coordinates'}}); |
|
100
|
|
|
|
|
|
|
} |
|
101
|
|
|
|
|
|
|
} |
|
102
|
|
|
|
|
|
|
{ |
|
103
|
|
|
|
|
|
|
my %UAD_coordinates_always_left = (BC => 1); |
|
104
|
|
|
|
|
|
|
sub turn_any_right { |
|
105
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
|
106
|
|
|
|
|
|
|
return ! ($self->{'tree_type'} eq 'UAD' |
|
107
|
0
|
|
0
|
|
|
0
|
&& $UAD_coordinates_always_left{$self->{'coordinates'}}); |
|
108
|
|
|
|
|
|
|
} |
|
109
|
|
|
|
|
|
|
} |
|
110
|
|
|
|
|
|
|
{ |
|
111
|
|
|
|
|
|
|
my %UMT_coordinates_any_straight = (BC => 1, # UMT at N=5 |
|
112
|
|
|
|
|
|
|
PQ => 1); # UMT at N=5 |
|
113
|
|
|
|
|
|
|
sub turn_any_straight { |
|
114
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
|
115
|
|
|
|
|
|
|
return ($self->{'tree_type'} eq 'UMT' |
|
116
|
0
|
|
0
|
|
|
0
|
&& $UMT_coordinates_any_straight{$self->{'coordinates'}}); |
|
117
|
|
|
|
|
|
|
} |
|
118
|
|
|
|
|
|
|
} |
|
119
|
|
|
|
|
|
|
|
|
120
|
|
|
|
|
|
|
|
|
121
|
|
|
|
|
|
|
#------------------------------------------------------------------------------ |
|
122
|
|
|
|
|
|
|
{ |
|
123
|
|
|
|
|
|
|
my %coordinate_minimum = (A => 3, |
|
124
|
|
|
|
|
|
|
B => 4, |
|
125
|
|
|
|
|
|
|
C => 5, |
|
126
|
|
|
|
|
|
|
P => 2, |
|
127
|
|
|
|
|
|
|
Q => 1, |
|
128
|
|
|
|
|
|
|
S => 3, |
|
129
|
|
|
|
|
|
|
M => 4, |
|
130
|
|
|
|
|
|
|
); |
|
131
|
|
|
|
|
|
|
sub x_minimum { |
|
132
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
|
133
|
0
|
|
|
|
|
0
|
return $coordinate_minimum{substr($self->{'coordinates'},0,1)}; |
|
134
|
|
|
|
|
|
|
} |
|
135
|
|
|
|
|
|
|
sub y_minimum { |
|
136
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
|
137
|
0
|
|
|
|
|
0
|
return $coordinate_minimum{substr($self->{'coordinates'},1)}; |
|
138
|
|
|
|
|
|
|
} |
|
139
|
|
|
|
|
|
|
} |
|
140
|
|
|
|
|
|
|
{ |
|
141
|
|
|
|
|
|
|
my %diffxy_minimum = (PQ => 1, # octant X>=Y+1 so X-Y>=1 |
|
142
|
|
|
|
|
|
|
); |
|
143
|
|
|
|
|
|
|
sub diffxy_minimum { |
|
144
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
|
145
|
0
|
|
|
|
|
0
|
return $diffxy_minimum{$self->{'coordinates'}}; |
|
146
|
|
|
|
|
|
|
} |
|
147
|
|
|
|
|
|
|
} |
|
148
|
|
|
|
|
|
|
{ |
|
149
|
|
|
|
|
|
|
my %diffxy_maximum = (AC => -2, # C>=A+2 so X-Y<=-2 |
|
150
|
|
|
|
|
|
|
BC => -1, # C>=B+1 so X-Y<=-1 |
|
151
|
|
|
|
|
|
|
SM => -1, # S
|
|
152
|
|
|
|
|
|
|
SC => -2, # S
|
|
153
|
|
|
|
|
|
|
MC => -1, # M
|
|
154
|
|
|
|
|
|
|
); |
|
155
|
|
|
|
|
|
|
sub diffxy_maximum { |
|
156
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
|
157
|
0
|
|
|
|
|
0
|
return $diffxy_maximum{$self->{'coordinates'}}; |
|
158
|
|
|
|
|
|
|
} |
|
159
|
|
|
|
|
|
|
} |
|
160
|
|
|
|
|
|
|
{ |
|
161
|
|
|
|
|
|
|
my %absdiffxy_minimum = (PQ => 1, |
|
162
|
|
|
|
|
|
|
AB => 1, # X=Y never occurs |
|
163
|
|
|
|
|
|
|
BA => 1, # X=Y never occurs |
|
164
|
|
|
|
|
|
|
AC => 2, # C>=A+2 so abs(X-Y)>=2 |
|
165
|
|
|
|
|
|
|
BC => 1, |
|
166
|
|
|
|
|
|
|
SM => 1, # X=Y never occurs |
|
167
|
|
|
|
|
|
|
SC => 2, # X<=Y-2 |
|
168
|
|
|
|
|
|
|
MC => 1, # X=Y never occurs |
|
169
|
|
|
|
|
|
|
); |
|
170
|
|
|
|
|
|
|
sub absdiffxy_minimum { |
|
171
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
|
172
|
0
|
|
|
|
|
0
|
return $absdiffxy_minimum{$self->{'coordinates'}}; |
|
173
|
|
|
|
|
|
|
} |
|
174
|
|
|
|
|
|
|
} |
|
175
|
2
|
|
|
2
|
|
15
|
use constant gcdxy_maximum => 1; # no common factor |
|
|
2
|
|
|
|
|
4
|
|
|
|
2
|
|
|
|
|
4895
|
|
|
176
|
|
|
|
|
|
|
|
|
177
|
|
|
|
|
|
|
{ |
|
178
|
|
|
|
|
|
|
my %absdx_minimum = ('AB,UAD' => 2, |
|
179
|
|
|
|
|
|
|
'AB,FB' => 2, |
|
180
|
|
|
|
|
|
|
'AB,UMT' => 2, |
|
181
|
|
|
|
|
|
|
|
|
182
|
|
|
|
|
|
|
'AC,UAD' => 2, |
|
183
|
|
|
|
|
|
|
'AC,FB' => 2, |
|
184
|
|
|
|
|
|
|
'AC,UMT' => 2, |
|
185
|
|
|
|
|
|
|
|
|
186
|
|
|
|
|
|
|
'BC,UAD' => 4, # at N=37 |
|
187
|
|
|
|
|
|
|
'BC,FB' => 4, # at N=2 X=12,Y=13 |
|
188
|
|
|
|
|
|
|
'BC,UMT' => 4, # at N=2 X=12,Y=13 |
|
189
|
|
|
|
|
|
|
|
|
190
|
|
|
|
|
|
|
'PQ,UAD' => 0, |
|
191
|
|
|
|
|
|
|
'PQ,FB' => 0, |
|
192
|
|
|
|
|
|
|
'PQ,UMT' => 0, |
|
193
|
|
|
|
|
|
|
|
|
194
|
|
|
|
|
|
|
'SM,UAD' => 1, |
|
195
|
|
|
|
|
|
|
'SM,FB' => 1, |
|
196
|
|
|
|
|
|
|
'SM,UMT' => 2, |
|
197
|
|
|
|
|
|
|
|
|
198
|
|
|
|
|
|
|
'SC,UAD' => 1, |
|
199
|
|
|
|
|
|
|
'SC,FB' => 1, |
|
200
|
|
|
|
|
|
|
'SC,UMT' => 1, |
|
201
|
|
|
|
|
|
|
|
|
202
|
|
|
|
|
|
|
'MC,UAD' => 3, |
|
203
|
|
|
|
|
|
|
'MC,FB' => 3, |
|
204
|
|
|
|
|
|
|
'MC,UMT' => 1, |
|
205
|
|
|
|
|
|
|
); |
|
206
|
|
|
|
|
|
|
sub absdx_minimum { |
|
207
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
|
208
|
0
|
|
0
|
|
|
0
|
return $absdx_minimum{"$self->{'coordinates'},$self->{'tree_type'}"} || 0; |
|
209
|
|
|
|
|
|
|
} |
|
210
|
|
|
|
|
|
|
} |
|
211
|
|
|
|
|
|
|
{ |
|
212
|
|
|
|
|
|
|
my %absdy_minimum = ('AB,UAD' => 4, |
|
213
|
|
|
|
|
|
|
'AB,FB' => 4, |
|
214
|
|
|
|
|
|
|
'AB,UMT' => 4, |
|
215
|
|
|
|
|
|
|
|
|
216
|
|
|
|
|
|
|
'AC,UAD' => 4, |
|
217
|
|
|
|
|
|
|
'AC,FB' => 4, |
|
218
|
|
|
|
|
|
|
'BC,UAD' => 4, |
|
219
|
|
|
|
|
|
|
'BC,FB' => 4, |
|
220
|
|
|
|
|
|
|
'PQ,UAD' => 0, |
|
221
|
|
|
|
|
|
|
'PQ,FB' => 1, |
|
222
|
|
|
|
|
|
|
|
|
223
|
|
|
|
|
|
|
'SM,UAD' => 3, |
|
224
|
|
|
|
|
|
|
'SM,FB' => 3, |
|
225
|
|
|
|
|
|
|
'SM,UMT' => 1, |
|
226
|
|
|
|
|
|
|
|
|
227
|
|
|
|
|
|
|
'SC,UAD' => 4, |
|
228
|
|
|
|
|
|
|
'SC,FB' => 4, |
|
229
|
|
|
|
|
|
|
'MC,UAD' => 4, |
|
230
|
|
|
|
|
|
|
'MC,FB' => 4, |
|
231
|
|
|
|
|
|
|
); |
|
232
|
|
|
|
|
|
|
sub absdy_minimum { |
|
233
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
|
234
|
0
|
|
0
|
|
|
0
|
return $absdy_minimum{"$self->{'coordinates'},$self->{'tree_type'}"} || 0; |
|
235
|
|
|
|
|
|
|
} |
|
236
|
|
|
|
|
|
|
} |
|
237
|
|
|
|
|
|
|
|
|
238
|
|
|
|
|
|
|
{ |
|
239
|
|
|
|
|
|
|
my %dir_minimum_dxdy = (# AB apparent minimum dX=16,dY=8 |
|
240
|
|
|
|
|
|
|
'AB,UAD' => [16,8], |
|
241
|
|
|
|
|
|
|
'AC,UAD' => [1,1], # it seems |
|
242
|
|
|
|
|
|
|
# 'BC,UAD' => [1,0], # infimum |
|
243
|
|
|
|
|
|
|
# 'SM,UAD' => [1,0], # infimum |
|
244
|
|
|
|
|
|
|
# 'SC,UAD' => [1,0], # N=255 dX=7,dY=0 |
|
245
|
|
|
|
|
|
|
# 'MC,UAD' => [1,0], # infimum |
|
246
|
|
|
|
|
|
|
|
|
247
|
|
|
|
|
|
|
# 'SM,FB' => [1,0], # infimum |
|
248
|
|
|
|
|
|
|
# 'SC,FB' => [1,0], # infimum |
|
249
|
|
|
|
|
|
|
# 'SM,FB' => [1,0], # infimum |
|
250
|
|
|
|
|
|
|
|
|
251
|
|
|
|
|
|
|
'AB,UMT' => [6,12], # it seems |
|
252
|
|
|
|
|
|
|
|
|
253
|
|
|
|
|
|
|
# N=ternary 1111111122 dx=118,dy=40 |
|
254
|
|
|
|
|
|
|
# in general dx=3*4k-2 dy=4k |
|
255
|
|
|
|
|
|
|
'AC,UMT' => [3,1], # infimum |
|
256
|
|
|
|
|
|
|
# |
|
257
|
|
|
|
|
|
|
# 'BC,UMT' => [1,0], # N=31 dX=72,dY=0 |
|
258
|
|
|
|
|
|
|
'PQ,UMT' => [1,1], # N=1 |
|
259
|
|
|
|
|
|
|
'SM,UMT' => [1,0], # infiumum dX=big,dY=3 |
|
260
|
|
|
|
|
|
|
'SC,UMT' => [3,1], # like AC |
|
261
|
|
|
|
|
|
|
# 'MC,UMT' => [1,0], # at N=31 |
|
262
|
|
|
|
|
|
|
); |
|
263
|
|
|
|
|
|
|
sub dir_minimum_dxdy { |
|
264
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
|
265
|
0
|
0
|
|
|
|
0
|
return @{$dir_minimum_dxdy{"$self->{'coordinates'},$self->{'tree_type'}"} |
|
|
0
|
|
|
|
|
0
|
|
|
266
|
|
|
|
|
|
|
|| [1,0] }; |
|
267
|
|
|
|
|
|
|
} |
|
268
|
|
|
|
|
|
|
} |
|
269
|
|
|
|
|
|
|
{ |
|
270
|
|
|
|
|
|
|
# AB apparent maximum dX=-6,dY=-12 at N=3 |
|
271
|
|
|
|
|
|
|
# AC apparent maximum dX=-6,dY=-12 at N=3 same |
|
272
|
|
|
|
|
|
|
# PQ apparent maximum dX=-1,dY=-1 |
|
273
|
|
|
|
|
|
|
my %dir_maximum_dxdy = ('AB,UAD' => [-6,-12], |
|
274
|
|
|
|
|
|
|
'AC,UAD' => [-6,-12], |
|
275
|
|
|
|
|
|
|
# 'BC,UAD' => [0,0], |
|
276
|
|
|
|
|
|
|
'PQ,UAD' => [-1,-1], |
|
277
|
|
|
|
|
|
|
# 'SM,UAD' => [0,0], # supremum |
|
278
|
|
|
|
|
|
|
# 'SC,UAD' => [0,0], # supremum |
|
279
|
|
|
|
|
|
|
# 'MC,UAD' => [0,0], # supremum |
|
280
|
|
|
|
|
|
|
|
|
281
|
|
|
|
|
|
|
# 'AB,FB' => [0,0], |
|
282
|
|
|
|
|
|
|
# 'AC,FB' => [0,0], |
|
283
|
|
|
|
|
|
|
'BC,FB' => [1,-1], |
|
284
|
|
|
|
|
|
|
# 'PQ,FB' => [0,0], |
|
285
|
|
|
|
|
|
|
# 'SM,FB' => [0,0], # supremum |
|
286
|
|
|
|
|
|
|
# 'SC,FB' => [0,0], # supremum |
|
287
|
|
|
|
|
|
|
# 'MC,FB' => [0,0], # supremum |
|
288
|
|
|
|
|
|
|
|
|
289
|
|
|
|
|
|
|
# N=ternary 1111111122 dx=118,dy=-40 |
|
290
|
|
|
|
|
|
|
# in general dx=3*4k-2 dy=-4k |
|
291
|
|
|
|
|
|
|
'AB,UMT' => [3,-1], # supremum |
|
292
|
|
|
|
|
|
|
# |
|
293
|
|
|
|
|
|
|
'AC,UMT' => [-10,-20], # at N=9 apparent maximum |
|
294
|
|
|
|
|
|
|
# 'BC,UMT' => [0,0], # apparent approach |
|
295
|
|
|
|
|
|
|
'PQ,UMT' => [1,-1], # N=2 |
|
296
|
|
|
|
|
|
|
# 'SM,UMT' => [0,0], # supremum dX=big,dY=-1 |
|
297
|
|
|
|
|
|
|
'SC,UMT' => [-3,-5], # apparent approach |
|
298
|
|
|
|
|
|
|
# 'MC,UMT' => [0,0], # supremum dX=big,dY=-small |
|
299
|
|
|
|
|
|
|
); |
|
300
|
|
|
|
|
|
|
sub dir_maximum_dxdy { |
|
301
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
|
302
|
0
|
0
|
|
|
|
0
|
return @{$dir_maximum_dxdy{"$self->{'coordinates'},$self->{'tree_type'}"} |
|
|
0
|
|
|
|
|
0
|
|
|
303
|
|
|
|
|
|
|
|| [0,0]}; |
|
304
|
|
|
|
|
|
|
} |
|
305
|
|
|
|
|
|
|
} |
|
306
|
|
|
|
|
|
|
|
|
307
|
|
|
|
|
|
|
#------------------------------------------------------------------------------ |
|
308
|
|
|
|
|
|
|
|
|
309
|
|
|
|
|
|
|
sub _noop { |
|
310
|
1340
|
|
|
1340
|
|
3501
|
return @_; |
|
311
|
|
|
|
|
|
|
} |
|
312
|
|
|
|
|
|
|
my %xy_to_pq = (AB => \&_ab_to_pq, |
|
313
|
|
|
|
|
|
|
AC => \&_ac_to_pq, |
|
314
|
|
|
|
|
|
|
BC => \&_bc_to_pqa, # ignoring extra $a return |
|
315
|
|
|
|
|
|
|
PQ => \&_noop, |
|
316
|
|
|
|
|
|
|
SM => \&_sm_to_pq, |
|
317
|
|
|
|
|
|
|
SC => \&_sc_to_pq, |
|
318
|
|
|
|
|
|
|
MC => \&_mc_to_pq, |
|
319
|
|
|
|
|
|
|
UV => \&_uv_to_pq, |
|
320
|
|
|
|
|
|
|
RS => \&_rs_to_pq, |
|
321
|
|
|
|
|
|
|
ST => \&_st_to_pq, |
|
322
|
|
|
|
|
|
|
); |
|
323
|
|
|
|
|
|
|
my %pq_to_xy = (AB => \&_pq_to_ab, |
|
324
|
|
|
|
|
|
|
AC => \&_pq_to_ac, |
|
325
|
|
|
|
|
|
|
BC => \&_pq_to_bc, |
|
326
|
|
|
|
|
|
|
PQ => \&_noop, |
|
327
|
|
|
|
|
|
|
SM => \&_pq_to_sm, |
|
328
|
|
|
|
|
|
|
SC => \&_pq_to_sc, |
|
329
|
|
|
|
|
|
|
MC => \&_pq_to_mc, |
|
330
|
|
|
|
|
|
|
UV => \&_pq_to_uv, |
|
331
|
|
|
|
|
|
|
RS => \&_pq_to_rs, |
|
332
|
|
|
|
|
|
|
ST => \&_pq_to_st, |
|
333
|
|
|
|
|
|
|
); |
|
334
|
|
|
|
|
|
|
|
|
335
|
|
|
|
|
|
|
my %tree_types = (UAD => 1, |
|
336
|
|
|
|
|
|
|
UArD => 1, |
|
337
|
|
|
|
|
|
|
FB => 1, |
|
338
|
|
|
|
|
|
|
UMT => 1); |
|
339
|
|
|
|
|
|
|
my %digit_orders = (HtoL => 1, |
|
340
|
|
|
|
|
|
|
LtoH => 1); |
|
341
|
|
|
|
|
|
|
sub new { |
|
342
|
21
|
|
|
21
|
1
|
3321
|
my $self = shift->SUPER::new (@_); |
|
343
|
|
|
|
|
|
|
{ |
|
344
|
21
|
|
50
|
|
|
108
|
my $digit_order = ($self->{'digit_order'} ||= 'HtoL'); |
|
345
|
21
|
50
|
|
|
|
55
|
$digit_orders{$digit_order} |
|
346
|
|
|
|
|
|
|
|| croak "Unrecognised digit_order option: ",$digit_order; |
|
347
|
|
|
|
|
|
|
} |
|
348
|
|
|
|
|
|
|
{ |
|
349
|
21
|
|
100
|
|
|
38
|
my $tree_type = ($self->{'tree_type'} ||= 'UAD'); |
|
|
21
|
|
|
|
|
58
|
|
|
350
|
21
|
50
|
|
|
|
51
|
$tree_types{$tree_type} |
|
351
|
|
|
|
|
|
|
|| croak "Unrecognised tree_type option: ",$tree_type; |
|
352
|
|
|
|
|
|
|
} |
|
353
|
|
|
|
|
|
|
{ |
|
354
|
21
|
|
100
|
|
|
30
|
my $coordinates = ($self->{'coordinates'} ||= 'AB'); |
|
|
21
|
|
|
|
|
34
|
|
|
|
21
|
|
|
|
|
55
|
|
|
355
|
21
|
|
33
|
|
|
76
|
$self->{'xy_to_pq'} = $xy_to_pq{$coordinates} |
|
356
|
|
|
|
|
|
|
|| croak "Unrecognised coordinates option: ",$coordinates; |
|
357
|
21
|
|
|
|
|
43
|
$self->{'pq_to_xy'} = $pq_to_xy{$coordinates}; |
|
358
|
|
|
|
|
|
|
} |
|
359
|
21
|
|
|
|
|
44
|
return $self; |
|
360
|
|
|
|
|
|
|
} |
|
361
|
|
|
|
|
|
|
|
|
362
|
|
|
|
|
|
|
sub n_to_xy { |
|
363
|
56
|
|
|
56
|
1
|
5737
|
my ($self, $n) = @_; |
|
364
|
|
|
|
|
|
|
### PythagoreanTree n_to_xy(): $n |
|
365
|
|
|
|
|
|
|
|
|
366
|
56
|
50
|
|
|
|
127
|
if ($n < 1) { return; } |
|
|
0
|
|
|
|
|
0
|
|
|
367
|
56
|
50
|
|
|
|
147
|
if (is_infinite($n)) { return ($n,$n); } |
|
|
0
|
|
|
|
|
0
|
|
|
368
|
|
|
|
|
|
|
|
|
369
|
|
|
|
|
|
|
{ |
|
370
|
56
|
|
|
|
|
99
|
my $int = int($n); |
|
|
56
|
|
|
|
|
87
|
|
|
371
|
56
|
50
|
|
|
|
106
|
if ($n != $int) { |
|
372
|
0
|
|
|
|
|
0
|
my $frac = $n - $int; # inherit possible BigFloat/BigRat |
|
373
|
0
|
|
|
|
|
0
|
my ($x1,$y1) = $self->n_to_xy($int); |
|
374
|
0
|
|
|
|
|
0
|
my ($x2,$y2) = $self->n_to_xy($int+1); |
|
375
|
0
|
|
|
|
|
0
|
my $dx = $x2-$x1; |
|
376
|
0
|
|
|
|
|
0
|
my $dy = $y2-$y1; |
|
377
|
0
|
|
|
|
|
0
|
return ($frac*$dx + $x1, $frac*$dy + $y1); |
|
378
|
|
|
|
|
|
|
} |
|
379
|
|
|
|
|
|
|
} |
|
380
|
|
|
|
|
|
|
|
|
381
|
56
|
|
|
|
|
116
|
return &{$self->{'pq_to_xy'}}(_n_to_pq($self,$n)); |
|
|
56
|
|
|
|
|
129
|
|
|
382
|
|
|
|
|
|
|
} |
|
383
|
|
|
|
|
|
|
|
|
384
|
|
|
|
|
|
|
# maybe similar n_to_rsquared() as C^2=(P^2+Q^2)^2 |
|
385
|
|
|
|
|
|
|
sub n_to_radius { |
|
386
|
0
|
|
|
0
|
1
|
0
|
my ($self, $n) = @_; |
|
387
|
|
|
|
|
|
|
|
|
388
|
0
|
0
|
0
|
|
|
0
|
if (($self->{'coordinates'} eq 'AB' |
|
|
|
|
0
|
|
|
|
|
|
389
|
|
|
|
|
|
|
|| $self->{'coordinates'} eq 'BA' |
|
390
|
|
|
|
|
|
|
|| $self->{'coordinates'} eq 'SM') |
|
391
|
|
|
|
|
|
|
&& $n == int($n)) { |
|
392
|
0
|
0
|
|
|
|
0
|
if ($n < 1) { return undef; } |
|
|
0
|
|
|
|
|
0
|
|
|
393
|
0
|
0
|
|
|
|
0
|
if (is_infinite($n)) { return $n; } |
|
|
0
|
|
|
|
|
0
|
|
|
394
|
0
|
|
|
|
|
0
|
my ($p,$q) = _n_to_pq($self,$n); |
|
395
|
0
|
|
|
|
|
0
|
return $p*$p + $q*$q; # C=P^2+Q^2 |
|
396
|
|
|
|
|
|
|
} |
|
397
|
|
|
|
|
|
|
|
|
398
|
0
|
|
|
|
|
0
|
return $self->SUPER::n_to_radius($n); |
|
399
|
|
|
|
|
|
|
} |
|
400
|
|
|
|
|
|
|
|
|
401
|
|
|
|
|
|
|
sub _n_to_pq { |
|
402
|
56
|
|
|
56
|
|
101
|
my ($self, $n) = @_; |
|
403
|
|
|
|
|
|
|
|
|
404
|
56
|
|
|
|
|
109
|
my $ndigits = _n_to_digits_lowtohigh($n); |
|
405
|
|
|
|
|
|
|
### $ndigits |
|
406
|
|
|
|
|
|
|
|
|
407
|
56
|
50
|
|
|
|
144
|
if ($self->{'tree_type'} eq 'UArD') { |
|
408
|
0
|
|
|
|
|
0
|
Math::PlanePath::GrayCode::_digits_to_gray_reflected($ndigits,3); |
|
409
|
|
|
|
|
|
|
### gray: $ndigits |
|
410
|
|
|
|
|
|
|
} |
|
411
|
56
|
50
|
|
|
|
115
|
if ($self->{'digit_order'} eq 'HtoL') { |
|
412
|
56
|
|
|
|
|
113
|
@$ndigits = reverse @$ndigits; |
|
413
|
|
|
|
|
|
|
### reverse: $ndigits |
|
414
|
|
|
|
|
|
|
} |
|
415
|
|
|
|
|
|
|
|
|
416
|
56
|
|
|
|
|
85
|
my $zero = $n * 0; |
|
417
|
|
|
|
|
|
|
|
|
418
|
56
|
|
|
|
|
85
|
my $p = 2 + $zero; |
|
419
|
56
|
|
|
|
|
81
|
my $q = 1 + $zero; |
|
420
|
|
|
|
|
|
|
|
|
421
|
56
|
100
|
|
|
|
114
|
if ($self->{'tree_type'} eq 'FB') { |
|
|
|
50
|
|
|
|
|
|
|
422
|
|
|
|
|
|
|
### FB ... |
|
423
|
|
|
|
|
|
|
|
|
424
|
26
|
|
|
|
|
48
|
foreach my $digit (@$ndigits) { # high to low, possibly $digit=undef |
|
425
|
|
|
|
|
|
|
### $p |
|
426
|
|
|
|
|
|
|
### $q |
|
427
|
|
|
|
|
|
|
### $digit |
|
428
|
|
|
|
|
|
|
|
|
429
|
42
|
100
|
|
|
|
61
|
if ($digit) { |
|
430
|
28
|
100
|
|
|
|
51
|
if ($digit == 1) { |
|
431
|
14
|
|
|
|
|
19
|
$q = $p-$q; # (2p, p-q) M2 |
|
432
|
14
|
|
|
|
|
24
|
$p *= 2; |
|
433
|
|
|
|
|
|
|
} else { |
|
434
|
|
|
|
|
|
|
# ($p,$q) = (2*$p, $p+$q); |
|
435
|
14
|
|
|
|
|
18
|
$q += $p; # (p+q, 2q) M3 |
|
436
|
14
|
|
|
|
|
25
|
$p *= 2; |
|
437
|
|
|
|
|
|
|
} |
|
438
|
|
|
|
|
|
|
} else { # $digit == 0 |
|
439
|
|
|
|
|
|
|
# ($p,$q) = ($p+$q, 2*$q); |
|
440
|
14
|
|
|
|
|
18
|
$p += $q; # (p+q, 2q) M1 |
|
441
|
14
|
|
|
|
|
23
|
$q *= 2; |
|
442
|
|
|
|
|
|
|
} |
|
443
|
|
|
|
|
|
|
} |
|
444
|
|
|
|
|
|
|
} elsif ($self->{'tree_type'} eq 'UMT') { |
|
445
|
|
|
|
|
|
|
### UMT ... |
|
446
|
|
|
|
|
|
|
|
|
447
|
0
|
|
|
|
|
0
|
foreach my $digit (@$ndigits) { # high to low, possibly $digit=undef |
|
448
|
|
|
|
|
|
|
### $p |
|
449
|
|
|
|
|
|
|
### $q |
|
450
|
|
|
|
|
|
|
### $digit |
|
451
|
|
|
|
|
|
|
|
|
452
|
0
|
0
|
|
|
|
0
|
if ($digit) { |
|
453
|
0
|
0
|
|
|
|
0
|
if ($digit == 1) { |
|
454
|
0
|
|
|
|
|
0
|
$q = $p-$q; # (2p, p-q) M2 |
|
455
|
0
|
|
|
|
|
0
|
$p *= 2; |
|
456
|
|
|
|
|
|
|
} else { # $digit == 2 |
|
457
|
0
|
|
|
|
|
0
|
$p += 3*$q; # T |
|
458
|
0
|
|
|
|
|
0
|
$q *= 2; |
|
459
|
|
|
|
|
|
|
} |
|
460
|
|
|
|
|
|
|
} else { # $digit == 0 |
|
461
|
|
|
|
|
|
|
# ($p,$q) = ($p+$q, 2*$q); |
|
462
|
0
|
|
|
|
|
0
|
($p,$q) = (2*$p-$q, $p); # "U" = (2p-q, p) |
|
463
|
|
|
|
|
|
|
} |
|
464
|
|
|
|
|
|
|
} |
|
465
|
|
|
|
|
|
|
} else { |
|
466
|
|
|
|
|
|
|
### UAD or UArD ... |
|
467
|
|
|
|
|
|
|
### assert: $self->{'tree_type'} eq 'UAD' || $self->{'tree_type'} eq 'UArD' |
|
468
|
|
|
|
|
|
|
|
|
469
|
|
|
|
|
|
|
# # Could optimize high zeros as repeated U |
|
470
|
|
|
|
|
|
|
# # high zeros as repeated U: $depth-scalar(@$ndigits) |
|
471
|
|
|
|
|
|
|
# # U^0 = p, q |
|
472
|
|
|
|
|
|
|
# # U^1 = 2p-q, p eg. P=2,Q=1 is 2*2-1,2 = 3,2 |
|
473
|
|
|
|
|
|
|
# # U^2 = 3p-2q, 2p-q eg. P=2,Q=1 is 3*2-2*1,2*2-1 = 4,3 |
|
474
|
|
|
|
|
|
|
# # U^3 = 4p-3q, 3p-2q |
|
475
|
|
|
|
|
|
|
# # U^k = (k+1)p-kq, kp-(k-1)q for k>=2 |
|
476
|
|
|
|
|
|
|
# # = p + k*(p-q), k*(p-q)+q |
|
477
|
|
|
|
|
|
|
# # and with initial p=2,q=1 |
|
478
|
|
|
|
|
|
|
# # U^k = 2+k, 1+k |
|
479
|
|
|
|
|
|
|
# # |
|
480
|
|
|
|
|
|
|
# $q = $depth - $#ndigits + $zero; # count high zeros + 1 |
|
481
|
|
|
|
|
|
|
# $p = $q + 1 + $zero; |
|
482
|
|
|
|
|
|
|
|
|
483
|
30
|
|
|
|
|
52
|
foreach my $digit (@$ndigits) { # high to low, possibly $digit=undef |
|
484
|
|
|
|
|
|
|
### $p |
|
485
|
|
|
|
|
|
|
### $q |
|
486
|
|
|
|
|
|
|
### $digit |
|
487
|
|
|
|
|
|
|
|
|
488
|
52
|
100
|
|
|
|
80
|
if ($digit) { |
|
489
|
34
|
100
|
|
|
|
69
|
if ($digit == 1) { |
|
490
|
18
|
|
|
|
|
40
|
($p,$q) = (2*$p+$q, $p); # "A" = (2p+q, p) |
|
491
|
|
|
|
|
|
|
} else { |
|
492
|
16
|
|
|
|
|
28
|
$p += 2*$q; # "D" = (p+2q, q) |
|
493
|
|
|
|
|
|
|
} |
|
494
|
|
|
|
|
|
|
} else { # $digit==0 |
|
495
|
18
|
|
|
|
|
39
|
($p,$q) = (2*$p-$q, $p); # "U" = (2p-q, p) |
|
496
|
|
|
|
|
|
|
} |
|
497
|
|
|
|
|
|
|
} |
|
498
|
|
|
|
|
|
|
|
|
499
|
|
|
|
|
|
|
} |
|
500
|
|
|
|
|
|
|
|
|
501
|
|
|
|
|
|
|
### final pq: "$p, $q" |
|
502
|
|
|
|
|
|
|
|
|
503
|
56
|
|
|
|
|
117
|
return ($p, $q); |
|
504
|
|
|
|
|
|
|
} |
|
505
|
|
|
|
|
|
|
|
|
506
|
|
|
|
|
|
|
# _n_to_digits_lowtohigh() returns an arrayref $ndigits which is a list of |
|
507
|
|
|
|
|
|
|
# ternary digits 0,1,2 from low to high which are the position of $n within |
|
508
|
|
|
|
|
|
|
# its row of the tree. |
|
509
|
|
|
|
|
|
|
# The length of the array is the depth. |
|
510
|
|
|
|
|
|
|
# |
|
511
|
|
|
|
|
|
|
# depth N N%3 2*N-1 (N-2)/3*2+1 |
|
512
|
|
|
|
|
|
|
# 0 1 1 1 1/3 |
|
513
|
|
|
|
|
|
|
# 1 2 2 3 1 |
|
514
|
|
|
|
|
|
|
# 2 5 2 9 3 |
|
515
|
|
|
|
|
|
|
# 3 14 2 27 9 |
|
516
|
|
|
|
|
|
|
# 4 41 2 81 27 28 + (28/2-1) = 41 |
|
517
|
|
|
|
|
|
|
# |
|
518
|
|
|
|
|
|
|
# (N-2)/3*2+1 rounded down to pow=3^k gives depth=k+1 and base=pow+(pow+1)/2 |
|
519
|
|
|
|
|
|
|
# is the start of the row base=1,2,5,14,41 etc. |
|
520
|
|
|
|
|
|
|
# |
|
521
|
|
|
|
|
|
|
# An easier calculation is 2*N-1 rounded down to pow=3^d gives depth=d and |
|
522
|
|
|
|
|
|
|
# base=2*pow-1, but 2*N-1 and 2*pow-1 might overflow an integer. Though |
|
523
|
|
|
|
|
|
|
# just yet round_down_pow() goes into floats and so doesn't preserve 64-bit |
|
524
|
|
|
|
|
|
|
# integer. So the technique here helps 53-bit float integers, but not right |
|
525
|
|
|
|
|
|
|
# up to 64-bits. |
|
526
|
|
|
|
|
|
|
# |
|
527
|
|
|
|
|
|
|
sub _n_to_digits_lowtohigh { |
|
528
|
76
|
|
|
76
|
|
1567
|
my ($n) = @_; |
|
529
|
|
|
|
|
|
|
### _n_to_digits_lowtohigh(): $n |
|
530
|
|
|
|
|
|
|
|
|
531
|
76
|
|
|
|
|
136
|
my @ndigits; |
|
532
|
76
|
100
|
|
|
|
164
|
if ($n >= 2) { |
|
533
|
69
|
|
|
|
|
208
|
my ($pow) = _divrem($n-2, 3); |
|
534
|
69
|
|
|
|
|
195
|
($pow, my $depth) = round_down_pow (2*$pow+1, 3); |
|
535
|
|
|
|
|
|
|
### $depth |
|
536
|
|
|
|
|
|
|
### base: $pow + ($pow+1)/2 |
|
537
|
|
|
|
|
|
|
### offset: $n - $pow - ($pow+1)/2 |
|
538
|
69
|
|
|
|
|
205
|
@ndigits = digit_split_lowtohigh ($n - $pow - ($pow+1)/2, 3); |
|
539
|
69
|
|
|
|
|
154
|
push @ndigits, (0) x ($depth - $#ndigits); # pad to $depth with 0s |
|
540
|
|
|
|
|
|
|
} |
|
541
|
|
|
|
|
|
|
### @ndigits |
|
542
|
76
|
|
|
|
|
158
|
return \@ndigits; |
|
543
|
|
|
|
|
|
|
|
|
544
|
|
|
|
|
|
|
|
|
545
|
|
|
|
|
|
|
# { |
|
546
|
|
|
|
|
|
|
# my ($pow, $depth) = round_down_pow (2*$n-1, 3); |
|
547
|
|
|
|
|
|
|
# |
|
548
|
|
|
|
|
|
|
# ### h: 2*$n-1 |
|
549
|
|
|
|
|
|
|
# ### $depth |
|
550
|
|
|
|
|
|
|
# ### $pow |
|
551
|
|
|
|
|
|
|
# ### base: ($pow + 1)/2 |
|
552
|
|
|
|
|
|
|
# ### rem n: $n - ($pow + 1)/2 |
|
553
|
|
|
|
|
|
|
# |
|
554
|
|
|
|
|
|
|
# my @ndigits = digit_split_lowtohigh ($n - ($pow+1)/2, 3); |
|
555
|
|
|
|
|
|
|
# $#ndigits = $depth-1; # pad to $depth with undefs |
|
556
|
|
|
|
|
|
|
# ### @ndigits |
|
557
|
|
|
|
|
|
|
# |
|
558
|
|
|
|
|
|
|
# return \@ndigits; |
|
559
|
|
|
|
|
|
|
# } |
|
560
|
|
|
|
|
|
|
} |
|
561
|
|
|
|
|
|
|
|
|
562
|
|
|
|
|
|
|
#------------------------------------------------------------------------------ |
|
563
|
|
|
|
|
|
|
# xy_to_n() |
|
564
|
|
|
|
|
|
|
|
|
565
|
|
|
|
|
|
|
# Nrow(depth+1) - Nrow(depth) |
|
566
|
|
|
|
|
|
|
# = (3*pow+1)/2 - (pow+1)/2 |
|
567
|
|
|
|
|
|
|
# = (3*pow + 1 - pow - 1)/2 |
|
568
|
|
|
|
|
|
|
# = (2*pow)/2 |
|
569
|
|
|
|
|
|
|
# = pow |
|
570
|
|
|
|
|
|
|
# |
|
571
|
|
|
|
|
|
|
sub xy_to_n { |
|
572
|
5213
|
|
|
5213
|
1
|
30819
|
my ($self, $x, $y) = @_; |
|
573
|
5213
|
|
|
|
|
9496
|
$x = round_nearest ($x); |
|
574
|
5213
|
|
|
|
|
9560
|
$y = round_nearest ($y); |
|
575
|
|
|
|
|
|
|
### PythagoreanTree xy_to_n(): "$x, $y" |
|
576
|
|
|
|
|
|
|
|
|
577
|
5213
|
100
|
|
|
|
7608
|
my ($p,$q) = &{$self->{'xy_to_pq'}}($x,$y) |
|
|
5213
|
|
|
|
|
8457
|
|
|
578
|
|
|
|
|
|
|
or return undef; # not a primitive A,B,C |
|
579
|
|
|
|
|
|
|
|
|
580
|
1369
|
100
|
100
|
|
|
4006
|
unless ($p >= 2 && $q >= 1) { # must be P > Q >= 1 |
|
581
|
328
|
|
|
|
|
641
|
return undef; |
|
582
|
|
|
|
|
|
|
} |
|
583
|
1041
|
50
|
|
|
|
2047
|
if (is_infinite($p)) { |
|
584
|
0
|
|
|
|
|
0
|
return $p; # infinity |
|
585
|
|
|
|
|
|
|
} |
|
586
|
1041
|
50
|
|
|
|
2110
|
if (is_infinite($q)) { |
|
587
|
0
|
|
|
|
|
0
|
return $q; # infinity |
|
588
|
|
|
|
|
|
|
} |
|
589
|
1041
|
100
|
|
|
|
2200
|
if ($p%2 == $q%2) { # must be opposite parity, not same parity |
|
590
|
480
|
|
|
|
|
927
|
return undef; |
|
591
|
|
|
|
|
|
|
} |
|
592
|
|
|
|
|
|
|
|
|
593
|
561
|
|
|
|
|
763
|
my @ndigits; # low to high |
|
594
|
561
|
100
|
|
|
|
1220
|
if ($self->{'tree_type'} eq 'FB') { |
|
|
|
50
|
|
|
|
|
|
|
595
|
276
|
|
|
|
|
415
|
for (;;) { |
|
596
|
885
|
100
|
100
|
|
|
2304
|
unless ($p > $q && $q >= 1) { |
|
597
|
114
|
|
|
|
|
239
|
return undef; |
|
598
|
|
|
|
|
|
|
} |
|
599
|
771
|
100
|
100
|
|
|
1714
|
last if $q <= 1 && $p <= 2; |
|
600
|
|
|
|
|
|
|
|
|
601
|
609
|
100
|
|
|
|
964
|
if ($q % 2) { |
|
602
|
|
|
|
|
|
|
### q odd, p even, digit 1 or 2 ... |
|
603
|
323
|
|
|
|
|
432
|
$p /= 2; |
|
604
|
323
|
100
|
|
|
|
535
|
if ($q > $p) { |
|
605
|
|
|
|
|
|
|
### digit 2, M3 ... |
|
606
|
119
|
|
|
|
|
180
|
push @ndigits, 2; |
|
607
|
119
|
|
|
|
|
211
|
$q -= $p; # opp parity of p, and < new p |
|
608
|
|
|
|
|
|
|
} else { |
|
609
|
|
|
|
|
|
|
### digit 1, M2 ... |
|
610
|
204
|
|
|
|
|
351
|
push @ndigits, 1; |
|
611
|
204
|
|
|
|
|
279
|
$q = $p - $q; # opp parity of p, and < p |
|
612
|
|
|
|
|
|
|
} |
|
613
|
|
|
|
|
|
|
} else { |
|
614
|
|
|
|
|
|
|
### q even, p odd, digit 0, M1 ... |
|
615
|
286
|
|
|
|
|
430
|
push @ndigits, 0; |
|
616
|
286
|
|
|
|
|
417
|
$q /= 2; |
|
617
|
286
|
|
|
|
|
398
|
$p -= $q; # opp parity of q |
|
618
|
|
|
|
|
|
|
} |
|
619
|
|
|
|
|
|
|
### descend: "$q / $p" |
|
620
|
|
|
|
|
|
|
} |
|
621
|
|
|
|
|
|
|
|
|
622
|
|
|
|
|
|
|
} elsif ($self->{'tree_type'} eq 'UMT') { |
|
623
|
0
|
|
|
|
|
0
|
for (;;) { |
|
624
|
|
|
|
|
|
|
### at: "p=$p q=$q" |
|
625
|
0
|
|
|
|
|
0
|
my $qmod2 = $q % 2; |
|
626
|
0
|
0
|
0
|
|
|
0
|
unless ($p > $q && $q >= 1) { |
|
627
|
0
|
|
|
|
|
0
|
return undef; |
|
628
|
|
|
|
|
|
|
} |
|
629
|
0
|
0
|
0
|
|
|
0
|
last if $q <= 1 && $p <= 2; |
|
630
|
|
|
|
|
|
|
|
|
631
|
0
|
0
|
|
|
|
0
|
if ($p < 2*$q) { |
|
|
|
0
|
|
|
|
|
|
|
632
|
0
|
|
|
|
|
0
|
($p,$q) = ($q, 2*$q-$p); # U |
|
633
|
0
|
|
|
|
|
0
|
push @ndigits, 0; |
|
634
|
|
|
|
|
|
|
} elsif ($qmod2) { |
|
635
|
0
|
|
|
|
|
0
|
$p /= 2; # M2 |
|
636
|
0
|
|
|
|
|
0
|
$q = $p - $q; |
|
637
|
0
|
|
|
|
|
0
|
push @ndigits, 1; |
|
638
|
|
|
|
|
|
|
} else { |
|
639
|
0
|
|
|
|
|
0
|
$q /= 2; # T |
|
640
|
0
|
|
|
|
|
0
|
$p -= 3*$q; |
|
641
|
0
|
|
|
|
|
0
|
push @ndigits, 2; |
|
642
|
|
|
|
|
|
|
} |
|
643
|
|
|
|
|
|
|
} |
|
644
|
|
|
|
|
|
|
|
|
645
|
|
|
|
|
|
|
} else { |
|
646
|
|
|
|
|
|
|
### UAD or UArD ... |
|
647
|
|
|
|
|
|
|
### assert: $self->{'tree_type'} eq 'UAD' || $self->{'tree_type'} eq 'UArD' |
|
648
|
285
|
|
|
|
|
385
|
for (;;) { |
|
649
|
|
|
|
|
|
|
### $p |
|
650
|
|
|
|
|
|
|
### $q |
|
651
|
1065
|
100
|
66
|
|
|
3757
|
if ($q <= 0 || $p <= 0 || $p <= $q) { |
|
|
|
|
100
|
|
|
|
|
|
652
|
119
|
|
|
|
|
270
|
return undef; |
|
653
|
|
|
|
|
|
|
} |
|
654
|
946
|
100
|
100
|
|
|
1978
|
last if $q <= 1 && $p <= 2; |
|
655
|
|
|
|
|
|
|
|
|
656
|
780
|
100
|
|
|
|
1215
|
if ($p > 2*$q) { |
|
657
|
317
|
100
|
|
|
|
497
|
if ($p > 3*$q) { |
|
658
|
|
|
|
|
|
|
### digit 2 ... |
|
659
|
230
|
|
|
|
|
368
|
push @ndigits, 2; |
|
660
|
230
|
|
|
|
|
331
|
$p -= 2*$q; |
|
661
|
|
|
|
|
|
|
} else { |
|
662
|
|
|
|
|
|
|
### digit 1 |
|
663
|
87
|
|
|
|
|
128
|
push @ndigits, 1; |
|
664
|
87
|
|
|
|
|
165
|
($p,$q) = ($q, $p - 2*$q); |
|
665
|
|
|
|
|
|
|
} |
|
666
|
|
|
|
|
|
|
|
|
667
|
|
|
|
|
|
|
} else { |
|
668
|
|
|
|
|
|
|
### digit 0 ... |
|
669
|
463
|
|
|
|
|
708
|
push @ndigits, 0; |
|
670
|
463
|
|
|
|
|
827
|
($p,$q) = ($q, 2*$q-$p); |
|
671
|
|
|
|
|
|
|
} |
|
672
|
|
|
|
|
|
|
### descend: "$q / $p" |
|
673
|
|
|
|
|
|
|
} |
|
674
|
|
|
|
|
|
|
} |
|
675
|
|
|
|
|
|
|
### @ndigits |
|
676
|
|
|
|
|
|
|
|
|
677
|
328
|
50
|
|
|
|
631
|
if ($self->{'digit_order'} eq 'LtoH') { |
|
678
|
0
|
|
|
|
|
0
|
@ndigits = reverse @ndigits; |
|
679
|
|
|
|
|
|
|
### unreverse: @ndigits |
|
680
|
|
|
|
|
|
|
} |
|
681
|
328
|
50
|
|
|
|
590
|
if ($self->{'tree_type'} eq 'UArD') { |
|
682
|
0
|
|
|
|
|
0
|
Math::PlanePath::GrayCode::_digits_from_gray_reflected(\@ndigits,3); |
|
683
|
|
|
|
|
|
|
### ungray: @ndigits |
|
684
|
|
|
|
|
|
|
} |
|
685
|
|
|
|
|
|
|
|
|
686
|
328
|
|
|
|
|
474
|
my $zero = $x*0*$y; |
|
687
|
|
|
|
|
|
|
### offset: digit_join_lowtohigh(\@ndigits,3,$zero) |
|
688
|
|
|
|
|
|
|
### depth: scalar(@ndigits) |
|
689
|
|
|
|
|
|
|
### Nrow: $self->tree_depth_to_n($zero + scalar(@ndigits)) |
|
690
|
|
|
|
|
|
|
|
|
691
|
328
|
|
|
|
|
789
|
return ($self->tree_depth_to_n($zero + scalar(@ndigits)) |
|
692
|
|
|
|
|
|
|
+ digit_join_lowtohigh(\@ndigits,3,$zero)); # offset into row |
|
693
|
|
|
|
|
|
|
} |
|
694
|
|
|
|
|
|
|
|
|
695
|
|
|
|
|
|
|
# numprims(H) = how many with hypot < H |
|
696
|
|
|
|
|
|
|
# limit H->inf numprims(H) / H -> 1/2pi |
|
697
|
|
|
|
|
|
|
# |
|
698
|
|
|
|
|
|
|
# not exact |
|
699
|
|
|
|
|
|
|
sub rect_to_n_range { |
|
700
|
64
|
|
|
64
|
1
|
6460
|
my ($self, $x1,$y1, $x2,$y2) = @_; |
|
701
|
|
|
|
|
|
|
### PythagoreanTree rect_to_n_range(): "$x1,$y1 $x2,$y2" |
|
702
|
|
|
|
|
|
|
|
|
703
|
64
|
|
|
|
|
164
|
$x1 = round_nearest ($x1); |
|
704
|
64
|
|
|
|
|
128
|
$y1 = round_nearest ($y1); |
|
705
|
64
|
|
|
|
|
126
|
$x2 = round_nearest ($x2); |
|
706
|
64
|
|
|
|
|
121
|
$y2 = round_nearest ($y2); |
|
707
|
|
|
|
|
|
|
|
|
708
|
64
|
|
|
|
|
116
|
my $zero = ($x1 * 0 * $y1 * $x2 * $y2); # inherit bignum |
|
709
|
|
|
|
|
|
|
|
|
710
|
64
|
50
|
|
|
|
120
|
($x1,$x2) = ($x2,$x1) if $x1 > $x2; |
|
711
|
64
|
50
|
|
|
|
124
|
($y1,$y2) = ($y2,$y1) if $y1 > $y2; |
|
712
|
|
|
|
|
|
|
### x2: "$x2" |
|
713
|
|
|
|
|
|
|
### y2: "$y2" |
|
714
|
|
|
|
|
|
|
|
|
715
|
64
|
50
|
|
|
|
151
|
if ($self->{'coordinates'} eq 'BA') { |
|
716
|
0
|
|
|
|
|
0
|
($x2,$y2) = ($y2,$x2); |
|
717
|
|
|
|
|
|
|
} |
|
718
|
64
|
50
|
|
|
|
129
|
if ($self->{'coordinates'} eq 'SM') { |
|
719
|
0
|
0
|
|
|
|
0
|
if ($x2 > $y2) { # both max |
|
720
|
0
|
|
|
|
|
0
|
$y2 = $x2; |
|
721
|
|
|
|
|
|
|
} else { |
|
722
|
0
|
|
|
|
|
0
|
$x2 = $y2; |
|
723
|
|
|
|
|
|
|
} |
|
724
|
|
|
|
|
|
|
} |
|
725
|
|
|
|
|
|
|
|
|
726
|
64
|
100
|
|
|
|
127
|
if ($self->{'coordinates'} eq 'PQ') { |
|
727
|
28
|
50
|
33
|
|
|
97
|
if ($x2 < 2 || $y2 < 1) { |
|
728
|
0
|
|
|
|
|
0
|
return (1,0); |
|
729
|
|
|
|
|
|
|
} |
|
730
|
|
|
|
|
|
|
# P > Q so reduce y2 to at most x2-1 |
|
731
|
28
|
50
|
|
|
|
57
|
if ($y2 >= $x2) { |
|
732
|
0
|
|
|
|
|
0
|
$y2 = $x2-1; # $y2 = min ($y2, $x2-1); |
|
733
|
|
|
|
|
|
|
} |
|
734
|
|
|
|
|
|
|
|
|
735
|
28
|
50
|
|
|
|
70
|
if ($y2 < $y1) { |
|
736
|
|
|
|
|
|
|
### PQ y range all above X=Y diagonal ... |
|
737
|
0
|
|
|
|
|
0
|
return (1,0); |
|
738
|
|
|
|
|
|
|
} |
|
739
|
|
|
|
|
|
|
} else { |
|
740
|
|
|
|
|
|
|
# AB,AC,BC, SM,SC,MC |
|
741
|
36
|
50
|
33
|
|
|
139
|
if ($x2 < 3 || $y2 < 0) { |
|
742
|
0
|
|
|
|
|
0
|
return (1,0); |
|
743
|
|
|
|
|
|
|
} |
|
744
|
|
|
|
|
|
|
} |
|
745
|
|
|
|
|
|
|
|
|
746
|
64
|
|
|
|
|
87
|
my $depth; |
|
747
|
64
|
100
|
|
|
|
123
|
if ($self->{'tree_type'} eq 'FB') { |
|
748
|
|
|
|
|
|
|
### FB ... |
|
749
|
30
|
100
|
|
|
|
65
|
if ($self->{'coordinates'} eq 'PQ') { |
|
750
|
14
|
|
|
|
|
20
|
$x2 *= 3; |
|
751
|
|
|
|
|
|
|
} |
|
752
|
30
|
|
|
|
|
75
|
my ($pow, $exp) = round_down_pow ($x2, 2); |
|
753
|
30
|
|
|
|
|
49
|
$depth = 2*$exp; |
|
754
|
|
|
|
|
|
|
} else { |
|
755
|
|
|
|
|
|
|
### UAD or UArD, and UMT ... |
|
756
|
34
|
100
|
|
|
|
63
|
if ($self->{'coordinates'} eq 'PQ') { |
|
757
|
|
|
|
|
|
|
### PQ ... |
|
758
|
|
|
|
|
|
|
# P=k+1,Q=k diagonal N=100..000 first of row is depth=P-2 |
|
759
|
|
|
|
|
|
|
# anything else in that X=P column is smaller depth |
|
760
|
14
|
|
|
|
|
26
|
$depth = $x2 - 2; |
|
761
|
|
|
|
|
|
|
} else { |
|
762
|
20
|
|
|
|
|
42
|
my $xdepth = int (($x2+1) / 2); |
|
763
|
20
|
|
|
|
|
43
|
my $ydepth = int (($y2+31) / 4); |
|
764
|
20
|
|
|
|
|
54
|
$depth = min($xdepth,$ydepth); |
|
765
|
|
|
|
|
|
|
} |
|
766
|
|
|
|
|
|
|
} |
|
767
|
|
|
|
|
|
|
### depth: "$depth" |
|
768
|
64
|
|
|
|
|
167
|
return (1, $self->tree_depth_to_n_end($zero+$depth)); |
|
769
|
|
|
|
|
|
|
} |
|
770
|
|
|
|
|
|
|
|
|
771
|
|
|
|
|
|
|
#------------------------------------------------------------------------------ |
|
772
|
2
|
|
|
2
|
|
18
|
use constant tree_num_roots => 1; |
|
|
2
|
|
|
|
|
4
|
|
|
|
2
|
|
|
|
|
3916
|
|
|
773
|
|
|
|
|
|
|
|
|
774
|
|
|
|
|
|
|
sub tree_n_children { |
|
775
|
7
|
|
|
7
|
1
|
353
|
my ($self, $n) = @_; |
|
776
|
7
|
50
|
|
|
|
17
|
unless ($n >= 1) { |
|
777
|
0
|
|
|
|
|
0
|
return; |
|
778
|
|
|
|
|
|
|
} |
|
779
|
7
|
|
|
|
|
13
|
$n *= 3; |
|
780
|
7
|
|
|
|
|
27
|
return ($n-1, $n, $n+1); |
|
781
|
|
|
|
|
|
|
} |
|
782
|
|
|
|
|
|
|
sub tree_n_num_children { |
|
783
|
0
|
|
|
0
|
1
|
0
|
my ($self, $n) = @_; |
|
784
|
0
|
0
|
|
|
|
0
|
return ($n >= 1 ? 3 : undef); |
|
785
|
|
|
|
|
|
|
} |
|
786
|
|
|
|
|
|
|
sub tree_n_parent { |
|
787
|
13
|
|
|
13
|
1
|
633
|
my ($self, $n) = @_; |
|
788
|
13
|
100
|
|
|
|
29
|
unless ($n >= 2) { |
|
789
|
1
|
|
|
|
|
2
|
return undef; |
|
790
|
|
|
|
|
|
|
} |
|
791
|
12
|
|
|
|
|
32
|
return int(($n+1)/3); |
|
792
|
|
|
|
|
|
|
} |
|
793
|
|
|
|
|
|
|
sub tree_n_to_depth { |
|
794
|
0
|
|
|
0
|
1
|
0
|
my ($self, $n) = @_; |
|
795
|
|
|
|
|
|
|
### PythagoreanTree tree_n_to_depth(): $n |
|
796
|
0
|
0
|
|
|
|
0
|
unless ($n >= 1) { |
|
797
|
0
|
|
|
|
|
0
|
return undef; |
|
798
|
|
|
|
|
|
|
} |
|
799
|
0
|
|
|
|
|
0
|
my ($pow, $depth) = round_down_pow (2*$n-1, 3); |
|
800
|
0
|
|
|
|
|
0
|
return $depth; |
|
801
|
|
|
|
|
|
|
} |
|
802
|
|
|
|
|
|
|
|
|
803
|
|
|
|
|
|
|
sub tree_depth_to_n { |
|
804
|
328
|
|
|
328
|
1
|
570
|
my ($self, $depth) = @_; |
|
805
|
328
|
50
|
|
|
|
1122
|
return ($depth >= 0 |
|
806
|
|
|
|
|
|
|
? (3**$depth + 1)/2 |
|
807
|
|
|
|
|
|
|
: undef); |
|
808
|
|
|
|
|
|
|
} |
|
809
|
|
|
|
|
|
|
# (3^(d+1)+1)/2-1 = (3^(d+1)-1)/2 |
|
810
|
|
|
|
|
|
|
sub tree_depth_to_n_end { |
|
811
|
64
|
|
|
64
|
1
|
110
|
my ($self, $depth) = @_; |
|
812
|
64
|
50
|
|
|
|
232
|
return ($depth >= 0 |
|
813
|
|
|
|
|
|
|
? (3**($depth+1) - 1)/2 |
|
814
|
|
|
|
|
|
|
: undef); |
|
815
|
|
|
|
|
|
|
} |
|
816
|
|
|
|
|
|
|
sub tree_depth_to_n_range { |
|
817
|
0
|
|
|
0
|
1
|
0
|
my ($self, $depth) = @_; |
|
818
|
0
|
0
|
|
|
|
0
|
if ($depth >= 0) { |
|
819
|
0
|
|
|
|
|
0
|
my $n_lo = (3**$depth + 1) / 2; # same as tree_depth_to_n() |
|
820
|
0
|
|
|
|
|
0
|
return ($n_lo, 3*$n_lo-2); |
|
821
|
|
|
|
|
|
|
} else { |
|
822
|
0
|
|
|
|
|
0
|
return; |
|
823
|
|
|
|
|
|
|
} |
|
824
|
|
|
|
|
|
|
} |
|
825
|
|
|
|
|
|
|
sub tree_depth_to_width { |
|
826
|
0
|
|
|
0
|
1
|
0
|
my ($self, $depth) = @_; |
|
827
|
0
|
0
|
|
|
|
0
|
return ($depth >= 0 |
|
828
|
|
|
|
|
|
|
? 3**$depth |
|
829
|
|
|
|
|
|
|
: undef); |
|
830
|
|
|
|
|
|
|
} |
|
831
|
|
|
|
|
|
|
|
|
832
|
|
|
|
|
|
|
#------------------------------------------------------------------------------ |
|
833
|
|
|
|
|
|
|
|
|
834
|
|
|
|
|
|
|
# Maybe, or abc_to_pq() perhaps with two of three values. |
|
835
|
|
|
|
|
|
|
# |
|
836
|
|
|
|
|
|
|
# @EXPORT_OK = ('ab_to_pq','pq_to_ab'); |
|
837
|
|
|
|
|
|
|
# |
|
838
|
|
|
|
|
|
|
# =item C<($p,$q) = Math::PlanePath::PythagoreanTree::ab_to_pq($a,$b)> |
|
839
|
|
|
|
|
|
|
# |
|
840
|
|
|
|
|
|
|
# Return the P,Q coordinates for C<$a,$b>. As described above this is |
|
841
|
|
|
|
|
|
|
# |
|
842
|
|
|
|
|
|
|
# P = sqrt((C+A)/2) where C=sqrt(A^2+B^2) |
|
843
|
|
|
|
|
|
|
# Q = sqrt((C-A)/2) |
|
844
|
|
|
|
|
|
|
# |
|
845
|
|
|
|
|
|
|
# The returned P,Q are integers PE=0,QE=0, but the further |
|
846
|
|
|
|
|
|
|
# conditions for the path (namely PEQE=1 and no common factor) are |
|
847
|
|
|
|
|
|
|
# not enforced. |
|
848
|
|
|
|
|
|
|
# |
|
849
|
|
|
|
|
|
|
# If P,Q are not integers or if BE0 then return an empty list. This |
|
850
|
|
|
|
|
|
|
# ensures A,B is a Pythagorean triple, ie. that C=sqrt(A^2+B^2) is an |
|
851
|
|
|
|
|
|
|
# integer, but it might not be a primitive triple and might not have A odd B |
|
852
|
|
|
|
|
|
|
# even. |
|
853
|
|
|
|
|
|
|
# |
|
854
|
|
|
|
|
|
|
# =item C<($a,$b) = Math::PlanePath::PythagoreanTree::pq_to_ab($p,$q)> |
|
855
|
|
|
|
|
|
|
# |
|
856
|
|
|
|
|
|
|
# Return the A,B coordinates for C<$p,$q>. This is simply |
|
857
|
|
|
|
|
|
|
# |
|
858
|
|
|
|
|
|
|
# $a = $p*$p - $q*$q |
|
859
|
|
|
|
|
|
|
# $b = 2*$p*$q |
|
860
|
|
|
|
|
|
|
# |
|
861
|
|
|
|
|
|
|
# This is intended for use with C<$p,$q> satisfying PEQE=1 and no |
|
862
|
|
|
|
|
|
|
# common factor, but that's not enforced. |
|
863
|
|
|
|
|
|
|
|
|
864
|
|
|
|
|
|
|
|
|
865
|
|
|
|
|
|
|
# a=p^2-q^2, b=2pq, c=p^2+q^2 |
|
866
|
|
|
|
|
|
|
# Done as a=(p-q)*(p+q) for one multiply instead of two squares, and to work |
|
867
|
|
|
|
|
|
|
# close to a=UINT_MAX. |
|
868
|
|
|
|
|
|
|
# |
|
869
|
|
|
|
|
|
|
sub _pq_to_ab { |
|
870
|
27
|
|
|
27
|
|
50
|
my ($p, $q) = @_; |
|
871
|
27
|
|
|
|
|
68
|
return (($p-$q)*($p+$q), 2*$p*$q); |
|
872
|
|
|
|
|
|
|
} |
|
873
|
|
|
|
|
|
|
|
|
874
|
|
|
|
|
|
|
# C=(p-q)^2+B for one squaring instead of two. |
|
875
|
|
|
|
|
|
|
# Also possible is C=(p+q)^2-B, but prefer "+B" so as not to round-off in |
|
876
|
|
|
|
|
|
|
# floating point if (p+q)^2 overflows an integer. |
|
877
|
|
|
|
|
|
|
sub _pq_to_bc { |
|
878
|
1
|
|
|
1
|
|
5
|
my ($p, $q) = @_; |
|
879
|
1
|
|
|
|
|
3
|
my $b = 2*$p*$q; |
|
880
|
1
|
|
|
|
|
2
|
$p -= $q; |
|
881
|
1
|
|
|
|
|
4
|
return ($b, $p*$p+$b); |
|
882
|
|
|
|
|
|
|
} |
|
883
|
|
|
|
|
|
|
|
|
884
|
|
|
|
|
|
|
# a=p^2-q^2, b=2pq, c=p^2+q^2 |
|
885
|
|
|
|
|
|
|
# Could a=(p-q)*(p+q) to avoid overflow if p^2 exceeds an integer as per |
|
886
|
|
|
|
|
|
|
# _pq_to_ab(), but c overflows in that case anyway. |
|
887
|
|
|
|
|
|
|
sub _pq_to_ac { |
|
888
|
2
|
|
|
2
|
|
6
|
my ($p, $q) = @_; |
|
889
|
2
|
|
|
|
|
15
|
$p *= $p; |
|
890
|
2
|
|
|
|
|
4
|
$q *= $q; |
|
891
|
2
|
|
|
|
|
8
|
return ($p-$q, $p+$q); |
|
892
|
|
|
|
|
|
|
} |
|
893
|
|
|
|
|
|
|
|
|
894
|
|
|
|
|
|
|
# a=p^2-q^2, b=2pq, c=p^2+q^2 |
|
895
|
|
|
|
|
|
|
# a
|
|
896
|
|
|
|
|
|
|
# p^2-q^2 < 2pq |
|
897
|
|
|
|
|
|
|
# p^2 + 2pq - q^2 < 0 |
|
898
|
|
|
|
|
|
|
# (p+q)^2 - 2*q^2 < 0 |
|
899
|
|
|
|
|
|
|
# (p+q + sqrt(2)*q)*(p+q - sqrt(2)*q) < 0 |
|
900
|
|
|
|
|
|
|
# (p+q - sqrt(2)*q) < 0 |
|
901
|
|
|
|
|
|
|
# p + (1-sqrt(2))*q < 0 |
|
902
|
|
|
|
|
|
|
# p < (sqrt(2)-1)*q |
|
903
|
|
|
|
|
|
|
# |
|
904
|
|
|
|
|
|
|
sub _pq_to_sc { |
|
905
|
0
|
|
|
0
|
|
0
|
my ($p, $q) = @_; |
|
906
|
0
|
|
|
|
|
0
|
my $b = 2*$p*$q; |
|
907
|
0
|
|
|
|
|
0
|
my $p_plus_q = $p + $q; |
|
908
|
0
|
|
|
|
|
0
|
$p -= $q; |
|
909
|
0
|
|
|
|
|
0
|
return (min($p_plus_q*$p, $b), # A = P^2-Q^2 = (P+Q)*(P-Q) |
|
910
|
|
|
|
|
|
|
$p*$p+$b); # C = P^2+Q^2 = (P-Q)^2 + 2*P*Q |
|
911
|
|
|
|
|
|
|
} |
|
912
|
|
|
|
|
|
|
sub _pq_to_mc { |
|
913
|
0
|
|
|
0
|
|
0
|
my ($p, $q) = @_; |
|
914
|
0
|
|
|
|
|
0
|
my $b = 2*$p*$q; |
|
915
|
0
|
|
|
|
|
0
|
my $p_plus_q = $p + $q; |
|
916
|
0
|
|
|
|
|
0
|
$p -= $q; |
|
917
|
0
|
|
|
|
|
0
|
return (max($p_plus_q*$p, $b), # A = P^2-Q^2 = (P+Q)*(P-Q) |
|
918
|
|
|
|
|
|
|
$p*$p+$b); # C = P^2+Q^2 = (P-Q)^2 + 2*P*Q |
|
919
|
|
|
|
|
|
|
} |
|
920
|
|
|
|
|
|
|
sub _pq_to_sm { |
|
921
|
0
|
|
|
0
|
|
0
|
my ($p, $q) = @_; |
|
922
|
0
|
|
|
|
|
0
|
my ($a, $b) = _pq_to_ab($p,$q); |
|
923
|
0
|
0
|
|
|
|
0
|
return ($a < $b ? ($a, $b) : ($b, $a)); |
|
924
|
|
|
|
|
|
|
} |
|
925
|
|
|
|
|
|
|
|
|
926
|
|
|
|
|
|
|
# u = p+q, v=p-q |
|
927
|
|
|
|
|
|
|
# at given p, vertical q |
|
928
|
|
|
|
|
|
|
# u=p,v=p on diagonal then p+q,p-q is diagonal down |
|
929
|
|
|
|
|
|
|
# so mirror p axis to x=y diagonal and measure down diagonal from there |
|
930
|
|
|
|
|
|
|
sub _pq_to_uv { |
|
931
|
0
|
|
|
0
|
|
0
|
my ($p, $q) = @_; |
|
932
|
0
|
|
|
|
|
0
|
return ($p+$q, $p-$q); |
|
933
|
|
|
|
|
|
|
} |
|
934
|
|
|
|
|
|
|
|
|
935
|
|
|
|
|
|
|
# r = b+c = 2pq+p^2+q^2 = (p+q)^2 |
|
936
|
|
|
|
|
|
|
# s = c-a = p^2+q^2 - (p^2-q^2) = 2*q^2 |
|
937
|
|
|
|
|
|
|
sub _pq_to_rs { |
|
938
|
0
|
|
|
0
|
|
0
|
my ($p, $q) = @_; |
|
939
|
0
|
|
|
|
|
0
|
return (($p+$q)**2, 2*$q*$q); |
|
940
|
|
|
|
|
|
|
} |
|
941
|
|
|
|
|
|
|
|
|
942
|
|
|
|
|
|
|
# s = c-a = p^2+q^2 - (p^2-q^2) = 2*q^2 |
|
943
|
|
|
|
|
|
|
# t = a+b-c = p^2-q^2 + 2pq - (p^2+q^2) = 2pq-2q^2 = 2(p-q)q |
|
944
|
|
|
|
|
|
|
sub _pq_to_st { |
|
945
|
0
|
|
|
0
|
|
0
|
my ($p, $q) = @_; |
|
946
|
0
|
|
|
|
|
0
|
my $q2 = 2*$q; |
|
947
|
0
|
|
|
|
|
0
|
return ($q2*$q, ($p-$q)*$q2); |
|
948
|
|
|
|
|
|
|
} |
|
949
|
|
|
|
|
|
|
|
|
950
|
|
|
|
|
|
|
#------------------------------------------------------------------------------ |
|
951
|
|
|
|
|
|
|
|
|
952
|
|
|
|
|
|
|
# a = p^2 - q^2 |
|
953
|
|
|
|
|
|
|
# b = 2pq |
|
954
|
|
|
|
|
|
|
# c = p^2 + q^2 |
|
955
|
|
|
|
|
|
|
# |
|
956
|
|
|
|
|
|
|
# q = b/2p |
|
957
|
|
|
|
|
|
|
# a = p^2 - (b/2p)^2 |
|
958
|
|
|
|
|
|
|
# = p^2 - b^2/4p^2 |
|
959
|
|
|
|
|
|
|
# 4ap^2 = 4p^4 - b^2 |
|
960
|
|
|
|
|
|
|
# 4(p^2)^2 - 4a*p^2 - b^2 = 0 |
|
961
|
|
|
|
|
|
|
# p^2 = [ 4a +/- sqrt(16a^2 + 16*b^2) ] / 2*4 |
|
962
|
|
|
|
|
|
|
# = [ a +/- sqrt(a^2 + b^2) ] / 2 |
|
963
|
|
|
|
|
|
|
# = (a +/- c) / 2 where c=sqrt(a^2+b^2) |
|
964
|
|
|
|
|
|
|
# p = sqrt((a+c)/2) since c>a |
|
965
|
|
|
|
|
|
|
# |
|
966
|
|
|
|
|
|
|
# a = (a+c)/2 - q^2 |
|
967
|
|
|
|
|
|
|
# q^2 = (a+c)/2 - a |
|
968
|
|
|
|
|
|
|
# = (c-a)/2 |
|
969
|
|
|
|
|
|
|
# q = sqrt((c-a)/2) |
|
970
|
|
|
|
|
|
|
# |
|
971
|
|
|
|
|
|
|
# if c^2 = a^2+b^2 is a perfect square then a,b,c is a pythagorean triple |
|
972
|
|
|
|
|
|
|
# p^2 = (a+c)/2 |
|
973
|
|
|
|
|
|
|
# = (a + sqrt(a^2+b^2))/2 |
|
974
|
|
|
|
|
|
|
# 2p^2 = a + sqrt(a^2+b^2) |
|
975
|
|
|
|
|
|
|
# |
|
976
|
|
|
|
|
|
|
# p>q so a>0 |
|
977
|
|
|
|
|
|
|
# a+c even is a odd, c odd or a even, c even |
|
978
|
|
|
|
|
|
|
# if a odd then c=a^2+b^2 is opp of b parity, must have b even to make c+a even |
|
979
|
|
|
|
|
|
|
# if a even then c=a^2+b^2 is same as b parity, must have b even to c+a even |
|
980
|
|
|
|
|
|
|
# |
|
981
|
|
|
|
|
|
|
# a=6,b=8 is c=sqrt(6^2+8^2)=10 |
|
982
|
|
|
|
|
|
|
# a=0,b=4 is c=sqrt(0+4^4)=4 p^2=(a+c)/2 = 2 not a square |
|
983
|
|
|
|
|
|
|
# a+c even, then (a+c)/2 == 0,1 mod 4 so a+c==0,2 mod 4 |
|
984
|
|
|
|
|
|
|
# |
|
985
|
|
|
|
|
|
|
sub _ab_to_pq { |
|
986
|
5009
|
|
|
5009
|
|
49204
|
my ($a, $b) = @_; |
|
987
|
|
|
|
|
|
|
### _ab_to_pq(): "A=$a, B=$b" |
|
988
|
|
|
|
|
|
|
|
|
989
|
5009
|
100
|
100
|
|
|
15307
|
unless ($b >= 4 && ($a%2) && !($b%2)) { # A odd, B even |
|
|
|
|
100
|
|
|
|
|
|
990
|
3931
|
|
|
|
|
8441
|
return; |
|
991
|
|
|
|
|
|
|
} |
|
992
|
|
|
|
|
|
|
|
|
993
|
|
|
|
|
|
|
# This used to be $c=hypot($a,$b) and check $c==int($c), but libm hypot() |
|
994
|
|
|
|
|
|
|
# on Darwin 8.11.0 is somehow a couple of bits off being an integer, for |
|
995
|
|
|
|
|
|
|
# example hypot(57,176)==185 but a couple of bits out so $c!=int($c). |
|
996
|
|
|
|
|
|
|
# Would have thought hypot() ought to be exact on integer inputs and a |
|
997
|
|
|
|
|
|
|
# perfect square sum :-(. Check for a perfect square by multiplying back |
|
998
|
|
|
|
|
|
|
# instead. |
|
999
|
|
|
|
|
|
|
# |
|
1000
|
|
|
|
|
|
|
# The condition is "$csquared != $c*$c" with operands that way around |
|
1001
|
|
|
|
|
|
|
# since the other way is bad for Math::BigInt::Lite 0.14. |
|
1002
|
|
|
|
|
|
|
# |
|
1003
|
1078
|
|
|
|
|
2498
|
my $c; |
|
1004
|
|
|
|
|
|
|
{ |
|
1005
|
1078
|
|
|
|
|
1403
|
my $csquared = $a*$a + $b*$b; |
|
|
1078
|
|
|
|
|
1683
|
|
|
1006
|
1078
|
|
|
|
|
2388
|
$c = _sqrtint($csquared); |
|
1007
|
|
|
|
|
|
|
### $csquared |
|
1008
|
|
|
|
|
|
|
### $c |
|
1009
|
|
|
|
|
|
|
# since A odd and B even should have C odd, but floating point rounding |
|
1010
|
|
|
|
|
|
|
# might prevent that |
|
1011
|
1078
|
100
|
|
|
|
2229
|
unless ($csquared == $c*$c) { |
|
1012
|
|
|
|
|
|
|
### A^2+B^2 not a perfect square ... |
|
1013
|
1010
|
|
|
|
|
2217
|
return; |
|
1014
|
|
|
|
|
|
|
} |
|
1015
|
|
|
|
|
|
|
} |
|
1016
|
68
|
|
|
|
|
259
|
return _ac_to_pq($a,$c); |
|
1017
|
|
|
|
|
|
|
} |
|
1018
|
|
|
|
|
|
|
|
|
1019
|
|
|
|
|
|
|
sub _bc_to_pqa { |
|
1020
|
1290
|
|
|
1290
|
|
2025
|
my ($b, $c) = @_; |
|
1021
|
|
|
|
|
|
|
### _bc_to_pqa(): "B=$b C=$c" |
|
1022
|
|
|
|
|
|
|
|
|
1023
|
1290
|
100
|
100
|
|
|
3332
|
unless ($c > $b && $b >= 4 && !($b%2) && ($c%2)) { # B even, C odd |
|
|
|
|
100
|
|
|
|
|
|
|
|
|
100
|
|
|
|
|
|
1024
|
1216
|
|
|
|
|
3124
|
return; |
|
1025
|
|
|
|
|
|
|
} |
|
1026
|
|
|
|
|
|
|
|
|
1027
|
74
|
|
|
|
|
104
|
my $a; |
|
1028
|
|
|
|
|
|
|
{ |
|
1029
|
74
|
|
|
|
|
92
|
my $asquared = $c*$c - $b*$b; |
|
|
74
|
|
|
|
|
138
|
|
|
1030
|
74
|
50
|
|
|
|
129
|
unless ($asquared > 0) { |
|
1031
|
0
|
|
|
|
|
0
|
return; |
|
1032
|
|
|
|
|
|
|
} |
|
1033
|
74
|
|
|
|
|
148
|
$a = _sqrtint($asquared); |
|
1034
|
|
|
|
|
|
|
### $asquared |
|
1035
|
|
|
|
|
|
|
### $a |
|
1036
|
74
|
100
|
|
|
|
149
|
unless ($asquared == $a*$a) { |
|
1037
|
64
|
|
|
|
|
188
|
return; |
|
1038
|
|
|
|
|
|
|
} |
|
1039
|
|
|
|
|
|
|
} |
|
1040
|
|
|
|
|
|
|
|
|
1041
|
|
|
|
|
|
|
# If $c is near DBL_MAX can have $a overflow to infinity, leaving A>C. |
|
1042
|
|
|
|
|
|
|
# _ac_to_pq() will detect that. |
|
1043
|
10
|
100
|
|
|
|
21
|
my ($p,$q) = _ac_to_pq($a,$c) or return; |
|
1044
|
8
|
|
|
|
|
25
|
return ($p,$q,$a); |
|
1045
|
|
|
|
|
|
|
} |
|
1046
|
|
|
|
|
|
|
|
|
1047
|
|
|
|
|
|
|
sub _ac_to_pq { |
|
1048
|
1369
|
|
|
1369
|
|
2114
|
my ($a, $c) = @_; |
|
1049
|
|
|
|
|
|
|
### _ac_to_pq(): "A=$a C=$c" |
|
1050
|
|
|
|
|
|
|
|
|
1051
|
1369
|
100
|
100
|
|
|
3727
|
unless ($c > $a && $a >= 3 && ($a%2) && ($c%2)) { # A odd, C odd |
|
|
|
|
100
|
|
|
|
|
|
|
|
|
100
|
|
|
|
|
|
1052
|
1224
|
|
|
|
|
3243
|
return; |
|
1053
|
|
|
|
|
|
|
} |
|
1054
|
145
|
|
|
|
|
811
|
$a = ($a-1)/2; |
|
1055
|
145
|
|
|
|
|
680
|
$c = ($c-1)/2; |
|
1056
|
|
|
|
|
|
|
### halved to: "a=$a c=$c" |
|
1057
|
|
|
|
|
|
|
|
|
1058
|
145
|
|
|
|
|
593
|
my $p; |
|
1059
|
|
|
|
|
|
|
{ |
|
1060
|
|
|
|
|
|
|
# If a,b,c is a triple but not primitive then can have psquared not an |
|
1061
|
|
|
|
|
|
|
# integer. Eg. a=9,b=12 has c=15 giving psquared=(9+15)/2=12 is not a |
|
1062
|
|
|
|
|
|
|
# perfect square. So notice that here. |
|
1063
|
|
|
|
|
|
|
# |
|
1064
|
145
|
|
|
|
|
185
|
my $psquared = $c+$a+1; |
|
|
145
|
|
|
|
|
257
|
|
|
1065
|
145
|
|
|
|
|
498
|
$p = _sqrtint($psquared); |
|
1066
|
|
|
|
|
|
|
### $psquared |
|
1067
|
|
|
|
|
|
|
### $p |
|
1068
|
145
|
100
|
|
|
|
403
|
unless ($psquared == $p*$p) { |
|
1069
|
|
|
|
|
|
|
### P^2=A+C not a perfect square ... |
|
1070
|
72
|
|
|
|
|
193
|
return; |
|
1071
|
|
|
|
|
|
|
} |
|
1072
|
|
|
|
|
|
|
} |
|
1073
|
|
|
|
|
|
|
|
|
1074
|
73
|
|
|
|
|
201
|
my $q; |
|
1075
|
|
|
|
|
|
|
{ |
|
1076
|
|
|
|
|
|
|
# If a,b,c is a triple but not primitive then can have qsquared not an |
|
1077
|
|
|
|
|
|
|
# integer. Eg. a=15,b=36 has c=39 giving qsquared=(39-15)/2=12 is not a |
|
1078
|
|
|
|
|
|
|
# perfect square. So notice that here. |
|
1079
|
|
|
|
|
|
|
# |
|
1080
|
73
|
|
|
|
|
105
|
my $qsquared = $c-$a; |
|
|
73
|
|
|
|
|
113
|
|
|
1081
|
73
|
|
|
|
|
259
|
$q = _sqrtint($qsquared); |
|
1082
|
|
|
|
|
|
|
### $qsquared |
|
1083
|
|
|
|
|
|
|
### $q |
|
1084
|
73
|
100
|
|
|
|
259
|
unless ($qsquared == $q*$q) { |
|
1085
|
6
|
|
|
|
|
20
|
return; |
|
1086
|
|
|
|
|
|
|
} |
|
1087
|
|
|
|
|
|
|
} |
|
1088
|
|
|
|
|
|
|
|
|
1089
|
|
|
|
|
|
|
# Might have a common factor between P,Q here. Eg. |
|
1090
|
|
|
|
|
|
|
# A=27 = 3*3*3, B=36 = 4*3*3 |
|
1091
|
|
|
|
|
|
|
# A=45 = 3*3*5, B=108 = 4*3*3*3 |
|
1092
|
|
|
|
|
|
|
# A=63, B=216 |
|
1093
|
|
|
|
|
|
|
# A=75 =3*5*5 B=100 = 4*5*5 |
|
1094
|
|
|
|
|
|
|
# A=81, B=360 |
|
1095
|
|
|
|
|
|
|
# |
|
1096
|
67
|
|
|
|
|
271
|
return ($p, $q); |
|
1097
|
|
|
|
|
|
|
} |
|
1098
|
|
|
|
|
|
|
|
|
1099
|
|
|
|
|
|
|
sub _sm_to_pq { |
|
1100
|
0
|
|
|
0
|
|
0
|
my ($s, $m) = @_; |
|
1101
|
0
|
0
|
|
|
|
0
|
unless ($s < $m) { |
|
1102
|
0
|
|
|
|
|
0
|
return; |
|
1103
|
|
|
|
|
|
|
} |
|
1104
|
0
|
0
|
|
|
|
0
|
return _ab_to_pq($s % 2 |
|
1105
|
|
|
|
|
|
|
? ($s,$m) # s odd is A |
|
1106
|
|
|
|
|
|
|
: ($m,$s)); # s even is B |
|
1107
|
|
|
|
|
|
|
} |
|
1108
|
|
|
|
|
|
|
|
|
1109
|
|
|
|
|
|
|
|
|
1110
|
|
|
|
|
|
|
# s^2+m^2=c^2 |
|
1111
|
|
|
|
|
|
|
# if s odd then a=s |
|
1112
|
|
|
|
|
|
|
# ac_to_pq |
|
1113
|
|
|
|
|
|
|
# b = 2pq check isn't smaller than s |
|
1114
|
|
|
|
|
|
|
# |
|
1115
|
|
|
|
|
|
|
# p^2=(c+a)/2 |
|
1116
|
|
|
|
|
|
|
# q^2=(c-a)/2 |
|
1117
|
|
|
|
|
|
|
|
|
1118
|
|
|
|
|
|
|
sub _sc_to_pq { |
|
1119
|
2
|
|
|
2
|
|
191
|
my ($s, $c) = @_; |
|
1120
|
2
|
|
|
|
|
10
|
my ($p,$q); |
|
1121
|
2
|
100
|
|
|
|
7
|
if ($s % 2) { |
|
1122
|
1
|
50
|
|
|
|
7
|
($p,$q) = _ac_to_pq($s,$c) # s odd is A |
|
1123
|
|
|
|
|
|
|
or return; |
|
1124
|
1
|
50
|
|
|
|
3
|
if ($s > 2*$p*$q) { return; } # if s>B then s is not the smaller one |
|
|
0
|
|
|
|
|
0
|
|
|
1125
|
|
|
|
|
|
|
} else { |
|
1126
|
1
|
50
|
|
|
|
3
|
($p,$q,$a) = _bc_to_pqa($s,$c) # s even is B |
|
1127
|
|
|
|
|
|
|
or return; |
|
1128
|
1
|
50
|
|
|
|
3
|
if ($s > $a) { return; } # if s>A then s is not the smaller one |
|
|
1
|
|
|
|
|
4
|
|
|
1129
|
|
|
|
|
|
|
} |
|
1130
|
1
|
|
|
|
|
3
|
return ($p,$q); |
|
1131
|
|
|
|
|
|
|
} |
|
1132
|
|
|
|
|
|
|
|
|
1133
|
|
|
|
|
|
|
sub _mc_to_pq { |
|
1134
|
0
|
|
|
0
|
|
|
my ($m, $c) = @_; |
|
1135
|
|
|
|
|
|
|
### _mc_to_pq() ... |
|
1136
|
0
|
|
|
|
|
|
my ($p,$q); |
|
1137
|
0
|
0
|
|
|
|
|
if ($m % 2) { |
|
1138
|
|
|
|
|
|
|
### m odd is A ... |
|
1139
|
0
|
0
|
|
|
|
|
($p,$q) = _ac_to_pq($m,$c) |
|
1140
|
|
|
|
|
|
|
or return; |
|
1141
|
0
|
0
|
|
|
|
|
if ($m < 2*$p*$q) { return; } # if m
|
|
|
0
|
|
|
|
|
|
|
|
1142
|
|
|
|
|
|
|
} else { |
|
1143
|
|
|
|
|
|
|
### m even is B ... |
|
1144
|
0
|
0
|
|
|
|
|
($p,$q,$a) = _bc_to_pqa($m,$c) |
|
1145
|
|
|
|
|
|
|
or return; |
|
1146
|
|
|
|
|
|
|
### $a |
|
1147
|
0
|
0
|
|
|
|
|
if ($m < $a) { return; } # if m
|
|
|
0
|
|
|
|
|
|
|
|
1148
|
|
|
|
|
|
|
} |
|
1149
|
0
|
|
|
|
|
|
return ($p,$q); |
|
1150
|
|
|
|
|
|
|
} |
|
1151
|
|
|
|
|
|
|
|
|
1152
|
|
|
|
|
|
|
# u = p+q, v=p-q |
|
1153
|
|
|
|
|
|
|
# u+v=2p p = (u+v)/2 |
|
1154
|
|
|
|
|
|
|
# u-v=2q q = (u-v)/2 |
|
1155
|
|
|
|
|
|
|
sub _uv_to_pq { |
|
1156
|
0
|
|
|
0
|
|
|
my ($u, $v) = @_; |
|
1157
|
0
|
|
|
|
|
|
return (($u+$v)/2, ($u-$v)/2); |
|
1158
|
|
|
|
|
|
|
} |
|
1159
|
|
|
|
|
|
|
|
|
1160
|
|
|
|
|
|
|
# r = (p+q)^2 |
|
1161
|
|
|
|
|
|
|
# s = 2*q^2 so q = sqrt(r/2) |
|
1162
|
|
|
|
|
|
|
sub _rs_to_pq { |
|
1163
|
0
|
|
|
0
|
|
|
my ($r, $s) = @_; |
|
1164
|
|
|
|
|
|
|
|
|
1165
|
0
|
0
|
|
|
|
|
return if $s % 2; |
|
1166
|
0
|
|
|
|
|
|
$s /= 2; |
|
1167
|
0
|
0
|
|
|
|
|
return unless $s >= 1; |
|
1168
|
0
|
|
|
|
|
|
my $q = _sqrtint($s); |
|
1169
|
0
|
0
|
|
|
|
|
return unless $q*$q == $s; |
|
1170
|
|
|
|
|
|
|
|
|
1171
|
0
|
0
|
|
|
|
|
return unless $r >= 1; |
|
1172
|
0
|
|
|
|
|
|
my $p_plus_q = _sqrtint($r); |
|
1173
|
0
|
0
|
|
|
|
|
return unless $p_plus_q*$p_plus_q == $r; |
|
1174
|
|
|
|
|
|
|
|
|
1175
|
0
|
|
|
|
|
|
return ($p_plus_q - $q, $q); |
|
1176
|
|
|
|
|
|
|
} |
|
1177
|
|
|
|
|
|
|
|
|
1178
|
|
|
|
|
|
|
# s = 2*q^2 |
|
1179
|
|
|
|
|
|
|
# t = a+b-c = p^2-q^2 + 2pq - (p^2+q^2) = 2pq-2q^2 = 2(p-q)q |
|
1180
|
|
|
|
|
|
|
# |
|
1181
|
|
|
|
|
|
|
# p=2,q=1 s=2 t=2.1.1=2 |
|
1182
|
|
|
|
|
|
|
# |
|
1183
|
|
|
|
|
|
|
sub _st_to_pq { |
|
1184
|
0
|
|
|
0
|
|
|
my ($s, $t) = @_; |
|
1185
|
|
|
|
|
|
|
|
|
1186
|
|
|
|
|
|
|
### _st_to_pq(): "$s, $t" |
|
1187
|
0
|
0
|
|
|
|
|
return if $s % 2; |
|
1188
|
0
|
|
|
|
|
|
$s /= 2; |
|
1189
|
0
|
0
|
|
|
|
|
return unless $s >= 1; |
|
1190
|
0
|
|
|
|
|
|
my $q = _sqrtint($s); |
|
1191
|
|
|
|
|
|
|
### $q |
|
1192
|
0
|
0
|
|
|
|
|
return unless $q*$q == $s; |
|
1193
|
|
|
|
|
|
|
|
|
1194
|
0
|
0
|
|
|
|
|
return if $t % 2; |
|
1195
|
0
|
|
|
|
|
|
$t /= 2; |
|
1196
|
|
|
|
|
|
|
### rem: $t % $q |
|
1197
|
0
|
0
|
|
|
|
|
return if $t % $q; |
|
1198
|
0
|
|
|
|
|
|
$t /= $q; # p-q |
|
1199
|
|
|
|
|
|
|
|
|
1200
|
|
|
|
|
|
|
### pq: ($t+$q).", $q" |
|
1201
|
|
|
|
|
|
|
|
|
1202
|
0
|
|
|
|
|
|
return ($t+$q, $q); |
|
1203
|
|
|
|
|
|
|
} |
|
1204
|
|
|
|
|
|
|
|
|
1205
|
|
|
|
|
|
|
1; |
|
1206
|
|
|
|
|
|
|
__END__ |