line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
1
|
|
|
|
|
|
|
# Copyright 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020 Kevin Ryde |
2
|
|
|
|
|
|
|
|
3
|
|
|
|
|
|
|
# This file is part of Math-PlanePath. |
4
|
|
|
|
|
|
|
# |
5
|
|
|
|
|
|
|
# Math-PlanePath is free software; you can redistribute it and/or modify |
6
|
|
|
|
|
|
|
# it under the terms of the GNU General Public License as published by the |
7
|
|
|
|
|
|
|
# Free Software Foundation; either version 3, or (at your option) any later |
8
|
|
|
|
|
|
|
# version. |
9
|
|
|
|
|
|
|
# |
10
|
|
|
|
|
|
|
# Math-PlanePath is distributed in the hope that it will be useful, but |
11
|
|
|
|
|
|
|
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY |
12
|
|
|
|
|
|
|
# or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
13
|
|
|
|
|
|
|
# for more details. |
14
|
|
|
|
|
|
|
# |
15
|
|
|
|
|
|
|
# You should have received a copy of the GNU General Public License along |
16
|
|
|
|
|
|
|
# with Math-PlanePath. If not, see . |
17
|
|
|
|
|
|
|
|
18
|
|
|
|
|
|
|
|
19
|
|
|
|
|
|
|
|
20
|
|
|
|
|
|
|
# math-image --path=MultipleRings --lines |
21
|
|
|
|
|
|
|
# |
22
|
|
|
|
|
|
|
# math-image --wx --path=MultipleRings,ring_shape=polygon,step=5 --scale=50 --figure=ring --all |
23
|
|
|
|
|
|
|
|
24
|
|
|
|
|
|
|
# |
25
|
|
|
|
|
|
|
# FIXME: $y equal across bottom side centre ? |
26
|
|
|
|
|
|
|
|
27
|
|
|
|
|
|
|
|
28
|
|
|
|
|
|
|
package Math::PlanePath::MultipleRings; |
29
|
15
|
|
|
15
|
|
3715
|
use 5.004; |
|
15
|
|
|
|
|
56
|
|
30
|
15
|
|
|
15
|
|
88
|
use strict; |
|
15
|
|
|
|
|
26
|
|
|
15
|
|
|
|
|
445
|
|
31
|
15
|
|
|
15
|
|
78
|
use Carp 'croak'; |
|
15
|
|
|
|
|
47
|
|
|
15
|
|
|
|
|
1236
|
|
32
|
|
|
|
|
|
|
#use List::Util 'min','max'; |
33
|
|
|
|
|
|
|
*min = \&Math::PlanePath::_min; |
34
|
|
|
|
|
|
|
*max = \&Math::PlanePath::_max; |
35
|
|
|
|
|
|
|
|
36
|
|
|
|
|
|
|
# Math::Trig has asin_real() too, but it just runs the blob of code in |
37
|
|
|
|
|
|
|
# Math::Complex -- prefer libm |
38
|
15
|
|
|
15
|
|
1034
|
use Math::Libm 'asin', 'hypot'; |
|
15
|
|
|
|
|
7276
|
|
|
15
|
|
|
|
|
857
|
|
39
|
|
|
|
|
|
|
|
40
|
15
|
|
|
15
|
|
130
|
use vars '$VERSION', '@ISA'; |
|
15
|
|
|
|
|
46
|
|
|
15
|
|
|
|
|
1004
|
|
41
|
|
|
|
|
|
|
@ISA = ('Math::PlanePath'); |
42
|
15
|
|
|
15
|
|
1932
|
use Math::PlanePath; |
|
15
|
|
|
|
|
28
|
|
|
15
|
|
|
|
|
868
|
|
43
|
|
|
|
|
|
|
*_sqrtint = \&Math::PlanePath::_sqrtint; |
44
|
|
|
|
|
|
|
$VERSION = 129; |
45
|
|
|
|
|
|
|
|
46
|
|
|
|
|
|
|
use Math::PlanePath::Base::Generic |
47
|
15
|
|
|
15
|
|
98
|
'is_infinite'; |
|
15
|
|
|
|
|
36
|
|
|
15
|
|
|
|
|
667
|
|
48
|
15
|
|
|
15
|
|
1958
|
use Math::PlanePath::SacksSpiral; |
|
15
|
|
|
|
|
33
|
|
|
15
|
|
|
|
|
588
|
|
49
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
|
# uncomment this to run the ### lines |
51
|
|
|
|
|
|
|
# use Smart::Comments; |
52
|
|
|
|
|
|
|
|
53
|
|
|
|
|
|
|
|
54
|
15
|
|
|
15
|
|
91
|
use constant 1.02; # for leading underscore |
|
15
|
|
|
|
|
251
|
|
|
15
|
|
|
|
|
678
|
|
55
|
15
|
|
|
15
|
|
89
|
use constant _PI => 2*atan2(1,0); |
|
15
|
|
|
|
|
27
|
|
|
15
|
|
|
|
|
955
|
|
56
|
|
|
|
|
|
|
|
57
|
15
|
|
|
15
|
|
104
|
use constant figure => 'circle'; |
|
15
|
|
|
|
|
28
|
|
|
15
|
|
|
|
|
759
|
|
58
|
15
|
|
|
15
|
|
96
|
use constant n_frac_discontinuity => 0; |
|
15
|
|
|
|
|
33
|
|
|
15
|
|
|
|
|
820
|
|
59
|
15
|
|
|
15
|
|
93
|
use constant gcdxy_minimum => 0; |
|
15
|
|
|
|
|
48
|
|
|
15
|
|
|
|
|
1561
|
|
60
|
|
|
|
|
|
|
|
61
|
15
|
|
|
|
|
21383
|
use constant parameter_info_array => |
62
|
|
|
|
|
|
|
[{ name => 'step', |
63
|
|
|
|
|
|
|
display => 'Step', |
64
|
|
|
|
|
|
|
share_key => 'step_6_min3', |
65
|
|
|
|
|
|
|
type => 'integer', |
66
|
|
|
|
|
|
|
minimum => 0, |
67
|
|
|
|
|
|
|
default => 6, |
68
|
|
|
|
|
|
|
width => 3, |
69
|
|
|
|
|
|
|
description => 'How much longer each ring is than the preceding.', |
70
|
|
|
|
|
|
|
}, |
71
|
|
|
|
|
|
|
|
72
|
|
|
|
|
|
|
{ name => 'ring_shape', |
73
|
|
|
|
|
|
|
display => 'Ring Shape', |
74
|
|
|
|
|
|
|
type => 'enum', |
75
|
|
|
|
|
|
|
default => 'circle', |
76
|
|
|
|
|
|
|
choices => ['circle','polygon'], |
77
|
|
|
|
|
|
|
choices_display => ['Circle','Polygon'], |
78
|
|
|
|
|
|
|
description => 'The shape of each ring, either a circle or a polygon of "step" many sides.', |
79
|
|
|
|
|
|
|
}, |
80
|
15
|
|
|
15
|
|
104
|
]; |
|
15
|
|
|
|
|
31
|
|
81
|
|
|
|
|
|
|
|
82
|
|
|
|
|
|
|
sub turn_any_left { |
83
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
84
|
|
|
|
|
|
|
# step == 0 is always straight ahead |
85
|
0
|
|
|
|
|
0
|
return ($self->{'step'} != 0); |
86
|
|
|
|
|
|
|
} |
87
|
|
|
|
|
|
|
sub turn_any_right { |
88
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
89
|
|
|
|
|
|
|
# step=0 is always straight ahead |
90
|
|
|
|
|
|
|
# step=1 is never right |
91
|
0
|
|
|
|
|
0
|
return ($self->{'step'} >= 2); |
92
|
|
|
|
|
|
|
} |
93
|
|
|
|
|
|
|
{ |
94
|
|
|
|
|
|
|
my @_UNDOCUMENTED__turn_any_right_at_n |
95
|
|
|
|
|
|
|
= (undef, # 0 |
96
|
|
|
|
|
|
|
undef, # 1 |
97
|
|
|
|
|
|
|
131, # 2 |
98
|
|
|
|
|
|
|
44, # 3 |
99
|
|
|
|
|
|
|
23, # 4 |
100
|
|
|
|
|
|
|
29, # 5 |
101
|
|
|
|
|
|
|
17, # 6 |
102
|
|
|
|
|
|
|
20, # 7 |
103
|
|
|
|
|
|
|
23); # 8 |
104
|
|
|
|
|
|
|
sub _UNDOCUMENTED__turn_any_right_at_n { |
105
|
0
|
|
|
0
|
|
0
|
my ($self) = @_; |
106
|
0
|
0
|
|
|
|
0
|
$self->turn_any_right or return undef; |
107
|
0
|
0
|
|
|
|
0
|
if ($self->{'ring_shape'} eq 'polygon') { |
108
|
|
|
|
|
|
|
# step=8 24, 9, 10, 11 |
109
|
|
|
|
|
|
|
return $self->n_start - 1 + ($self->{'step'} < 9 ? 3*$self->{'step'} |
110
|
0
|
0
|
|
|
|
0
|
: $self->{'step'}); |
111
|
|
|
|
|
|
|
} |
112
|
|
|
|
|
|
|
return $self->n_start |
113
|
|
|
|
|
|
|
+ ($self->{'step'} <= $#_UNDOCUMENTED__turn_any_right_at_n |
114
|
|
|
|
|
|
|
? $_UNDOCUMENTED__turn_any_right_at_n[$self->{'step'}] |
115
|
0
|
0
|
|
|
|
0
|
: $self->{'step'} - 1); |
116
|
|
|
|
|
|
|
} |
117
|
|
|
|
|
|
|
} |
118
|
|
|
|
|
|
|
|
119
|
|
|
|
|
|
|
sub turn_any_straight { |
120
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
121
|
|
|
|
|
|
|
# step=0 straight line |
122
|
|
|
|
|
|
|
# step=1 straight at N=2 |
123
|
|
|
|
|
|
|
# step=2 straight at N=2 |
124
|
|
|
|
|
|
|
return ($self->{'step'} <= 2 ? 1 |
125
|
0
|
0
|
|
|
|
0
|
: $self->{'ring_shape'} eq 'circle' ? 0 # never straight |
|
|
0
|
|
|
|
|
|
126
|
|
|
|
|
|
|
: 1); # ring_shape=polygon sides straight |
127
|
|
|
|
|
|
|
} |
128
|
|
|
|
|
|
|
|
129
|
|
|
|
|
|
|
|
130
|
|
|
|
|
|
|
#------------------------------------------------------------------------------ |
131
|
|
|
|
|
|
|
# Electricity transmission cable in sixes, with one at centre ? |
132
|
|
|
|
|
|
|
# 7 poppy |
133
|
|
|
|
|
|
|
# 19 hyacinth |
134
|
|
|
|
|
|
|
# 37 marigold |
135
|
|
|
|
|
|
|
# 61 cowslip |
136
|
|
|
|
|
|
|
# 127 bluebonnet |
137
|
|
|
|
|
|
|
|
138
|
|
|
|
|
|
|
# An n-gon of points many vertices has each angle |
139
|
|
|
|
|
|
|
# alpha = 2*pi/points |
140
|
|
|
|
|
|
|
# The radius r to a vertex, using a line perpendicular to the line segment |
141
|
|
|
|
|
|
|
# sin(alpha/2) = (1/2)/r |
142
|
|
|
|
|
|
|
# r = 0.5 / sin(pi/points) |
143
|
|
|
|
|
|
|
# And with points = d*step, starting from d=1 |
144
|
|
|
|
|
|
|
# r = 0.5 / sin(pi/(d*step)) |
145
|
|
|
|
|
|
|
|
146
|
|
|
|
|
|
|
# step==0 is a straight line y==0 x=0,1,2,..., anything else whole plane |
147
|
|
|
|
|
|
|
sub x_negative { |
148
|
4
|
|
|
4
|
1
|
8
|
my ($self) = @_; |
149
|
4
|
|
|
|
|
17
|
return ($self->{'step'} > 0); |
150
|
|
|
|
|
|
|
} |
151
|
|
|
|
|
|
|
*y_negative = \&x_negative; |
152
|
|
|
|
|
|
|
|
153
|
|
|
|
|
|
|
sub y_maximum { |
154
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
155
|
0
|
0
|
|
|
|
0
|
return ($self->{'step'} == 0 ? 0 # step=0 always Y=0 |
156
|
|
|
|
|
|
|
: undef); |
157
|
|
|
|
|
|
|
} |
158
|
|
|
|
|
|
|
|
159
|
|
|
|
|
|
|
sub x_negative_at_n { |
160
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
161
|
|
|
|
|
|
|
return ($self->{'step'} == 0 ? undef # no negatives |
162
|
|
|
|
|
|
|
: $self->{'step'} == 1 ? 3 |
163
|
0
|
0
|
|
|
|
0
|
: $self->n_start + int($self->{'step'}/4) + 1); |
|
|
0
|
|
|
|
|
|
164
|
|
|
|
|
|
|
} |
165
|
|
|
|
|
|
|
sub y_negative_at_n { |
166
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
167
|
|
|
|
|
|
|
return ($self->{'step'} == 0 ? undef # no negatives |
168
|
|
|
|
|
|
|
: $self->{'step'} <= 2 ? 6 |
169
|
0
|
0
|
|
|
|
0
|
: $self->n_start + int($self->{'step'}/2) + 1); |
|
|
0
|
|
|
|
|
|
170
|
|
|
|
|
|
|
} |
171
|
|
|
|
|
|
|
|
172
|
|
|
|
|
|
|
sub sumxy_minimum { |
173
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
174
|
0
|
0
|
|
|
|
0
|
return ($self->{'step'} == 0 ? 0 : undef); |
175
|
|
|
|
|
|
|
} |
176
|
|
|
|
|
|
|
sub sumabsxy_minimum { |
177
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
178
|
|
|
|
|
|
|
# first point N=1 innermost ring |
179
|
0
|
|
|
|
|
0
|
my ($x,$y) = $self->n_to_xy($self->n_start); |
180
|
0
|
|
|
|
|
0
|
return $x; |
181
|
|
|
|
|
|
|
} |
182
|
|
|
|
|
|
|
*diffxy_minimum = \&sumxy_minimum; |
183
|
|
|
|
|
|
|
|
184
|
|
|
|
|
|
|
# step=0 X=0,Y=0 AbsDiff=0 |
185
|
|
|
|
|
|
|
# step=3 N=88 X=Y=5.3579957587697 ring of 24 is a multiple of 8 |
186
|
|
|
|
|
|
|
|
187
|
|
|
|
|
|
|
sub rsquared_minimum { |
188
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
189
|
0
|
|
|
|
|
0
|
my $step = $self->{'step'}; |
190
|
0
|
0
|
|
|
|
0
|
if ($step <= 1) { |
191
|
|
|
|
|
|
|
# step=0 along X axis starting X=0,Y=0 |
192
|
|
|
|
|
|
|
# step=1 start at origin |
193
|
0
|
|
|
|
|
0
|
return 0; |
194
|
|
|
|
|
|
|
} |
195
|
|
|
|
|
|
|
|
196
|
|
|
|
|
|
|
# step=3 *--___ |
197
|
|
|
|
|
|
|
# circle | --__ o 0.5/r = sin60 = sqrt(3)/2 |
198
|
|
|
|
|
|
|
# | o __* / | \ r = 1/sqrt(3) |
199
|
|
|
|
|
|
|
# | ___-- / | \ r^2 = 1/3 |
200
|
|
|
|
|
|
|
# *-- *---------* |
201
|
|
|
|
|
|
|
# 1/2 |
202
|
|
|
|
|
|
|
# polygon |
203
|
|
|
|
|
|
|
# o 0.5/r = sin60 = sqrt(3)/2 |
204
|
|
|
|
|
|
|
# / | \ r = 1/sqrt(3) |
205
|
|
|
|
|
|
|
# / | \ r^2 = 1/3 |
206
|
|
|
|
|
|
|
# *---------* |
207
|
|
|
|
|
|
|
# 1/2 |
208
|
|
|
|
|
|
|
# |
209
|
0
|
0
|
|
|
|
0
|
if ($step == 3) { |
210
|
0
|
0
|
|
|
|
0
|
return ($self->{'ring_shape'} eq 'polygon' ? 3/4 : 1/3); |
211
|
|
|
|
|
|
|
} |
212
|
0
|
0
|
|
|
|
0
|
if ($step == 4) { |
213
|
|
|
|
|
|
|
# radius = sqrt(2)/2, rsquared=1/2 |
214
|
0
|
|
|
|
|
0
|
return 0.5; |
215
|
|
|
|
|
|
|
} |
216
|
|
|
|
|
|
|
|
217
|
|
|
|
|
|
|
# _numsides_to_r() returns 1, no need for a special case here |
218
|
|
|
|
|
|
|
# if ($step == 6) { |
219
|
|
|
|
|
|
|
# # hexagon |
220
|
|
|
|
|
|
|
# return 1; |
221
|
|
|
|
|
|
|
# } |
222
|
|
|
|
|
|
|
|
223
|
0
|
|
|
|
|
0
|
my $r; |
224
|
0
|
0
|
0
|
|
|
0
|
if ($step >= 6 || $self->{'ring_shape'} eq 'polygon') { |
225
|
0
|
|
|
|
|
0
|
$r = _numsides_to_r($step,_PI); |
226
|
|
|
|
|
|
|
} else { |
227
|
0
|
|
|
|
|
0
|
$r = $self->{'base_r'} + 1; |
228
|
|
|
|
|
|
|
} |
229
|
0
|
|
|
|
|
0
|
return $r*$r; |
230
|
|
|
|
|
|
|
} |
231
|
|
|
|
|
|
|
|
232
|
|
|
|
|
|
|
|
233
|
|
|
|
|
|
|
#------------------------------------------------------------------------------ |
234
|
|
|
|
|
|
|
# dx_minimum() etc |
235
|
|
|
|
|
|
|
|
236
|
|
|
|
|
|
|
# step <= 6 |
237
|
|
|
|
|
|
|
# R=base_r+d |
238
|
|
|
|
|
|
|
# theta = 2*$n * $pi / ($d * $step) |
239
|
|
|
|
|
|
|
# = 2pi/(d*step) |
240
|
|
|
|
|
|
|
# dX -> R*sin(theta) |
241
|
|
|
|
|
|
|
# -> R*theta |
242
|
|
|
|
|
|
|
# = (base_r+d)*2pi/(d*step) |
243
|
|
|
|
|
|
|
# -> 2pi/step |
244
|
|
|
|
|
|
|
# |
245
|
|
|
|
|
|
|
# step=5 across first ring |
246
|
|
|
|
|
|
|
# N=6 at X=base_r+2, Y=0 |
247
|
|
|
|
|
|
|
# N=5 at R=base_r+1 theta = 2pi/5 |
248
|
|
|
|
|
|
|
# X=(base_r+1)*cos(theta) |
249
|
|
|
|
|
|
|
# dX = base_r+2 - (base_r+1)*cos(theta) |
250
|
|
|
|
|
|
|
# |
251
|
|
|
|
|
|
|
# step=6 across first ring |
252
|
|
|
|
|
|
|
# base_r = 0.5/sin(_PI/6) - 1 |
253
|
|
|
|
|
|
|
# = 0.5/0.5 - 1 |
254
|
|
|
|
|
|
|
# = 0 |
255
|
|
|
|
|
|
|
# N=7 at X=base_r+2, Y=0 |
256
|
|
|
|
|
|
|
# N=6 at R=base_r+1 theta = 2pi/6 |
257
|
|
|
|
|
|
|
# X=(base_r+1)*cos(theta) |
258
|
|
|
|
|
|
|
# dX = base_r+2 - (base_r+1)*cos(theta) |
259
|
|
|
|
|
|
|
# = base_r+2 - (base_r+1)*0.5 |
260
|
|
|
|
|
|
|
# = 1.5*base_r + 1.5 |
261
|
|
|
|
|
|
|
# = 1.5 |
262
|
|
|
|
|
|
|
# |
263
|
|
|
|
|
|
|
# step > 6 |
264
|
|
|
|
|
|
|
# R = 0.5 / sin($pi / ($d*$step)) |
265
|
|
|
|
|
|
|
# diff = 0.5 / sin($pi / ($d*$step)) - 0.5 / sin($pi / (($d-1)*$step)) |
266
|
|
|
|
|
|
|
# -> 0.5 / ($pi / ($d*$step)) - 0.5 / ($pi / (($d-1)*$step)) |
267
|
|
|
|
|
|
|
# = 0.5 * ($d*$step) / $pi - 0.5 * (($d-1)*$step) / $pi |
268
|
|
|
|
|
|
|
# = step*0.5/pi * ($d - ($d-1)) |
269
|
|
|
|
|
|
|
# = step*0.5/pi |
270
|
|
|
|
|
|
|
# and extra from N=step to N=step+1 |
271
|
|
|
|
|
|
|
# * (1-cos(2pi/step)) |
272
|
|
|
|
|
|
|
# |
273
|
|
|
|
|
|
|
sub dx_minimum { |
274
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
275
|
0
|
0
|
|
|
|
0
|
if ($self->{'step'} == 0) { |
276
|
0
|
|
|
|
|
0
|
return 1; # horizontal only |
277
|
|
|
|
|
|
|
} |
278
|
|
|
|
|
|
|
|
279
|
0
|
0
|
|
|
|
0
|
if ($self->{'step'} > 6) { |
280
|
0
|
|
|
|
|
0
|
return -1; # supremum, unless polygon and step even |
281
|
|
|
|
|
|
|
} |
282
|
0
|
0
|
|
|
|
0
|
if ($self->{'ring_shape'} eq 'polygon') { |
283
|
|
|
|
|
|
|
# step=3,4,5 |
284
|
0
|
|
|
|
|
0
|
return (-2*_PI()) / $self->{'step'}; |
285
|
|
|
|
|
|
|
} else { |
286
|
0
|
|
|
|
|
0
|
return (-2*_PI()) / $self->{'step'}; |
287
|
|
|
|
|
|
|
} |
288
|
|
|
|
|
|
|
} |
289
|
|
|
|
|
|
|
|
290
|
|
|
|
|
|
|
sub dx_maximum { |
291
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
292
|
|
|
|
|
|
|
return ($self->{'step'} == 0 |
293
|
|
|
|
|
|
|
? 1 # horizontal only |
294
|
|
|
|
|
|
|
|
295
|
|
|
|
|
|
|
: $self->{'step'} == 5 |
296
|
|
|
|
|
|
|
? $self->{'base_r'}+2 - ($self->{'base_r'}+1)*cos(2*_PI()/5) |
297
|
|
|
|
|
|
|
|
298
|
|
|
|
|
|
|
: $self->{'step'} == 6 |
299
|
|
|
|
|
|
|
? 1.5 |
300
|
|
|
|
|
|
|
|
301
|
|
|
|
|
|
|
: $self->{'step'} <= 6 |
302
|
|
|
|
|
|
|
? (2*_PI()) / $self->{'step'} |
303
|
|
|
|
|
|
|
|
304
|
|
|
|
|
|
|
# step > 6, between rings |
305
|
|
|
|
|
|
|
: (0.5/_PI()) * $self->{'step'} |
306
|
0
|
0
|
|
|
|
0
|
* (2-cos(2*_PI()/$self->{'step'}))); |
|
|
0
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
307
|
|
|
|
|
|
|
} |
308
|
|
|
|
|
|
|
|
309
|
|
|
|
|
|
|
sub dy_minimum { |
310
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
311
|
|
|
|
|
|
|
return ($self->{'step'} == 0 ? 0 # horizontal only |
312
|
0
|
0
|
|
|
|
0
|
: $self->{'step'} <= 6 ? (-2*_PI) / $self->{'step'} |
|
|
0
|
|
|
|
|
|
313
|
|
|
|
|
|
|
: -1); # supremum |
314
|
|
|
|
|
|
|
} |
315
|
|
|
|
|
|
|
sub dy_maximum { |
316
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
317
|
|
|
|
|
|
|
return ($self->{'step'} == 0 ? 0 # horizontal only |
318
|
0
|
0
|
|
|
|
0
|
: $self->{'step'} <= 6 ? (2*_PI) / $self->{'step'} |
|
|
0
|
|
|
|
|
|
319
|
|
|
|
|
|
|
: 1); # supremum |
320
|
|
|
|
|
|
|
} |
321
|
|
|
|
|
|
|
sub _UNDOCUMENTED__dxdy_list { |
322
|
0
|
|
|
0
|
|
0
|
my ($self) = @_; |
323
|
0
|
0
|
|
|
|
0
|
return ($self->{'step'} == 0 ? (1,0) # E only |
324
|
|
|
|
|
|
|
: ()); # unlimited |
325
|
|
|
|
|
|
|
} |
326
|
|
|
|
|
|
|
|
327
|
|
|
|
|
|
|
sub absdx_minimum { |
328
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
329
|
0
|
|
|
|
|
0
|
my $step = $self->{'step'}; |
330
|
0
|
0
|
|
|
|
0
|
if ($step == 0) { |
331
|
0
|
|
|
|
|
0
|
return 1; # horizontal dX=1 always |
332
|
|
|
|
|
|
|
} |
333
|
0
|
0
|
|
|
|
0
|
if ($self->{'ring_shape'} eq 'polygon') { |
334
|
0
|
0
|
|
|
|
0
|
if ($step % 2) { |
335
|
0
|
|
|
|
|
0
|
return 0; # polygons with odd num sides have left vertical dX=0 |
336
|
|
|
|
|
|
|
} else { |
337
|
0
|
|
|
|
|
0
|
return sin(_PI/2 /$step); |
338
|
|
|
|
|
|
|
} |
339
|
|
|
|
|
|
|
|
340
|
|
|
|
|
|
|
# if ($self->{'step'} % 2 == 1) { |
341
|
|
|
|
|
|
|
# |
342
|
|
|
|
|
|
|
# return 0; |
343
|
|
|
|
|
|
|
# } else { |
344
|
|
|
|
|
|
|
# return abs($self->dx_minimum); |
345
|
|
|
|
|
|
|
# } |
346
|
|
|
|
|
|
|
} |
347
|
0
|
|
|
|
|
0
|
return 0; |
348
|
|
|
|
|
|
|
} |
349
|
|
|
|
|
|
|
sub absdy_minimum { |
350
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
351
|
0
|
|
|
|
|
0
|
my $step = $self->{'step'}; |
352
|
0
|
0
|
|
|
|
0
|
if ($step == 0) { |
353
|
0
|
|
|
|
|
0
|
return 0; # horizontal dX=1 always |
354
|
|
|
|
|
|
|
} |
355
|
0
|
0
|
|
|
|
0
|
if ($self->{'ring_shape'} eq 'polygon') { |
356
|
0
|
0
|
|
|
|
0
|
if ($step == 3) { |
357
|
0
|
|
|
|
|
0
|
return 0.5; # sin(30 degrees) innermost polygon |
358
|
|
|
|
|
|
|
} |
359
|
0
|
|
|
|
|
0
|
my $frac = ($step+2) % 4; |
360
|
0
|
0
|
|
|
|
0
|
if ($frac == 3) { $frac = 1; } |
|
0
|
|
|
|
|
0
|
|
361
|
0
|
|
|
|
|
0
|
return sin(_PI/2 * $frac/$step); |
362
|
|
|
|
|
|
|
} |
363
|
0
|
|
|
|
|
0
|
return 0; |
364
|
|
|
|
|
|
|
} |
365
|
|
|
|
|
|
|
|
366
|
|
|
|
|
|
|
sub dsumxy_minimum { |
367
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
368
|
0
|
0
|
|
|
|
0
|
return ($self->{'step'} == 0 |
369
|
|
|
|
|
|
|
? 1 # horizontal only |
370
|
|
|
|
|
|
|
: -1); # infimum |
371
|
|
|
|
|
|
|
} |
372
|
15
|
|
|
15
|
|
124
|
use constant dsumxy_maximum => 1; |
|
15
|
|
|
|
|
31
|
|
|
15
|
|
|
|
|
47387
|
|
373
|
|
|
|
|
|
|
|
374
|
|
|
|
|
|
|
# FIXME: for step=1 is there a supremum at 9 or thereabouts? |
375
|
|
|
|
|
|
|
# and for other step<6 too? |
376
|
|
|
|
|
|
|
# 2*dXmax * sqrt(2) ? |
377
|
|
|
|
|
|
|
sub ddiffxy_minimum { |
378
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
379
|
|
|
|
|
|
|
return ($self->{'step'} == 0 ? 1 # horizontal only |
380
|
0
|
0
|
|
|
|
0
|
: $self->{'step'} <= 6 ? $self->dx_minimum * sqrt(2) |
|
|
0
|
|
|
|
|
|
381
|
|
|
|
|
|
|
: -1); # infimum |
382
|
|
|
|
|
|
|
} |
383
|
|
|
|
|
|
|
sub ddiffxy_maximum { |
384
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
385
|
|
|
|
|
|
|
return ($self->{'step'} == 0 ? 1 # horizontal only |
386
|
0
|
0
|
|
|
|
0
|
: $self->{'step'} <= 6 ? $self->dx_maximum * sqrt(2) |
|
|
0
|
|
|
|
|
|
387
|
|
|
|
|
|
|
: 1); # supremum |
388
|
|
|
|
|
|
|
} |
389
|
|
|
|
|
|
|
|
390
|
|
|
|
|
|
|
#------------------------------------------------------------------------------ |
391
|
|
|
|
|
|
|
# dir_maximum_dxdy() |
392
|
|
|
|
|
|
|
|
393
|
|
|
|
|
|
|
# polygon step many sides |
394
|
|
|
|
|
|
|
# start at vertical angle 1/4 plus 0.5/step, then k*1/step each side |
395
|
|
|
|
|
|
|
# a = 1/4 + (k+1/2)/step |
396
|
|
|
|
|
|
|
# = (1 + 4(k+1/2)/step) / 4 |
397
|
|
|
|
|
|
|
# = ((4*k+2)/step + 1) / 4 |
398
|
|
|
|
|
|
|
# |
399
|
|
|
|
|
|
|
# maximum want 1 > a >= 1-1/step |
400
|
|
|
|
|
|
|
# 1/4 + (k+1/2)/step >= 1-1/step |
401
|
|
|
|
|
|
|
# (k+1/2)/step >= 3/4-1/step |
402
|
|
|
|
|
|
|
# k+1/2 >= 3*step/4-1 |
403
|
|
|
|
|
|
|
# k >= 3*step/4-3/2 |
404
|
|
|
|
|
|
|
# k >= (3*step-6)/4 |
405
|
|
|
|
|
|
|
# k = ceil((3*step-6)/4) |
406
|
|
|
|
|
|
|
# = floor((3*step-6)/4 + 3/4) |
407
|
|
|
|
|
|
|
# = floor((3*step-3)/4) |
408
|
|
|
|
|
|
|
# high side |
409
|
|
|
|
|
|
|
# 1/4 + (k+1/2)/step < 1 |
410
|
|
|
|
|
|
|
# (k+1/2)/step < 3/4 |
411
|
|
|
|
|
|
|
# k+1/2 < 3*step/4 |
412
|
|
|
|
|
|
|
# k < (3*step-2)/4 |
413
|
|
|
|
|
|
|
# k = floor((3*step-2)/4 - 1/4) |
414
|
|
|
|
|
|
|
# = floor((3*step-3)/4) |
415
|
|
|
|
|
|
|
# |
416
|
|
|
|
|
|
|
# so |
417
|
|
|
|
|
|
|
# a = 1/4 + (floor((3*step-3)/4) + 1/2)/step |
418
|
|
|
|
|
|
|
# = (1 + 4*(floor((3*step-3)/4) + 1/2)/step) / 4 |
419
|
|
|
|
|
|
|
# = ((floor((3*step-3)/4)*4 + 2)/step + 1) / 4 |
420
|
|
|
|
|
|
|
# step=4 a = 7/8 |
421
|
|
|
|
|
|
|
# step=5 a = 19/20 |
422
|
|
|
|
|
|
|
# step=6 a = 5/6 |
423
|
|
|
|
|
|
|
# step=7 a = 25/28 |
424
|
|
|
|
|
|
|
# step=8 a = 15/16 |
425
|
|
|
|
|
|
|
# step=10 a = 9/10 |
426
|
|
|
|
|
|
|
# return (int((3*$step-3)/4) * 4 + 2)/$step + 1; |
427
|
|
|
|
|
|
|
# is full circle less 4,3,2,1 as step-2 mod 4 |
428
|
|
|
|
|
|
|
# |
429
|
|
|
|
|
|
|
# sub dir4_maximum { |
430
|
|
|
|
|
|
|
# my ($self) = @_; |
431
|
|
|
|
|
|
|
# if ($self->{'step'} == 0) { |
432
|
|
|
|
|
|
|
# return 0; # horizontal only |
433
|
|
|
|
|
|
|
# } |
434
|
|
|
|
|
|
|
# my $step = $self->{'step'}; |
435
|
|
|
|
|
|
|
# if ($self->{'ring_shape'} eq 'polygon') { |
436
|
|
|
|
|
|
|
# return (($step-2)%4 - 4)/$step + 4; |
437
|
|
|
|
|
|
|
# } |
438
|
|
|
|
|
|
|
# return 4; # supremum, full circle |
439
|
|
|
|
|
|
|
# } |
440
|
|
|
|
|
|
|
|
441
|
|
|
|
|
|
|
# want a >= 1 |
442
|
|
|
|
|
|
|
# 1/4 + (k+1/2)/step >= 1 |
443
|
|
|
|
|
|
|
# (k+1/2)/step >= 3/4 |
444
|
|
|
|
|
|
|
# k+1/2 >= 3*step/4 |
445
|
|
|
|
|
|
|
# k >= 3*step/4 - 1/2 |
446
|
|
|
|
|
|
|
# k >= (3*step-2)/4 |
447
|
|
|
|
|
|
|
# k = ceil((3*step-2)/4) |
448
|
|
|
|
|
|
|
# = floor((3*step-2)/4 + 3/4) |
449
|
|
|
|
|
|
|
# = floor((3*step+1)/4) |
450
|
|
|
|
|
|
|
# min_a = 1/4 + (floor((3*step+1)/4) + 1/2)/step - 1 |
451
|
|
|
|
|
|
|
# = (1 + 4*(floor((3*step+1)/4) + 1/2)/step ) / 4 |
452
|
|
|
|
|
|
|
# = ((4*floor((3*step+1)/4) + 2)/step + 1) / 4 - 1 |
453
|
|
|
|
|
|
|
# = ((floor((3*step+1)/4)*4 + 2)/step - 3) / 4 |
454
|
|
|
|
|
|
|
# return (int((3*$step+1)/4) * 4 + 2)/$step - 3; |
455
|
|
|
|
|
|
|
# is 0,1,2,3 as step-2 mod 4 |
456
|
|
|
|
|
|
|
# return (($step-2) % 4) / $step; |
457
|
|
|
|
|
|
|
# |
458
|
|
|
|
|
|
|
# but last of ring across to first of next may be shallower |
459
|
|
|
|
|
|
|
# |
460
|
|
|
|
|
|
|
# sub dir4_minimum { |
461
|
|
|
|
|
|
|
# my ($self) = @_; |
462
|
|
|
|
|
|
|
# my $step = $self->{'step'}; |
463
|
|
|
|
|
|
|
# if ($self->{'ring_shape'} eq 'polygon') { |
464
|
|
|
|
|
|
|
# if ($step % 4 != 2) { # polygon step=2mod4 includes horizontal ... |
465
|
|
|
|
|
|
|
# my ($dx,$dy) = $self->n_to_dxdy($self->{'step'}); |
466
|
|
|
|
|
|
|
# return min (atan2($dy,$dx) * (2/_PI), |
467
|
|
|
|
|
|
|
# (($step-2) % 4) / $step); |
468
|
|
|
|
|
|
|
# } |
469
|
|
|
|
|
|
|
# |
470
|
|
|
|
|
|
|
# } |
471
|
|
|
|
|
|
|
# return 0; # horizontal |
472
|
|
|
|
|
|
|
# } |
473
|
|
|
|
|
|
|
|
474
|
|
|
|
|
|
|
sub dir_minimum_dxdy { |
475
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
476
|
0
|
|
|
|
|
0
|
my $step = $self->{'step'}; |
477
|
0
|
0
|
|
|
|
0
|
if ($self->{'ring_shape'} eq 'polygon') { |
478
|
0
|
0
|
|
|
|
0
|
return $self->n_to_dxdy($step == 9 |
479
|
|
|
|
|
|
|
? 9 |
480
|
|
|
|
|
|
|
: int((3*$step+5)/4)); |
481
|
|
|
|
|
|
|
} |
482
|
0
|
|
|
|
|
0
|
return (1,0); # horizontal |
483
|
|
|
|
|
|
|
} |
484
|
|
|
|
|
|
|
sub dir_maximum_dxdy { |
485
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
486
|
0
|
0
|
|
|
|
0
|
if ($self->{'step'} == 0) { |
487
|
0
|
|
|
|
|
0
|
return (1,0); # step=0 horizontal always |
488
|
|
|
|
|
|
|
} |
489
|
|
|
|
|
|
|
|
490
|
0
|
0
|
|
|
|
0
|
if ($self->{'ring_shape'} eq 'polygon') { |
491
|
0
|
|
|
|
|
0
|
my $step = $self->{'step'}; |
492
|
0
|
|
|
|
|
0
|
return $self->n_to_dxdy(int((3*$step+1)/4)); # 1 before the minimum |
493
|
|
|
|
|
|
|
|
494
|
|
|
|
|
|
|
# # just before 3/4 way around, then half back .... |
495
|
|
|
|
|
|
|
# # sides side |
496
|
|
|
|
|
|
|
# # ----- ---- |
497
|
|
|
|
|
|
|
# # 3 1 |
498
|
|
|
|
|
|
|
# # 4 2 |
499
|
|
|
|
|
|
|
# # 5 3 |
500
|
|
|
|
|
|
|
# # 6 3 |
501
|
|
|
|
|
|
|
# # 7 4 |
502
|
|
|
|
|
|
|
# # 8 5 |
503
|
|
|
|
|
|
|
# # 9 6 |
504
|
|
|
|
|
|
|
# # 10 6 |
505
|
|
|
|
|
|
|
# return _circlefrac_to_xy (1, int((3*$step-3)/4), $step, _PI); |
506
|
|
|
|
|
|
|
} |
507
|
|
|
|
|
|
|
|
508
|
0
|
|
|
|
|
0
|
return (0,0); # supremum, full circle |
509
|
|
|
|
|
|
|
} |
510
|
|
|
|
|
|
|
|
511
|
|
|
|
|
|
|
#------------------------------------------------------------------------------ |
512
|
|
|
|
|
|
|
|
513
|
|
|
|
|
|
|
sub new { |
514
|
|
|
|
|
|
|
### MultipleRings new() ... |
515
|
146
|
|
|
146
|
1
|
18871
|
my $self = shift->SUPER::new(@_); |
516
|
|
|
|
|
|
|
|
517
|
146
|
|
|
|
|
306
|
my $step = $self->{'step'}; |
518
|
146
|
50
|
|
|
|
432
|
$step = $self->{'step'} = (! defined $step ? 6 # default |
|
|
100
|
|
|
|
|
|
519
|
|
|
|
|
|
|
: $step < 0 ? 0 # minimum |
520
|
|
|
|
|
|
|
: $step); |
521
|
|
|
|
|
|
|
### $step |
522
|
|
|
|
|
|
|
|
523
|
146
|
|
100
|
|
|
534
|
my $ring_shape = ($self->{'ring_shape'} ||= 'circle'); |
524
|
146
|
50
|
66
|
|
|
350
|
if (! ($ring_shape eq 'circle' || $ring_shape eq 'polygon')) { |
525
|
0
|
|
|
|
|
0
|
croak "Unrecognised ring_shape option: ", $ring_shape; |
526
|
|
|
|
|
|
|
} |
527
|
146
|
100
|
|
|
|
278
|
if ($step < 3) { |
528
|
|
|
|
|
|
|
# polygon shape only for step >= 3 |
529
|
79
|
|
|
|
|
125
|
$ring_shape = $self->{'ring_shape'} = 'circle'; |
530
|
|
|
|
|
|
|
} |
531
|
|
|
|
|
|
|
|
532
|
146
|
100
|
|
|
|
444
|
if ($ring_shape eq 'polygon') { |
|
|
100
|
|
|
|
|
|
|
|
100
|
|
|
|
|
|
|
|
100
|
|
|
|
|
|
|
|
100
|
|
|
|
|
|
533
|
|
|
|
|
|
|
### polygon ... |
534
|
4
|
50
|
|
|
|
9
|
if ($step == 6) { |
|
|
0
|
|
|
|
|
|
535
|
|
|
|
|
|
|
### 0.5/sin(PI/6)=1 exactly ... |
536
|
4
|
|
|
|
|
9
|
$self->{'base_r'} = 1; |
537
|
|
|
|
|
|
|
} elsif ($step == 3) { |
538
|
|
|
|
|
|
|
### 0.5/sin(PI/3)=sqrt(3)/3 ... |
539
|
0
|
|
|
|
|
0
|
$self->{'base_r'} = sqrt(3)/3; |
540
|
|
|
|
|
|
|
} else { |
541
|
0
|
|
|
|
|
0
|
$self->{'base_r'} = 0.5/sin(_PI/$step); |
542
|
|
|
|
|
|
|
} |
543
|
|
|
|
|
|
|
|
544
|
|
|
|
|
|
|
} elsif ($step == 6) { |
545
|
|
|
|
|
|
|
### 0.5/sin(PI/6) = 1 exactly ... |
546
|
18
|
|
|
|
|
31
|
$self->{'base_r'} = 0; |
547
|
|
|
|
|
|
|
|
548
|
|
|
|
|
|
|
} elsif ($step == 4) { |
549
|
|
|
|
|
|
|
### 0.5/sin(PI/4) = sqrt(2)/2 ... |
550
|
13
|
|
|
|
|
25
|
$self->{'base_r'} = sqrt(2)/2 - 1; |
551
|
|
|
|
|
|
|
|
552
|
|
|
|
|
|
|
} elsif ($step == 3) { |
553
|
|
|
|
|
|
|
### 0.5/sin(PI/3) = sqrt(3)/3 ... |
554
|
12
|
|
|
|
|
24
|
$self->{'base_r'} = sqrt(3)/3 - 1; |
555
|
|
|
|
|
|
|
|
556
|
|
|
|
|
|
|
} elsif ($step < 6) { |
557
|
|
|
|
|
|
|
### sin: $step>1 && sin(_PI/$step) |
558
|
83
|
|
66
|
|
|
236
|
$self->{'base_r'} = ($step > 1 && 0.5/sin(_PI/$step)) - 1; |
559
|
|
|
|
|
|
|
} |
560
|
|
|
|
|
|
|
### base r: $self->{'base_r'} |
561
|
|
|
|
|
|
|
|
562
|
146
|
|
|
|
|
283
|
return $self; |
563
|
|
|
|
|
|
|
} |
564
|
|
|
|
|
|
|
|
565
|
|
|
|
|
|
|
# with N decremented |
566
|
|
|
|
|
|
|
# d = [ 1, 2, 3, 4, 5 ] |
567
|
|
|
|
|
|
|
# N = [ 0, 1, 3, 6, 10 ] |
568
|
|
|
|
|
|
|
# |
569
|
|
|
|
|
|
|
# N = (1/2 d^2 - 1/2 d) |
570
|
|
|
|
|
|
|
# = (1/2*$d**2 - 1/2*$d) |
571
|
|
|
|
|
|
|
# = ((0.5*$d - 0.5)*$d) |
572
|
|
|
|
|
|
|
# = 0.5*$d*($d-1) |
573
|
|
|
|
|
|
|
# |
574
|
|
|
|
|
|
|
# d = 1/2 + sqrt(2 * $n + 1/4) |
575
|
|
|
|
|
|
|
# = 0.5 + sqrt(2*$n + 0.25) |
576
|
|
|
|
|
|
|
# = [ 1 + 2*sqrt(2n + 1/4) ] / 2 |
577
|
|
|
|
|
|
|
# = [ 1 + sqrt(8n + 1) ] / 2 |
578
|
|
|
|
|
|
|
# |
579
|
|
|
|
|
|
|
# (d+1)d/2 - d(d-1)/2 |
580
|
|
|
|
|
|
|
# = [ (d^2 + d) - (d^2-d) ] / 2 |
581
|
|
|
|
|
|
|
# = [ d^2 + d - d^2 + d ] / 2 |
582
|
|
|
|
|
|
|
# = 2d/2 = d |
583
|
|
|
|
|
|
|
# |
584
|
|
|
|
|
|
|
# radius |
585
|
|
|
|
|
|
|
# step > 6 1 / (2 * sin(pi / ($d*$step)) |
586
|
|
|
|
|
|
|
# step <= 6 Rbase + d |
587
|
|
|
|
|
|
|
# |
588
|
|
|
|
|
|
|
# usual polygon formula R = a / 2*sin(pi/n) |
589
|
|
|
|
|
|
|
# cf inner radius r = a / 2*tan(pi/n) |
590
|
|
|
|
|
|
|
# along chord |
591
|
|
|
|
|
|
|
# |
592
|
|
|
|
|
|
|
# polygon horizontal when a=1 |
593
|
|
|
|
|
|
|
# 1/4 + (k+1/2)/step = 1 |
594
|
|
|
|
|
|
|
# (k+1/2)/step = 3/4 |
595
|
|
|
|
|
|
|
# k+1/2 = 3*step/4 |
596
|
|
|
|
|
|
|
# k = 3*step/4 - 1/2 |
597
|
|
|
|
|
|
|
# k = ()/4 |
598
|
|
|
|
|
|
|
# 4*k = 3*step-2 |
599
|
|
|
|
|
|
|
# and when a=1/2 |
600
|
|
|
|
|
|
|
# 1/4 + (k+1/2)/step = 1/2 |
601
|
|
|
|
|
|
|
# (k+1/2)/step = 1/4 |
602
|
|
|
|
|
|
|
# k+1/2 = step/4 |
603
|
|
|
|
|
|
|
# 4*k+2 = step |
604
|
|
|
|
|
|
|
|
605
|
|
|
|
|
|
|
# 1/2 / R = sin(2pi/sides) |
606
|
|
|
|
|
|
|
# 1/2 / (R^2 - 1/4) = tan(2pi/sides) |
607
|
|
|
|
|
|
|
# f(x) = 1/2 / R - sin(2pi/sides) = $f |
608
|
|
|
|
|
|
|
# f'(x) = -1/2 / R^2 - cos(2pi/sides) = $slope |
609
|
|
|
|
|
|
|
# $r-$f/$slope better approx |
610
|
|
|
|
|
|
|
# (1/2 / R - sin(2pi/sides)) / (-1/2 / R^2 - cos(2pi/sides)) |
611
|
|
|
|
|
|
|
# = (R/2 - R^2 sin(2pi/sides)) / (-1/2 - R^2 * cos(2pi/sides)) |
612
|
|
|
|
|
|
|
|
613
|
|
|
|
|
|
|
sub n_to_xy { |
614
|
179
|
|
|
179
|
1
|
1026
|
my ($self, $n) = @_; |
615
|
|
|
|
|
|
|
### MultipleRings n_to_xy(): "n=$n step=$self->{'step'} shape=$self->{'ring_shape'}" |
616
|
|
|
|
|
|
|
|
617
|
|
|
|
|
|
|
# "$n<1" separate test from decrement so as to warn on undef |
618
|
|
|
|
|
|
|
# don't have anything sensible for infinity, and _PI / infinity would |
619
|
|
|
|
|
|
|
# throw a div by zero |
620
|
179
|
50
|
|
|
|
407
|
if ($n < 1) { return; } |
|
0
|
|
|
|
|
0
|
|
621
|
179
|
50
|
|
|
|
907
|
if (is_infinite($n)) { return ($n,$n); } |
|
0
|
|
|
|
|
0
|
|
622
|
179
|
|
|
|
|
1706
|
$n -= 1; |
623
|
|
|
|
|
|
|
|
624
|
|
|
|
|
|
|
### decremented n: $n |
625
|
179
|
|
|
|
|
1074
|
my $step = $self->{'step'}; |
626
|
179
|
100
|
|
|
|
347
|
if (! $step) { |
627
|
|
|
|
|
|
|
### step==0 goes along X axis ... |
628
|
13
|
|
|
|
|
38
|
return ($n, 0); |
629
|
|
|
|
|
|
|
} |
630
|
|
|
|
|
|
|
|
631
|
166
|
|
|
|
|
497
|
my $d = int((_sqrtint(8*$n/$step + 1) + 1) / 2); |
632
|
|
|
|
|
|
|
|
633
|
|
|
|
|
|
|
### d frac: (sqrt(int(8*$n) + 1) + 1) / 2 |
634
|
|
|
|
|
|
|
### d int: "$d" |
635
|
|
|
|
|
|
|
### base: ($d*($d-1)/2).'' |
636
|
|
|
|
|
|
|
### next base: (($d+1)*$d/2).'' |
637
|
|
|
|
|
|
|
### assert: $n >= ($d*($d-1)/2) |
638
|
|
|
|
|
|
|
### assert: $n < ($step * ($d+1) * $d / 2) |
639
|
|
|
|
|
|
|
|
640
|
166
|
|
|
|
|
1507
|
$n -= $d*($d-1)/2 * $step; |
641
|
|
|
|
|
|
|
### n remainder: "$n" |
642
|
|
|
|
|
|
|
### assert: $n >= 0 |
643
|
|
|
|
|
|
|
### assert: $n < $d*$step |
644
|
|
|
|
|
|
|
|
645
|
166
|
|
|
|
|
1839
|
my $zero = $n * 0; |
646
|
166
|
100
|
|
|
|
854
|
if (ref $n) { |
647
|
2
|
100
|
|
|
|
10
|
if ($n->isa('Math::BigInt')) { |
|
|
50
|
|
|
|
|
|
648
|
1
|
|
|
|
|
4
|
$n = Math::PlanePath::SacksSpiral::_bigfloat()->new($n); |
649
|
|
|
|
|
|
|
} elsif ($n->isa('Math::BigRat')) { |
650
|
0
|
|
|
|
|
0
|
$n = $n->as_float; |
651
|
|
|
|
|
|
|
} |
652
|
2
|
50
|
|
|
|
176
|
if ($n->isa('Math::BigFloat')) { |
653
|
|
|
|
|
|
|
### bigfloat ... |
654
|
2
|
|
|
|
|
27
|
$d = Math::BigFloat->new($d); |
655
|
|
|
|
|
|
|
} |
656
|
|
|
|
|
|
|
} |
657
|
166
|
|
|
|
|
458
|
my $pi = _pi($n); |
658
|
|
|
|
|
|
|
### $pi |
659
|
|
|
|
|
|
|
|
660
|
|
|
|
|
|
|
# my $base_r = $self->{'base_r'}; |
661
|
|
|
|
|
|
|
# $base_r = Math::BigFloat->new($base_r); |
662
|
|
|
|
|
|
|
|
663
|
|
|
|
|
|
|
{ |
664
|
166
|
|
|
|
|
1244
|
my $numsides; |
|
166
|
|
|
|
|
268
|
|
665
|
|
|
|
|
|
|
my $r; |
666
|
166
|
100
|
|
|
|
358
|
if ($self->{'ring_shape'} eq 'circle') { |
667
|
|
|
|
|
|
|
### circle ... |
668
|
162
|
|
|
|
|
250
|
$numsides = $d * $step; |
669
|
162
|
100
|
|
|
|
905
|
if ($step > 6) { |
670
|
20
|
|
|
|
|
42
|
$r = 0.5 / sin($pi / $numsides); |
671
|
|
|
|
|
|
|
} else { |
672
|
142
|
|
|
|
|
188
|
my $base_r; |
673
|
142
|
100
|
|
|
|
335
|
if ($step == 6) { |
|
|
100
|
|
|
|
|
|
|
|
100
|
|
|
|
|
|
|
|
100
|
|
|
|
|
|
674
|
17
|
|
|
|
|
27
|
$base_r = 0; # exactly |
675
|
|
|
|
|
|
|
} elsif ($step == 4) { |
676
|
|
|
|
|
|
|
### 0.5/sin(PI/4)=sqrt(2)/2 ... |
677
|
21
|
|
|
|
|
66
|
$base_r = sqrt(0.5 + $zero) - 1; # sqrt() instead of sin() |
678
|
|
|
|
|
|
|
} elsif ($step == 3) { |
679
|
|
|
|
|
|
|
### 0.5/sin(PI/3)=sqrt(3)/3 ... |
680
|
19
|
|
|
|
|
39
|
$base_r = sqrt(3 + $zero)/3 - 1; # sqrt() instead of sin() |
681
|
|
|
|
|
|
|
} elsif ($step == 1) { |
682
|
51
|
|
|
|
|
68
|
$base_r = -1; # so initial d=1 at $r=0 |
683
|
|
|
|
|
|
|
} else { |
684
|
34
|
|
|
|
|
69
|
$base_r = 0.5/sin($pi/$step) - 1; |
685
|
|
|
|
|
|
|
} |
686
|
142
|
|
|
|
|
244
|
$r = $base_r + $d; |
687
|
|
|
|
|
|
|
} |
688
|
|
|
|
|
|
|
} else { |
689
|
|
|
|
|
|
|
### polygon ... |
690
|
4
|
|
|
|
|
10
|
$numsides = $step; |
691
|
4
|
|
|
|
|
9
|
my $base_r = _numsides_to_r($step,$pi); |
692
|
4
|
50
|
|
|
|
10
|
if ($step > 6) { |
693
|
0
|
|
|
|
|
0
|
$r = $base_r*$d; |
694
|
|
|
|
|
|
|
} else { |
695
|
4
|
|
|
|
|
11
|
$r = $base_r + ($d-1)/cos($pi/$step); |
696
|
|
|
|
|
|
|
} |
697
|
4
|
|
|
|
|
8
|
$n /= $d; |
698
|
|
|
|
|
|
|
} |
699
|
|
|
|
|
|
|
### n with frac: $n |
700
|
|
|
|
|
|
|
|
701
|
|
|
|
|
|
|
# numsides even N > numsides/2 |
702
|
|
|
|
|
|
|
# numsides odd N >= (numsides+1)/2 = ceil(numsides/2) |
703
|
166
|
|
|
|
|
765
|
my $y_neg; |
704
|
166
|
100
|
|
|
|
375
|
if (2*$n >= $numsides) { |
705
|
51
|
|
|
|
|
566
|
$n = $numsides - $n; |
706
|
51
|
|
|
|
|
329
|
$y_neg = 1; |
707
|
|
|
|
|
|
|
} |
708
|
|
|
|
|
|
|
|
709
|
166
|
|
|
|
|
640
|
my $x_neg; |
710
|
|
|
|
|
|
|
my $xy_transpose; |
711
|
166
|
100
|
|
|
|
346
|
if ($numsides % 2 == 0) { |
712
|
120
|
100
|
|
|
|
1672
|
if (4*$n >= $numsides) { |
713
|
48
|
|
|
|
|
543
|
$n = $numsides/2 - $n; |
714
|
48
|
|
|
|
|
1082
|
$x_neg = 1; |
715
|
|
|
|
|
|
|
} |
716
|
120
|
100
|
100
|
|
|
714
|
if ($numsides % 4 == 0 && 8*$n >= $numsides) { |
717
|
19
|
|
|
|
|
40
|
$n = $numsides/4 - $n; |
718
|
19
|
|
|
|
|
29
|
$xy_transpose = 1; |
719
|
|
|
|
|
|
|
} |
720
|
|
|
|
|
|
|
} |
721
|
|
|
|
|
|
|
|
722
|
166
|
|
|
|
|
1585
|
my $side = int($n); |
723
|
166
|
|
|
|
|
426
|
$n -= $side; |
724
|
|
|
|
|
|
|
### $side |
725
|
|
|
|
|
|
|
|
726
|
166
|
|
|
|
|
545
|
my ($x, $y) = _circlefrac_to_xy($r, $side, $numsides, $pi); |
727
|
|
|
|
|
|
|
|
728
|
166
|
100
|
|
|
|
486906
|
if ($n) { |
729
|
|
|
|
|
|
|
# fractional n offset into side ... |
730
|
|
|
|
|
|
|
|
731
|
25
|
|
|
|
|
37
|
my ($to_x, $to_y); |
732
|
25
|
|
|
|
|
37
|
$side += 1; |
733
|
25
|
100
|
66
|
|
|
88
|
if (2*$side == $numsides+1) { |
|
|
100
|
|
|
|
|
|
734
|
|
|
|
|
|
|
# vertical at left, so X unchanged Y negate |
735
|
3
|
|
|
|
|
15
|
$to_x = $x; |
736
|
3
|
|
|
|
|
8
|
$to_y = - $y; |
737
|
|
|
|
|
|
|
|
738
|
|
|
|
|
|
|
} elsif (4*$side == $numsides+2 || 4*$side == 3*$numsides-2) { |
739
|
|
|
|
|
|
|
# horizontal at top or bottom, so Y unchanged X negate |
740
|
10
|
|
|
|
|
13
|
$to_x = - $x; |
741
|
10
|
|
|
|
|
16
|
$to_y = $y; |
742
|
|
|
|
|
|
|
|
743
|
|
|
|
|
|
|
} else { |
744
|
12
|
|
|
|
|
22
|
($to_x, $to_y) = _circlefrac_to_xy($r, $side, $numsides, $pi); |
745
|
|
|
|
|
|
|
} |
746
|
|
|
|
|
|
|
|
747
|
|
|
|
|
|
|
### $side |
748
|
|
|
|
|
|
|
### $r |
749
|
|
|
|
|
|
|
### from: "$x, $y" |
750
|
|
|
|
|
|
|
### to: "$to_x, $to_y" |
751
|
|
|
|
|
|
|
|
752
|
|
|
|
|
|
|
# If vertical or horizontal then don't apply the proportions since the |
753
|
|
|
|
|
|
|
# two parts $x*$n and $to_x*(1-$n) can round off giving the sum != to |
754
|
|
|
|
|
|
|
# the original $x. |
755
|
25
|
100
|
|
|
|
56
|
if ($to_x != $x) { |
756
|
22
|
|
|
|
|
43
|
$x = $x*(1-$n) + $to_x*$n; |
757
|
|
|
|
|
|
|
} |
758
|
25
|
100
|
|
|
|
47
|
if ($to_y != $y) { |
759
|
14
|
|
|
|
|
83
|
$y = $y*(1-$n) + $to_y*$n; |
760
|
|
|
|
|
|
|
} |
761
|
|
|
|
|
|
|
} |
762
|
|
|
|
|
|
|
|
763
|
166
|
100
|
|
|
|
339
|
if ($xy_transpose) { |
764
|
19
|
|
|
|
|
37
|
($x,$y) = ($y,$x); |
765
|
|
|
|
|
|
|
} |
766
|
166
|
100
|
|
|
|
321
|
if ($x_neg) { |
767
|
48
|
|
|
|
|
83
|
$x = -$x; |
768
|
|
|
|
|
|
|
} |
769
|
166
|
100
|
|
|
|
320
|
if ($y_neg) { |
770
|
51
|
|
|
|
|
74
|
$y = -$y; |
771
|
|
|
|
|
|
|
} |
772
|
|
|
|
|
|
|
|
773
|
|
|
|
|
|
|
### final: "x=$x y=$y" |
774
|
166
|
|
|
|
|
594
|
return ($x, $y); |
775
|
|
|
|
|
|
|
} |
776
|
|
|
|
|
|
|
|
777
|
|
|
|
|
|
|
# { |
778
|
|
|
|
|
|
|
# # && $d != 0 # watch out for overflow making d==0 ?? |
779
|
|
|
|
|
|
|
# # |
780
|
|
|
|
|
|
|
# my $d_step = $d*$step; |
781
|
|
|
|
|
|
|
# my $r = ($step > 6 |
782
|
|
|
|
|
|
|
# ? 0.5 / sin($pi / $d_step) |
783
|
|
|
|
|
|
|
# : $base_r + $d); |
784
|
|
|
|
|
|
|
# ### r: "$r" |
785
|
|
|
|
|
|
|
# |
786
|
|
|
|
|
|
|
# my $n2 = 2*$n; |
787
|
|
|
|
|
|
|
# |
788
|
|
|
|
|
|
|
# if ($n2 == int($n2)) { |
789
|
|
|
|
|
|
|
# if (($n2 % $d_step) == 0) { |
790
|
|
|
|
|
|
|
# ### theta=0 or theta=pi, exactly on X axis ... |
791
|
|
|
|
|
|
|
# return ($n ? -$r : $r, # n remainder 0 means +ve X axis, non-zero -ve |
792
|
|
|
|
|
|
|
# 0); |
793
|
|
|
|
|
|
|
# } |
794
|
|
|
|
|
|
|
# if (($d_step % 2) == 0) { |
795
|
|
|
|
|
|
|
# my $n2sub = $n2 - $d_step/2; |
796
|
|
|
|
|
|
|
# if (($n2sub % $d_step) == 0) { |
797
|
|
|
|
|
|
|
# ### theta=pi/2 or theta=3pi/2, exactly on Y axis ... |
798
|
|
|
|
|
|
|
# return (0, |
799
|
|
|
|
|
|
|
# $n2sub ? -$r : $r); |
800
|
|
|
|
|
|
|
# } |
801
|
|
|
|
|
|
|
# } |
802
|
|
|
|
|
|
|
# } |
803
|
|
|
|
|
|
|
# |
804
|
|
|
|
|
|
|
# my $theta = $n2 * $pi / $d_step; |
805
|
|
|
|
|
|
|
# |
806
|
|
|
|
|
|
|
# ### theta frac: (($n - $d*($d-1)/2)/$d).'' |
807
|
|
|
|
|
|
|
# ### theta: "$theta" |
808
|
|
|
|
|
|
|
# |
809
|
|
|
|
|
|
|
# return ($r * cos($theta), |
810
|
|
|
|
|
|
|
# $r * sin($theta)); |
811
|
|
|
|
|
|
|
# } |
812
|
|
|
|
|
|
|
} |
813
|
|
|
|
|
|
|
|
814
|
|
|
|
|
|
|
# $side is 0 to $numsides-1 |
815
|
|
|
|
|
|
|
sub _circlefrac_to_xy { |
816
|
178
|
|
|
178
|
|
316
|
my ($r, $side, $numsides, $pi) = @_; |
817
|
|
|
|
|
|
|
### _circlefrac_to_xy(): "r=$r side=$side numsides=$numsides pi=$pi" |
818
|
|
|
|
|
|
|
|
819
|
178
|
50
|
|
|
|
344
|
if (2*$side == $numsides) { |
820
|
|
|
|
|
|
|
### 180-degrees, so X=R, Y=0 ... |
821
|
0
|
|
|
|
|
0
|
return (-$r, 0); |
822
|
|
|
|
|
|
|
|
823
|
|
|
|
|
|
|
} |
824
|
178
|
100
|
|
|
|
1124
|
if (4*$side == $numsides) { |
825
|
|
|
|
|
|
|
### 90-degrees, so X=0, Y=R ... |
826
|
4
|
|
|
|
|
11
|
return (0, $r); |
827
|
|
|
|
|
|
|
} |
828
|
174
|
100
|
|
|
|
1085
|
if (6*$side == $numsides) { |
829
|
|
|
|
|
|
|
### 60-degrees, so X=R/2, Y=sqrt(3)/2*R ... |
830
|
7
|
|
|
|
|
25
|
return ($r / 2, |
831
|
|
|
|
|
|
|
$r * sqrt(3 + $r*0) / 2); |
832
|
|
|
|
|
|
|
} |
833
|
167
|
100
|
|
|
|
1127
|
if (8*$side == $numsides) { |
834
|
|
|
|
|
|
|
### 45-degrees, so X=Y=R/sqrt(2) ... |
835
|
1
|
|
|
|
|
4
|
my $x = $r / sqrt(2 + $r*0); |
836
|
1
|
|
|
|
|
3
|
return ($x, $x); |
837
|
|
|
|
|
|
|
} |
838
|
|
|
|
|
|
|
|
839
|
|
|
|
|
|
|
# my $two_pi = (ref $r && $r->isa('Math::BigFloat') |
840
|
|
|
|
|
|
|
# ? 2*Math::BigFloat->bpi; |
841
|
|
|
|
|
|
|
# : 2*_PI); |
842
|
|
|
|
|
|
|
# |
843
|
|
|
|
|
|
|
# if (2*$side == $numsides+1) { |
844
|
|
|
|
|
|
|
# ### first below X axis ... |
845
|
|
|
|
|
|
|
# my $theta = 2*$pi * ($side-1)/$numsides; |
846
|
|
|
|
|
|
|
# return ($r * cos($theta), |
847
|
|
|
|
|
|
|
# - $r * sin($theta)); |
848
|
|
|
|
|
|
|
# } |
849
|
|
|
|
|
|
|
# if (4*$side == $numsides+1) { |
850
|
|
|
|
|
|
|
# ### first past Y axis ... |
851
|
|
|
|
|
|
|
# my $theta = 2*$pi * ($side-1)/$numsides; |
852
|
|
|
|
|
|
|
# return (- $r * cos($theta), |
853
|
|
|
|
|
|
|
# $r * sin($theta)); |
854
|
|
|
|
|
|
|
# } |
855
|
|
|
|
|
|
|
|
856
|
|
|
|
|
|
|
### general case ... |
857
|
166
|
|
|
|
|
1067
|
my $theta = 2 * $pi * $side/$numsides; |
858
|
166
|
|
|
|
|
2983
|
return (cos($theta) * $r, |
859
|
|
|
|
|
|
|
sin($theta) * $r); |
860
|
|
|
|
|
|
|
} |
861
|
|
|
|
|
|
|
|
862
|
|
|
|
|
|
|
# my $numsides = $step; |
863
|
|
|
|
|
|
|
# if ($self->{'ring_shape'} eq 'polygon') { |
864
|
|
|
|
|
|
|
# $n /= $d; |
865
|
|
|
|
|
|
|
# my $base_r = _numsides_to_r($step,$pi); |
866
|
|
|
|
|
|
|
# if ($step > 6) { |
867
|
|
|
|
|
|
|
# $r = $base_r*$d; |
868
|
|
|
|
|
|
|
# } else { |
869
|
|
|
|
|
|
|
# $r = $base_r + ($d-1)/cos($pi/$step); |
870
|
|
|
|
|
|
|
# } |
871
|
|
|
|
|
|
|
# } else { |
872
|
|
|
|
|
|
|
# $numsides *= $d; |
873
|
|
|
|
|
|
|
# if ($step > 6) { |
874
|
|
|
|
|
|
|
# $r = _numsides_to_r($numsides,$pi); |
875
|
|
|
|
|
|
|
# } else { |
876
|
|
|
|
|
|
|
# $r = _numsides_to_r($step,$pi) + $d; |
877
|
|
|
|
|
|
|
# } |
878
|
|
|
|
|
|
|
# } |
879
|
|
|
|
|
|
|
# my $side = int($n); |
880
|
|
|
|
|
|
|
# $n -= $side; |
881
|
|
|
|
|
|
|
|
882
|
|
|
|
|
|
|
sub _numsides_to_r { |
883
|
4
|
|
|
4
|
|
9
|
my ($numsides, $pi) = @_; |
884
|
4
|
50
|
|
|
|
10
|
if ($numsides == 3) { return sqrt(0.75 + $pi*0); } |
|
0
|
|
|
|
|
0
|
|
885
|
4
|
50
|
|
|
|
8
|
if ($numsides == 4) { return sqrt(0.5 + $pi*0); } |
|
0
|
|
|
|
|
0
|
|
886
|
4
|
50
|
|
|
|
9
|
if ($numsides == 6) { return 1 + $pi*0; } |
|
4
|
|
|
|
|
11
|
|
887
|
0
|
|
|
|
|
0
|
return 0.5 / sin($pi/$numsides); |
888
|
|
|
|
|
|
|
} |
889
|
|
|
|
|
|
|
|
890
|
|
|
|
|
|
|
|
891
|
|
|
|
|
|
|
# for step=4 |
892
|
|
|
|
|
|
|
# R = sqrt(2)/2 + d |
893
|
|
|
|
|
|
|
# R^2 = (sqrt(2)/2 + d)^2 |
894
|
|
|
|
|
|
|
# = 2/4 + 2*sqrt(2)/2*d + d^2 |
895
|
|
|
|
|
|
|
# = 1/2 + d*sqrt(2) + d^2 |
896
|
|
|
|
|
|
|
# not an integer |
897
|
|
|
|
|
|
|
# |
898
|
|
|
|
|
|
|
sub n_to_rsquared { |
899
|
107
|
|
|
107
|
1
|
9706
|
my ($self, $n) = @_; |
900
|
|
|
|
|
|
|
### MultipleRings n_to_rsquared(): "n=$n" |
901
|
107
|
50
|
|
|
|
268
|
if ($n < 1) { return undef; } |
|
0
|
|
|
|
|
0
|
|
902
|
107
|
50
|
|
|
|
288
|
if (is_infinite($n)) { return $n; } |
|
0
|
|
|
|
|
0
|
|
903
|
|
|
|
|
|
|
|
904
|
107
|
100
|
|
|
|
261
|
if (defined (my $r = _n_to_radius_exact($self,$n))) { |
905
|
55
|
|
|
|
|
137
|
return $r*$r; |
906
|
|
|
|
|
|
|
} |
907
|
52
|
100
|
|
|
|
120
|
if ($self->{'step'} == 1) { |
908
|
|
|
|
|
|
|
# $n < 4 covered by _n_to_radius_exact() |
909
|
|
|
|
|
|
|
|
910
|
26
|
100
|
66
|
|
|
87
|
if ($n >= 4 && $n < 7) { |
911
|
|
|
|
|
|
|
# triangle numsides=3 |
912
|
|
|
|
|
|
|
# N=4 at X=2, Y=0 |
913
|
|
|
|
|
|
|
# N=5 at X=-1, Y=sqrt(3) |
914
|
|
|
|
|
|
|
# N=4+f at X=2-3*f Y=f*sqrt(3) |
915
|
|
|
|
|
|
|
# R^2 = (2-3f)^2 + 3*f^2 |
916
|
|
|
|
|
|
|
# = 4-12f+9*f^2 + 3*f^2 |
917
|
|
|
|
|
|
|
# = 4-12f+12*f^2 |
918
|
|
|
|
|
|
|
# = 4*(1 - 3f + 3*f^2) |
919
|
|
|
|
|
|
|
# = 4 - 6*(2*f) + 3*(2*f)^2 |
920
|
|
|
|
|
|
|
# f=1/2 is R^2 = 1 |
921
|
|
|
|
|
|
|
# N=5+f at X=-1 Y = sqrt(3)*(1-2*f) |
922
|
|
|
|
|
|
|
# R^2 = 1 + 3*(1-2*f)^2 |
923
|
|
|
|
|
|
|
# = 1 + 3 - 3*4*f + 3*4*f^2 |
924
|
|
|
|
|
|
|
# = 4 - 12*f + 12*f^2 |
925
|
|
|
|
|
|
|
# = 4 - 12*(f - f^2) |
926
|
|
|
|
|
|
|
# = 4 - 12*f*(1 - f) |
927
|
|
|
|
|
|
|
|
928
|
12
|
|
|
|
|
20
|
$n -= int($n); |
929
|
12
|
|
|
|
|
36
|
return 4 - 12*$n*(1-$n); |
930
|
|
|
|
|
|
|
} |
931
|
|
|
|
|
|
|
|
932
|
14
|
100
|
66
|
|
|
48
|
if ($n >= 7 && $n < 11) { |
933
|
|
|
|
|
|
|
### square numsides=4 ... |
934
|
|
|
|
|
|
|
# X=3-3*f Y=3*f |
935
|
|
|
|
|
|
|
# R^2 = (3-3*f)^2 + (3*f)^2 |
936
|
|
|
|
|
|
|
# = 9*[ (1-f)^2 + f^2) ] |
937
|
|
|
|
|
|
|
# = 9*[ 1 - 2f + f^2 + f^2) ] |
938
|
|
|
|
|
|
|
# = 9*[ 1 - 2f + 2f^2 ] |
939
|
|
|
|
|
|
|
# = 9*[ 1 - 2(f - f^2) ] |
940
|
|
|
|
|
|
|
# = 9 - 18*f*(1 - f) |
941
|
|
|
|
|
|
|
# eg f=1/2 R^2 = (sqrt(2)/2*3)^2 = 2/4*9 = 9/2 |
942
|
|
|
|
|
|
|
|
943
|
8
|
|
|
|
|
12
|
$n -= int($n); |
944
|
8
|
|
|
|
|
26
|
return 9 - 18*$n*(1-$n); |
945
|
|
|
|
|
|
|
} |
946
|
|
|
|
|
|
|
|
947
|
6
|
50
|
33
|
|
|
20
|
if ($n >= 16 && $n < 22) { |
948
|
|
|
|
|
|
|
### hexagon numsides=6 ... |
949
|
|
|
|
|
|
|
# X=5 Y=0 to X=5*1/2 Y=5*sqrt(3)/2 |
950
|
|
|
|
|
|
|
# R^2 = (5 - 5/2*f)^2 + (5*sqrt(3)/2*f)^2 |
951
|
|
|
|
|
|
|
# = 25 - 25*f + 25*f^2 |
952
|
|
|
|
|
|
|
# = 25 - 25*f*(1-f) |
953
|
|
|
|
|
|
|
# eg f=1/2 R^2 = 18.75 |
954
|
|
|
|
|
|
|
# or f=1/5 R^2 = 21 exactly, though 1/5 not exact in binary floats |
955
|
|
|
|
|
|
|
|
956
|
6
|
|
|
|
|
11
|
$n -= int($n); |
957
|
6
|
|
|
|
|
19
|
return 25 - 25*$n*(1-$n); |
958
|
|
|
|
|
|
|
} |
959
|
|
|
|
|
|
|
|
960
|
|
|
|
|
|
|
# other numsides don't have sin(pi/numsides) an integer or sqrt so |
961
|
|
|
|
|
|
|
# aren't an exact R^2 |
962
|
|
|
|
|
|
|
} |
963
|
|
|
|
|
|
|
|
964
|
|
|
|
|
|
|
# ENHANCE-ME: step=1 various exact values for ring of 4 and ring of 6 |
965
|
|
|
|
|
|
|
|
966
|
26
|
|
|
|
|
72
|
return $self->SUPER::n_to_rsquared($n); |
967
|
|
|
|
|
|
|
} |
968
|
|
|
|
|
|
|
sub n_to_radius { |
969
|
43
|
|
|
43
|
1
|
3428
|
my ($self, $n) = @_; |
970
|
|
|
|
|
|
|
### n_to_radius(): $n |
971
|
|
|
|
|
|
|
|
972
|
43
|
50
|
|
|
|
110
|
if ($n < 1) { return undef; } |
|
0
|
|
|
|
|
0
|
|
973
|
43
|
50
|
|
|
|
111
|
if (is_infinite($n)) { return $n; } |
|
0
|
|
|
|
|
0
|
|
974
|
|
|
|
|
|
|
|
975
|
43
|
100
|
|
|
|
92
|
if (defined (my $r = _n_to_radius_exact($self,$n))) { |
976
|
30
|
|
|
|
|
66
|
return $r; |
977
|
|
|
|
|
|
|
} |
978
|
13
|
|
|
|
|
41
|
return sqrt($self->n_to_rsquared($n)); |
979
|
|
|
|
|
|
|
# return $self->SUPER::n_to_radius($n); |
980
|
|
|
|
|
|
|
} |
981
|
|
|
|
|
|
|
|
982
|
|
|
|
|
|
|
# step=6 shape=polygon exact integer for some of second ring too |
983
|
|
|
|
|
|
|
# sub n_to_trsquared { |
984
|
|
|
|
|
|
|
# my ($self, $n) = @_; |
985
|
|
|
|
|
|
|
# ### MultipleRings n_to_rsquared(): "n=$n" |
986
|
|
|
|
|
|
|
# } |
987
|
|
|
|
|
|
|
|
988
|
|
|
|
|
|
|
sub _n_to_radius_exact { |
989
|
150
|
|
|
150
|
|
267
|
my ($self, $n) = @_; |
990
|
|
|
|
|
|
|
### _n_to_radius_exact(): "n=$n step=$self->{'step'}" |
991
|
|
|
|
|
|
|
|
992
|
150
|
50
|
|
|
|
301
|
if ($n < 1) { return undef; } |
|
0
|
|
|
|
|
0
|
|
993
|
150
|
50
|
|
|
|
272
|
if (is_infinite($n)) { return $n; } |
|
0
|
|
|
|
|
0
|
|
994
|
|
|
|
|
|
|
|
995
|
150
|
|
|
|
|
297
|
my $step = $self->{'step'}; |
996
|
150
|
100
|
|
|
|
272
|
if ($step == 0) { |
997
|
13
|
|
|
|
|
37
|
return $n - 1; # step=0 goes along X axis starting X=0,Y=0 |
998
|
|
|
|
|
|
|
} |
999
|
|
|
|
|
|
|
|
1000
|
137
|
100
|
|
|
|
294
|
if ($step == 1) { |
|
|
100
|
|
|
|
|
|
1001
|
89
|
100
|
|
|
|
201
|
if ($n < 4) { |
1002
|
26
|
100
|
|
|
|
50
|
if ($n < 2) { |
1003
|
4
|
|
|
|
|
11
|
return 0; # 0,0 only, no jump across to next ring |
1004
|
|
|
|
|
|
|
} |
1005
|
22
|
|
|
|
|
44
|
$n -= int($n); |
1006
|
22
|
|
|
|
|
79
|
return abs(1-2*$n); |
1007
|
|
|
|
|
|
|
} |
1008
|
63
|
100
|
|
|
|
146
|
if ($n == int($n)) { |
1009
|
|
|
|
|
|
|
### step=1 radius=integer steps for integer N ... |
1010
|
22
|
|
|
|
|
48
|
return _n0_to_d($self,$n-1) - 1; |
1011
|
|
|
|
|
|
|
} |
1012
|
41
|
|
|
|
|
66
|
my $two_n = 2*$n; |
1013
|
41
|
50
|
66
|
|
|
205
|
if ($two_n == 9 || $two_n == 11 || $two_n == 13) { |
|
|
|
66
|
|
|
|
|
1014
|
|
|
|
|
|
|
# N=4.5 at X=1/2 Y=sqrt(3)/2 R^2 = 1/4 + 3/4 = 1 exactly |
1015
|
|
|
|
|
|
|
# N=5.5 at X=-1, Y=0 so R^2 = 1 exactly |
1016
|
|
|
|
|
|
|
# N=6.5 same as N=4.5 |
1017
|
2
|
|
|
|
|
10
|
return 1; |
1018
|
|
|
|
|
|
|
} |
1019
|
|
|
|
|
|
|
|
1020
|
|
|
|
|
|
|
} elsif ($step == 6) { |
1021
|
22
|
50
|
|
|
|
48
|
if ($n == int($n)) { |
1022
|
|
|
|
|
|
|
# step=6 circle all integer N has exact integer radius |
1023
|
|
|
|
|
|
|
# step=6 polygon only innermost ring N<=6 exact integer radius |
1024
|
22
|
50
|
66
|
|
|
60
|
if ($self->{'ring_shape'} eq 'circle' |
1025
|
|
|
|
|
|
|
|| $n <= 6) { # ring_shape=polygon |
1026
|
22
|
|
|
|
|
54
|
return _n0_to_d($self,$n-1); |
1027
|
|
|
|
|
|
|
} |
1028
|
|
|
|
|
|
|
} |
1029
|
|
|
|
|
|
|
} |
1030
|
|
|
|
|
|
|
|
1031
|
|
|
|
|
|
|
### no exact radius ... |
1032
|
65
|
|
|
|
|
155
|
return undef; |
1033
|
|
|
|
|
|
|
} |
1034
|
|
|
|
|
|
|
sub _n0_to_d { |
1035
|
44
|
|
|
44
|
|
68
|
my ($self, $n) = @_; |
1036
|
44
|
|
|
|
|
151
|
return int((_sqrtint(8*$n/$self->{'step'} + 1) + 1) / 2); |
1037
|
|
|
|
|
|
|
} |
1038
|
|
|
|
|
|
|
sub _d_to_n0base { |
1039
|
51
|
|
|
51
|
|
95
|
my ($self, $d) = @_; |
1040
|
51
|
|
|
|
|
153
|
return $d*($d-1)/2 * $self->{'step'}; |
1041
|
|
|
|
|
|
|
} |
1042
|
|
|
|
|
|
|
|
1043
|
|
|
|
|
|
|
# From above |
1044
|
|
|
|
|
|
|
# r = 0.5 / sin(pi/(d*step)) |
1045
|
|
|
|
|
|
|
# |
1046
|
|
|
|
|
|
|
# sin(pi/(d*step)) = 0.5/r |
1047
|
|
|
|
|
|
|
# pi/(d*step) = asin(1/(2*r)) |
1048
|
|
|
|
|
|
|
# 1/d * pi/step = asin(1/(2*r)) |
1049
|
|
|
|
|
|
|
# d = pi/(step*asin(1/(2*r))) |
1050
|
|
|
|
|
|
|
# |
1051
|
|
|
|
|
|
|
# r1 = 0.5 / sin(pi/(d*step)) |
1052
|
|
|
|
|
|
|
# r2 = 0.5 / sin(pi/((d+1)*step)) |
1053
|
|
|
|
|
|
|
# r2 - r1 = 0.5 / sin(pi/(d*step)) - 0.5 / sin(pi/((d+1)*step)) |
1054
|
|
|
|
|
|
|
# r2-r1 >= 1 when step>=7 ? |
1055
|
|
|
|
|
|
|
|
1056
|
|
|
|
|
|
|
sub _xy_to_d { |
1057
|
51
|
|
|
51
|
|
86
|
my ($self, $x, $y) = @_; |
1058
|
|
|
|
|
|
|
### _xy_to_d(): "x=$x y=$y" |
1059
|
|
|
|
|
|
|
|
1060
|
51
|
|
|
|
|
151
|
my $r = hypot ($x, $y); |
1061
|
51
|
50
|
|
|
|
100
|
if ($r < 0.5) { |
1062
|
|
|
|
|
|
|
### r smaller than 0.5 ring, treat as d=1 |
1063
|
|
|
|
|
|
|
# 1/(2*r) could be div-by-zero |
1064
|
|
|
|
|
|
|
# or 1/(2*r) > 1 would be asin()==-nan |
1065
|
51
|
|
|
|
|
126
|
return 1; |
1066
|
|
|
|
|
|
|
} |
1067
|
0
|
|
|
|
|
0
|
my $two_r = 2*$r; |
1068
|
0
|
0
|
|
|
|
0
|
if (is_infinite($two_r)) { |
1069
|
|
|
|
|
|
|
### 1/inf is a divide by zero, avoid that ... |
1070
|
0
|
|
|
|
|
0
|
return $two_r; |
1071
|
|
|
|
|
|
|
} |
1072
|
|
|
|
|
|
|
### $r |
1073
|
|
|
|
|
|
|
|
1074
|
0
|
|
|
|
|
0
|
my $step = $self->{'step'}; |
1075
|
0
|
0
|
|
|
|
0
|
if ($self->{'ring_shape'} eq 'polygon') { |
1076
|
0
|
|
|
|
|
0
|
my $theta_frac = _xy_to_angle_frac($x,$y); |
1077
|
0
|
|
|
|
|
0
|
$theta_frac -= int($theta_frac*$step) / $step; # modulo 1/step |
1078
|
|
|
|
|
|
|
|
1079
|
0
|
|
|
|
|
0
|
my $r = hypot ($x, $y); |
1080
|
0
|
|
|
|
|
0
|
my $alpha = 2*_PI/$step; |
1081
|
0
|
|
|
|
|
0
|
my $theta = 2*_PI * $theta_frac; |
1082
|
|
|
|
|
|
|
### $r |
1083
|
|
|
|
|
|
|
### x=r*cos(theta): $r*cos($theta) |
1084
|
|
|
|
|
|
|
### y=r*sin(theta): $r*sin($theta) |
1085
|
|
|
|
|
|
|
|
1086
|
0
|
|
|
|
|
0
|
my $p = $r*cos($theta) + $r*sin($theta) * sin($alpha/2)/cos($alpha/2); |
1087
|
|
|
|
|
|
|
### $p |
1088
|
|
|
|
|
|
|
### base_r: $self->{'base_r'} |
1089
|
|
|
|
|
|
|
### p - base_r: $p - $self->{'base_r'} |
1090
|
|
|
|
|
|
|
|
1091
|
0
|
0
|
|
|
|
0
|
if ($step >= 6) { |
1092
|
0
|
|
|
|
|
0
|
return $p / $self->{'base_r'}; |
1093
|
|
|
|
|
|
|
} else { |
1094
|
0
|
|
|
|
|
0
|
return ($p - $self->{'base_r'}) * cos(_PI/$step) + 1; |
1095
|
|
|
|
|
|
|
} |
1096
|
|
|
|
|
|
|
} |
1097
|
|
|
|
|
|
|
|
1098
|
0
|
0
|
|
|
|
0
|
if ($step > 6) { |
1099
|
|
|
|
|
|
|
### d frac by asin: _PI / ($step * asin(1/$two_r)) |
1100
|
0
|
|
|
|
|
0
|
return _PI / ($step * asin(1/$two_r)); |
1101
|
|
|
|
|
|
|
} else { |
1102
|
|
|
|
|
|
|
# $step <= 6 |
1103
|
|
|
|
|
|
|
### d frac by base: $r - $self->{'base_r'} |
1104
|
0
|
|
|
|
|
0
|
return $r - $self->{'base_r'}; |
1105
|
|
|
|
|
|
|
} |
1106
|
|
|
|
|
|
|
} |
1107
|
|
|
|
|
|
|
|
1108
|
|
|
|
|
|
|
sub xy_to_n { |
1109
|
56
|
|
|
56
|
1
|
160
|
my ($self, $x, $y) = @_; |
1110
|
|
|
|
|
|
|
### MultipleRings xy_to_n(): "$x, $y step=$self->{'step'} shape=$self->{'ring_shape'}" |
1111
|
|
|
|
|
|
|
|
1112
|
56
|
|
|
|
|
94
|
my $n; |
1113
|
56
|
|
|
|
|
107
|
my $step = $self->{'step'}; |
1114
|
56
|
100
|
|
|
|
114
|
if ($step == 0) { |
1115
|
|
|
|
|
|
|
# step==0 |
1116
|
5
|
|
|
|
|
11
|
$n = int ($x + 1.5); |
1117
|
|
|
|
|
|
|
|
1118
|
|
|
|
|
|
|
} else { |
1119
|
51
|
|
|
|
|
104
|
my $theta_frac = _xy_to_angle_frac($x,$y); |
1120
|
|
|
|
|
|
|
### $theta_frac |
1121
|
|
|
|
|
|
|
### assert: (0 <= $theta_frac && $theta_frac < 1) || $theta_frac!=$theta_frac |
1122
|
|
|
|
|
|
|
|
1123
|
51
|
|
|
|
|
77
|
my $d; |
1124
|
51
|
50
|
|
|
|
97
|
if ($self->{'ring_shape'} eq 'polygon') { |
1125
|
0
|
|
|
|
|
0
|
$n = int($theta_frac*$step); |
1126
|
0
|
|
|
|
|
0
|
$theta_frac -= $n/$step; |
1127
|
|
|
|
|
|
|
### theta modulo 1/step: $theta_frac |
1128
|
|
|
|
|
|
|
### $n |
1129
|
|
|
|
|
|
|
|
1130
|
0
|
|
|
|
|
0
|
my $r = hypot ($x, $y); |
1131
|
0
|
|
|
|
|
0
|
my $alpha = 2*_PI/$step; |
1132
|
0
|
|
|
|
|
0
|
my $theta = 2*_PI * $theta_frac; |
1133
|
|
|
|
|
|
|
### $r |
1134
|
|
|
|
|
|
|
### so x=r*cos(theta): $r*cos($theta) |
1135
|
|
|
|
|
|
|
### so y=r*sin(theta): $r*sin($theta) |
1136
|
|
|
|
|
|
|
|
1137
|
0
|
|
|
|
|
0
|
my $pi = _PI; |
1138
|
0
|
|
|
|
|
0
|
my $p = $r*cos($theta) + $r*sin($theta) * sin($alpha/2)/cos($alpha/2); |
1139
|
0
|
|
|
|
|
0
|
my $base_r = Math::PlanePath::MultipleRings::_numsides_to_r($step,$pi); |
1140
|
|
|
|
|
|
|
### $p |
1141
|
|
|
|
|
|
|
### $base_r |
1142
|
|
|
|
|
|
|
|
1143
|
0
|
0
|
|
|
|
0
|
if ($step > 6) { |
1144
|
0
|
|
|
|
|
0
|
$d = $p / $base_r; |
1145
|
|
|
|
|
|
|
} else { |
1146
|
0
|
|
|
|
|
0
|
$d = ($p - $base_r) * cos($pi/$step) + 1; |
1147
|
|
|
|
|
|
|
} |
1148
|
|
|
|
|
|
|
### d frac: $d |
1149
|
0
|
|
|
|
|
0
|
$d = int($d+0.5); |
1150
|
|
|
|
|
|
|
### $d |
1151
|
|
|
|
|
|
|
### cf _xy_to_d(): _xy_to_d($self,$x,$y) |
1152
|
|
|
|
|
|
|
|
1153
|
0
|
0
|
|
|
|
0
|
my $f = ($p == 0 ? 0 : $r*sin($theta) / ($p*sin($alpha))); |
1154
|
0
|
|
|
|
|
0
|
$n = int(($n+$f)*$d + 0.5); |
1155
|
|
|
|
|
|
|
|
1156
|
|
|
|
|
|
|
### e: $r*sin($theta) * sin($alpha/2)/cos($alpha/2) |
1157
|
|
|
|
|
|
|
### $f |
1158
|
|
|
|
|
|
|
### $n |
1159
|
|
|
|
|
|
|
|
1160
|
|
|
|
|
|
|
} else { |
1161
|
51
|
|
|
|
|
111
|
$d = int(_xy_to_d($self,$x,$y) + 0.5); |
1162
|
|
|
|
|
|
|
### $d |
1163
|
51
|
|
|
|
|
113
|
$n = int (0.5 + $theta_frac * $d*$step); |
1164
|
51
|
50
|
|
|
|
96
|
if ($n >= $d*$step) { $n = 0; } |
|
0
|
|
|
|
|
0
|
|
1165
|
|
|
|
|
|
|
} |
1166
|
|
|
|
|
|
|
|
1167
|
|
|
|
|
|
|
### n within ring: $n |
1168
|
|
|
|
|
|
|
### n ring start: _d_to_n0base($self,$d) + 1 |
1169
|
|
|
|
|
|
|
|
1170
|
51
|
|
|
|
|
88
|
$n += _d_to_n0base($self,$d) + 1; |
1171
|
|
|
|
|
|
|
### $d |
1172
|
|
|
|
|
|
|
### d base: 0.5*$d*($d-1) |
1173
|
|
|
|
|
|
|
### d base M: $step * 0.5*$d*($d-1) |
1174
|
|
|
|
|
|
|
### $theta_frac |
1175
|
|
|
|
|
|
|
### theta offset: $theta_frac*$d |
1176
|
|
|
|
|
|
|
### $n |
1177
|
|
|
|
|
|
|
} |
1178
|
|
|
|
|
|
|
|
1179
|
|
|
|
|
|
|
### trial n: $n |
1180
|
56
|
50
|
|
|
|
124
|
if (my ($nx, $ny) = $self->n_to_xy($n)) { |
1181
|
|
|
|
|
|
|
### nxy: "nx=$nx ny=$ny hypot=".hypot($x-$nx,$y-$ny) |
1182
|
|
|
|
|
|
|
### cf orig xy: "x=$x y=$y" |
1183
|
56
|
100
|
|
|
|
169
|
if (hypot($x-$nx, $y-$ny) <= 0.5) { |
1184
|
17
|
|
|
|
|
85
|
return $n; |
1185
|
|
|
|
|
|
|
} |
1186
|
|
|
|
|
|
|
} |
1187
|
39
|
|
|
|
|
168
|
return undef; |
1188
|
|
|
|
|
|
|
} |
1189
|
|
|
|
|
|
|
|
1190
|
|
|
|
|
|
|
# ENHANCE-ME: step>=3 small rectangles around 0,0 don't cover any pixels |
1191
|
|
|
|
|
|
|
# |
1192
|
|
|
|
|
|
|
# not exact |
1193
|
|
|
|
|
|
|
sub rect_to_n_range { |
1194
|
22
|
|
|
22
|
1
|
93
|
my ($self, $x1,$y1, $x2,$y2) = @_; |
1195
|
|
|
|
|
|
|
### MultipleRings rect_to_n_range(): "$x1,$y1, $x2,$y2 step=$self->{'step'}" |
1196
|
|
|
|
|
|
|
|
1197
|
22
|
|
66
|
|
|
63
|
my $zero = ($x1<0) != ($x2<0) || ($y1<0) != ($y2<0); |
1198
|
22
|
|
|
|
|
62
|
my $step = $self->{'step'}; |
1199
|
|
|
|
|
|
|
|
1200
|
22
|
|
|
|
|
58
|
my ($r_lo, $r_hi) = Math::PlanePath::SacksSpiral::_rect_to_radius_range |
1201
|
|
|
|
|
|
|
($x1,$y1, $x2,$y2); |
1202
|
|
|
|
|
|
|
### $r_lo |
1203
|
|
|
|
|
|
|
### $r_hi |
1204
|
22
|
50
|
|
|
|
58
|
if (is_infinite($r_hi)) { |
1205
|
0
|
|
|
|
|
0
|
return (1,$r_hi); |
1206
|
|
|
|
|
|
|
} |
1207
|
22
|
100
|
|
|
|
50
|
if ($r_hi < 1) { $r_hi = 1; } |
|
11
|
|
|
|
|
17
|
|
1208
|
22
|
50
|
|
|
|
47
|
if ($self->{'ring_shape'} eq 'polygon') { |
1209
|
0
|
|
|
|
|
0
|
$r_hi /= cos(_PI/$self->{'step'}); |
1210
|
|
|
|
|
|
|
### poly increase r_hi: $r_hi |
1211
|
|
|
|
|
|
|
} |
1212
|
|
|
|
|
|
|
|
1213
|
22
|
|
|
|
|
33
|
my ($d_lo, $d_hi); |
1214
|
22
|
50
|
|
|
|
42
|
if ($self->{'ring_shape'} eq 'polygon') { |
1215
|
0
|
0
|
|
|
|
0
|
if ($step >= 6) { |
1216
|
0
|
|
|
|
|
0
|
$d_lo = $r_lo / $self->{'base_r'}; |
1217
|
0
|
|
|
|
|
0
|
$d_hi = $r_hi / $self->{'base_r'}; |
1218
|
|
|
|
|
|
|
} else { |
1219
|
0
|
|
|
|
|
0
|
$d_lo = ($r_lo - $self->{'base_r'}) * cos(_PI/$step) + 1; |
1220
|
0
|
|
|
|
|
0
|
$d_hi = ($r_hi - $self->{'base_r'}) * cos(_PI/$step) + 1; |
1221
|
|
|
|
|
|
|
} |
1222
|
|
|
|
|
|
|
} else { |
1223
|
22
|
100
|
|
|
|
43
|
if ($step > 6) { |
1224
|
8
|
50
|
|
|
|
16
|
$d_lo = ($r_lo > 0 |
1225
|
|
|
|
|
|
|
? _PI / ($step * asin(0.5/$r_lo)) |
1226
|
|
|
|
|
|
|
: 0); |
1227
|
8
|
|
|
|
|
28
|
$d_hi = _PI / ($step * asin(0.5/$r_hi)); |
1228
|
|
|
|
|
|
|
} else { |
1229
|
14
|
|
|
|
|
24
|
$d_lo = $r_lo - $self->{'base_r'}; |
1230
|
14
|
|
|
|
|
51
|
$d_hi = $r_hi - $self->{'base_r'}; |
1231
|
|
|
|
|
|
|
} |
1232
|
|
|
|
|
|
|
} |
1233
|
|
|
|
|
|
|
### $d_lo |
1234
|
|
|
|
|
|
|
### $d_hi |
1235
|
|
|
|
|
|
|
|
1236
|
22
|
|
|
|
|
38
|
$d_lo = int($d_lo - 1); |
1237
|
22
|
|
|
|
|
37
|
$d_hi = int($d_hi + 2); |
1238
|
22
|
50
|
|
|
|
42
|
if ($d_lo < 1) { $d_lo = 1; } |
|
22
|
|
|
|
|
29
|
|
1239
|
|
|
|
|
|
|
|
1240
|
22
|
100
|
|
|
|
44
|
if ($step) { |
1241
|
|
|
|
|
|
|
# start of ring is N= 0.5*$d*($d-1) * $step + 1 |
1242
|
|
|
|
|
|
|
### n_lo: 0.5*$d_lo*($d_lo-1) * $step + 1 |
1243
|
|
|
|
|
|
|
### n_hi: 0.5*$d_hi*($d_hi+1) * $step |
1244
|
20
|
|
|
|
|
68
|
return ($d_lo*($d_lo-1)/2 * $step + 1, |
1245
|
|
|
|
|
|
|
$d_hi*($d_hi+1)/2 * $step); |
1246
|
|
|
|
|
|
|
} else { |
1247
|
|
|
|
|
|
|
# $step == 0 |
1248
|
2
|
|
|
|
|
8
|
return ($d_lo, $d_hi); |
1249
|
|
|
|
|
|
|
} |
1250
|
|
|
|
|
|
|
|
1251
|
|
|
|
|
|
|
|
1252
|
|
|
|
|
|
|
|
1253
|
|
|
|
|
|
|
|
1254
|
|
|
|
|
|
|
|
1255
|
|
|
|
|
|
|
# # if x1,x2 pos and neg then 0 is covered and it's the minimum |
1256
|
|
|
|
|
|
|
# # ENHANCE-ME: might be able to be a little tighter on $d_lo |
1257
|
|
|
|
|
|
|
# my $d_lo = ($zero |
1258
|
|
|
|
|
|
|
# ? 1 |
1259
|
|
|
|
|
|
|
# : max (1, -2 + int (_xy_to_d ($self, |
1260
|
|
|
|
|
|
|
# min($x1,$x2), |
1261
|
|
|
|
|
|
|
# min($y1,$y2))))); |
1262
|
|
|
|
|
|
|
# my $d_hi = 1 + int (_xy_to_d ($self, |
1263
|
|
|
|
|
|
|
# max($x1,$x2), |
1264
|
|
|
|
|
|
|
# max($y1,$y2))); |
1265
|
|
|
|
|
|
|
# ### $d_lo |
1266
|
|
|
|
|
|
|
# ### $d_hi |
1267
|
|
|
|
|
|
|
# if ((my $step = $self->{'step'})) { |
1268
|
|
|
|
|
|
|
# # start of ring is N= 0.5*$d*($d-1) * $step + 1 |
1269
|
|
|
|
|
|
|
# ### n_lo: 0.5*$d_lo*($d_lo-1) * $step + 1 |
1270
|
|
|
|
|
|
|
# ### n_hi: 0.5*$d_hi*($d_hi+1) * $step |
1271
|
|
|
|
|
|
|
# return ($d_lo*($d_lo-1)/2 * $step + 1, |
1272
|
|
|
|
|
|
|
# $d_hi*($d_hi+1)/2 * $step); |
1273
|
|
|
|
|
|
|
# } else { |
1274
|
|
|
|
|
|
|
# # $step == 0 |
1275
|
|
|
|
|
|
|
# return ($d_lo, $d_hi); |
1276
|
|
|
|
|
|
|
# } |
1277
|
|
|
|
|
|
|
} |
1278
|
|
|
|
|
|
|
|
1279
|
|
|
|
|
|
|
#------------------------------------------------------------------------------ |
1280
|
|
|
|
|
|
|
# generic |
1281
|
|
|
|
|
|
|
|
1282
|
|
|
|
|
|
|
# _xy_to_angle_frac() returns the angle of X,Y as a fraction 0 <= angle < 1 |
1283
|
|
|
|
|
|
|
# measured anti-clockwise around from the X axis. |
1284
|
|
|
|
|
|
|
# |
1285
|
|
|
|
|
|
|
sub _xy_to_angle_frac { |
1286
|
120
|
|
|
120
|
|
673
|
my ($x, $y) = @_; |
1287
|
|
|
|
|
|
|
|
1288
|
|
|
|
|
|
|
# perlfunc.pod warns atan2(0,0) is implementation dependent. The C99 spec |
1289
|
|
|
|
|
|
|
# is atan2(+/-0, -0) returns +/-pi, both of which would come out 0.5 here. |
1290
|
|
|
|
|
|
|
# Prefer 0 for any +/-0,+/-0. |
1291
|
120
|
100
|
100
|
|
|
402
|
if ($x == 0 && $y == 0) { |
1292
|
53
|
|
|
|
|
111
|
return 0; |
1293
|
|
|
|
|
|
|
} |
1294
|
|
|
|
|
|
|
|
1295
|
67
|
|
|
|
|
166
|
my $frac = atan2($y,$x) * (0.5 / _PI); |
1296
|
|
|
|
|
|
|
### $frac |
1297
|
67
|
100
|
|
|
|
161
|
if ($frac < 0) { $frac += 1; } |
|
16
|
50
|
|
|
|
27
|
|
1298
|
0
|
|
|
|
|
0
|
elsif ($frac >= 1) { $frac -= 1; } |
1299
|
67
|
|
|
|
|
135
|
return $frac; |
1300
|
|
|
|
|
|
|
} |
1301
|
|
|
|
|
|
|
|
1302
|
|
|
|
|
|
|
# return pi=3.14159 etc, inheriting precision etc from $n if it's a BigFloat |
1303
|
|
|
|
|
|
|
# or other overload |
1304
|
|
|
|
|
|
|
sub _pi { |
1305
|
168
|
|
|
168
|
|
2217
|
my ($n) = @_; |
1306
|
168
|
100
|
|
|
|
296
|
if (ref $n) { |
1307
|
3
|
50
|
|
|
|
10
|
if ($n->isa('Math::BigFloat')) { |
1308
|
3
|
|
|
|
|
25
|
my $digits; |
1309
|
3
|
100
|
|
|
|
14
|
if (defined($digits = $n->accuracy)) { |
|
|
50
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
1310
|
|
|
|
|
|
|
### n accuracy ... |
1311
|
|
|
|
|
|
|
} elsif (defined($digits = $n->precision)) { |
1312
|
|
|
|
|
|
|
### n precision ... |
1313
|
0
|
|
|
|
|
0
|
$digits = -$digits + 1; |
1314
|
|
|
|
|
|
|
} elsif (defined($digits = Math::BigFloat->accuracy)) { |
1315
|
|
|
|
|
|
|
### global accuracy ... |
1316
|
|
|
|
|
|
|
} elsif (defined($digits = Math::BigFloat->precision)) { |
1317
|
|
|
|
|
|
|
### global precision ... |
1318
|
0
|
|
|
|
|
0
|
$digits = -$digits + 1; |
1319
|
|
|
|
|
|
|
} else { |
1320
|
|
|
|
|
|
|
### div_scale ... |
1321
|
1
|
|
|
|
|
68
|
$digits = Math::BigFloat->div_scale+1; |
1322
|
|
|
|
|
|
|
} |
1323
|
|
|
|
|
|
|
### $digits |
1324
|
3
|
|
|
|
|
48
|
$digits = max (1, $digits); |
1325
|
3
|
|
|
|
|
12
|
return Math::BigFloat->bpi($digits); |
1326
|
|
|
|
|
|
|
} |
1327
|
|
|
|
|
|
|
### other overload n class: ref $n |
1328
|
0
|
|
|
|
|
0
|
my $zero = $n * 0; |
1329
|
0
|
|
|
|
|
0
|
return 2*atan2($zero,1+$zero); |
1330
|
|
|
|
|
|
|
} |
1331
|
165
|
|
|
|
|
327
|
return _PI; |
1332
|
|
|
|
|
|
|
} |
1333
|
|
|
|
|
|
|
|
1334
|
|
|
|
|
|
|
1; |
1335
|
|
|
|
|
|
|
__END__ |