line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
1
|
|
|
|
|
|
|
# Copyright 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020 Kevin Ryde |
2
|
|
|
|
|
|
|
|
3
|
|
|
|
|
|
|
# This file is part of Math-PlanePath. |
4
|
|
|
|
|
|
|
# |
5
|
|
|
|
|
|
|
# Math-PlanePath is free software; you can redistribute it and/or modify |
6
|
|
|
|
|
|
|
# it under the terms of the GNU General Public License as published by the |
7
|
|
|
|
|
|
|
# Free Software Foundation; either version 3, or (at your option) any later |
8
|
|
|
|
|
|
|
# version. |
9
|
|
|
|
|
|
|
# |
10
|
|
|
|
|
|
|
# Math-PlanePath is distributed in the hope that it will be useful, but |
11
|
|
|
|
|
|
|
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY |
12
|
|
|
|
|
|
|
# or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
13
|
|
|
|
|
|
|
# for more details. |
14
|
|
|
|
|
|
|
# |
15
|
|
|
|
|
|
|
# You should have received a copy of the GNU General Public License along |
16
|
|
|
|
|
|
|
# with Math-PlanePath. If not, see . |
17
|
|
|
|
|
|
|
|
18
|
|
|
|
|
|
|
|
19
|
|
|
|
|
|
|
# math-image --path=KochSnowflakes --lines --scale=10 |
20
|
|
|
|
|
|
|
# |
21
|
|
|
|
|
|
|
# area approaches sqrt(48)/10 |
22
|
|
|
|
|
|
|
# * height=sqrt(1-1/4)=sqrt(3)/2 |
23
|
|
|
|
|
|
|
# /|\ halfbase=1/2 |
24
|
|
|
|
|
|
|
# / | \ trianglearea = sqrt(3)/4 |
25
|
|
|
|
|
|
|
# *-----* |
26
|
|
|
|
|
|
|
# segments = 3*4^level = 3,12,48,192,... |
27
|
|
|
|
|
|
|
# |
28
|
|
|
|
|
|
|
# with initial triangle area=1 |
29
|
|
|
|
|
|
|
# add a new triangle onto each side |
30
|
|
|
|
|
|
|
# x,y scale by 3* so 9*area |
31
|
|
|
|
|
|
|
# |
32
|
|
|
|
|
|
|
# area[level+1] = 9*area[level] + segments |
33
|
|
|
|
|
|
|
# = 9*area[level] + 3*4^level |
34
|
|
|
|
|
|
|
|
35
|
|
|
|
|
|
|
# area[0] = 1 |
36
|
|
|
|
|
|
|
# area[1] = 9*area[0] + 3 = 9 + 3 = 12 |
37
|
|
|
|
|
|
|
# area[2] = 9*area[1] + 3*4 |
38
|
|
|
|
|
|
|
# = 9*(9*1 + 3) + 3*4 |
39
|
|
|
|
|
|
|
# = 9*9 + 3*9 + 3*4 = 120 |
40
|
|
|
|
|
|
|
# area[3] = 9*area[2] + 3*4 |
41
|
|
|
|
|
|
|
# = 9*(9*9 + 3*9 + 3*4) + 3*4^2 |
42
|
|
|
|
|
|
|
# = 9^3 + 3*9^2 + 3*0*4 + 3*4^2 |
43
|
|
|
|
|
|
|
|
44
|
|
|
|
|
|
|
# area[level+1] |
45
|
|
|
|
|
|
|
# = 9^(level+1) + (9^(level+1) - 4^(level+1)) * 3/5 |
46
|
|
|
|
|
|
|
# = (5*9^(level+1) + 3*9^(level+1) - 3*4^(level+1)) / 5 |
47
|
|
|
|
|
|
|
# = (8*9^(level+1) - 3*4^(level+1)) / 5 |
48
|
|
|
|
|
|
|
# |
49
|
|
|
|
|
|
|
# area[level] = (8*9^level - 3*4^level) / 5 |
50
|
|
|
|
|
|
|
# = 1,12,120,1128,10344,93864,847848 |
51
|
|
|
|
|
|
|
# |
52
|
|
|
|
|
|
|
# . |
53
|
|
|
|
|
|
|
# / \ area[0] = 1 |
54
|
|
|
|
|
|
|
# .---. |
55
|
|
|
|
|
|
|
# |
56
|
|
|
|
|
|
|
# . |
57
|
|
|
|
|
|
|
# / \ area=[1] = 12 = 9*area[0] + 3*4^0 |
58
|
|
|
|
|
|
|
# .---.---.---. |
59
|
|
|
|
|
|
|
# \ / \ / \ / |
60
|
|
|
|
|
|
|
# .---.---. |
61
|
|
|
|
|
|
|
# / \ / \ / \ |
62
|
|
|
|
|
|
|
# .---.---.---. |
63
|
|
|
|
|
|
|
# \ / |
64
|
|
|
|
|
|
|
# . |
65
|
|
|
|
|
|
|
# |
66
|
|
|
|
|
|
|
# area[level] / 9^level |
67
|
|
|
|
|
|
|
# = (8*9^level / 9^level - 3*4^level / 9^level) / 5 |
68
|
|
|
|
|
|
|
# = (8 - 3*(4/0)^level)/5 |
69
|
|
|
|
|
|
|
# -> 8/5 as level->infinity |
70
|
|
|
|
|
|
|
|
71
|
|
|
|
|
|
|
# in integer coords |
72
|
|
|
|
|
|
|
# initial triangle area |
73
|
|
|
|
|
|
|
# * 2/3 1*2 / 2 = 1 unit |
74
|
|
|
|
|
|
|
# / \ |
75
|
|
|
|
|
|
|
# *---* -1/3 |
76
|
|
|
|
|
|
|
# -1 +1 |
77
|
|
|
|
|
|
|
# |
78
|
|
|
|
|
|
|
# so area[level] / (sqrt(3)/2) |
79
|
|
|
|
|
|
|
|
80
|
|
|
|
|
|
|
|
81
|
|
|
|
|
|
|
|
82
|
|
|
|
|
|
|
package Math::PlanePath::KochSnowflakes; |
83
|
1
|
|
|
1
|
|
1464
|
use 5.004; |
|
1
|
|
|
|
|
4
|
|
84
|
1
|
|
|
1
|
|
7
|
use strict; |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
39
|
|
85
|
|
|
|
|
|
|
#use List::Util 'max'; |
86
|
|
|
|
|
|
|
*max = \&Math::PlanePath::_max; |
87
|
|
|
|
|
|
|
|
88
|
1
|
|
|
1
|
|
5
|
use vars '$VERSION', '@ISA'; |
|
1
|
|
|
|
|
1
|
|
|
1
|
|
|
|
|
79
|
|
89
|
|
|
|
|
|
|
$VERSION = 129; |
90
|
1
|
|
|
1
|
|
853
|
use Math::PlanePath; |
|
1
|
|
|
|
|
3
|
|
|
1
|
|
|
|
|
43
|
|
91
|
|
|
|
|
|
|
@ISA = ('Math::PlanePath'); |
92
|
|
|
|
|
|
|
|
93
|
|
|
|
|
|
|
use Math::PlanePath::Base::Generic |
94
|
1
|
|
|
|
|
47
|
'is_infinite', |
95
|
1
|
|
|
1
|
|
8
|
'round_nearest'; |
|
1
|
|
|
|
|
2
|
|
96
|
|
|
|
|
|
|
use Math::PlanePath::Base::Digits |
97
|
1
|
|
|
1
|
|
639
|
'round_down_pow'; |
|
1
|
|
|
|
|
3
|
|
|
1
|
|
|
|
|
66
|
|
98
|
1
|
|
|
1
|
|
701
|
use Math::PlanePath::KochCurve; |
|
1
|
|
|
|
|
3
|
|
|
1
|
|
|
|
|
34
|
|
99
|
|
|
|
|
|
|
|
100
|
|
|
|
|
|
|
# uncomment this to run the ### lines |
101
|
|
|
|
|
|
|
# use Smart::Comments; |
102
|
|
|
|
|
|
|
|
103
|
|
|
|
|
|
|
|
104
|
1
|
|
|
1
|
|
7
|
use constant n_frac_discontinuity => 0; |
|
1
|
|
|
|
|
1
|
|
|
1
|
|
|
|
|
56
|
|
105
|
1
|
|
|
1
|
|
6
|
use constant x_negative_at_n => 1; |
|
1
|
|
|
|
|
5
|
|
|
1
|
|
|
|
|
48
|
|
106
|
1
|
|
|
1
|
|
5
|
use constant y_negative_at_n => 1; |
|
1
|
|
|
|
|
5
|
|
|
1
|
|
|
|
|
42
|
|
107
|
1
|
|
|
1
|
|
5
|
use constant sumabsxy_minimum => 2/3; # minimum X=0,Y=2/3 |
|
1
|
|
|
|
|
3
|
|
|
1
|
|
|
|
|
42
|
|
108
|
1
|
|
|
1
|
|
5
|
use constant rsquared_minimum => 4/9; # minimum X=0,Y=2/3 |
|
1
|
|
|
|
|
1
|
|
|
1
|
|
|
|
|
42
|
|
109
|
|
|
|
|
|
|
# maybe: use constant radius_minimum => 2/3; # minimum X=0,Y=2/3 |
110
|
|
|
|
|
|
|
|
111
|
|
|
|
|
|
|
# jump across rings is WSW slope 2, so following maximums |
112
|
1
|
|
|
1
|
|
6
|
use constant dx_maximum => 2; |
|
1
|
|
|
|
|
1
|
|
|
1
|
|
|
|
|
47
|
|
113
|
1
|
|
|
1
|
|
5
|
use constant dy_maximum => 1; |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
36
|
|
114
|
1
|
|
|
1
|
|
5
|
use constant dsumxy_maximum => 2; |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
52
|
|
115
|
1
|
|
|
1
|
|
6
|
use constant ddiffxy_maximum => 2; |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
45
|
|
116
|
|
|
|
|
|
|
|
117
|
1
|
|
|
1
|
|
5
|
use constant absdx_minimum => 1; # never vertical |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
56
|
|
118
|
1
|
|
|
1
|
|
7
|
use constant dir_maximum_dxdy => (1,-1); # South-East |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
49
|
|
119
|
|
|
|
|
|
|
|
120
|
|
|
|
|
|
|
# N=1 gcd(-1, -1/3) = 1/3 |
121
|
|
|
|
|
|
|
# N=2 gcd( 1, -1/3) = 1/3 |
122
|
|
|
|
|
|
|
# N=3 gcd( 0, 2/3) = 2/3 |
123
|
1
|
|
|
1
|
|
5
|
use constant gcdxy_minimum => 1/3; |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
51
|
|
124
|
|
|
|
|
|
|
|
125
|
1
|
|
|
1
|
|
6
|
use constant turn_any_straight => 0; # never straight |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
1170
|
|
126
|
|
|
|
|
|
|
|
127
|
|
|
|
|
|
|
|
128
|
|
|
|
|
|
|
#------------------------------------------------------------------------------ |
129
|
|
|
|
|
|
|
sub new { |
130
|
4
|
|
|
4
|
1
|
330
|
my $self = shift->SUPER::new (@_); |
131
|
4
|
|
50
|
|
|
35
|
$self->{'sides'} ||= 3; # default |
132
|
4
|
|
|
|
|
9
|
return $self; |
133
|
|
|
|
|
|
|
} |
134
|
|
|
|
|
|
|
|
135
|
|
|
|
|
|
|
# N=1 to 3 3 of, level=1 |
136
|
|
|
|
|
|
|
# N=4 to 15 12 of, level=2 |
137
|
|
|
|
|
|
|
# N=16 to .. 48 of, level=3 |
138
|
|
|
|
|
|
|
# |
139
|
|
|
|
|
|
|
# each loop = 3*4^level |
140
|
|
|
|
|
|
|
# |
141
|
|
|
|
|
|
|
# n_base = 1 + 3*4^0 + 3*4^1 + ... + 3*4^(level-1) |
142
|
|
|
|
|
|
|
# = 1 + 3*[ 4^0 + 4^1 + ... + 4^(level-1) ] |
143
|
|
|
|
|
|
|
# = 1 + 3*[ (4^level - 1)/3 ] |
144
|
|
|
|
|
|
|
# = 1 + (4^level - 1) |
145
|
|
|
|
|
|
|
# = 4^level |
146
|
|
|
|
|
|
|
# |
147
|
|
|
|
|
|
|
# each side = loop/3 |
148
|
|
|
|
|
|
|
# = 3*4^level / 3 |
149
|
|
|
|
|
|
|
# = 4^level |
150
|
|
|
|
|
|
|
# |
151
|
|
|
|
|
|
|
# 6 sides |
152
|
|
|
|
|
|
|
# n_base = 1 + 2*3*4^0 + ... |
153
|
|
|
|
|
|
|
# = 2*4^level - 1 |
154
|
|
|
|
|
|
|
# level = log4 (n+1)/2 |
155
|
|
|
|
|
|
|
|
156
|
|
|
|
|
|
|
### loop 1: 3* 4**1 |
157
|
|
|
|
|
|
|
### loop 2: 3* 4**2 |
158
|
|
|
|
|
|
|
### loop 3: 3* 4**3 |
159
|
|
|
|
|
|
|
|
160
|
|
|
|
|
|
|
# sub _level_to_base { |
161
|
|
|
|
|
|
|
# my ($level) = @_; |
162
|
|
|
|
|
|
|
# return -3*$level + 4**($level+1) - 2; |
163
|
|
|
|
|
|
|
# } |
164
|
|
|
|
|
|
|
# ### level_to_base(1): _level_to_base(1) |
165
|
|
|
|
|
|
|
# ### level_to_base(2): _level_to_base(2) |
166
|
|
|
|
|
|
|
# ### level_to_base(3): _level_to_base(3) |
167
|
|
|
|
|
|
|
|
168
|
|
|
|
|
|
|
sub n_to_xy { |
169
|
18
|
|
|
18
|
1
|
637
|
my ($self, $n) = @_; |
170
|
|
|
|
|
|
|
### KochSnowflakes n_to_xy(): $n |
171
|
18
|
50
|
|
|
|
41
|
if ($n < 1) { return; } |
|
0
|
|
|
|
|
0
|
|
172
|
18
|
50
|
|
|
|
42
|
if (is_infinite($n)) { return ($n,$n); } |
|
0
|
|
|
|
|
0
|
|
173
|
|
|
|
|
|
|
|
174
|
18
|
|
|
|
|
37
|
my $sides = $self->{'sides'}; |
175
|
18
|
50
|
|
|
|
50
|
my ($sidelen, $level) = round_down_pow (($sides == 6 ? ($n+1)/2 : $n), |
176
|
|
|
|
|
|
|
4); |
177
|
18
|
50
|
|
|
|
38
|
my $base = ($sides == 6 ? 2*$sidelen - 1 : $sidelen); |
178
|
18
|
|
|
|
|
26
|
my $rem = $n - $base; |
179
|
|
|
|
|
|
|
|
180
|
|
|
|
|
|
|
### $level |
181
|
|
|
|
|
|
|
### $base |
182
|
|
|
|
|
|
|
### $sidelen |
183
|
|
|
|
|
|
|
### $rem |
184
|
|
|
|
|
|
|
### assert: $n >= $base |
185
|
|
|
|
|
|
|
### assert: $rem >= 0 |
186
|
|
|
|
|
|
|
### assert: $rem < $sidelen * $sides |
187
|
|
|
|
|
|
|
|
188
|
18
|
|
|
|
|
30
|
my $side = int($rem / $sidelen); |
189
|
|
|
|
|
|
|
### $side |
190
|
|
|
|
|
|
|
### $rem |
191
|
|
|
|
|
|
|
### subtract: $side*$sidelen |
192
|
18
|
|
|
|
|
28
|
$rem -= $side*$sidelen; |
193
|
|
|
|
|
|
|
|
194
|
|
|
|
|
|
|
### assert: $side >= 0 && $side < $sides |
195
|
|
|
|
|
|
|
|
196
|
18
|
|
|
|
|
47
|
my ($x, $y) = Math::PlanePath::KochCurve->n_to_xy ($rem); |
197
|
|
|
|
|
|
|
### $x |
198
|
|
|
|
|
|
|
### $y |
199
|
|
|
|
|
|
|
|
200
|
18
|
50
|
|
|
|
49
|
if ($sides == 3) { |
201
|
18
|
|
|
|
|
25
|
my $len = 3**($level-1); |
202
|
18
|
100
|
|
|
|
35
|
if ($side < 1) { |
|
|
50
|
|
|
|
|
|
203
|
|
|
|
|
|
|
### horizontal rightwards |
204
|
12
|
|
|
|
|
39
|
return ($x - 3*$len, |
205
|
|
|
|
|
|
|
-$y - $len); |
206
|
|
|
|
|
|
|
} elsif ($side < 2) { |
207
|
|
|
|
|
|
|
### right slope upwards |
208
|
0
|
|
|
|
|
0
|
return (($x-3*$y)/-2 + 3*$len, # flip vert and rotate +120 |
209
|
|
|
|
|
|
|
($x+$y)/2 - $len); |
210
|
|
|
|
|
|
|
} else { |
211
|
|
|
|
|
|
|
### left slope downwards |
212
|
6
|
|
|
|
|
21
|
return ((-3*$y-$x)/2, # flip vert and rotate -120 |
213
|
|
|
|
|
|
|
($y-$x)/2 + 2*$len); |
214
|
|
|
|
|
|
|
} |
215
|
|
|
|
|
|
|
} else { |
216
|
|
|
|
|
|
|
|
217
|
|
|
|
|
|
|
# 3 |
218
|
|
|
|
|
|
|
# 5-----4 |
219
|
|
|
|
|
|
|
# 4 / \ |
220
|
|
|
|
|
|
|
# / \ 2 |
221
|
|
|
|
|
|
|
# 6 o 3 |
222
|
|
|
|
|
|
|
# 5 \ . . / |
223
|
|
|
|
|
|
|
# \ . . / 1 |
224
|
|
|
|
|
|
|
# 1-----2 |
225
|
|
|
|
|
|
|
# 0 |
226
|
|
|
|
|
|
|
# 7 |
227
|
|
|
|
|
|
|
# |
228
|
0
|
|
|
|
|
0
|
my $len = 3**$level; |
229
|
0
|
|
|
|
|
0
|
$x -= $len; # -y flip vert and offset |
230
|
0
|
|
|
|
|
0
|
$y = -$y - $len; |
231
|
0
|
0
|
|
|
|
0
|
if ($side >= 3) { |
232
|
|
|
|
|
|
|
### rotate 180 ... |
233
|
0
|
|
|
|
|
0
|
$x = -$x; # rotate 180 |
234
|
0
|
|
|
|
|
0
|
$y = -$y; |
235
|
0
|
|
|
|
|
0
|
$side -= 3; |
236
|
|
|
|
|
|
|
} |
237
|
0
|
0
|
|
|
|
0
|
if ($side >= 2) { |
238
|
|
|
|
|
|
|
### upper right slope upwards ... |
239
|
0
|
|
|
|
|
0
|
return (($x+3*$y)/-2, # rotate +120 |
240
|
|
|
|
|
|
|
($x-$y)/2); |
241
|
|
|
|
|
|
|
} |
242
|
0
|
0
|
|
|
|
0
|
if ($side >= 1) { |
243
|
|
|
|
|
|
|
### lower right slope upwards ... |
244
|
0
|
|
|
|
|
0
|
return (($x-3*$y)/2, # rotate +60 |
245
|
|
|
|
|
|
|
($x+$y)/2); |
246
|
|
|
|
|
|
|
} |
247
|
|
|
|
|
|
|
### horizontal ... |
248
|
0
|
|
|
|
|
0
|
return ($x,$y); |
249
|
|
|
|
|
|
|
} |
250
|
|
|
|
|
|
|
} |
251
|
|
|
|
|
|
|
|
252
|
|
|
|
|
|
|
|
253
|
|
|
|
|
|
|
# N=1 overlaps N=5 |
254
|
|
|
|
|
|
|
# N=2 overlaps N=7 |
255
|
|
|
|
|
|
|
# +---------+ +---------+ Y=1.5 |
256
|
|
|
|
|
|
|
# | | | | |
257
|
|
|
|
|
|
|
# | +---------+ | Y=7/6 = 1.166 |
258
|
|
|
|
|
|
|
# | | | | |
259
|
|
|
|
|
|
|
# | * 13 | | * 11 | Y=1 |
260
|
|
|
|
|
|
|
# | | | | |
261
|
|
|
|
|
|
|
# | | * 3 | | Y=2/3 = 0.666 |
262
|
|
|
|
|
|
|
# | | | | |
263
|
|
|
|
|
|
|
# +---------+ +---------+ Y=0.5 |
264
|
|
|
|
|
|
|
# | | |
265
|
|
|
|
|
|
|
# +---------+---------+---------+ Y=1/6 = 0.166 |
266
|
|
|
|
|
|
|
# | | O | | --Y=0 |
267
|
|
|
|
|
|
|
# | | | | |
268
|
|
|
|
|
|
|
# | | | | |
269
|
|
|
|
|
|
|
# | * 1 | | * 2 | Y=-1/3 = -0.333 |
270
|
|
|
|
|
|
|
# | | | | |
271
|
|
|
|
|
|
|
# +---------+ +---------+ Y=-3/6 = -0.5 |
272
|
|
|
|
|
|
|
# | | | | |
273
|
|
|
|
|
|
|
# +---------+ +---------+ Y=-5/6 = -0.833 |
274
|
|
|
|
|
|
|
# | | | | |
275
|
|
|
|
|
|
|
# | * 5 | | * 7 | Y=-1 |
276
|
|
|
|
|
|
|
# | | | | |
277
|
|
|
|
|
|
|
# | | | | |
278
|
|
|
|
|
|
|
# +---------+ +---------+ Y=-1.5 |
279
|
|
|
|
|
|
|
# |
280
|
|
|
|
|
|
|
sub xy_to_n { |
281
|
40
|
|
|
40
|
1
|
3486
|
return scalar((shift->xy_to_n_list(@_))[0]); |
282
|
|
|
|
|
|
|
} |
283
|
|
|
|
|
|
|
sub xy_to_n_list { |
284
|
58
|
|
|
58
|
1
|
2089
|
my ($self, $x, $y) = @_; |
285
|
|
|
|
|
|
|
### KochSnowflakes xy_to_n(): "$x, $y" |
286
|
|
|
|
|
|
|
|
287
|
58
|
|
|
|
|
145
|
$x = round_nearest ($x); |
288
|
58
|
100
|
|
|
|
123
|
if (abs($x) <= 1) { |
289
|
44
|
100
|
|
|
|
90
|
if ($x == 0) { |
290
|
13
|
|
|
|
|
20
|
my $y6 = 6*$y; |
291
|
13
|
100
|
66
|
|
|
42
|
if ($y6 >= 1 && $y6 < 7) { |
292
|
|
|
|
|
|
|
# Y = 2/3-1/2=1/6 to 2/3+1/2=7/6 |
293
|
9
|
|
|
|
|
25
|
return 3; |
294
|
|
|
|
|
|
|
} |
295
|
|
|
|
|
|
|
} else { |
296
|
31
|
|
|
|
|
48
|
my $y6 = 6*$y; |
297
|
31
|
100
|
66
|
|
|
106
|
if ($y6 >= -5 && $y6 < 1) { |
298
|
|
|
|
|
|
|
# Y = -1/3-1/2=-5/6 to -1/3+1/2=+1/6 |
299
|
24
|
100
|
|
|
|
75
|
return (1 + ($x > 0), |
300
|
|
|
|
|
|
|
($y6 < -3 ? (5+2*($x>0)) : ())); # 5 or 7 up to Y<-1/2 |
301
|
|
|
|
|
|
|
} |
302
|
|
|
|
|
|
|
} |
303
|
|
|
|
|
|
|
} |
304
|
|
|
|
|
|
|
|
305
|
25
|
|
|
|
|
53
|
$y = round_nearest ($y); |
306
|
25
|
100
|
|
|
|
57
|
if (($x % 2) != ($y % 2)) { |
307
|
|
|
|
|
|
|
### diff parity... |
308
|
9
|
|
|
|
|
19
|
return; |
309
|
|
|
|
|
|
|
} |
310
|
|
|
|
|
|
|
|
311
|
16
|
|
|
|
|
25
|
my $high; |
312
|
16
|
100
|
100
|
|
|
74
|
if ($x > 0 && $x >= -3*$y) { |
|
|
100
|
100
|
|
|
|
|
313
|
|
|
|
|
|
|
### right upper third n=2 ... |
314
|
3
|
|
|
|
|
9
|
($x,$y) = ((3*$y-$x)/2, # rotate -120 and flip vert |
315
|
|
|
|
|
|
|
($x+$y)/2); |
316
|
3
|
|
|
|
|
5
|
$high = 2; |
317
|
|
|
|
|
|
|
} elsif ($x <= 0 && 3*$y > $x) { |
318
|
|
|
|
|
|
|
### left upper third n=3 ... |
319
|
3
|
|
|
|
|
9
|
($x,$y) = (($x+3*$y)/-2, # rotate +120 and flip vert |
320
|
|
|
|
|
|
|
($y-$x)/2); |
321
|
3
|
|
|
|
|
5
|
$high = 3; |
322
|
|
|
|
|
|
|
} else { |
323
|
|
|
|
|
|
|
### lower third n=1 ... |
324
|
10
|
|
|
|
|
19
|
$y = -$y; # flip vert |
325
|
10
|
|
|
|
|
12
|
$high = 1; |
326
|
|
|
|
|
|
|
} |
327
|
|
|
|
|
|
|
### rotate/flip is: "$x,$y" |
328
|
|
|
|
|
|
|
|
329
|
16
|
50
|
|
|
|
33
|
if ($y <= 0) { |
330
|
0
|
|
|
|
|
0
|
return; |
331
|
|
|
|
|
|
|
} |
332
|
|
|
|
|
|
|
|
333
|
16
|
|
|
|
|
42
|
my ($len,$level) = round_down_pow($y, 3); |
334
|
16
|
|
|
|
|
29
|
$level += 1; |
335
|
|
|
|
|
|
|
### $level |
336
|
|
|
|
|
|
|
### $len |
337
|
16
|
50
|
|
|
|
35
|
if (is_infinite($level)) { |
338
|
0
|
|
|
|
|
0
|
return $level; |
339
|
|
|
|
|
|
|
} |
340
|
|
|
|
|
|
|
|
341
|
|
|
|
|
|
|
|
342
|
16
|
|
|
|
|
31
|
$y -= $len; # shift to Y=0 basis |
343
|
16
|
|
|
|
|
38
|
$len *= 3; |
344
|
|
|
|
|
|
|
|
345
|
|
|
|
|
|
|
### compare for end: ($x+$y)." >= 3*len=".$len |
346
|
16
|
100
|
|
|
|
31
|
if ($x + $y >= $len) { |
347
|
|
|
|
|
|
|
### past end of this level, no points ... |
348
|
3
|
|
|
|
|
15
|
return; |
349
|
|
|
|
|
|
|
} |
350
|
13
|
|
|
|
|
20
|
$x += $len; # shift to X=0 basis |
351
|
|
|
|
|
|
|
|
352
|
13
|
|
|
|
|
39
|
my $n = Math::PlanePath::KochCurve->xy_to_n($x, $y); |
353
|
|
|
|
|
|
|
|
354
|
|
|
|
|
|
|
### plain curve on: ($x+3*$len).",".($y-$len)." n=".(defined $n && $n) |
355
|
|
|
|
|
|
|
### $high |
356
|
|
|
|
|
|
|
### high: (4**$level)*$high |
357
|
|
|
|
|
|
|
|
358
|
13
|
100
|
|
|
|
25
|
if (defined $n) { |
359
|
10
|
|
|
|
|
28
|
return (4**$level)*$high + $n; |
360
|
|
|
|
|
|
|
} else { |
361
|
3
|
|
|
|
|
19
|
return; |
362
|
|
|
|
|
|
|
} |
363
|
|
|
|
|
|
|
} |
364
|
|
|
|
|
|
|
|
365
|
|
|
|
|
|
|
# level extends to x= +/- 3^level |
366
|
|
|
|
|
|
|
# y= +/- 2*3^(level-1) |
367
|
|
|
|
|
|
|
# = 2/3 * 3^level |
368
|
|
|
|
|
|
|
# 1.5*y = 3^level |
369
|
|
|
|
|
|
|
# |
370
|
|
|
|
|
|
|
# ENHANCE-ME: share KochCurve segment checker to find actual min/max |
371
|
|
|
|
|
|
|
# |
372
|
|
|
|
|
|
|
# not exact |
373
|
|
|
|
|
|
|
sub rect_to_n_range { |
374
|
11
|
|
|
11
|
1
|
1158
|
my ($self, $x1,$y1, $x2,$y2) = @_; |
375
|
|
|
|
|
|
|
### KochSnowflakes rect_to_n_range(): "$x1,$y1 $x2,$y2" |
376
|
|
|
|
|
|
|
|
377
|
11
|
|
|
|
|
30
|
$x1 = round_nearest ($x1); |
378
|
11
|
|
|
|
|
29
|
$y1 = round_nearest ($y1); |
379
|
11
|
|
|
|
|
20
|
$x2 = round_nearest ($x2); |
380
|
11
|
|
|
|
|
23
|
$y2 = round_nearest ($y2); |
381
|
|
|
|
|
|
|
|
382
|
11
|
100
|
|
|
|
27
|
($x1,$x2) = ($x2,$x1) if $x1 > $x2; |
383
|
11
|
100
|
|
|
|
26
|
($y1,$y2) = ($y2,$y1) if $y1 > $y2; |
384
|
|
|
|
|
|
|
|
385
|
|
|
|
|
|
|
# |
386
|
|
|
|
|
|
|
# | |
387
|
|
|
|
|
|
|
# +------ . -----+ |
388
|
|
|
|
|
|
|
# |x1,y2 /|\ x2,y2| |
389
|
|
|
|
|
|
|
# / | \ |
390
|
|
|
|
|
|
|
# / | \ |
391
|
|
|
|
|
|
|
# -----/---m---\----- |
392
|
|
|
|
|
|
|
# / | \ |
393
|
|
|
|
|
|
|
# .-----------. |
394
|
|
|
|
|
|
|
# | |
395
|
|
|
|
|
|
|
# y1 |
396
|
|
|
|
|
|
|
# ------- |
397
|
|
|
|
|
|
|
# |
398
|
|
|
|
|
|
|
# -y1 bottom horizontal |
399
|
|
|
|
|
|
|
# (x2+y2)/2 right side |
400
|
|
|
|
|
|
|
# (-x1+y2)/2 left side |
401
|
|
|
|
|
|
|
# each giving a power of 3 of the level |
402
|
|
|
|
|
|
|
# |
403
|
|
|
|
|
|
|
### right: ($x2+$y2)/2 |
404
|
|
|
|
|
|
|
### left: (-$x1+$y2)/2 |
405
|
|
|
|
|
|
|
### bottom: -$y1 |
406
|
|
|
|
|
|
|
|
407
|
11
|
|
|
|
|
16
|
my $sides = $self->{'sides'}; |
408
|
11
|
50
|
|
|
|
46
|
my ($pow, $level) = round_down_pow (max ($sides == 6 |
409
|
|
|
|
|
|
|
? ($x1/-2, |
410
|
|
|
|
|
|
|
$x2/2, |
411
|
|
|
|
|
|
|
-$y1, |
412
|
|
|
|
|
|
|
$y2) |
413
|
|
|
|
|
|
|
: (int(($x2+$y2)/2), |
414
|
|
|
|
|
|
|
int((-$x1+$y2)/2), |
415
|
|
|
|
|
|
|
-$y1)), |
416
|
|
|
|
|
|
|
3); |
417
|
|
|
|
|
|
|
### $level |
418
|
|
|
|
|
|
|
# end of $level is 1 before base of $level+1 |
419
|
11
|
|
|
|
|
34
|
return (1, 4**($level+2) - 1); |
420
|
|
|
|
|
|
|
} |
421
|
|
|
|
|
|
|
|
422
|
|
|
|
|
|
|
#------------------------------------------------------------------------------ |
423
|
|
|
|
|
|
|
# Nstart = 4^k |
424
|
|
|
|
|
|
|
# length = 3*4^k many points |
425
|
|
|
|
|
|
|
# Nend = Nstart + length-1 |
426
|
|
|
|
|
|
|
# = 4^k + 3*4^k - 1 |
427
|
|
|
|
|
|
|
# = 4*4^k - 1 |
428
|
|
|
|
|
|
|
# = Nstart(k+1) - 1 |
429
|
|
|
|
|
|
|
sub level_to_n_range { |
430
|
9
|
|
|
9
|
1
|
1003
|
my ($self, $level) = @_; |
431
|
9
|
|
|
|
|
19
|
my $pow = 4**$level; |
432
|
9
|
|
|
|
|
31
|
return ($pow, 4*$pow-1); |
433
|
|
|
|
|
|
|
} |
434
|
|
|
|
|
|
|
sub n_to_level { |
435
|
0
|
|
|
0
|
1
|
|
my ($self, $n) = @_; |
436
|
0
|
0
|
|
|
|
|
if ($n < 1) { return undef; } |
|
0
|
|
|
|
|
|
|
437
|
0
|
0
|
|
|
|
|
if (is_infinite($n)) { return $n; } |
|
0
|
|
|
|
|
|
|
438
|
0
|
|
|
|
|
|
$n = round_nearest($n); |
439
|
0
|
0
|
|
|
|
|
my ($sidelen, $level) = round_down_pow (($self->{'sides'} == 6 ? ($n+1)/2 : $n), |
440
|
|
|
|
|
|
|
4); |
441
|
0
|
|
|
|
|
|
return $level; |
442
|
|
|
|
|
|
|
} |
443
|
|
|
|
|
|
|
|
444
|
|
|
|
|
|
|
#------------------------------------------------------------------------------ |
445
|
|
|
|
|
|
|
1; |
446
|
|
|
|
|
|
|
__END__ |