line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
1
|
|
|
|
|
|
|
# Copyright 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020 Kevin Ryde |
2
|
|
|
|
|
|
|
|
3
|
|
|
|
|
|
|
# This file is part of Math-PlanePath. |
4
|
|
|
|
|
|
|
# |
5
|
|
|
|
|
|
|
# Math-PlanePath is free software; you can redistribute it and/or modify |
6
|
|
|
|
|
|
|
# it under the terms of the GNU General Public License as published by the |
7
|
|
|
|
|
|
|
# Free Software Foundation; either version 3, or (at your option) any later |
8
|
|
|
|
|
|
|
# version. |
9
|
|
|
|
|
|
|
# |
10
|
|
|
|
|
|
|
# Math-PlanePath is distributed in the hope that it will be useful, but |
11
|
|
|
|
|
|
|
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY |
12
|
|
|
|
|
|
|
# or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
13
|
|
|
|
|
|
|
# for more details. |
14
|
|
|
|
|
|
|
# |
15
|
|
|
|
|
|
|
# You should have received a copy of the GNU General Public License along |
16
|
|
|
|
|
|
|
# with Math-PlanePath. If not, see . |
17
|
|
|
|
|
|
|
|
18
|
|
|
|
|
|
|
|
19
|
|
|
|
|
|
|
# rule=50,58,114,122,178,179,186,242,250 |
20
|
|
|
|
|
|
|
# spacing=2,step=1 |
21
|
|
|
|
|
|
|
# full V with points spaced apart |
22
|
|
|
|
|
|
|
# math-image --path=CellularRule,rule=50 --all --text |
23
|
|
|
|
|
|
|
# |
24
|
|
|
|
|
|
|
# A091018, A090894 using n_start=0 |
25
|
|
|
|
|
|
|
# A196199, A000196, A053186 using n_start=0 |
26
|
|
|
|
|
|
|
|
27
|
|
|
|
|
|
|
package Math::PlanePath::PyramidRows; |
28
|
2
|
|
|
2
|
|
1347
|
use 5.004; |
|
2
|
|
|
|
|
7
|
|
29
|
2
|
|
|
2
|
|
11
|
use strict; |
|
2
|
|
|
|
|
3
|
|
|
2
|
|
|
|
|
54
|
|
30
|
2
|
|
|
2
|
|
11
|
use Carp 'croak'; |
|
2
|
|
|
|
|
4
|
|
|
2
|
|
|
|
|
191
|
|
31
|
|
|
|
|
|
|
#use List::Util 'min','max'; |
32
|
|
|
|
|
|
|
*min = \&Math::PlanePath::_min; |
33
|
|
|
|
|
|
|
*max = \&Math::PlanePath::_max; |
34
|
|
|
|
|
|
|
|
35
|
2
|
|
|
2
|
|
14
|
use vars '$VERSION', '@ISA'; |
|
2
|
|
|
|
|
4
|
|
|
2
|
|
|
|
|
130
|
|
36
|
|
|
|
|
|
|
$VERSION = 129; |
37
|
2
|
|
|
2
|
|
791
|
use Math::PlanePath; |
|
2
|
|
|
|
|
4
|
|
|
2
|
|
|
|
|
119
|
|
38
|
|
|
|
|
|
|
@ISA = ('Math::PlanePath'); |
39
|
|
|
|
|
|
|
*_sqrtint = \&Math::PlanePath::_sqrtint; |
40
|
|
|
|
|
|
|
|
41
|
|
|
|
|
|
|
use Math::PlanePath::Base::Generic |
42
|
2
|
|
|
2
|
|
13
|
'round_nearest'; |
|
2
|
|
|
|
|
5
|
|
|
2
|
|
|
|
|
82
|
|
43
|
|
|
|
|
|
|
|
44
|
|
|
|
|
|
|
# uncomment this to run the ### lines |
45
|
|
|
|
|
|
|
#use Smart::Comments; |
46
|
|
|
|
|
|
|
|
47
|
|
|
|
|
|
|
|
48
|
2
|
|
|
2
|
|
11
|
use constant class_y_negative => 0; |
|
2
|
|
|
|
|
4
|
|
|
2
|
|
|
|
|
113
|
|
49
|
2
|
|
|
2
|
|
12
|
use constant n_frac_discontinuity => .5; |
|
2
|
|
|
|
|
4
|
|
|
2
|
|
|
|
|
192
|
|
50
|
|
|
|
|
|
|
|
51
|
2
|
|
|
|
|
1085
|
use constant parameter_info_array => |
52
|
|
|
|
|
|
|
[ { name => 'step', |
53
|
|
|
|
|
|
|
share_key => 'step_2', |
54
|
|
|
|
|
|
|
display => 'Step', |
55
|
|
|
|
|
|
|
type => 'integer', |
56
|
|
|
|
|
|
|
minimum => 0, |
57
|
|
|
|
|
|
|
default => 2, |
58
|
|
|
|
|
|
|
width => 2, |
59
|
|
|
|
|
|
|
description => 'How much longer each row is than the preceding.', |
60
|
|
|
|
|
|
|
}, |
61
|
|
|
|
|
|
|
{ name => 'align', |
62
|
|
|
|
|
|
|
type => 'enum', |
63
|
|
|
|
|
|
|
share_key => 'align_crl', |
64
|
|
|
|
|
|
|
display => 'Align', |
65
|
|
|
|
|
|
|
default => 'centre', |
66
|
|
|
|
|
|
|
choices => ['centre', 'right', 'left'], |
67
|
|
|
|
|
|
|
choices_display => ['Centre', 'Right', 'Left'], |
68
|
|
|
|
|
|
|
}, |
69
|
|
|
|
|
|
|
Math::PlanePath::Base::Generic::parameter_info_nstart1(), |
70
|
2
|
|
|
2
|
|
13
|
]; |
|
2
|
|
|
|
|
4
|
|
71
|
|
|
|
|
|
|
|
72
|
|
|
|
|
|
|
{ |
73
|
|
|
|
|
|
|
my %align_x_negative_step = (left => 1, |
74
|
|
|
|
|
|
|
centre => 2); |
75
|
|
|
|
|
|
|
sub x_negative { |
76
|
18
|
|
|
18
|
1
|
64
|
my ($self) = @_; |
77
|
18
|
|
|
|
|
58
|
my $align = $self->{'align'}; |
78
|
|
|
|
|
|
|
return ($align ne 'right' |
79
|
18
|
|
66
|
|
|
159
|
&& $self->{'step'} >= $align_x_negative_step{$align}); |
80
|
|
|
|
|
|
|
} |
81
|
|
|
|
|
|
|
} |
82
|
|
|
|
|
|
|
sub x_maximum { |
83
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
84
|
0
|
0
|
0
|
|
|
0
|
return ($self->{'step'} == 0 || $self->{'align'} eq 'left' |
85
|
|
|
|
|
|
|
? 0 # X=0 vertical, or left X<=0 |
86
|
|
|
|
|
|
|
: undef); |
87
|
|
|
|
|
|
|
} |
88
|
|
|
|
|
|
|
{ |
89
|
|
|
|
|
|
|
my %x_negative_at_n = (left => 3, |
90
|
|
|
|
|
|
|
right => 5, |
91
|
|
|
|
|
|
|
up => 3, |
92
|
|
|
|
|
|
|
down => 5); |
93
|
|
|
|
|
|
|
sub x_negative_at_n { |
94
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
95
|
|
|
|
|
|
|
return (($self->{'align'} eq 'left' && $self->{'step'} >= 1) |
96
|
0
|
0
|
0
|
|
|
0
|
|| ($self->{'align'} eq 'centre' && $self->{'step'} >= 2) |
97
|
|
|
|
|
|
|
? $self->n_start + 1 |
98
|
|
|
|
|
|
|
: undef); |
99
|
|
|
|
|
|
|
} |
100
|
|
|
|
|
|
|
} |
101
|
|
|
|
|
|
|
sub sumxy_minimum { |
102
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
103
|
|
|
|
|
|
|
# for align=left step<=1 has X>=-Y so X+Y >= 0 |
104
|
|
|
|
|
|
|
# for align=centre step<=3 has X>=-Y so X+Y >= 0 |
105
|
|
|
|
|
|
|
# for align=right X>=0 so X+Y >= 0 |
106
|
|
|
|
|
|
|
return (($self->{'align'} eq 'left' && $self->{'step'} <= 1) |
107
|
|
|
|
|
|
|
|| ($self->{'align'} eq 'centre' && $self->{'step'} <= 3) |
108
|
0
|
0
|
0
|
|
|
0
|
|| ($self->{'align'} eq 'right') |
109
|
|
|
|
|
|
|
? 0 |
110
|
|
|
|
|
|
|
: undef); |
111
|
|
|
|
|
|
|
} |
112
|
|
|
|
|
|
|
sub diffxy_maximum { |
113
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
114
|
|
|
|
|
|
|
# for align=left X<=0 so X-Y<=0 always |
115
|
|
|
|
|
|
|
# for align=centre step<=2 has X<=Y so X-Y<=0 |
116
|
|
|
|
|
|
|
# for align=right step<=1 has X<=Y so X-Y<=0 |
117
|
|
|
|
|
|
|
return (($self->{'align'} eq 'left') |
118
|
|
|
|
|
|
|
|| ($self->{'align'} eq 'centre' && $self->{'step'} <= 2) |
119
|
0
|
0
|
0
|
|
|
0
|
|| ($self->{'align'} eq 'right' && $self->{'step'} <= 1) |
120
|
|
|
|
|
|
|
? 0 |
121
|
|
|
|
|
|
|
: undef); |
122
|
|
|
|
|
|
|
} |
123
|
|
|
|
|
|
|
|
124
|
|
|
|
|
|
|
sub dx_minimum { |
125
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
126
|
0
|
0
|
|
|
|
0
|
return ($self->{'step'} == 0 ? 0 : undef); |
127
|
|
|
|
|
|
|
} |
128
|
|
|
|
|
|
|
sub dx_maximum { |
129
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
130
|
0
|
0
|
|
|
|
0
|
return ($self->{'step'} == 0 |
131
|
|
|
|
|
|
|
? 0 # vertical only |
132
|
|
|
|
|
|
|
: 1); # East |
133
|
|
|
|
|
|
|
} |
134
|
|
|
|
|
|
|
|
135
|
|
|
|
|
|
|
sub dy_minimum { |
136
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
137
|
0
|
0
|
|
|
|
0
|
return ($self->{'step'} == 0 ? 1 : 0); |
138
|
|
|
|
|
|
|
} |
139
|
2
|
|
|
2
|
|
16
|
use constant dy_maximum => 1; |
|
2
|
|
|
|
|
4
|
|
|
2
|
|
|
|
|
455
|
|
140
|
|
|
|
|
|
|
sub _UNDOCUMENTED__dxdy_list { |
141
|
0
|
|
|
0
|
|
0
|
my ($self) = @_; |
142
|
0
|
0
|
|
|
|
0
|
return ($self->{'step'} == 0 ? (0,1) # N always |
143
|
|
|
|
|
|
|
: ()); |
144
|
|
|
|
|
|
|
} |
145
|
|
|
|
|
|
|
|
146
|
|
|
|
|
|
|
sub absdx_minimum { |
147
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
148
|
|
|
|
|
|
|
return ($self->{'step'} == 0 |
149
|
|
|
|
|
|
|
|| $self->{'align'} eq 'right' # dX=0 at N=1 |
150
|
0
|
0
|
0
|
|
|
0
|
|| ($self->{'step'} == 1 && $self->{'align'} eq 'centre') |
151
|
|
|
|
|
|
|
? 0 : 1); |
152
|
|
|
|
|
|
|
} |
153
|
|
|
|
|
|
|
sub absdy_minimum { |
154
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
155
|
0
|
0
|
|
|
|
0
|
return ($self->{'step'} == 0 ? 1 : 0); |
156
|
|
|
|
|
|
|
} |
157
|
|
|
|
|
|
|
|
158
|
|
|
|
|
|
|
# within row X increasing dSum=1 |
159
|
|
|
|
|
|
|
# end row decrease by big |
160
|
|
|
|
|
|
|
sub dsumxy_minimum { |
161
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
162
|
0
|
0
|
|
|
|
0
|
return ($self->{'step'} == 0 ? 1 : undef); |
163
|
|
|
|
|
|
|
} |
164
|
2
|
|
|
2
|
|
14
|
use constant dsumxy_maximum => 1; |
|
2
|
|
|
|
|
4
|
|
|
2
|
|
|
|
|
2084
|
|
165
|
|
|
|
|
|
|
sub ddiffxy_minimum { |
166
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
167
|
0
|
0
|
|
|
|
0
|
return ($self->{'step'} == 0 ? -1 # constant North dY=1 |
168
|
|
|
|
|
|
|
: undef); |
169
|
|
|
|
|
|
|
} |
170
|
|
|
|
|
|
|
sub ddiffxy_maximum { |
171
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
172
|
0
|
0
|
|
|
|
0
|
return ($self->{'step'} == 0 ? -1 # constant North dY=1 |
173
|
|
|
|
|
|
|
: 1); |
174
|
|
|
|
|
|
|
} |
175
|
|
|
|
|
|
|
|
176
|
|
|
|
|
|
|
sub dir_minimum_dxdy { |
177
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
178
|
0
|
0
|
|
|
|
0
|
return ($self->{'step'} == 0 |
179
|
|
|
|
|
|
|
? (0,1) # north only |
180
|
|
|
|
|
|
|
: (1,0)); # east |
181
|
|
|
|
|
|
|
} |
182
|
|
|
|
|
|
|
sub dir_maximum_dxdy { |
183
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
184
|
0
|
0
|
|
|
|
0
|
return ($self->{'step'} == 0 |
185
|
|
|
|
|
|
|
? (0,1) # north only |
186
|
|
|
|
|
|
|
: (-1,0)); # supremum, west and 1 up |
187
|
|
|
|
|
|
|
} |
188
|
|
|
|
|
|
|
|
189
|
|
|
|
|
|
|
sub turn_any_left { |
190
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
191
|
0
|
|
|
|
|
0
|
return ($self->{'step'} != 0); # always straight vertical only |
192
|
|
|
|
|
|
|
} |
193
|
|
|
|
|
|
|
*turn_any_right = \&turn_any_left; |
194
|
|
|
|
|
|
|
|
195
|
|
|
|
|
|
|
|
196
|
|
|
|
|
|
|
#------------------------------------------------------------------------------ |
197
|
|
|
|
|
|
|
|
198
|
|
|
|
|
|
|
my %align_known = (left => 1, |
199
|
|
|
|
|
|
|
right => 1, |
200
|
|
|
|
|
|
|
centre => 1); |
201
|
|
|
|
|
|
|
|
202
|
|
|
|
|
|
|
sub new { |
203
|
94
|
|
|
94
|
1
|
7785
|
my $self = shift->SUPER::new(@_); |
204
|
|
|
|
|
|
|
|
205
|
94
|
100
|
|
|
|
263
|
if (! defined $self->{'n_start'}) { |
206
|
70
|
|
|
|
|
157
|
$self->{'n_start'} = $self->default_n_start; |
207
|
|
|
|
|
|
|
} |
208
|
|
|
|
|
|
|
|
209
|
94
|
|
100
|
|
|
375
|
my $align = ($self->{'align'} ||= 'centre'); |
210
|
94
|
50
|
|
|
|
220
|
$align_known{$align} |
211
|
|
|
|
|
|
|
or croak "Unrecognised align option: ",$align; |
212
|
|
|
|
|
|
|
|
213
|
94
|
|
|
|
|
173
|
my $step = $self->{'step'}; |
214
|
94
|
50
|
|
|
|
279
|
$step = $self->{'step'} = |
|
|
100
|
|
|
|
|
|
215
|
|
|
|
|
|
|
(! defined $step ? 2 # default |
216
|
|
|
|
|
|
|
: $step < 0 ? 0 # minimum |
217
|
|
|
|
|
|
|
: $step); |
218
|
|
|
|
|
|
|
|
219
|
94
|
50
|
|
|
|
326
|
my $left_slope = $self->{'left_slope'} = ($align eq 'left' ? $step |
|
|
100
|
|
|
|
|
|
220
|
|
|
|
|
|
|
: $align eq 'right' ? 0 |
221
|
|
|
|
|
|
|
: int($step/2)); # 'centre' |
222
|
94
|
|
|
|
|
190
|
my $right_slope = $self->{'right_slope'} = $step - $left_slope; |
223
|
|
|
|
|
|
|
|
224
|
|
|
|
|
|
|
# "b" term in the quadratic giving N on the Y axis |
225
|
94
|
|
|
|
|
156
|
$self->{'axis_b'} = $left_slope - $right_slope + 2; |
226
|
|
|
|
|
|
|
|
227
|
|
|
|
|
|
|
### $align |
228
|
|
|
|
|
|
|
### $step |
229
|
|
|
|
|
|
|
### $left_slope |
230
|
|
|
|
|
|
|
### right_slope: $self->{'right_slope'} |
231
|
|
|
|
|
|
|
|
232
|
94
|
|
|
|
|
253
|
return $self; |
233
|
|
|
|
|
|
|
} |
234
|
|
|
|
|
|
|
|
235
|
|
|
|
|
|
|
# step==2 row line beginning at x=-0.5, |
236
|
|
|
|
|
|
|
# y = 0 1 2 3 4 |
237
|
|
|
|
|
|
|
# N start = -0.5 1.5 4.5 9.5 16.5 |
238
|
|
|
|
|
|
|
# |
239
|
|
|
|
|
|
|
# |
240
|
|
|
|
|
|
|
# step==1 |
241
|
|
|
|
|
|
|
# N = (1/2*$d^2 + 1/2*$d + 1/2) |
242
|
|
|
|
|
|
|
# s = -1/2 + sqrt(2 * $n + -3/4) |
243
|
|
|
|
|
|
|
# step==2 |
244
|
|
|
|
|
|
|
# N = ($d^2 + 1/2) |
245
|
|
|
|
|
|
|
# s = 0 + sqrt(1 * $n + -1/2) |
246
|
|
|
|
|
|
|
# step==3 |
247
|
|
|
|
|
|
|
# N = (3/2*$d^2 + -1/2*$d + 1/2) |
248
|
|
|
|
|
|
|
# s = 1/6 + sqrt(2/3 * $n + -11/36) |
249
|
|
|
|
|
|
|
# step==4 |
250
|
|
|
|
|
|
|
# N = (2*$d^2 + -1*$d + 1/2) |
251
|
|
|
|
|
|
|
# s = 1/4 + sqrt(1/2 * $n + -3/16) |
252
|
|
|
|
|
|
|
# |
253
|
|
|
|
|
|
|
# a = $step / 2 |
254
|
|
|
|
|
|
|
# b = 1 - $step / 2 = (2-$step)/2 |
255
|
|
|
|
|
|
|
# c = 0.5 |
256
|
|
|
|
|
|
|
# |
257
|
|
|
|
|
|
|
# s = (-b + sqrt(4*a*$n + b*b - 4*a*c)) / 2*a |
258
|
|
|
|
|
|
|
# = (-b + sqrt(2*$step*$n + b*b - 2*$step*c)) / $step |
259
|
|
|
|
|
|
|
# = (-b + sqrt(2*$step*$n + b*b - $step)) / $step |
260
|
|
|
|
|
|
|
# |
261
|
|
|
|
|
|
|
# N = a*s*s + b*s + c |
262
|
|
|
|
|
|
|
# = $step/2 *s*s + (-$step+2)/2 * s + 1/2 |
263
|
|
|
|
|
|
|
# = ($step * $d*$d - ($step-2)*$d + 1) / 2 |
264
|
|
|
|
|
|
|
# |
265
|
|
|
|
|
|
|
# left at - 0.5 - $d*int($step/2) |
266
|
|
|
|
|
|
|
# so x = $n - (($step * $d*$d - ($step-2)*$d + 1) / 2) - 0.5 - $d*int($step/2) |
267
|
|
|
|
|
|
|
# = $n - (($step * $d*$d - ($step-2)*$d + 1) / 2 + 0.5 + $d*int($step/2)) |
268
|
|
|
|
|
|
|
# = $n - ($step/2 * $d*$d - ($step-2)/2*$d + 1/2 + 0.5 + $d*int($step/2)) |
269
|
|
|
|
|
|
|
# = $n - ($step/2 * $d*$d - ($step-2)/2*$d + 1 + $d*int($step/2)) |
270
|
|
|
|
|
|
|
# = $n - ($step/2 * $d*$d - ($step-2)/2*$d + int($step/2)*$d + 1) |
271
|
|
|
|
|
|
|
# = $n - ($step/2 * $d*$d - (($step-2)/2 - int($step/2))*$d + 1) |
272
|
|
|
|
|
|
|
# = $n - ($step/2 * $d*$d - ($step/2 - int($step/2) - 1)*$d + 1) |
273
|
|
|
|
|
|
|
# = $n - ($step/2 * $d*$d - (($step&1)/2 - 1)*$d + 1) |
274
|
|
|
|
|
|
|
# = $n - ($step * $d*$d - (($step&1) - 2)*$d + 2)/2 |
275
|
|
|
|
|
|
|
# |
276
|
|
|
|
|
|
|
sub n_to_xy { |
277
|
687
|
|
|
687
|
1
|
3387
|
my ($self, $n) = @_; |
278
|
|
|
|
|
|
|
### PyramidRows n_to_xy(): $n |
279
|
|
|
|
|
|
|
|
280
|
|
|
|
|
|
|
# adjust to N=1 at origin X=0,Y=0 |
281
|
687
|
|
|
|
|
1037
|
$n = $n - $self->{'n_start'} + 1; |
282
|
|
|
|
|
|
|
|
283
|
|
|
|
|
|
|
# $n<0.5 no good for Math::BigInt circa Perl 5.12, compare in integers |
284
|
687
|
100
|
|
|
|
1364
|
return if 2*$n < 1; |
285
|
|
|
|
|
|
|
|
286
|
618
|
|
|
|
|
895
|
my $step = $self->{'step'}; |
287
|
618
|
50
|
|
|
|
1046
|
if ($step == 0) { |
288
|
|
|
|
|
|
|
# step==0 is vertical line starting N=1 at Y=0 |
289
|
0
|
|
|
|
|
0
|
my $int = round_nearest($n); |
290
|
0
|
|
|
|
|
0
|
return ($n-$int, $int-1); |
291
|
|
|
|
|
|
|
} |
292
|
|
|
|
|
|
|
|
293
|
618
|
|
|
|
|
791
|
my $neg_b = $step-2; |
294
|
618
|
|
|
|
|
1361
|
my $y = int (($neg_b + _sqrtint(8*$step*$n + $neg_b*$neg_b - 4*$step)) |
295
|
|
|
|
|
|
|
/ (2*$step)); |
296
|
|
|
|
|
|
|
|
297
|
|
|
|
|
|
|
### d frac: (($neg_b + sqrt(int(8*$step*$n) + $neg_b*$neg_b - 4*$step)) / (2*$step)) |
298
|
|
|
|
|
|
|
### $y |
299
|
|
|
|
|
|
|
### centre N: (($self->{'step'}*$y + $self->{'axis_b'})*$y/2+1) |
300
|
|
|
|
|
|
|
|
301
|
618
|
|
|
|
|
2091
|
return ($n - (($self->{'step'}*$y + $self->{'axis_b'})*$y/2+1), |
302
|
|
|
|
|
|
|
$y); |
303
|
|
|
|
|
|
|
} |
304
|
|
|
|
|
|
|
|
305
|
|
|
|
|
|
|
sub n_to_radius { |
306
|
0
|
|
|
0
|
1
|
0
|
my ($self, $n) = @_; |
307
|
0
|
0
|
|
|
|
0
|
if ($self->{'step'} == 0) { |
308
|
0
|
|
|
|
|
0
|
$n = $n - $self->{'n_start'}; # to N=0 basis |
309
|
0
|
0
|
|
|
|
0
|
if ($n < 0) { return undef; } |
|
0
|
|
|
|
|
0
|
|
310
|
0
|
|
|
|
|
0
|
return $n; # vertical on Y axis, including $n=+infinity or nan |
311
|
|
|
|
|
|
|
} |
312
|
0
|
|
|
|
|
0
|
return $self->SUPER::n_to_radius($n); |
313
|
|
|
|
|
|
|
} |
314
|
|
|
|
|
|
|
|
315
|
|
|
|
|
|
|
# N = ($step * $y*$y - ($step-2)*$y + 1) / 2 |
316
|
|
|
|
|
|
|
# |
317
|
|
|
|
|
|
|
# right polygonal |
318
|
|
|
|
|
|
|
# P(i) = (k-2)/2 * i*(i+1) - (k-3)*i |
319
|
|
|
|
|
|
|
# = [(k-2)/2 *(i+1) - (k-3) ]*i |
320
|
|
|
|
|
|
|
# = [(k-2)*(i+1) - 2*(k-3) ]/2*i |
321
|
|
|
|
|
|
|
# = [(k-2)*i + k-2 - 2*(k-3) ]/2*i |
322
|
|
|
|
|
|
|
# = [(k-2)*i + k-2 - 2k+6) ]/2*i |
323
|
|
|
|
|
|
|
# = [(k-2)*i + -k+4 ]/2*i |
324
|
|
|
|
|
|
|
# |
325
|
|
|
|
|
|
|
sub xy_to_n { |
326
|
9222
|
|
|
9222
|
1
|
36284
|
my ($self, $x, $y) = @_; |
327
|
9222
|
|
|
|
|
15908
|
$x = round_nearest ($x); |
328
|
9222
|
|
|
|
|
15978
|
$y = round_nearest ($y); |
329
|
|
|
|
|
|
|
|
330
|
9222
|
100
|
66
|
|
|
34209
|
if ($y < 0 |
|
|
|
100
|
|
|
|
|
331
|
|
|
|
|
|
|
|| $x < -$y*$self->{'left_slope'} |
332
|
|
|
|
|
|
|
|| $x > $y*$self->{'right_slope'}) { |
333
|
4848
|
|
|
|
|
9168
|
return undef; |
334
|
|
|
|
|
|
|
} |
335
|
|
|
|
|
|
|
return (($self->{'step'}*$y + $self->{'axis_b'})*$y/2 |
336
|
|
|
|
|
|
|
+ $x |
337
|
4374
|
|
|
|
|
11447
|
+ $self->{'n_start'}); |
338
|
|
|
|
|
|
|
} |
339
|
|
|
|
|
|
|
|
340
|
|
|
|
|
|
|
# left N = ($step * $d*$d - ($step-2)*$d + 1) / 2 |
341
|
|
|
|
|
|
|
# plus .5 = ($step * $d*$d - ($step-2)*$d) / 2 + 1 |
342
|
|
|
|
|
|
|
# = (($step * $d - ($step-2))*$d) / 2 + 1 |
343
|
|
|
|
|
|
|
# |
344
|
|
|
|
|
|
|
# left X = - $d*int($step/2) |
345
|
|
|
|
|
|
|
# right X = $d * ceil($step/2) |
346
|
|
|
|
|
|
|
# |
347
|
|
|
|
|
|
|
# x_bottom_start = - y1 * step_left |
348
|
|
|
|
|
|
|
# want x2 >= x_bottom_start |
349
|
|
|
|
|
|
|
# x2 >= - y1 * step_left |
350
|
|
|
|
|
|
|
# x2/step_left >= - y1 |
351
|
|
|
|
|
|
|
# - x2/step_left <= y1 |
352
|
|
|
|
|
|
|
# y1 >= - x2/step_left |
353
|
|
|
|
|
|
|
# y1 >= ceil(-x2/step_left) |
354
|
|
|
|
|
|
|
# |
355
|
|
|
|
|
|
|
# x_bottom_end = y1 * step_right |
356
|
|
|
|
|
|
|
# want x1 <= x_bottom_end |
357
|
|
|
|
|
|
|
# x1 <= y1 * step_right |
358
|
|
|
|
|
|
|
# y1 * step_right >= x1 |
359
|
|
|
|
|
|
|
# y1 >= ceil(x1/step_right) |
360
|
|
|
|
|
|
|
# |
361
|
|
|
|
|
|
|
# left N = (($step * $y1 - ($step-2))*$y1) / 2 + 1 |
362
|
|
|
|
|
|
|
# bottom_offset = $x1 - $y1 * $step_left |
363
|
|
|
|
|
|
|
# N lo = leftN + bottom_offset |
364
|
|
|
|
|
|
|
# = ((step * y1 - (step-2))*y1) / 2 + 1 + x1 - y1 * step_left |
365
|
|
|
|
|
|
|
# = ((step * y1 - (step-2)-2*step_left)*y1) / 2 + 1 + x1 |
366
|
|
|
|
|
|
|
# step_left = floor(step/2) |
367
|
|
|
|
|
|
|
# 2*step_left = step - step&1 |
368
|
|
|
|
|
|
|
# N lo = ((step * y1 - (step-2)-2*step_left)*y1) / 2 + 1 + x1 |
369
|
|
|
|
|
|
|
|
370
|
|
|
|
|
|
|
# exact |
371
|
|
|
|
|
|
|
sub rect_to_n_range { |
372
|
65
|
|
|
65
|
1
|
275
|
my ($self, $x1,$y1, $x2,$y2) = @_; |
373
|
|
|
|
|
|
|
### PyramidRows rect_to_n_range(): "$x1,$y1, $x2,$y2 step=$self->{'step'}" |
374
|
|
|
|
|
|
|
|
375
|
65
|
|
|
|
|
142
|
$x1 = round_nearest ($x1); |
376
|
65
|
|
|
|
|
140
|
$y1 = round_nearest ($y1); |
377
|
65
|
|
|
|
|
118
|
$x2 = round_nearest ($x2); |
378
|
65
|
|
|
|
|
115
|
$y2 = round_nearest ($y2); |
379
|
65
|
100
|
|
|
|
115
|
if ($y1 > $y2) { ($y1,$y2) = ($y2,$y1); } # swap to y1<=y2 |
|
9
|
|
|
|
|
16
|
|
380
|
65
|
100
|
|
|
|
123
|
if ($y2 < 0) { |
381
|
9
|
|
|
|
|
19
|
return (1, 0); # rect all negative, no N |
382
|
|
|
|
|
|
|
} |
383
|
56
|
100
|
|
|
|
100
|
if ($x1 > $x2) { ($x1,$x2) = ($x2,$x1); } # swap to x1<=x2 |
|
10
|
|
|
|
|
17
|
|
384
|
|
|
|
|
|
|
|
385
|
56
|
|
|
|
|
83
|
my $left_slope = $self->{'left_slope'}; |
386
|
56
|
|
|
|
|
85
|
my $right_slope = $self->{'right_slope'}; |
387
|
|
|
|
|
|
|
|
388
|
56
|
|
|
|
|
79
|
my $x_top_right = $y2 * $right_slope; |
389
|
|
|
|
|
|
|
### $x_top_right |
390
|
|
|
|
|
|
|
### x_top_left: - $y2 * $left_slope |
391
|
|
|
|
|
|
|
|
392
|
|
|
|
|
|
|
# \ | / |
393
|
|
|
|
|
|
|
# \ | / |
394
|
|
|
|
|
|
|
# \ | / +----- x_top_right > x1 |
395
|
|
|
|
|
|
|
# \ | / |x1,y2 |
396
|
|
|
|
|
|
|
# \|/ |
397
|
|
|
|
|
|
|
# -----+----------- |
398
|
|
|
|
|
|
|
# |
399
|
|
|
|
|
|
|
# \ | x_top_start = -y2*step_left |
400
|
|
|
|
|
|
|
# -----+ \ | x_top_start < x2 |
401
|
|
|
|
|
|
|
# x2,y2| \ | |
402
|
|
|
|
|
|
|
# \ | / |
403
|
|
|
|
|
|
|
# \|/ |
404
|
|
|
|
|
|
|
# -----------+-- |
405
|
|
|
|
|
|
|
# |
406
|
56
|
100
|
100
|
|
|
158
|
if ($x1 > $x_top_right |
407
|
|
|
|
|
|
|
|| $x2 < - $y2 * $left_slope) { |
408
|
|
|
|
|
|
|
### rect all off to the left or right, no N ... |
409
|
36
|
|
|
|
|
78
|
return (1, 0); |
410
|
|
|
|
|
|
|
} |
411
|
|
|
|
|
|
|
|
412
|
|
|
|
|
|
|
### x1 to x2 of top row y2 intersects some of the pyramid ... |
413
|
|
|
|
|
|
|
### assert: $x2 >= -$y2*$left_slope |
414
|
|
|
|
|
|
|
### assert: $x1 <= $y2*$right_slope |
415
|
|
|
|
|
|
|
|
416
|
|
|
|
|
|
|
# raise y1 to the lowest row of the rectangle which intersects some of the |
417
|
|
|
|
|
|
|
# pyramid |
418
|
20
|
|
100
|
|
|
108
|
$y1 = max ($y1, |
|
|
|
100
|
|
|
|
|
419
|
|
|
|
|
|
|
0, |
420
|
|
|
|
|
|
|
|
421
|
|
|
|
|
|
|
# for x2 >= x_bottom_left, round up |
422
|
|
|
|
|
|
|
$left_slope && int((-$x2+$left_slope-1)/$left_slope), |
423
|
|
|
|
|
|
|
|
424
|
|
|
|
|
|
|
# for x1 <= x_bottom_right, round up |
425
|
|
|
|
|
|
|
$right_slope && int(($x1+$right_slope-1)/$right_slope), |
426
|
|
|
|
|
|
|
); |
427
|
|
|
|
|
|
|
### $y1 |
428
|
|
|
|
|
|
|
### y1 for bottom left: $left_slope && int((-$x2+$left_slope-1)/$left_slope) |
429
|
|
|
|
|
|
|
### y1 for bottom right: $right_slope && int(($x1+$right_slope-1)/$right_slope) |
430
|
|
|
|
|
|
|
### assert: $x2 >= -$y1*$left_slope |
431
|
|
|
|
|
|
|
### assert: $x1 <= $y1*$right_slope |
432
|
|
|
|
|
|
|
|
433
|
20
|
|
|
|
|
46
|
return ($self->xy_to_n (max($x1, -$y1*$left_slope), $y1), |
434
|
|
|
|
|
|
|
$self->xy_to_n (min($x2, $x_top_right), $y2)); |
435
|
|
|
|
|
|
|
|
436
|
|
|
|
|
|
|
|
437
|
|
|
|
|
|
|
# my $step = $self->{'step'}; |
438
|
|
|
|
|
|
|
# my $sub = ($step&1) - 2; |
439
|
|
|
|
|
|
|
# |
440
|
|
|
|
|
|
|
# ### x bottom start: -$y1*$left_slope |
441
|
|
|
|
|
|
|
# ### x bottom end: $y1*$right_slope |
442
|
|
|
|
|
|
|
# ### $x1 |
443
|
|
|
|
|
|
|
# ### $x2 |
444
|
|
|
|
|
|
|
# ### bottom left x: max($x1, -$y1*$left_slope) |
445
|
|
|
|
|
|
|
# ### top right x: min ($x2, $x_top_end) |
446
|
|
|
|
|
|
|
# ### $y1 |
447
|
|
|
|
|
|
|
# ### $y2 |
448
|
|
|
|
|
|
|
# ### n_lo: (($step * $y1 - $sub)*$y1 + 2)/2 + max($x1, -$y1*$left_slope) |
449
|
|
|
|
|
|
|
# ### n_hi: (($step * $y2 - $sub)*$y2 + 2)/2 + min($x2, $x_top_end) |
450
|
|
|
|
|
|
|
# |
451
|
|
|
|
|
|
|
# ### assert: $y1-1==$y1 || (($step * $y1 - $sub)*$y1 + 2) == int (($step * $y1 - $sub)*$y1 + 2) |
452
|
|
|
|
|
|
|
# ### assert: $y2-1==$y2 || (($step * $y2 - $sub)*$y2 + 2) == int (($step * $y2 - $sub)*$y2 + 2) |
453
|
|
|
|
|
|
|
|
454
|
|
|
|
|
|
|
# (($step * $y1 - $sub)*$y1 + 2)/2 |
455
|
|
|
|
|
|
|
# + max($x1, -$y1*$left_slope), # x_bottom_start |
456
|
|
|
|
|
|
|
# |
457
|
|
|
|
|
|
|
# (($step * $y2 - $sub)*$y2 + 2)/2 |
458
|
|
|
|
|
|
|
# + min($x2, $x_top_end)); |
459
|
|
|
|
|
|
|
# |
460
|
|
|
|
|
|
|
# # return ($self->xy_to_n (max ($x1, -$y1*$left_slope), $y1), |
461
|
|
|
|
|
|
|
# # $self->xy_to_n (min ($x2, $x_top_end), $y2)); |
462
|
|
|
|
|
|
|
} |
463
|
|
|
|
|
|
|
|
464
|
|
|
|
|
|
|
1; |
465
|
|
|
|
|
|
|
__END__ |