line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
1
|
|
|
|
|
|
|
# Copyright 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020 Kevin Ryde |
2
|
|
|
|
|
|
|
|
3
|
|
|
|
|
|
|
# This file is part of Math-PlanePath. |
4
|
|
|
|
|
|
|
# |
5
|
|
|
|
|
|
|
# Math-PlanePath is free software; you can redistribute it and/or modify |
6
|
|
|
|
|
|
|
# it under the terms of the GNU General Public License as published by the |
7
|
|
|
|
|
|
|
# Free Software Foundation; either version 3, or (at your option) any later |
8
|
|
|
|
|
|
|
# version. |
9
|
|
|
|
|
|
|
# |
10
|
|
|
|
|
|
|
# Math-PlanePath is distributed in the hope that it will be useful, but |
11
|
|
|
|
|
|
|
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY |
12
|
|
|
|
|
|
|
# or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
13
|
|
|
|
|
|
|
# for more details. |
14
|
|
|
|
|
|
|
# |
15
|
|
|
|
|
|
|
# You should have received a copy of the GNU General Public License along |
16
|
|
|
|
|
|
|
# with Math-PlanePath. If not, see . |
17
|
|
|
|
|
|
|
|
18
|
|
|
|
|
|
|
|
19
|
|
|
|
|
|
|
# Circle drop splash rings from |
20
|
|
|
|
|
|
|
# math-image --path=HypotOctant --values=DigitProductSteps,values_type=count |
21
|
|
|
|
|
|
|
# math-image --path=Hypot --values=DigitProduct |
22
|
|
|
|
|
|
|
# math-image --path=Hypot --values=DigitCount |
23
|
|
|
|
|
|
|
# math-image --path=Hypot --values=Modulo,modulus=1000 |
24
|
|
|
|
|
|
|
# http://stefan.guninski.com/oeisposter/ |
25
|
|
|
|
|
|
|
# |
26
|
|
|
|
|
|
|
# pi*r^2 - pi*(r-1)^2 = pi*(2r-1) |
27
|
|
|
|
|
|
|
# octant is 1/8 of that pi*(2x-1)/8 |
28
|
|
|
|
|
|
|
# pi*(2x-1)/8=100k |
29
|
|
|
|
|
|
|
# 2x-1 = 100k*8/pi |
30
|
|
|
|
|
|
|
# x = 100*4/pi*k |
31
|
|
|
|
|
|
|
# |
32
|
|
|
|
|
|
|
# A000328 Number of points of norm <= n^2 in square lattice. |
33
|
|
|
|
|
|
|
# 1, 5, 13, 29, 49, 81, 113, 149, 197, 253, 317, 377, 441, 529, 613, 709, 797 |
34
|
|
|
|
|
|
|
# a(n) = 1 + 4 * sum(j=0, n^2 / 4, n^2 / (4*j+1) - n^2 / (4*j+3) ) |
35
|
|
|
|
|
|
|
# |
36
|
|
|
|
|
|
|
# A057655 num points norm <= n in square lattice. |
37
|
|
|
|
|
|
|
# |
38
|
|
|
|
|
|
|
# A036702 num points |z=a+bi| <= n with 0<=a, 0<=b<=a, so octant |
39
|
|
|
|
|
|
|
# A036703 num points n-1 < z <= n, first diffs? |
40
|
|
|
|
|
|
|
|
41
|
|
|
|
|
|
|
|
42
|
|
|
|
|
|
|
|
43
|
|
|
|
|
|
|
package Math::PlanePath::HypotOctant; |
44
|
1
|
|
|
1
|
|
9331
|
use 5.004; |
|
1
|
|
|
|
|
9
|
|
45
|
1
|
|
|
1
|
|
6
|
use strict; |
|
1
|
|
|
|
|
3
|
|
|
1
|
|
|
|
|
34
|
|
46
|
1
|
|
|
1
|
|
7
|
use Carp 'croak'; |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
44
|
|
47
|
|
|
|
|
|
|
|
48
|
1
|
|
|
1
|
|
5
|
use vars '$VERSION', '@ISA'; |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
63
|
|
49
|
|
|
|
|
|
|
$VERSION = 129; |
50
|
1
|
|
|
1
|
|
703
|
use Math::PlanePath; |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
42
|
|
51
|
|
|
|
|
|
|
@ISA = ('Math::PlanePath'); |
52
|
|
|
|
|
|
|
|
53
|
|
|
|
|
|
|
use Math::PlanePath::Base::Generic |
54
|
1
|
|
|
|
|
66
|
'is_infinite', |
55
|
1
|
|
|
1
|
|
6
|
'round_nearest'; |
|
1
|
|
|
|
|
2
|
|
56
|
|
|
|
|
|
|
|
57
|
|
|
|
|
|
|
# uncomment this to run the ### lines |
58
|
|
|
|
|
|
|
#use Smart::Comments; |
59
|
|
|
|
|
|
|
|
60
|
|
|
|
|
|
|
|
61
|
1
|
|
|
|
|
55
|
use constant parameter_info_array => |
62
|
|
|
|
|
|
|
[ { name => 'points', |
63
|
|
|
|
|
|
|
share_key => 'points_aeo', |
64
|
|
|
|
|
|
|
display => 'Points', |
65
|
|
|
|
|
|
|
type => 'enum', |
66
|
|
|
|
|
|
|
default => 'all', |
67
|
|
|
|
|
|
|
choices => ['all','even','odd'], |
68
|
|
|
|
|
|
|
choices_display => ['All','Even','Odd'], |
69
|
|
|
|
|
|
|
description => 'Which X,Y points visit, either all of them or just X+Y even or X+Y odd.', |
70
|
|
|
|
|
|
|
}, |
71
|
1
|
|
|
1
|
|
5
|
]; |
|
1
|
|
|
|
|
2
|
|
72
|
|
|
|
|
|
|
|
73
|
1
|
|
|
1
|
|
5
|
use constant class_x_negative => 0; |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
40
|
|
74
|
1
|
|
|
1
|
|
5
|
use constant class_y_negative => 0; |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
227
|
|
75
|
|
|
|
|
|
|
|
76
|
|
|
|
|
|
|
sub x_minimum { |
77
|
6
|
|
|
6
|
1
|
15
|
my ($self) = @_; |
78
|
6
|
100
|
|
|
|
28
|
return ($self->{'points'} eq 'odd' |
79
|
|
|
|
|
|
|
? 1 # odd, line X=Y not included |
80
|
|
|
|
|
|
|
: 0); # octant Y<=X so X-Y>=0 |
81
|
|
|
|
|
|
|
} |
82
|
|
|
|
|
|
|
# points=odd X=1,Y=0 |
83
|
|
|
|
|
|
|
# otherwise X=0,Y=0 |
84
|
|
|
|
|
|
|
*sumabsxy_minimum = \&x_minimum; |
85
|
|
|
|
|
|
|
*diffxy_minimum = \&x_minimum; # X>=Y so X-Y>=0 |
86
|
|
|
|
|
|
|
*absdiffxy_minimum = \&x_minimum; |
87
|
|
|
|
|
|
|
*rsquared_minimum = \&x_minimum; |
88
|
|
|
|
|
|
|
|
89
|
|
|
|
|
|
|
sub absdy_minimum { |
90
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
91
|
0
|
0
|
|
|
|
0
|
return ($self->{'points'} eq 'all' |
92
|
|
|
|
|
|
|
? 0 |
93
|
|
|
|
|
|
|
: 1); # never same Y |
94
|
|
|
|
|
|
|
} |
95
|
|
|
|
|
|
|
|
96
|
|
|
|
|
|
|
sub dir_minimum_dxdy { |
97
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
98
|
0
|
0
|
|
|
|
0
|
return ($self->{'points'} eq 'all' |
99
|
|
|
|
|
|
|
? (1,0) # all i=1 to X=1,Y=0 |
100
|
|
|
|
|
|
|
: (1,1)); # odd,even always at least NE |
101
|
|
|
|
|
|
|
} |
102
|
|
|
|
|
|
|
# max direction SE diagonal as anything else is at most tangent to the |
103
|
|
|
|
|
|
|
# eighth of a circle |
104
|
1
|
|
|
1
|
|
7
|
use constant dir_maximum_dxdy => (1,-1); # South-East |
|
1
|
|
|
|
|
1
|
|
|
1
|
|
|
|
|
1244
|
|
105
|
|
|
|
|
|
|
|
106
|
|
|
|
|
|
|
|
107
|
|
|
|
|
|
|
#------------------------------------------------------------------------------ |
108
|
|
|
|
|
|
|
|
109
|
|
|
|
|
|
|
# my @n_to_x = (undef, 0); |
110
|
|
|
|
|
|
|
# my @n_to_y = (undef, 0); |
111
|
|
|
|
|
|
|
# my @hypot_to_n = (1); |
112
|
|
|
|
|
|
|
# my @y_next_x = (1, 1); |
113
|
|
|
|
|
|
|
# my @y_next_hypot = (1, 2); |
114
|
|
|
|
|
|
|
|
115
|
|
|
|
|
|
|
sub new { |
116
|
6
|
|
|
6
|
1
|
1370
|
my $self = shift->SUPER::new(@_); |
117
|
|
|
|
|
|
|
|
118
|
6
|
|
100
|
|
|
36
|
my $points = ($self->{'points'} ||= 'all'); |
119
|
6
|
100
|
|
|
|
28
|
if ($points eq 'all') { |
|
|
100
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
120
|
3
|
|
|
|
|
9
|
$self->{'n_to_x'} = [undef]; |
121
|
3
|
|
|
|
|
6
|
$self->{'n_to_y'} = [undef]; |
122
|
3
|
|
|
|
|
6
|
$self->{'hypot_to_n'} = []; |
123
|
3
|
|
|
|
|
8
|
$self->{'y_next_x'} = [0]; |
124
|
3
|
|
|
|
|
7
|
$self->{'y_next_hypot'} = [0]; |
125
|
3
|
|
|
|
|
5
|
$self->{'x_inc'} = 1; |
126
|
3
|
|
|
|
|
8
|
$self->{'x_inc_factor'} = 2; |
127
|
3
|
|
|
|
|
5
|
$self->{'x_inc_squared'} = 1; |
128
|
3
|
|
|
|
|
6
|
$self->{'opposite_parity'} = -1; |
129
|
|
|
|
|
|
|
|
130
|
|
|
|
|
|
|
} elsif ($points eq 'even') { |
131
|
1
|
|
|
|
|
6
|
$self->{'n_to_x'} = [undef, 0]; |
132
|
1
|
|
|
|
|
4
|
$self->{'n_to_y'} = [undef, 0]; |
133
|
1
|
|
|
|
|
4
|
$self->{'hypot_to_n'} = [1]; |
134
|
1
|
|
|
|
|
6
|
$self->{'y_next_x'} = [2, 1]; |
135
|
1
|
|
|
|
|
3
|
$self->{'y_next_hypot'} = [4, 2]; |
136
|
1
|
|
|
|
|
3
|
$self->{'x_inc'} = 2; |
137
|
1
|
|
|
|
|
5
|
$self->{'x_inc_factor'} = 4; |
138
|
1
|
|
|
|
|
2
|
$self->{'x_inc_squared'} = 4; |
139
|
1
|
|
|
|
|
4
|
$self->{'opposite_parity'} = 1; |
140
|
|
|
|
|
|
|
|
141
|
|
|
|
|
|
|
} elsif ($points eq 'odd') { |
142
|
2
|
|
|
|
|
7
|
$self->{'n_to_x'} = [undef]; |
143
|
2
|
|
|
|
|
7
|
$self->{'n_to_y'} = [undef]; |
144
|
2
|
|
|
|
|
6
|
$self->{'hypot_to_n'} = [undef]; |
145
|
2
|
|
|
|
|
6
|
$self->{'y_next_x'} = [1]; |
146
|
2
|
|
|
|
|
6
|
$self->{'y_next_hypot'} = [1]; |
147
|
2
|
|
|
|
|
4
|
$self->{'x_inc'} = 2; |
148
|
2
|
|
|
|
|
17
|
$self->{'x_inc_factor'} = 4; |
149
|
2
|
|
|
|
|
4
|
$self->{'x_inc_squared'} = 4; |
150
|
2
|
|
|
|
|
5
|
$self->{'opposite_parity'} = 0; |
151
|
|
|
|
|
|
|
|
152
|
|
|
|
|
|
|
} else { |
153
|
0
|
|
|
|
|
0
|
croak "Unrecognised points option: ", $points; |
154
|
|
|
|
|
|
|
} |
155
|
6
|
|
|
|
|
16
|
return $self; |
156
|
|
|
|
|
|
|
} |
157
|
|
|
|
|
|
|
|
158
|
|
|
|
|
|
|
|
159
|
|
|
|
|
|
|
# at h=x^2+y^2 |
160
|
|
|
|
|
|
|
# step to (x+k)^2+y^2 |
161
|
|
|
|
|
|
|
# is add 2*x*k+k*k |
162
|
|
|
|
|
|
|
|
163
|
|
|
|
|
|
|
sub _extend { |
164
|
2173
|
|
|
2173
|
|
3126
|
my ($self) = @_; |
165
|
|
|
|
|
|
|
### _extend() n: scalar(@{$self->{'n_to_x'}}) |
166
|
|
|
|
|
|
|
|
167
|
2173
|
|
|
|
|
2850
|
my $n_to_x = $self->{'n_to_x'}; |
168
|
2173
|
|
|
|
|
2836
|
my $n_to_y = $self->{'n_to_y'}; |
169
|
2173
|
|
|
|
|
2889
|
my $hypot_to_n = $self->{'hypot_to_n'}; |
170
|
2173
|
|
|
|
|
2922
|
my $y_next_x = $self->{'y_next_x'}; |
171
|
2173
|
|
|
|
|
3017
|
my $y_next_hypot = $self->{'y_next_hypot'}; |
172
|
|
|
|
|
|
|
|
173
|
2173
|
|
|
|
|
3056
|
my @y = (0); |
174
|
2173
|
|
|
|
|
2897
|
my $hypot = $y_next_hypot->[0]; |
175
|
2173
|
|
|
|
|
3994
|
for (my $i = 1; $i < @$y_next_x; $i++) { |
176
|
63482
|
100
|
|
|
|
143791
|
if ($hypot == $y_next_hypot->[$i]) { |
|
|
100
|
|
|
|
|
|
177
|
1157
|
|
|
|
|
2189
|
push @y, $i; |
178
|
|
|
|
|
|
|
} elsif ($hypot > $y_next_hypot->[$i]) { |
179
|
4158
|
|
|
|
|
5867
|
@y = ($i); |
180
|
4158
|
|
|
|
|
7642
|
$hypot = $y_next_hypot->[$i]; |
181
|
|
|
|
|
|
|
} |
182
|
|
|
|
|
|
|
} |
183
|
|
|
|
|
|
|
|
184
|
2173
|
100
|
|
|
|
3767
|
if ($y[-1] == $#$y_next_x) { |
185
|
134
|
|
|
|
|
184
|
my $y = scalar(@$y_next_x); |
186
|
134
|
|
|
|
|
215
|
my $x = $y + ($self->{'points'} eq 'odd'); |
187
|
134
|
|
|
|
|
223
|
$y_next_x->[$y] = $x; |
188
|
134
|
|
|
|
|
223
|
$y_next_hypot->[$y] = $x*$x+$y*$y; |
189
|
|
|
|
|
|
|
### assert: $y_next_hypot->[$y] == $y**2 + $y_next_x->[$y]**2 |
190
|
|
|
|
|
|
|
} |
191
|
|
|
|
|
|
|
|
192
|
|
|
|
|
|
|
### store: join(' ',map{"$n_to_x->[$_],$n_to_y->[$_]"} 0 .. $#$n_to_x) |
193
|
|
|
|
|
|
|
### at n: scalar(@$n_to_x) |
194
|
|
|
|
|
|
|
### hypot_to_n: "h=$hypot n=".scalar(@$n_to_x) |
195
|
|
|
|
|
|
|
|
196
|
2173
|
|
|
|
|
4300
|
$hypot_to_n->[$hypot] = scalar(@$n_to_x); |
197
|
2173
|
|
|
|
|
3382
|
push @$n_to_y, @y; |
198
|
|
|
|
|
|
|
push @$n_to_x, |
199
|
|
|
|
|
|
|
map { |
200
|
2173
|
|
|
|
|
3251
|
my $x = $y_next_x->[$_]; |
|
2999
|
|
|
|
|
4037
|
|
201
|
2999
|
|
|
|
|
4178
|
$y_next_x->[$_] += $self->{'x_inc'}; |
202
|
|
|
|
|
|
|
$y_next_hypot->[$_] |
203
|
2999
|
|
|
|
|
4330
|
+= $self->{'x_inc_factor'} * $x + $self->{'x_inc_squared'}; |
204
|
|
|
|
|
|
|
### assert: $y_next_hypot->[$_] == $_**2 + $y_next_x->[$_]**2 |
205
|
2999
|
|
|
|
|
7583
|
$x |
206
|
|
|
|
|
|
|
} @y; |
207
|
|
|
|
|
|
|
|
208
|
|
|
|
|
|
|
# ### hypot_to_n now: join(' ',map {defined($hypot_to_n->[$_]) && "h=$_,n=$hypot_to_n->[$_]"} 0 .. $#$hypot_to_n) |
209
|
|
|
|
|
|
|
} |
210
|
|
|
|
|
|
|
|
211
|
|
|
|
|
|
|
sub n_to_xy { |
212
|
3000
|
|
|
3000
|
1
|
21623
|
my ($self, $n) = @_; |
213
|
|
|
|
|
|
|
### Hypot n_to_xy(): $n |
214
|
|
|
|
|
|
|
|
215
|
3000
|
50
|
|
|
|
5195
|
if ($n < 1) { return; } |
|
0
|
|
|
|
|
0
|
|
216
|
3000
|
50
|
|
|
|
5195
|
if (is_infinite($n)) { return ($n,$n); } |
|
0
|
|
|
|
|
0
|
|
217
|
|
|
|
|
|
|
|
218
|
|
|
|
|
|
|
{ |
219
|
3000
|
|
|
|
|
4711
|
my $int = int($n); |
|
3000
|
|
|
|
|
4018
|
|
220
|
3000
|
50
|
|
|
|
5177
|
if ($n != $int) { |
221
|
0
|
|
|
|
|
0
|
my $frac = $n - $int; # inherit possible BigFloat/BigRat |
222
|
0
|
|
|
|
|
0
|
my ($x1,$y1) = $self->n_to_xy($int); |
223
|
0
|
|
|
|
|
0
|
my ($x2,$y2) = $self->n_to_xy($int+1); |
224
|
0
|
|
|
|
|
0
|
my $dx = $x2-$x1; |
225
|
0
|
|
|
|
|
0
|
my $dy = $y2-$y1; |
226
|
0
|
|
|
|
|
0
|
return ($frac*$dx + $x1, $frac*$dy + $y1); |
227
|
|
|
|
|
|
|
} |
228
|
|
|
|
|
|
|
} |
229
|
|
|
|
|
|
|
|
230
|
3000
|
|
|
|
|
4274
|
my $n_to_x = $self->{'n_to_x'}; |
231
|
3000
|
|
|
|
|
3840
|
my $n_to_y = $self->{'n_to_y'}; |
232
|
|
|
|
|
|
|
|
233
|
3000
|
|
|
|
|
5270
|
while ($n > $#$n_to_x) { |
234
|
2173
|
|
|
|
|
3462
|
_extend($self); |
235
|
|
|
|
|
|
|
} |
236
|
|
|
|
|
|
|
|
237
|
3000
|
|
|
|
|
6631
|
return ($n_to_x->[$n], $n_to_y->[$n]); |
238
|
|
|
|
|
|
|
} |
239
|
|
|
|
|
|
|
|
240
|
|
|
|
|
|
|
sub xy_to_n { |
241
|
0
|
|
|
0
|
1
|
|
my ($self, $x, $y) = @_; |
242
|
|
|
|
|
|
|
### Hypot xy_to_n(): "$x, $y" |
243
|
|
|
|
|
|
|
### hypot_to_n last: $#{$self->{'hypot_to_n'}} |
244
|
|
|
|
|
|
|
|
245
|
0
|
|
|
|
|
|
$x = round_nearest ($x); |
246
|
0
|
|
|
|
|
|
$y = round_nearest ($y); |
247
|
|
|
|
|
|
|
|
248
|
0
|
0
|
|
|
|
|
if ((($x%2) ^ ($y%2)) == $self->{'opposite_parity'}) { |
249
|
0
|
|
|
|
|
|
return undef; |
250
|
|
|
|
|
|
|
} |
251
|
|
|
|
|
|
|
|
252
|
0
|
|
|
|
|
|
my $hypot = $x*$x + $y*$y; |
253
|
0
|
0
|
|
|
|
|
if (is_infinite($hypot)) { |
254
|
0
|
|
|
|
|
|
return $hypot; |
255
|
|
|
|
|
|
|
} |
256
|
|
|
|
|
|
|
|
257
|
0
|
0
|
0
|
|
|
|
if ($x < 0 || $y < 0 || $y > $x) { |
|
|
|
0
|
|
|
|
|
258
|
|
|
|
|
|
|
### outside first octant ... |
259
|
0
|
|
|
|
|
|
return undef; |
260
|
|
|
|
|
|
|
} |
261
|
|
|
|
|
|
|
|
262
|
0
|
|
|
|
|
|
my $hypot_to_n = $self->{'hypot_to_n'}; |
263
|
0
|
|
|
|
|
|
while ($hypot > $#$hypot_to_n) { |
264
|
0
|
|
|
|
|
|
_extend($self); |
265
|
|
|
|
|
|
|
} |
266
|
|
|
|
|
|
|
|
267
|
0
|
|
|
|
|
|
my $n_to_x = $self->{'n_to_x'}; |
268
|
0
|
|
|
|
|
|
my $n_to_y = $self->{'n_to_y'}; |
269
|
|
|
|
|
|
|
|
270
|
0
|
|
|
|
|
|
my $n = $hypot_to_n->[$hypot]; |
271
|
0
|
|
|
|
|
|
for (;;) { |
272
|
0
|
0
|
0
|
|
|
|
if ($x == $n_to_x->[$n] && $y == $n_to_y->[$n]) { |
273
|
0
|
|
|
|
|
|
return $n; |
274
|
|
|
|
|
|
|
} |
275
|
0
|
|
|
|
|
|
$n += 1; |
276
|
|
|
|
|
|
|
|
277
|
0
|
0
|
|
|
|
|
if ($n_to_x->[$n]**2 + $n_to_y->[$n]**2 != $hypot) { |
278
|
|
|
|
|
|
|
### oops, hypot_to_n no good ... |
279
|
0
|
|
|
|
|
|
return undef; |
280
|
|
|
|
|
|
|
} |
281
|
|
|
|
|
|
|
} |
282
|
|
|
|
|
|
|
} |
283
|
|
|
|
|
|
|
|
284
|
|
|
|
|
|
|
# not exact |
285
|
|
|
|
|
|
|
sub rect_to_n_range { |
286
|
0
|
|
|
0
|
1
|
|
my ($self, $x1,$y1, $x2,$y2) = @_; |
287
|
|
|
|
|
|
|
|
288
|
0
|
|
|
|
|
|
$x1 = round_nearest ($x1); |
289
|
0
|
|
|
|
|
|
$y1 = round_nearest ($y1); |
290
|
0
|
|
|
|
|
|
$x2 = round_nearest ($x2); |
291
|
0
|
|
|
|
|
|
$y2 = round_nearest ($y2); |
292
|
0
|
0
|
|
|
|
|
if ($x1 > $x2) { ($x1,$x2) = ($x2,$x1); } |
|
0
|
|
|
|
|
|
|
293
|
0
|
0
|
|
|
|
|
if ($y1 > $y2) { ($y1,$y2) = ($y2,$y1); } |
|
0
|
|
|
|
|
|
|
294
|
|
|
|
|
|
|
|
295
|
0
|
0
|
0
|
|
|
|
if ($x2 < 0 || $y2 < 0) { |
296
|
0
|
|
|
|
|
|
return (1, 0); |
297
|
|
|
|
|
|
|
} |
298
|
|
|
|
|
|
|
|
299
|
|
|
|
|
|
|
# circle area pi*r^2, with r^2 = $x2**2 + $y2**2 |
300
|
0
|
|
|
|
|
|
return (1, 1 + int (3.2/8 * (($x2+1)**2 + ($y2+1)**2))); |
301
|
|
|
|
|
|
|
} |
302
|
|
|
|
|
|
|
|
303
|
|
|
|
|
|
|
1; |
304
|
|
|
|
|
|
|
__END__ |